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Abstract
We present a near-future research agenda for bringing a suite of modern programming-languages
verification tools – specifically interactive theorem proving, solver-aided languages, and formally
defined domain-specific languages – to the development of a specific safety-critical system, a
radiotherapy medical device. We sketch how we believe recent programming-languages research
advances can merge with existing best practices for safety-critical systems to increase system
assurance and developer productivity. We motivate hypotheses central to our agenda: That we
should start with a single specific system and that we need to integrate a variety of complementary
verification and synthesis tools into system development.
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1 Introduction

Safety-critical systems – containing software in which errors can lead to death, injury, and
wide-scale destruction – are nothing new. Experts have built them for decades at great
expense and, despite well-known failures, our trust in software continues to grow as we
increasingly depend on medical devices, transportation networks, financial exchanges, and
other critical infrastructure where software plays a critical role.

In recent years, only a tiny fraction of mainstream programming-languages research has
directly targeted safety-critical systems.1 This is surprising given the astonishing advances
in automatic verification and synthesis that many of us surely believe could, with appropri-
ate adaptations and focus, reduce costs and improve reliability for safety-critical systems.
After all, we can now build substantial formally verified software infrastructure like the
CompCert compiler [30], a reference monitor for a modern web-browser [24], a full operating

1 Note that there are a handful significant exceptions, such as the ASTREE analyzer in avionics [3],
Galois’ work on highly dependable Haskell platforms [12], and Praxis’ work on safety-critical systems
built in Spark/Ada [1].
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system kernel [27], and cryptographic protocols [2]. However, note that the majority of
these systems are traditional, core computing infrastructure. It is not surprising that the
community has focused on software systems closer to our deepest experience, much as there
are disproportionately many plays about the theatre and novels about novelists.

But, as we discuss in this paper, there are important safety-critical systems that are
architected, specified, developed, and maintained in fundamentally different ways. Successfully
bringing cutting-edge programming-languages verification techniques into modern safety-
critical systems will require a long-term research agenda and deep collaborations with domain
experts. We are beginning such an agenda, and this paper lays out our initial plans and
hypotheses. It is a call for others to pursue similar or complementary approaches. It is a
preview against which we can judge progress in a few years.

We have several high-level hypotheses, each expanded upon in the rest of this paper:
Our methodology should proceed from the specific to the general, working first on one
particular safety-critical system, then a second and a third, and [only] then trying to
abstract to general principles. We are focusing on helping develop the third-generation
of the Clinical Neutron Therapy System (Section 2) at the University of Washington
Medical Center, a sophisticated medical device used for about 30 years without incident
on our campus.
The right model for building safety-critical systems is Jackson’s approach of dependability
cases (see Section 3), in which heterogeneous evidence of reliability is brought together
in an explicit, layered way to connect system requirements to low-level implementation
details. Our goal is not to replace the human element in this process, but to enrich it
with formal and automatic verification of key pieces. To this end, we plan to develop
a high-level dependability case language (DCL) for specifying, checking, and evolving
dependability cases.
No one verification technique is right for the entire dependability case. In particular, we
hope to use an integrated workflow of complementary technologies (Section 3) that are
rarely used together on the same project today, namely:

A formally verified domain-specific language (DSL) for writing the safety-critical
software. Indeed, the strict requirements of such systems make DSLs (or highly
restricted subsets of more general languages) the standard approach already.
Coq [5] for proving key semantic properties of the DSL implementation, and key
correctness properties of shared libraries and components. Infrastructure bugs are
contagious in the sense that a bug in the infrastructure may cause faults in any ap-
plication code running on top of it. Furthermore, infrastructure code changes rarely.
It therefore makes sense to apply heavyweight verification to language implementa-
tions, as evidenced [39, 29] by the reliability of verified language platforms such as
CompCert [30] and Bedrock [4].
Solver-aided verification and synthesis for accelerating code reviews and revisions of
DSL applications. Even safety-critical applications change frequently enough to make
heavyweight verification (e.g., with Coq) prohibitive. At this level, the role of tools
is to accelerate the standard development process. While static analysis is routinely
used in this way [14], solver-aided tools are not, despite their successful application
within many DSLs (see, e.g., [37, 38]). These tools can reason about complex program
properties that are often needed to establish end-to-end dependability – and that are
poorly supported by static analyzers.
Alloy [16] for describing and checking the system architecture and design. A design-level
tool must enable fast iteration and prototyping. As such, the tool must be interactive
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Figure 1 The CNTS console, collimator, and patient setup in gantry.

and capable of producing counterexamples. It must also support a rich logic for partial
formalization of critical aspects of the system – not all parts of a design need to be
subjected to formal analysis, and those that do not should be easy to abstract. Alloy
makes it easy both to model and check designs, and it has a long history of discovering
flaws in designs of safety- and correctness-critical systems (e.g., [10, 34, 25, 40]).

2 The Clinical Neutron Therapy System (CNTS)

The Clinical Neutron Therapy System (CNTS) at the University of Washington Medical
Center (UWMC) is an advanced radiotherapy installation for treating tumors with neutron
radiation. Neutron therapy is highly effective at treating inoperable tumors that are resistant
to conventional electron- or photon-based radiation therapy. But the equipment for neutron
therapy is also an order of magnitude more expensive than conventional radiation therapy.
For this reason, CNTS is one of only three neutron therapy installations in the United States,
and thus it depends extensively on custom software developed by the CNTS staff. Through
deep expertise and great care, the CNTS staff has achieved a remarkable safety record, with
no major incidents in over 30 years of service treating patients.

2.1 The CNTS Installation
The system consists of a cyclotron and a treatment room (Figure 1) with a computer-operated
leaf collimator. The cyclotron generates a broad beam of neutrons that passes through the
collimator on its way to the patient. The collimator consists of forty steel leaves and several
filters, which control the shape and intensity of the beam, respectively. The collimator is
mounted on a gantry that rotates 360 degrees so that the beam can enter the patient from
any angle. The entry point is additionally controlled through the position of the couch (with
five degrees of motion freedom) on which the patient lies during treatment.

A treatment beam prescription specifies the positions of all moving components (couch,
leaves, and filters), the daily radiation dose, and the total radiation dose. Radiation therapy
technologists manually ensure that all components are positioned correctly before beginning
treatment. The therapy control system ensures that the neutron beam can turn on and
remain on only when all moving components are set as prescribed, and when the daily and
total dose are less than prescribed. This is the primary safety requirement for CNTS.

The therapy control system is carefully designed to enforce the CNTS safety require-
ment [19, 23, 20]. For example, a critical aspect of enforcing the requirement is to ensure that
the system can always reach a safe state in which the beam is turned off. The design of the
system therefore provides a non-software path from any state to a safe state. In particular, all
basic therapy controls, such as turning the beam on and off, are implemented with hardware
relays, programmable logic controllers (PLCs), or embedded microcomputers with programs
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AnalogInput "sensor"

INP @sensor-hw-id

SCAN 1 second

FLNK "plus10"

Calc "plus10"

INPA "sensor"

CALC A + 10

FLNK "device"

AnalogOutput "device"

DOL "plus 10"

OUT @device-hw-id

Figure 2 An example program in EPICS0. Dashed lines indicate control transfers while solid
lines indicate data dependencies.

in read-only memory. The software controller, which runs on general-purpose computers, is
used only for advanced therapy control functions.2 As a result, CNTS can reach a safe state
(by turning off the beam through a basic control) even if its software controller crashes.

While bugs in the software controller cannot prevent the beam from being turned off,
they could still cause a violation of the CNTS safety requirement, with deadly consequences.
For example, the software controller is responsible for loading prescriptions from the patient
database into the low-level device controllers. If this is done incorrectly, a patient could
receive too much radiation. The software controller is therefore considered to be a safety-
critical part of the overall system, and its development has followed rigorous practices and
standards [19, 23, 20].

2.2 The CNTS Software Controller
The CNTS software controller has undergone two complete rewrites since 1984. The vendor-
provided controller was originally written in FORTRAN; in 1999 it was replaced with a
custom C program [19, 23]. The latter is now being phased out in favor of a new controller [20]
written in a subset of a general-purpose dataflow language from the Experimental Physics
and Industrial Control System (EPICS) [11]. This subset, which we call EPICS0, forms a
tiny embedded DSL that consists of just 19 EPICS constructs.

Figure 2 shows a simple program in EPICS0 that reads sensor input once per second,
adds 10 to the most recently read value, and writes the resulting value to some output
device. EPICS0 is like EPICS in that the programmer must explicitly specify both control
transfers and data dependencies. For example, programmers need to specify both that after
the “sensor” node finishes processing, it adds the “plus10” node to the processing queue
(indicated by the dashed arrow starting from the “FLNK” field) and also that the “plus10”
node will read the most recent value from the “sensor” node into its INPA field (indicated by
the solid arrow starting from the “INPA” field). However, unlike EPICS, EPICS0 programs
guarantee that these links are always well-formed (e.g., links never point to non-existent
nodes and are loop free).

As EPICS is already a popular and time-tested framework for controlling scientific
instruments, the advantage of transitioning to EPICS0 is that it provides numerous features
that will enable a broader range of therapies at CNTS and thus increase the utility of the
system. However, EPICS was not originally developed for clinical use, but rather for particle
physics experiments. Adapting such research software to a safety critical presents several

2 These include retrieving prescriptions from the patient database, loading prescribed settings into low-level
device controllers, comparing the prescribed settings to those read back from the controllers, instructing
the controllers in a particular sequence, and storing a record of each treatment in the database [20].
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challenges. In particular, EPICS has a massive, complex code base, which is too large for
the CNTS staff to fully audit. During adoption, EPICS has exhibited behavior that the
CNTS staff were unable to explain, leading them to carefully avoid using certain features. In
addition, the language has no formal semantics, making it difficult to reason about program’s
behavior. Finally, it is unclear how to port existing system requirements to this infrastructure
in a way that is maintainable for future CNTS staff.

3 A Dependability Case for CNTS: the Language and the Workflow

The CNTS has operated without incident for 30 years, due to the rigorous development [23, 21]
and operational [22] standards practiced by the in-house engineering and hospital staff. This
level of safety has not been easy to obtain, however, relying on careful manual reasoning,
documentation, and extensive testing. Our goal is to aid the CNTS engineers in maintaining
the system’s impressive safety record – with less effort and with higher confidence – as it
transitions to the new EPICS0 software controller. To that end, we propose to construct an
explicit dependability case [15] for CNTS, with the help of an integrated workflow consisting
of a language for expressing dependability claims and tools for supporting them with evidence.

3.1 The Dependability Case Approach to Building Reliable Systems
Safety and mission-critical systems, like CNTS or the Mars rover [14], are architected,
specified, developed, and maintained according to strict best practices, by highly skilled
engineers. At the system level, these practices involve detailed requirements, documentation,
hazard analysis, and formalization of key parts of the system design. At the code level, they
include adherence to stringent coding conventions (see, e.g., [13]), manual code reviews, use of
static analysis, and extensive testing. The CNTS engineers, for example, followed [19] these
practices when developing the second generation of the CNTS therapy control software – just
as the NASA engineers followed them when developing the software for the Mars rover [14].
But is adherence to best practices enough to ensure that the resulting systems are indeed
dependable – i.e., that they always satisfy their safety goals and requirements?

Based on a comprehensive two-year study [6] of how dependable software might be built,
Jackson [15] argues that best practices alone cannot guarantee dependability. After all, a
correctly implemented system may fail catastrophically if its requirements are based on an
invalid assumption about its environment.3 For this reason, Jackson proposes an approach
for constructing dependable systems in which engineers produce both a system and an
evidence-based argument, or a case, that the system satisfies its dependability goals.

In Jackson’s approach, a dependability case is a collection of explicitly articulated claims
that the system (i.e., the software, the hardware, and, if applicable, the human operators)
has desired critical properties. Each is supported by evidence that may take a variety of
forms, such as formal proofs, tests suites, and operating procedures. The case as a whole
must be auditable (by third parties), complete (including relevant assumptions about the
environment or user behavior), and sound (free of false claims and unwarranted assumptions).
In essence, it must present a socially consumable proof [9] of the system’s dependability.

We believe that the dependability case approach is the right model for developing safety-
critical systems. In fact, it is the model that CNTS engineers intuitively followed when
constructing the second generation of the therapy control system. As noted in Section 2, the

3 Such an assumption was responsible for loss of life in a 1993 landing accident at the Warsaw airport [15].
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design of the system was explicitly based [23] on the end-to-end safety requirement that the
beam may be active only when the machine’s settings match the patient’s prescription. The
ensuing development effort then yielded a collection of artifacts that comprise a rudimentary
dependability case: a 200-page document [19] detailing the system requirements, developed
in consultation with physicists and clinicians; a 2,100 line Z specification [19] of the therapy
control software; a 16,000 LOC implementation of the Z specification in C; a 240-page
reference manual [21]; and a 43-page therapist guide [22]. Our plan is to create an explicit
case for the latest generation of the therapy control system that is powered by the EPICS0
software controller [20].

3.2 A Dependability Case Language
What form should a dependability case for CNTS– or any system – take? Jackson’s proposal
does not mandate any specifics, noting only that the level of detail and formality for a case
will vary between systems. We argue that a dependability case should be formal – that is,
specified in a formal dependability case language (DCL) and subject to formal reasoning.
Such a language would bring the same benefits to dependability cases that specification
languages bring to software design – precision of expression and thought, automation to
guard against syntactic and (some) semantic errors, and support for maintenance as the
system evolves and the CNTS staff changes.

What then should a DCL look like? Existing DCLs are either logic-based languages
(e.g., [17, 8]) for formalizing claims or structured notations (e.g., [26]) for relating claims
to evidence. The former support mechanical analysis but have no notion of evidence. The
latter include the notions of clams and evidence but, as semi-formal notations, they are not
amenable to mechanical analysis. We plan to develop a new hybrid DCL that provides both
mechanical reasoning and a (semi-)mechanical means of connecting claims with various forms
of evidence – such as tests, Coq proofs, solver-aided reasoning, and manual reasoning by
domain experts (for assumptions about the environment that cannot be otherwise discharged).

The details of our DCL are still being developed, but some necessary requirements have
already become clear. First, it must be expressive enough to capture both system-level
requirements and code-level specifications, since a dependability case spans all layers of
design. Second, it must be analyzable – the consistency of the overall argument should be
checkable in an automated fashion. Third, it must include a notion of evidence and be flexible
enough to admit heterogeneous evidence of dependability. Finally, it must be accessible to
domain experts who should be able to audit (but not necessarily construct) a case expressed
in the language. If we succeed in striking a balance among these features, we expect the final
design to be akin to SRI’s Evidential Tool Bus [7] – but with a richer semantics specialized
to our target domain and to our workflow of tools for generating evidence.

3.3 A Dependability Case Workflow
While a DCL helps express dependability claims and check their consistency with evidence
and each other, it does not, by itself, help with the production of evidence. For that,
we propose an integrated workflow of complementary technologies: Coq for infrastructure
verification; solver-aided tools for accelerating the development and inspection of application
code; and Alloy for describing and checking the high-level requirements and design.

As a first step, we will formalize the EPICS0 DSL [20] in Coq. Such a formalization
is critical, since EPICS has no formal semantics. We will then make EPICS0 solver-aided
[36, 37] – that is, equipped with automatic verification and synthesis tools based on SAT
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sig Setting {}
sig Value {}
sig Field {}

enum Beam {On, Off}

sig TherapyMachine {
beam: Beam,
measured, prescribed: Setting -> Value

}

pred TherapyMachine.
SafeTreatment[prescription: Field -> Setting -> Value]
{

safe[measured]
match[measured, prescribed]
prescribed in ran[prescription]

}

check {
all m: TherapyMachine, p: Field->Setting->Value |
m.beam = On => m.SafeTreatment[p]

}
(a) (b)

Figure 3 An example specification in Z (a) and Alloy (b). The therapy beam can only turn on
or remain on when the actual setup of the machine matches a stored prescription that the operator
has selected and approved.

Theorem interp_ok: forall db db’ es,
interp db (inputs es) = (db’, outputs es) -> star step db es db’.

Figure 4 An example correctness theorem in Coq.

and SMT solving. These tools are intended to accelerate the standard CNTS development
workflow [20] by guiding code reviews (with lightweight verification) and revisions (with
lightweight synthesis). Next, we will use Alloy to check the CNTS design for high-level
dependability properties, leveraging the existing Z specification [19] for the system, which is
yet to be subjected to fully automatic analysis. Finally, we will integrate all these sources of
evidence – Coq proofs, automatic synthesis and verification guarantees, Alloy models, and
tests – into a dependability argument in our DCL.

To illustrate the components of our workflow, consider the primary safety requirement of
CNTS. Figure 3a shows a formal specification of this requirement in Z. The specification was
written [19] and manually analyzed by the CNTS staff. In our workflow, the requirement
would be expressed in Alloy, as shown in Figure 3b. Because Alloy was inspired by Z, the
two formulations correspond closely to each other. An engineer who knows Z can switch to
Alloy without much trouble and gain the benefits of its automated analysis.

In an end-to-end dependability case, the Alloy requirement would be decomposed further
into assumptions about the environment and into specifications about the CNTS software
controller. The former would be discharged manually by experts. The latter would be
discharged (within finite bounds) by a solver-aided verifier for EPICS0. Our verifier simply
assumes that the EPICS0 implementation is correct. Our dependability case, however, would
treat this assumption as a correctness claim to be discharged with Coq.

Figure 4 shows an example theorem in Coq for the correctness of the EPICS0 implemen-
tation. This theorem requires that the interpreter function interp behaves according to the
EPICS semantics captured by the step relation. In particular, whenever interp executes
an EPICS database db (which includes both application code and state) with the inputs
of some event trace es, denoted by (inputs es), and produces the resulting database db’

SNAPL 2015
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with output events (outputs es), then the EPICS small step operational semantics allow
exactly the same state transitions with the same observable input and output events. This
theorem completes the dependability argument since the solver-aideded verifier (which is
part of our trusted code base) uses the semantics specified by the step relation.

Our workflow is chosen to balance the need for high assurance with the cost of obtaining
it. At the infrastructure level, the high cost of verifying rich properties manually in Coq is
appropriate, since an infrastructure bug can invalidate any guarantees established for applica-
tions and because, once verified, the infrastructure changes slowly relative to application code.
At the application level, however, code is continuously evolving, especially in a long-lived
system such as CNTS. At this level, full automation is invaluable – the main purpose of tools
is to accelerate development rather than provide total guarantees [14]. Automation is also
critical at the design level, where bugs have the most serious effects [15]. We have chosen
Alloy for this purpose because of its Z-like relational logic, fully automated analysis, and
history of successful applications to safety-critical designs (e.g., [10, 34, 25]).

4 Related Work

There has been much prior work on building dependable systems, most of it by the software
engineering community. Thanks to this work, we have effective approaches to gathering and
analyzing whole-system requirements (e.g., [18]); to specifying and analyzing software designs
(e.g., [35, 28, 16]); and, to turning those designs into analysis-friendly low-defect code (e.g.,
[14, 13, 19, 20]). The recent work on dependability cases (e.g., [6, 15, 31]) also gives us a
methodology for driving the system-building process in a goal-directed fashion, so that the
output of the process is both the system itself and an end-to-end argument – a social proof –
that the system satisfies its critical requirements.

We aim to build on this body of work, and to produce the first integrated workflow –
from languages to tools – for the development, evolution, and maintenance of a high-value
radiotherapy system. In particular, we plan to leverage and extend existing work on languages
for describing dependability cases [17, 8, 26] and for integrating heterogeneous tools into
a workflow [7]. Unlike these prior languages, our DCL will be specialized to a narrow
target domain. As such, it will be more accessible to domain experts, and more tightly
integrated with the tools in our workflow – Coq [5], Alloy [16], and solver-aided verification
and synthesis [36, 37].

5 Conclusion

We have outlined a research agenda to bring modern ideas in programming-language verifica-
tion to the next-generation development of a safety-critical medical tool. Our approach is
unusual in aiming first at one specific system before succumbing to the obvious temptation
of building general tools for a large class of similar systems. Indeed, the goal of building a
safe system will need to take priority over the goal of finding novel programming-languages
research questions, but we believe there will be no shortage of the latter. We are optimistic
that we will learn lessons that can inform research in several areas, namely interactive
theorem proving, solver-aided languages, finite-system modeling tools, and – tying them
together – formal languages for expressing dependability cases for safety-critical systems.
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