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Abstract
Memory consistency models for modern concurrent languages have largely been designed from a
system-centric point of view that protects, at all costs, optimizations that were originally designed
for sequential programs. The result is a situation that, when viewed from a programmer’s
standpoint, borders on absurd. We illustrate this unfortunate situation with a brief fable and
then examine the opportunities to right our path.
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1 A fable

Off to a good start
Alice is a bright and enthusiastic freshman in your programming languages (PL) class,
who has also signed up for a class on French cuisine – computer science and cooking are
her passions. In your first class you proudly proclaim that PL research has simplified the
lives of programmers and increased their productivity. Type safety and automatic memory
management, concepts that were once esoteric, have achieved mainstream success today. You
summarize: “Modern programming languages enforce simple yet powerful abstractions that
hide the complexities of the machine and make programming easier and safer.”

You then explain and formalize sequential composition, a fundamental concept that strings
instructions together. “In the program

A ; B

the semicolon instructs the machine to perform A and then B.” This makes immediate sense
to Alice. From the time she was a toddler (A: wash your hands, and B: you can eat a cookie)
through today when she follows a cooking recipe (A: heat oil in a skillet, and B: add in
chopped vegetables), Alice has implicitly used sequential composition without thinking about
it. She realizes the importance of formalizing such intuitive notions. Alice is thrilled by the
mathematical rigor of your class.
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Soon after, Alice learns a related concept, parallel composition, but this time in her
cooking class. Some recipes require executing two or more sequences of instructions in
parallel, thereby maximizing the usage of kitchen resources while minimizing the time taken
for the recipe. While the meaning of such recipes is specified informally, Alice uses her PL
skills that she so admirably learned from you to formalize parallel composition. “The recipe

A ; B ‖ C

instructs me to do A before B but gives me the freedom to start C at any time – the presence
of C is not a justification to do B before A.” Alice smiles to herself and is excited by her
formalization as she bikes to your class.

A chink in the armor
Unfortunately, Alice’s excitement is short-lived as she writes her first parallel program in
Java:

A: Pasta p = new Pasta(); ‖ C: if (cooked)
B: cooked = true; p.drain();

This program mysteriously throws a null-pointer exception every so often and sometimes has
even stranger behavior. Alice, for the life of her, cannot understand what’s happening, since
she is pretty sure her program is correct. Imagine her surprise when you respond “Oh, there
is a bug in your program. You are assuming that A is always executed before B.”

“A bug? You taught me that A; B means ‘A followed by B,’ and we even formalized it!
If I ask a chef to boil some pasta in a pot and set a timer for two minutes, but the pot is
empty when the timer fires, I will blame the chef for not executing the recipe properly. I will
never blame the recipe.”

Fortunately you have a simple explanation. “You see Alice, a compiler performs some
optimizations by reordering instructions in your program. At runtime, the hardware can
execute instructions out of order, depending on whether the instructions hit or miss in the
cache, and for various other reasons. So sometimes B is executed before A.”

Alice is dumbstruck. “Optimizations? Caches? I am hearing these terms for the first
time. Do I need to understand all of them to understand what A; B means? Programming
languages are supposed to hide all these details from me.”

“They are supposed to, and they do. The problem is that you have a data race in your
program.”

Alice is puzzled. “And . . . what is a data race?”
“Ah, let me explain. In a multithreaded program, there exists a partial order among

instructions called the happens-before relation. A program is said to have a data race if
two instructions access the same memory location, one of them is a write, and they are not
ordered by the happens-before relation.”

“This all sounds confusing.” Alice thinks for a bit . . .

Java is an unsafe language
In a short moment, Alice’s eyes gleam. “I think I got it. I just need to ensure that a
happens-before ordering exists between two writes to the same variable, and between a write
and a read. Then I will not have data races. Which means I can operate under the illusion
that semicolons represent sequential composition: A; B will mean ‘A and then B.’ ”

“Exactly Alice! You nailed it.”
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But as Alice thinks harder she begins to get worried again. “But . . . this illusion breaks
the moment I introduce a data race in my program.”

“Yes.”
“Hmm, doesn’t this mean that Java is unsafe, since it does not protect the abstraction

of the semicolon? If I inadvertently introduce a data race then my program goes haywire
in unpredictable ways. This is similar to the illusion of types in C/C++. A bug, like an
out-of-bounds array access, can break this abstraction.”

You are taken aback. “I guess you are right. This is a safety issue.” You think for a
moment and then respond, “But . . . protecting the semantics of semicolons would make
programs run too slowly.”

“How slowly?”
“We don’t know exactly. The overheads obviously depend on the program, the program-

ming language, the compiler, and the hardware. Experiments suggest an average overhead of
26% for a set of Java benchmarks [34]. With appropriate hardware changes, we can reduce
this overhead significantly [16, 29, 5, 22, 33, 11].”

Alice is dumbfounded. “That seems entirely acceptable and is well within the cost I am
already paying by moving from C++ to Java in order to obtain memory safety guarantees.”

Understanding data races
You are undeterred. “Yes, but PL design is a delicate balance between programmability
and performance. We have to ensure that the utility of an abstraction justifies its cost.
For instance, taking the effort to protect semicolons will not eliminate the possibility of
concurrency errors. You need to avoid data races anyway.”

Alice takes another pause to understand what you just said. And her eyes gleam once
again. “Ah, I think I am finally getting it. Data races are concurrency errors. So fixing my
data races both provides sequential composition and ensures that there are no concurrency
errors in my program.”

You: “Er, not really. Data races are neither necessary nor sufficient for concurrency
errors.”

Alice is now visibly disappointed. “So I can write a data-race-free program that still has
a concurrency error?”

You nod.
Alice shakes her head. “On the other hand, I can write a program that contains a data

race but is nonetheless correct?”
You: “Yes, like the program you wrote earlier – it is correct in a language where semicolons

means sequential composition. Fortunately there is a simple fix. Java will provide the desired
semantics as long as you make all of your data races explicit. You can fix the bug in your
program just by adding a volatile annotation on the cooked variable.”

The horror, the horror
Alice takes another pause. “Vola-what? So, you want me to mark every data race in my
program with this volatile annotation.” Alice sighs. “I guess this is all fine as long as there
are tools to help novice programmers like me to detect and remove data races. Maybe like
the red squigglies I get when I make a syntax error?”

You wish you had good news. “This happens to be an active field of study. Static
data-race detectors currently suffer from too many false positives [28, 25]. Dynamic data-race
detectors [14] have performance overheads that are orders-of-magnitude more than the gain
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from compiler and hardware optimizations that are causing these issues in the first place.
Finally, there are research proposals [8, 6, 20] for specialized programming models that
guarantee data-race freedom, but they are not ready for the mainstream yet.”

Alice takes a deep breath. “Ok, I guess with no tool support, I have to always assume
that my programs contain data races. So I will just have to get used to this weaker semantics
for semicolons. By the way, what is that semantics and what does it guarantee?”

You: “Unfortunately, this also turns out to be a hard problem. We have made several
attempts to formalize the precise semantics and to ensure some basic sanity properties, but
doing so while safely allowing the optimizations we desire is still an open problem.”

Alice: “Ouch! How in the world are you programming with these semicolons then?”
You: “Luckily, it doesn’t seem to matter in practice. Programs just seem to run ok even

though there is the potential for unpredictable behavior.”
Alice just cannot believe what her professor just said. “I quit! You taught me that

modern programming languages enforce simple and powerful abstractions, but apparently
performance trumps everything else. From now on I will stick to cooking – at least my
kitchen never reorders my instructions behind my back!”

2 The moral of the story

“Safe” languages like Java have improved the world by bringing type and memory safety to
the mainstream. We all know the benefits and preach them to our students and colleagues:
providing strong guarantees to programmers for all programs that are allowed to execute,
obviating large classes of subtle and dangerous errors, and cleanly separating a language’s
interface to programmers from its implementation details.

Yet the PL research community is largely silent as this trend is being inadvertently
reversed in the standardization of memory consistency models for concurrent programming
languages [23, 7]. Just as achieving memory safety in unsafe languages requires unrealistic
programmer discipline, achieving sane semantics in Java requires programmers to meticulously
avoid data races with little language support for doing so. In this world, data races become
the new dangling pointers, double frees, and buffer overflows, exposing programs to hardware
and compiler implementation details that can affect program behavior in unpredictable and
unsafe ways. Worse, contrary to popular belief, most data races are not concurrency errors.
Our attempt with Alice’s story is to bring these issues to the forefront of PL researchers’
minds and agendas, hopefully in a humorous and thought-provoking way.

We propose two tenets for the semantics of multithreading in safe languages:

I Tenet 1. Following Pierce’s definition [27], safe programming languages should protect
their own abstractions – no program, including a buggy one, should be able to break the
language abstractions.

I Tenet 2. Sequential composition is a fundamental abstraction in programming languages.

We believe that these tenets are uncontroversial and widely accepted in the PL community.
The second tenet may not be explicitly considered often, but a bit of thought shows it
to be self-evident. If sequential reasoning is no longer valid, how do we understand pre-
and post-conditions of functions? What does it mean for a library to have an interface
specification? In short, how do we modularly build and reason about programs?

The necessary conclusion from these two tenets is that safe programming languages should
preserve sequential composition for all programs. That is, safe languages should guarantee
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sequential consistency (SC) [21]1 – it should not be possible for programs to expose the
effects of compiler and hardware reorderings.

Put another way, recent work on standardizing memory models is system-centric: it
assumes that essentially all sequentially valid hardware and compiler optimizations are
sacrosanct and instead debates the semantics one should assign to semicolons. Somehow the
programmer-centric view, which argues for treating the semantics of semicolons as sacrosanct
and designing the software/hardware stack to efficiently provide this semantics, has gotten
lost.

The memory models in Java as well as C and C++ stem from the classic work on
data-race-free-0 (DRF0) memory consistency models for hardware [2]. DRF0 argues that
consistency models weaker than SC are hard for programmers to understand and therefore
insists that platforms provide mechanisms for programmers to regain SC. Specifically, DRF0
guarantees that data-race-free (DRF) programs will have SC semantics. DRF0 therefore
argues for Tenet 2, but by providing weak or no guarantees when programmers fail to
follow the DRF discipline, it violates Tenet 1. This situation is particularly problematic
because, despite decades of research, enforcing data-race-freedom is hard statically [28, 25],
dynamically [14], or through language mechanisms [8, 6, 20]. Therefore, it is safe to assume
that most programs will have data races and thus will be exposed to counter-intuitive non-SC
behaviors.

Given the arguments above, it is perhaps surprising that no mainstream language design
committee considers SC to be a viable programming interface. Even languages like Python,
which hugely favor productivity over performance, are unwilling to guarantee SC. Why are
PL designers so willing to trample on the fundamental abstraction of a semicolon? In our
experience, we have seen three arguments made against SC:
1. “Why encourage ‘racy’ programming?” – SC is unnecessary as programs should be

data-race free anyway.
2. “Didn’t the Java memory model (JMM) solve this problem?” – SC is unnecessary since

Java provides safety guarantees for non-SC programs.
3. “It’s simply too expensive.” – SC is not practical for modern languages and hardware.
The next three sections rebut these arguments.

3 Data races as red herrings

One argument against SC is that data races are concurrency errors, and thus the effort to
provide SC over DRF0 only benefits buggy programs that should be fixed anyway. The
need for safety immediately nullifies this argument – programmers, as humans, will violate
any unchecked discipline, and safe languages should protect their abstractions despite such
violations. But it is still important to ask if data races should be treated as concurrency
errors.

A memory race (or simply a race) occurs when two threads concurrently access the same
memory location and at least one of them is a write. Memory races are abundant in shared-
memory programming and are used to implement efficient inter-thread communication and
synchronization, such as locks. A data race is simply a memory race that is not syntactically
identified in the program. Such explicit identification occurs through the use of standard
language synchronization mechanisms, like locks, as well as through programmer annotations.

1 SC preserves a global shared-memory abstraction in addition to preserving sequential composition.
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Therefore it is easy to show that data races are neither necessary nor sufficient for a
concurrency error [30, 19]. By a concurrency error, we mean a violation of an intended
program invariant that is due to the interactions among multiple threads.

Here is a simple example of a DRF program in Java that has a concurrency error:

synchronized(lock){ temp = balance; }
temp++; ‖ synchronized(lock){ balance++; }
synchronized(lock){ balance = temp; }

In this code, the update to balance from the right thread can be lost if the threads interleave
in the wrong way. But this program is DRF as the only memory race occurs on the lock
variable via the locking mechanism that is provided by the language. In this case, ensuring
that no updates are lost requires each update to be atomic, for example by modifying the
left thread to hold the lock for its entire duration.

Conversely, programs can contain data races but yet behave as intended (assuming SC
semantics), like the one Alice wrote above. That program properly preserves the invariant
that the pasta is not drained until it has been cooked, but it has a data race because the
cooked variable has not been explicitly annotated as volatile. Research on data-race
detection amply shows [31, 37, 26, 12, 19] that most data races (e.g., [12] reports 90%) are
not concurrency errors. They are either intentional races that the programmer failed to mark
as such or unintentional races that are nonetheless correct under SC (e.g., writing the same
value to a variable from multiple threads).

Thus, from a program correctness perspective, the primary reason to remove data races
from programs today is to protect against compiler and hardware optimizations. DRF0’s
requirement to exhaustively annotate all memory races is therefore largely a distraction from
what should be the main goal: to help programmers identify and avoid concurrency errors.
To this end, languages should provide mechanisms that allow programmers to specify and
statically check desired concurrency disciplines. For example, guarded-by annotations [13]
allow programmers to specify which locks are intended to protect which data structures, and
atomicity annotations [15] allow programmers to specify which blocks of code are intended
to execute atomically. In stark contrast to these kinds of annotations, volatile annotations
do not convey the intended concurrency discipline and do not help the compiler to identify
concurrency errors.

Nevertheless, data-race-free programming provides some benefits from a program un-
derstanding perspective. First, despite the volatile annotation’s limited expressiveness as
described above, it allows programmers to explicitly document inter-thread communication.
However, note that the DRF discipline does not require all inter-thread communication to be
documented. For example, a reference to a thread-safe queue does not require a volatile
annotation even if threads use the queue operations to communicate – the DRF discipline
only pertains to the individual, low-level memory races in the queue’s implementation.

Second, a DRF program has the nice property that any synchronization-free region of
code is guaranteed to be atomic [1]. This allows reasoning about program behavior as
interleavings of these coarse-grained atomic regions. Programmers have to conservatively
assume that dynamically dispatched method calls as well as library calls could introduce
synchronization and accordingly break atomicity. Even so, the resulting granularity is still
coarser in practice than what is possible in a non-DRF program, where only regions of code
with no thread-shared accesses can be treated as atomic.

However, these benefits of the DRF discipline are not a justification to choose DRF0 over
SC. DRF0 is a strictly weaker memory model than SC. This means that, from a programmer’s
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standpoint, DRF0 shares all the deficiencies of SC, and SC shares all the strengths of DRF0.
For instance, neither under SC nor under DRF0 can programmers rely on the benefits of
the DRF discipline by default, due to the lack of language or tool support for enforcing that
discipline. Instead, programmers must conservatively assume the presence of data races. If a
programmer can somehow ensure that a program obeys the DRF discipline, however, then
all the benefits of that discipline are guaranteed, both under DRF0 and under SC.

Hence, SC and DRF0 are equivalent in terms of their benefits relative to the DRF discipline.
But SC additionally provides safety by protecting all programs from the counterintuitive
effects of hardware and compiler optimizations, while DRF0 does not.

4 SC and the Java Memory Model

Another common objection we hear is the claim that Java’s memory model has solved the
safety issues with the DRF0 memory model, leaving no further incentive for SC. Indeed,
the Java memory model is intended to provide a semantics to programs containing data
races that still ensures important safety properties, including type safety, memory safety,
and preventing “out of thin air” reads, whereby the read of a variable returns a value that
was never written to that variable [23].

In the decade since its introduction, the current JMM has been the subject of much
scrutiny in the academic literature. It is now known to prevent compiler optimizations that
it intended to allow [9]. In fact, certain optimizations that would always be valid under
SC (such as redundant read elimination) can lead to behavior that violates the JMM. As a
result, commonly used compilers for Java, while likely DRF0-compliant, generate code that
violates the JMM for some racy programs [36]. Yet we know of no replacement that is under
consideration. In other words, despite years of research, the community has not found a
viable middle ground between SC’s safety guarantees and DRF0’s performance.

Further, even if these issues are resolved and the JMM can achieve its goals, SC is still
necessary for two reasons. First, the JMM is complex and difficult to understand. Any
future compiler optimization should be carefully analyzed to ensure its JMM compliance.
Given the experience to date, it is likely that this will lead to subtle compiler bugs that can
subvert the JMM’s guarantees in unpredictable ways. Second, we argue that the JMM’s
safety guarantees are much weaker than what most programmers would expect and rely
upon. While the JMM has focused on obviating out-of-thin-air reads for security reasons,
it is easy for other non-SC behaviors that are JMM-compliant to nonetheless cause serious
security vulnerabilities. For example, the following variant of Alice’s program can exhibit an
injection attack when the right thread unknowingly accesses the unsanitized version of d:

Data d = getInput();
‖

if (sanitized)
d.sanitize(); d.use();
sanitized = true;

In other words, any behavior that violates the programmer’s SC-based reasoning can
potentially lead to unauthorized data access, and hence imply serious consequences for privacy
and security. This concern is not merely hypothetical: we are aware of an instance where a
C++ compiler optimization introduced a time-of-check-to-time-of-use security vulnerability
in a commonly used operating-system kernel. Perhaps surprisingly, the vulnerability was
fixed not by changing the code, but by disabling the problematic compiler optimization.

SNAPL 2015



184 The Silently Shifting Semicolon

5 The path forward

In our fable, the thoroughly frustrated Alice accused computer scientists of prioritizing
performance above safety. While we believe that achieving safety is worth sacrificing some
speed, pragmatism insists that we still retain reasonable performance. We would be wrong
to claim that providing SC is extremely efficient on existing hardware platforms. But equally
wrong is the blanket claim that “SC is impractical as it disables most compiler and hardware
optimizations.” The truth is somewhere in between and we will attempt to quantify the cost
of providing SC below. Then we will describe a feasible path toward achieving SC in modern
languages.

In many ways, the current situation mirrors the situation for garbage-collected languages a
few decades ago. The PL community in the large understood the importance of type safety and
automated memory management (well before the security implications for C/C++ programs
became known) and collectively worked to improve the efficiency of type-safe languages. As a
result type and memory safety has become the default in modern, mainstream programming
languages. In the same vein, it is up to us as a community to determine if the abstraction of
sequential composition is worth protecting.

Let us quantify the cost of SC over DRF0 languages. Using DRF0 terminology, memory
accesses in a program can be classified into synchronization accesses and data accesses.
Synchronization accesses are identified through the use of standard synchronization constructs
and through annotations such as volatile. DRF0 languages must guarantee SC semantics
for synchronization accesses, and they do so by both restricting compiler optimizations and
emitting appropriate hardware fences that restrict hardware optimizations. On the other hand,
the compiler and the hardware can freely optimize data accesses within synchronization-free
regions of code.

Now consider a simple SC compiler which follows a “volatile-by-default” approach. It
must ensure SC semantics for all accesses, whether synchronization or data. However, if the
compiler can statically prove some accesses to be DRF, it is safe to aggressively optimize
them. This includes accesses to local variables, compiler-generated temporaries, objects that
do not escape a particular thread, and member objects that are consistently protected by
the monitor of a class. The table below compares these two approaches:

Optimized?
Access Kind DRF0 SC
synchronization N N
data, DRF provable Y Y
data, DRF not provable Y N

As we can see, the only difference between DRF0 and SC lies in their treatment of data
accesses that the compiler cannot prove to be DRF. DRF0 simply assumes that such accesses
are DRF, optimizing them at the expense of safety, while SC conservatively assumes that
such accesses might not be DRF, obtaining safety at the expense of performance. This simple
approach to ensuring SC semantics is, even today, much less expensive than is commonly
thought. Research has shown ([34] for Java, [24] for C/C++) that the performance loss
due to forgone compiler optimizations is negligible, since many optimizations are already
compatible with SC and the rest can still be safely applied to thread-local variables. The
hardware cost of additionally issued fences can be more significant, but even then, Alglave et
al. [3] show the runtime overhead of this approach for memcached to be only 17.5% on x86
and 6.8% on ARM.
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This overhead will continue to decrease as hardware fences become more efficient. Hard-
ware vendors are already under pressure to optimize their fences to efficiently support
synchronization accesses in DRF0 languages, and recent research suggests that significant
improvements have been made [10]. Hill argued years ago [18] that there is little performance
incentive to relax memory models in hardware since techniques abound to efficiently mask
hardware optimizations [16, 29, 17, 5, 22, 33, 11]. Hardware platforms that are unwilling to
commit to a strong memory model interface can still use these techniques to optimize fences,
thereby enabling the compiler to efficiently guarantee SC to the programmer.

Orthogonally, the PL community should strive to increase the number of optimizations
that the compiler can perform, and reduce the number of hardware fences it must emit,
while still guaranteeing SC behavior. One approach is to prove more memory accesses as
DRF, which allows them to be optimized within synchronization-free regions. But note that
data-race freedom is just one sufficient condition to enable some SC-preserving optimizations,
and many other opportunities exist. For instance, delay set analysis [32, 34, 4] can identify
accesses that can be reordered without violating SC, in spite of the fact that they may
race with accesses in other threads. Alglave et al. [3] report that this technique reduces the
overhead of SC on memcached to 1.1% on x86 and 3% on ARM. Scaling such analyses to
large programs, including techniques for sound modular analysis, is an important avenue for
future research.

Further, an SC compiler can leverage the kinds of concurrency annotations that we
mentioned in Sec. 3 to soundly and modularly identify SC-preserving compiler optimizations.
For instance, the guarded-by annotation [13] communicates a particular locking discipline,
allowing an SC compiler to optimize accesses to the protected location for the entire duration
that the guarding lock is held. This includes optimizations that reorder operations across
unrelated synchronization accesses – an opportunity that even a DRF0 compiler would not
find since it lacks information about which synchronization accesses protect which memory
locations. Therefore programmers have two good reasons to provide these annotations:
avoiding concurrency errors and speeding up their code. We believe that continued research
into new annotations and language constructs that establish statically checkable concurrency
disciplines will uncover additional opportunities for compilers to produce fast SC code.

6 SC, DRF0, and Unsafe Languages

The safety argument we have made so far obviously does not apply to unsafe languages like
C/C++. An explicit design goal in these languages is to avoid language abstractions that are
not efficiently implementable on existing hardware. Given the current cost of hardware fences,
it is unlikely that the overheads of SC are acceptable for these “bare metal” languages. Thus,
at first blush, DRF0 seems to be the only feasible choice to ensure SC reasoning. Given that
unsafe languages already require programmer discipline to retain important abstractions like
memory safety, it seems acceptable to additionally require that programmers exhaustively
annotate all memory races.

However, the experience with C/C++ standardization shows that even DRF0 is not
efficiently implementable on current hardware platforms [7]. As a result, C/C++ has settled
for a memory model weaker than DRF0, which we call Weak DRF0 (WDRF0). DRF
programs are not guaranteed SC semantics in WDRF0. To get SC, programmers have to
additionally avoid the use of the so-called low-level atomic primitives. The weak semantics
of DRF programs in C++ is similar in complexity to the semantics of non-DRF programs in
Java (and with similar problems in precisely pinning down this semantics [35]).
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The C++ standard discourages the use of low-level atomic primitives by giving the
vanilla atomic annotation (which is the analogue of Java’s volatile) SC semantics. The
expectation is that low-level atomics will only be used by a handful of experts to implement
performance-critical libraries. Nevertheless, it is unclear how to effectively hide the weakness
within these libraries such that “well behaved” programs that use them can enjoy SC
reasoning. Additionally, given the predominance of benign data races in legacy software and
the continued need for programmers to use ad-hoc synchronization idioms (from double-
checked locking to redundant initialization of variables to write-only debug variables), it is
likely that low-level atomic primitives will be present in application-level code as well.

Thus, we are currently in the unfortunate situation in which C/C++ programmers are
not guaranteed SC, even if they take care to properly annotate all their races. A primary
description of the C++ memory model [7] acknowledges this deficiency and states that DRF0
“is the model we should strive for,” which will require hardware vendors to reduce the cost of
fences. But as argued above, any improvement in the performance of hardware fences also
improves the performance of SC. In effect, the DRF0 memory model is sandwiched between
the currently feasible but unacceptably weak memory model WDRF0 on the one side and
SC on the other side. Any improvement in the performance gap between WDRF0 and DRF0
will reduce the performance gap between DRF0 and SC even more. We predict that when
DRF0 becomes acceptably efficient for C/C++, the performance of SC over DRF0 will also
be acceptably small. In such a setting, it is unclear if the programmer effort to meticulously
annotate all memory races and the potential for unsafe behaviors makes DRF0 worthwhile
even for C/C++ programs.

7 Conclusion

The semantics of the semicolon is fundamental in mainstream programming languages.
This paper makes a case that semicolons should mean what everyone already thinks they
mean, namely sequential composition: A; B should always mean A and then B. In such a
world, Alice can write programs that behave according to her intuition, expert programmers
writing low-level libraries don’t have to carefully figure out what fences to insert where, and
researchers don’t have to debate what a four-line concurrent program should mean.

Language runtimes relax the meaning of semicolons today simply due to an accident
of history. When multiprocessors were first designed, hardware architects did not know
effective ways to hide single-processor optimizations from multithreaded programs, leading
to relaxed-memory-model interfaces and associated expensive fences. As Hill elegantly
argued more than 15 years ago [18], this is no longer necessary – architects now have a
variety of techniques [16, 29, 17, 5, 22, 33, 11] to efficiently hide hardware optimizations
from software (or equivalently, to drastically reduce the cost of fences), several of which are
already implemented in commercial processors such as x86. Many of the design decisions that
went into the Java and C/C++ memory models are centered around the need to minimize
the number of hardware fences, thereby perpetuating the historical accident at the cost of
program safety and programmer sanity.

We believe that it is high time to rectify this situation. We hope that Alice’s story and
our associated arguments will convince language designers to bring SC into the mainstream,
just as Java did for type and memory safety a few decades ago. As we have argued, safe
languages must preserve sequential composition, and the overhead of SC is much less than
commonly thought and will be significantly reduced over time. We believe the safety benefits
of SC are well worth the overhead, especially in this day and age when programmers routinely
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give up integer factors of performance, for example by using scripting languages, in exchange
for increased productivity.

Current and future programmers need our help. If we don’t save the semicolons, who
will?
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