
Everything You Want to Know About
Pointer-Based Checking
Santosh Nagarakatte1, Milo M. K. Martin∗2, and Steve Zdancewic3

1 Department of Computer Science, Rutgers University, US
santosh.nagarakatte@cs.rutgers.edu

2 Computer and Information Sciences, University of Pennsylvania, US
milom@cis.upenn.edu

3 Computer and Information Sciences, University of Pennsylvania, US
stevez@cis.upenn.edu

Abstract
Lack of memory safety in C/C++ has resulted in numerous security vulnerabilities and se-

rious bugs in large software systems. This paper highlights the challenges in enforcing memory
safety for C/C++ programs and progress made as part of the SoftBoundCETS project. We have
been exploring memory safety enforcement at various levels – in hardware, in the compiler, and
as a hardware-compiler hybrid – in this project. Our research has identified that maintaining
metadata with pointers in a disjoint metadata space and performing bounds and use-after-free
checking can provide comprehensive memory safety. We describe the rationale behind the design
decisions and its ramifications on various dimensions, our experience with the various variants
that we explored in this project, and the lessons learned in the process. We also describe and
analyze the forthcoming Intel Memory Protection Extensions (MPX) that provides hardware ac-
celeration for disjoint metadata and pointer checking in mainstream hardware, which is expected
to be available later this year.

1998 ACM Subject Classification D.3.4 Processors, D.2.5 Testing and Debugging

Keywords and phrases Memory safety, Buffer overflows, Dangling pointers, Pointer-based check-
ing, SoftBoundCETS

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2015.190

1 Introduction

Languages like C and its variants are the gold standard for implementing a wide range
of software systems from low-level system/infrastructure software to performance-critical
software of all kinds. Features such as low-level control over memory layout, explicit manual
memory management, and proximity to the hardware layout have made C the dominant
language for many domains. However, C language implementations with their focus on
performance do not ensure that programmers use C’s low level features correctly and safely.
Further, weak typing in C necessitates dynamic checking to enforce C language abstractions,
which can cause additional performance overheads.

Memory safety ensures that all memory accesses are well-defined according to the language
specification. Memory safety violations in C arise when accesses are to memory locations (1)
that are beyond the allocated region for an object or an array (known as spatial memory
safety violations or bounds errors) and/or (2) that have been deallocated while managing

∗ On leave at Google.

© Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic;
licensed under Creative Commons License CC-BY

1st Summit on Advances in Programming Languages (SNAPL’15).
Eds.: Thomas Ball, Rastislav Bodík, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett; pp. 190–208

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.190
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


S. Nagarakatte, M.M.K. Martin, and S. Zdancewic 191

memory through manual memory management (known as temporal memory safety violations,
use-after-free errors or dangling pointer errors).

Without memory safety, seemingly benign program bugs anywhere in the code base can
cause silent memory corruption, difficult-to-diagnose crashes, and incorrect results. Worse
yet, lack of memory safety is the root cause of multitude of security vulnerabilities, which
result by exploiting a memory safety error with a suitably crafted input. The buffer overflow
vulnerabilities, use-after-free vulnerabilities, and other low-level vulnerabilities resulting from
memory safety violations have compromised the security of the computing ecosystem as a
whole [42, 50, 8, 43, 3].

1.1 Memory Safety for C versus Java/C#
Languages such as Java and C# enforce memory safety with a combination of strong typing,
runtime checks, and automatic memory management. The type casts are either disallowed
or restricted. The runtime checks are performed to ensure that the array accesses are within
bounds and type casts are between objects in the same object hierarchy. Automatic memory
management (e.g., using garbage collection) ensures that any reachable object is not freed.

Unfortunately, C’s weak typing allows arbitrary type casts and conflates arrays and
pointers. Preventing memory safety violations therefore requires checks on every memory
access, because it is difficult to distinguish between pointers that point to a single element
from pointers that point to an array of elements. Information about allocation/object sizes
is lost in the presence of unsafe type casts. Hence, Java/C# style checking is infeasible to
enforce memory safety for C. Further, avoiding temporal safety violations with automatic
memory management (e.g., using a garbage collector) does not allow the low-level control of
memory allocations and deallocations to which C/C++ programmers are accustomed for
implementing systems/infrastructure software.

As a consequence of C’s weak typing and other low-level features, a pointer (e.g., void *p)
in C code can be (1) a pointer to a memory location allowed by the language specification (e.g.,
arrays, structures, single element of a particular data type, and sub-fields in a structure), (2)
an out-of-bounds pointer, (3) a dangling pointer pointing to deallocated memory locations,
(4) a NULL pointer, (5) an uninitialized pointer, and (6) a pointer manufactured from an
integer. To check whether a memory access (pointer dereference) is valid, the challenging
task is not necessarily checking memory accesses; the primary challenge is maintaining and
propagating sufficient information (metadata with each pointer) to perform such checking in
the presence of C’s weak typing and other low-level features.

1.2 State-of-the-Art in Enforcing Memory Safety for C
Given the importance of the problem, comprehensively detecting and protecting against
memory safety violations is a well researched topic with numerous proposals over the years (see
Szekeres et al. [48] for a survey). Lack of memory safety was originally regarded as a software
quality problem. Thus, majority of techniques were debugging tools rather than always-on
deployment of such solutions. Subsequently, when lack of memory safety resulted in numerous
security vulnerabilities, many proposed solutions addressed the symptoms of these security
vulnerabilities rather than the root cause of these errors (i.e., lack of memory safety). The
solutions that enforce memory safety can be broadly classified into three categories: tripwire
approaches, object-based approaches, and pointer-based approaches.

Tripwire approaches place a guard block of invalid memory between memory objects. The
guard block prevents contiguous overflows caused by walking past an array boundary with a

SNAPL 2015



192 Everything You Want to Know About Pointer-Based Checking

small stride. The tripwire approaches are generally implemented by tracking a few bits of
state for each byte in memory; the additional bits indicate whether the location is currently
valid [18, 40, 44, 49, 53]. When the memory is allocated, these bytes are marked as valid.
Every load or store is instrumented to check the validity of the location. AddressSanitizer [46],
a compiler implementation of the tripwire approach, is widely used to detect memory errors.
Tripwire approaches can detect a class of buffer overflows (small strides) and use-after-free
security vulnerabilities (when memory is not reused).

The object-based approaches [9, 12, 14, 22, 45] are based on the principle that all pointers
are properly derived pointers to their intended referent (the object they point to). Hence
these approaches check pointer manipulations to ensure that the resultant pointer points
to a valid object. The distinguishing characteristic of this approach is that metadata is
tracked per object and associated with the location of the object in memory, not with each
pointer to the object. Every pointer to the object therefore shares the same metadata.
Object-based approaches keep the memory layout unchanged which increases the source
compatibility with existing C code. Object-based approaches are generally incomplete in the
presence of type casts between pointers and pointers to subfields of an aggregate data type.
Further, they require mechanisms to handle out-of-bound pointers as creating out-of-bound
pointers is allowed by the C standard. SAFECode [9, 12] and Baggy Bounds [1] are efficient
implementations of the object-based approach using whole program analysis and allocation
bounds, respectively.

The third approach is the pointer-based approach, which tracks metadata with each
pointer. The metadata provides each pointer a view of memory that it can access according
to the language specification. The pointer-based approach is typically implemented using
a fat pointer representation that replaces some or all pointers with a multi-word point-
er/metadata. Two distinct pointers can point to the same object and have different base and
bound associated with them, so this approach overcomes the sub-object problem [5, 35, 47].
When a pointer is involved in arithmetic, the actual pointer portion of the fat pointer is
incremented/decremented. On a dereference, the actual pointer is checked with its metadata.
Proposals such as SafeC [2], CCured [37, 7], Cyclone [21], MSCC [52], and others [11, 38, 41]
use this pointer-based approach to provide varying degree of memory safety guarantees. Our
SoftBoundCETS project was inspired by such prior pointer-based checking projects.

1.3 Goals of the Project
We started the SoftBoundCETS project1 with the following goals:

Comprehensive safety. Detect all memory safety errors in a fail stop fashion to completely
prevent an entire class of memory safety related security vulnerabilities.
Low performance overhead. Memory safety enforcement has to be carried out on deployed
programs to prevent security vulnerabilities. Hence, any performance overhead should be
indiscernible to the end user to be widely adopted.
Source compatibility. As significant C code base exists, we wanted to enforce memory
safety without requiring changes to existing code (i.e., maintain source compatibility).
However, recompilation of the code is expected.

The prior solutions that inspired our project failed to attain all of the above goals.
Cyclone [21] was comprehensive with low overhead, but it required significant code modifica-

1 The name SoftBoundCETS is a concatenation of the names of its components: SoftBound [35] and
CETS [36].



S. Nagarakatte, M.M.K. Martin, and S. Zdancewic 193

struct A {
 size_t t1;
 void* ptr;
 size_t t2;
};

void foo(struct A * p) {
 struct B * q;
 q= (struct B *)p;
 ...
 q->f3 = ...;
}

 

0x50
0x58
0x60

t1
ptr
t2  

0x50
0x58
0x60

t1
ptr
base
bound
t2

0x68
0x70

struct  A 
     in 
memory

memory layout 
with regular pointers 

memory layout 
with fat pointers 

struct  A 
     in 
memorym

et
a

-d
at

a

struct B {
 size_t f1;
 size_t f2;
 size_t f3;
};

Figure 1 Memory layout changes in a program with fat pointers. The code snippet also shows
how a pointer involved in arbitrary type casts can overwrite the pointer metadata.

tions. CCured attained the goals of reasonable performance overhead and comprehensiveness
for providing spatial safety. CCured maintained metadata with pointers by changing the
representation of a pointer into a fat pointer (ptr, base, bound). It relied on a garbage
collector to provide temporal safety.

However, there were two major drawbacks with the CCured approach: interfacing with
libraries and type casts. With the use of a fat-pointer, CCured required marshalling/de-
marshalling of pointers, which resulted in deep copies of data structures while interfacing
with external libraries through wrappers. In the presence of unsafe type casts, the pointer
metadata could be potentially overwritten (see Figure 1). CCured used a whole program
inference to detect such pointers involved in casts (e.g., WILD pointers), which prevented
separate compilation and WILD pointers had higher performance overhead. To mitigate
these issues, the programs had to be changed/rewritten to avoid such type casts or use
run-time type information (RTTI) extensions.

We started our project to address compatibility issues with CCured in an effort to make it
easily usable with large code bases while avoiding garbage collection. Our goal was to provide
checked manual memory management in contrast to automatic memory management. The
SoftBoundCETS project enforces memory safety by injecting code to maintain per-pointer
metadata and checking the metadata before dereferencing a pointer. To provide compatibility,
the per-pointer metadata is maintained in a disjoint metadata space leaving the memory layout
of the program unchanged. We have implemented pointer-based checking in various ways (see
Table 1): within the compiler, in hardware, and with hardware instructions for compiler
instrumentation. We have used the compiler instrumentation prototype of SoftBoundCETS
to compile more than a million lines of C code. The latest compiler prototype is available
at https://www.cs.rutgers.edu/~santosh.nagarakatte/softbound/. Intel has recently
announced Memory Protection Extensions [20], which provides hardware acceleration for a
similar pointer-based compiler instrumentation for enforcing spatial safety.

In the next section, we describe our approach, design decisions, various implementations
and their trade offs. In Section 3, we describe the Intel Memory Protection Extensions
(MPX) [20], similarities/differences between SoftBoundCETS and MPX while highlighting
the pros and cons of the design decisions. We reflect on the lessons learned in Section 4.

2 Pointer-Based Checking with Disjoint Metadata

The SoftBoundCETS project uses a pointer-based approach, which maintains metadata with
each pointer. The metadata provides the pointer a view of the memory that it can safely access.
Although pointer-based checking has been proposed and investigated earlier [37, 2, 21, 52],
the key difference is that our approach maintains the metadata disjointly in a shadow memory

SNAPL 2015

https://www.cs.rutgers.edu/~santosh.nagarakatte/softbound/


194 Everything You Want to Know About Pointer-Based Checking

Table 1 Various implementations of pointer-based checking developed as part of the SoftBound-
CETS project, distinguished based on instrumentation method (Instr.), support for spatial safety,
temporal safety, instrumentation of integer operations, support for check optimizations, performance
overhead, and data structures used for disjoint metadata.

Instr. Spatial Temporal Instr. Check Slow Disjoint
safety safety integer Opts -down meta-

ops data
HardBound [11] Hardware Yes No Yes No 5-20% Shadow
SoftBound [35] Compiler Yes No No Yes 50-60% Hash/

Shadow
CETS [36] Compiler No Yes No Yes 30-40% Trie
SoftBound- Compiler Yes Yes No Yes 70-80% Trie
CETS [31]

Watchdog [32, 33] Hardware Yes/No Yes No No 10–25% Shadow
WatchdogLite [34] Hybrid Yes Yes No Yes 10–20% Shadow

int **p, *q;
...

q = *p;

(b) Pointer Load (c) Pointer Store
q = p + index;
// or &p[index]

(a) Pointer Arithmetic

  q_base = p_base;
  q_bound = p_bound;
  q_key =  p_key;
  q_lock = p_lock;

 scheck(p, p_base, p_bound);
 tcheck(p_key, p_lock);

 q_base = lookup(p)->base;
 q_bound = lookup(p)->bound;
 q_key = lookup(p)->key;
 q_lock = lookup(p)->lock;

int **p, *q;
...

*p = q;

 scheck(p, p_base, p_bound);
 tcheck(p_key, p_lock);

 lookup(p)->base = q_base;
 lookup(p)->bound = q_bound;
 lookup(p)->key = q_key;
 lookup(p)->lock = q_lock;

Figure 2 (a) Pointer metadata propagation with pointer arithmetic, (b) metadata propagation
through memory with metadata lookups on loads, and (c) metadata lookups with pointer stores.

region, which provides an opportunity to revisit pointer-based checking (generally considered
invasive) for retrofitting C with practical memory safety satisfying the above three goals.

We describe the main design choices with our approach: (1) metadata for spatial safety,
(2) metadata for temporal safety, (3) propagation of metadata, and (4) organization of the
metadata shadow space. We also describe how it enforces comprehensive detection in the
presence of type casts and provides compatibility with existing C code while supporting
external libraries. Figure 2 and Figure 3 illustrate the pointer-based metadata, propagation
and checking abstractly using pseudo C code notation. We use the term SoftBoundCETS
interchangeably to refer to both our approach and the various prototypes built in this project
shown in Table 1.

2.1 Spatial Safety Metadata
To enforce spatial safety, the base and bound of the region of memory accessible via the
pointer is associated with the pointer when it is created. The base and bound are each
typically 64-bit values (on a 64-bit machine) to encode arbitrary byte-granularity bounds
information. These per-pointer base and bounds metadata fields are sufficient to perform a
bounds check prior to a memory access (Figure 3d). This representation permits the creation
of out-of-bounds pointers and pointers to the internal elements of objects/structs and arrays
(both of which are allowed in C/C++).



S. Nagarakatte, M.M.K. Martin, and S. Zdancewic 195

2.2 Temporal Safety Metadata

To enforce temporal safety, a unique identifier is associated with each memory allocation
(Figure 3a). Each allocation is given a unique 64-bit identifier and these identifiers are never
reused. To ensure that this unique identifier persists even after the object’s memory has
been deallocated, the identifier is associated with all pointers to the object. On a pointer
dereference, the system checks that the unique allocation identifier associated with the pointer
is still valid.

free(p);

(c) Temporal Check
p = malloc(size);

 p_key = next_key++; 
 p_lock = allocate_lock();
 *(p_lock) = p_key;
 p_ base = p;
 p_bound = p != 0 ? p+size: 0;

 *(p_lock) = INVALID;
 deallocate_lock(p_lock);

 tcheck(p_key, p_lock) {
   if (p_key != *(p_lock))
      raise exception();
 }

(a) Memory Allocations

(b) Memory Deallocations

(d) Spatial Check
 
 scheck(p, p_base, p_bound, size) {
   if (p < p_base || 
        p + size >= p_bound)
      raise exception();
 }

Figure 3 (a) Pointer metadata creation on memory
allocations, (b) identifier metadata being invalidated on
memory deallocations, (c) lock and key checking using
identifier metadata, and (d) spatial check performed using
bounds metadata.

Performing a validity check on
each memory access using a hash
table or a splay tree can be expen-
sive [2, 22], so an alternative is to
pair each pointer with two pieces of
metadata: an allocation identifier –
the key – and a lock that points to a
location in memory called lock loca-
tion [41, 52, 36, 5, 32]. The key and
value at the lock location will match
if and only if the underlying memory
for the object is still valid (i.e., it has
not been deallocated). Rather than
a hash table lookup, a dereference
check then becomes a direct lookup
operation – a simple load from the
lock location and a comparison with
the key (Figure 3c). Freeing an allocated region changes the value at the lock location,
thereby invalidating any other (now-dangling) pointers to the region (Figure 3b). Because the
keys are unique, a lock location itself can be reused after the space it guards is deallocated.

2.3 Metadata Propagation

q:0x70

5
   lock
locations0xB0

0x50

0x70
0x54

0x74

metadata in a disjoint space

p:0x50

Spatial

0x70 0x74 5 0xB0

0x50 0x54 5 0xB0

Temporal

0xa0
key lockbase bound

0x08

Figure 4 Metadata maintained with each pointer in
memory with SoftBoundCETS. There are two pointers
p and q which point to different sub-fields in the same
allocation. Hence they have different bounds metadata
but the same lock and key metadata.

The metadata – base, bound, lock,
and key – are associated with a
pointer whenever a pointer is cre-
ated. These metadata are propa-
gated on pointer manipulation op-
erations such as copying a pointer or
pointer arithmetic (Figure 2a). The
metadata for pointers in memory is
maintained in a disjoint metadata
space [11, 35, 32, 36, 17]. Figure 4
illustrates the metadata maintained
in the disjoint metadata space. The
disjoint metadata space protects the
metadata from malicious corruption
and leaves the memory layout of the
program intact, retaining compatibil-
ity with existing code.

The metadata is propagated with pointer arguments across function calls. If the pointer

SNAPL 2015



196 Everything You Want to Know About Pointer-Based Checking

arguments are passed and returned on the stack, metadata for these pointer arguments are
available through accesses to the disjoint metadata space. However, in practice propagating
metadata with function calls is not straightforward. Arguments are often passed in registers
according to the function calling conventions of most ISAs, and C allows variable argument
functions. Furthermore, function calls (indirect calls) can be made through function pointers.
Function pointers can be created through unsafe type casts to functions with incompatible
types. Calling a function through such a function pointer should not be allowed to manufacture
metadata, which may result in memory accesses to arbitrary memory locations.

We have explored two approaches to propagate metadata for pointer arguments: adding
metadata as extra arguments [35, 36] and using a shadow stack for propagating metadata [31].
We pass metadata as extra arguments for functions that are not involved in type casts and
used with indirect calls. We use a shadow stack for all other function calls including variable
argument functions. The shadow stack provides a mechanism for dynamic typing between
the arguments pushed at the call site and the arguments retrieved by the callee. The shadow
stack is slower but it ensures that the callee never successfully dereferences a non-pointer
value pushed by the caller in the call stack by treating it as a pointer value. An exception
is triggered only when such pointers are dereferenced but not when they are created in
accordance with the C specification.

2.4 Implications of Disjoint Metadata Design
To use disjoint metadata, we had to address the following questions: (1) How are memory
locations mapped to their disjoint metadata? (2) Is metadata maintained for every memory
location or only for memory locations with pointers?, and (3) Is metadata updated on every
memory access?

Different implementations of the disjoint metadata space have different memory overhead
and performance trade-offs. We have explored three implementations: shadow space (a
linear region of memory) [11, 35, 32], a hash table [35], and a trie data structure [39, 36, 16].
Shadow space is beneficial when the size of the metadata is significantly smaller than the
granularity of the memory region (e.g., 1-bit of metadata for every 16 bytes). Hash tables can
experience conflicts, and resizing the hash table causes overheads. In th end, we settled upon
a two level trie data structure that maps the entire 64-bit virtual address space. Although
mapping exists for the entire virtual address space, the entries in the trie are allocated only
when the metadata is used.

Disjoint metadata accesses are expensive compared to fat pointers because additional
instructions are required to translate a memory address to the corresponding metadata
address. To reduce performance overheads, SoftBoundCETS maintains metadata in the
disjoint metadata space only for pointers in memory and performs metadata loads (stores)
only when the loaded (stored) value from (into) a memory location is a pointer as shown in
Figure 2b and Figure 2c, respectively. The metadata for pointers in temporaries (registers)
are maintained in temporaries (registers). Hence, the accesses to the disjoint metadata space
typically occur with pointer-chasing code or linked data structures. Most programs have
fewer pointers in memory compared to data and metadata is maintained only with pointers.
Hence, the memory overhead is significantly lower than the worst-case 4× overhead (about
50% on average for SPEC benchmarks).

SoftBoundCETS initializes metadata to an invalid value when a pointer is created from an
integer (in registers), which causes any subsequent check on such pointer dereferences to raise
an exception. SoftBoundCETS does not access the disjoint metadata space when non-pointer
values are written (read) to (from) memory. However, a side effect of instrumenting only



S. Nagarakatte, M.M.K. Martin, and S. Zdancewic 197

pointer operations is that a pointer can be manufactured from a integer through memory.
However, SoftBoundCETS allows such a dereference through a manufactured pointer only
when the resulting pointer belongs to the same allocation and is within bounds of the object
pointed by the pointer before the cast. We illustrate how SoftBoundCETS still provides
comprehensive protection against memory errors with such type casts below.

2.5 Comprehensive Protection in the Presence of Type Casts

Our approach enforces comprehensive memory safety because (1) metadata is manipulat-
ed/accessed only through the extra instrumentation added, (2) metadata is not corrupted
and accurately depicts the region of memory that a pointer can legally access, and (3) all
memory accesses are conceptually checked before a dereference.

Unlike fat pointers, a store operation using a pointer involved in an unsafe type cast can
only overwrite pointer values but not the metadata in the disjoint metadata space. When
pointers involved in arbitrary casts are subsequently dereferenced, the pointer is checked
with respect to its metadata. As the correctness checking uses the metadata to ascertain the
validity of the memory access and the metadata is never corrupted, our approach ensures
comprehensive detection of memory safety errors.

Figure 5 pictorially represents the disjoint metadata space as it is updated in the presence
of arbitrary type casts. We will refer to this example later to illustrate a subtle interplay
between type casts and comprehensive protection with Intel MPX. Figure 5(a) shows a
program with two structure types struct A and struct B and a function foo, which has
pointer p of type struct A as an argument. The location pointed by pointer p is allocated
and resident in memory as shown in Figure 5(a). The sub-field ptr in the allocated memory
region pointed by pointer p points to some valid memory location. Pointers p and ptr are
resident in memory and have metadata in the disjoint metadata space as shown in Figure 5(a).
Figure 5(b) depicts the execution of the program where it creates pointer q from pointer p
through an arbitrary type cast. The metadata for pointer q, which is assumed to be resident
in memory, is copied from pointer p.

The program writes integers to memory locations using pointer q as shown in Figure 5(c).
As a result, ptr sub-field is overwritten with arbitrary non-pointer values. Our approach
does not access the disjoint metadata space on integer operations. Hence, the metadata is
not corrupted. When the program later tries to dereference ptr in memory, the dereference
would be checked with respect to its metadata and memory safety errors would be detected.

2.6 Compatibility with Existing Code and Libraries

To enforce memory safety with legacy programs, SoftBoundCETS handles programs with
type casts, supports separate compilation, and provides wrappers for commonly used libraries.
The use of disjoint metadata enables comprehensive protection with type casts. Rewriting C
source code to avoid type casts is not necessary.

SoftBoundCETS supports separate compilation because the instrumentation is local and
does not require whole program analysis in contrast to CCured [37]. Separate compilation
also allows creation of memory-safe libraries. In the absence of library sources, code compiled
with SoftBoundCETS can interface with library code through wrappers for the exported
library functions. In the absence of such wrappers, code instrumented with SoftBoundCETS
will not experience false violations as long as the external libraries do not return pointers or
update pointers in memory.

SNAPL 2015



198 Everything You Want to Know About Pointer-Based Checking

q:0x0

50xd0

metadata in a disjoint space

p:0x50 0x50 0x68 5 0xd0

0xa0

key lockbase bound

struct A {
 size_t t1;
 void* ptr;
 size_t t2;
};

void foo(struct A * p) {
 
 struct B * q;

 q = (struct B *)p;
 ...
 q->f3 = ...;
 ...
}

   lock
locations

0x68

struct B {
 size_t f1;
 size_t f2;
 size_t f3;
 size_t f4;
};

0x08

0x50

Spatial Temporal

t1
ptr:0xb0

abcd0xb0

t2
0xb0 0xb8 9 0xe0

90xe0

q:0x50

50xd0

metadata in a disjoint space

p:0x50

0x50 0x68 5 0xd0

0x50 0x68 5 0xd0

0xa0

key lockbase bound

struct A {
 size_t t1;
 void* ptr;
 size_t t2;
};

void foo(struct A * p) {
 
 struct B * q;

 q = (struct B *)p;
 ...
 q->f3 = ...;
 ...
}

   lock
locations

0x68

struct B {
 size_t f1;
 size_t f2;
 size_t f3;
 size_t f4;
};

0x08

0x50

Spatial Temporal
abcd0xb0

t1
ptr:0xb0

t2

90xe0

0xb0 0xb8 9 0xe0

q:0x50

50xd0

metadata in a disjoint space

p:0x50

0x50 0x68 5 0xd0

0x50 0x68 5 0xd0

0xa0

key lockbase bound

struct A {
 size_t t1;
 void* ptr;
 size_t t2;
};

void foo(struct A * p) {
 
 struct B * q;

 q= (struct B *)p;
 ...
 q->f3 = ...;
 ...
}

   lock
locations

0x68

struct B {
 size_t f1;
 size_t f2;
 size_t f3;
 size_t f4;
};

0x08

0x50

Spatial Temporal
abcd0xb0

t1
ptr:0xXXX

t2

90xe0

0xb0 0xb8 9 0xe0

(a) Pointer p points to structure A in memory. The subfield of A points to another location in memory.

(b) Pointer q points to the structure pointed by p considering it to be of type struct B.

(c) Pointer q writes a junk value into the ptr field. However the metadata is untouched and 
still consistent.

 

Figure 5 This figure illustrates how disjoint metadata protects the metadata. Writes to memory
locations involved in arbitrary type casts can only modify pointer values (ptr field in the struct A)
but not the metadata. When the pointer ptr is dereferenced, the dereference will not be allowed and
the memory safety violation would be caught.



S. Nagarakatte, M.M.K. Martin, and S. Zdancewic 199

When an external library returns or updates pointers in memory, wrappers provide the
glue code between the instrumented code and the external library. Writing wrappers is
easier with SoftBoundCETS compared to CCured [37] because it is not required to perform
deep copies of data structures when memory-safe code interfaces with an external library.
However, the disjoint metadata space should be updated in the wrapper whenever the
external library updates pointers in memory. Although our approach makes it easier to write
wrappers, it can be tedious and error prone for some libraries. We provide wrappers for the
commonly used libraries (e.g., Linux utilities, libc, and networking utilities) with our publicly
available compiler prototype. Intel MPX further makes it even easier to incrementally deploy
spatial safety checking by storing the pointer value redundantly in the metadata space
to be permissive when non-instrumented code modifies the pointer and does not properly
update the bounds metadata, which presents a compatibility/safety trade off as described in
Section 3.

2.7 Efficient Instrumentation and Challenges
One of the key requirements for low performance overhead is efficient instrumentation and
implementation of the pointer-based checking approach described above. Table 1 lists the
numerous designs that we have explored in the hardware-software tool chain with different
types of instrumentation, safety guarantees, and performance trade-offs [35, 36, 32, 33, 31, 10,
34]. Binary instrumentation and source-to-source translation have been popular with various
proposals for enforcing partial memory safety. Source-to-source translation is widely used
because pointer information is readily available in the source code. Binary-based techniques
have been popular partly due to the availability of the dynamic binary translation tools like
PIN [29] and Valgrind [40].

Our project benefited, albeit serendipitously, from the LLVM compiler that maintains
pointer information from the source code in the intermediate representation (IR) [26].
Instrumenting within the compiler provides three main benefits: (1) checking can be performed
on optimized code after executing an entire suite of conventional compiler optimizations, (2)
pointers and memory allocations/deallocations can be identified precisely by leveraging the
information available to the compiler, and (3) a large number of checks can be eliminated
statically using check elimination optimizations.

Figure 6 presents the percentage runtime overhead of the latest compiler-based SoftBound-
CETS prototype within the LLVM compiler (LLVM-3.5.0) over an un-instrumented baseline.
SoftBoundCETS enforces comprehensive memory safety at 76% overhead on average with
SPEC benchmarks. The overhead is significantly lower with I/O intensive benchmarks and
various utilities such as OpenSSL, Coreutils, and networking utilities (less than 30%). A
variant of pointer-based checking described above that propagates metadata with all pointer
loads and stores but checks only store operations can enforce memory safety at 23% overhead
on average with SPEC benchmarks. Store-only checking, which allows read operations
on out-of-bound locations and with dangling pointers, is sufficient to prevent all memory
corruption based security vulnerabilities.

The remaining performance overhead with the compiler instrumentation is attributed
to the following sources: (1) spatial checks (5 x86 instructions), (2) temporal checks (3
x86 instructions), (3) metadata loads (approximately 14 x86 instructions), (4) metadata
stores (approximately 16 x86 instructions), (5) shadow stack accesses, and (6) additional
spills and restores due to register pressure.

To further reduce overheads with compiler-based approaches, we have explored memory
safety instrumentation within hardware with varying amounts of hardware support [11, 32,

SNAPL 2015



200 Everything You Want to Know About Pointer-Based Checking

0
50

100
150
200
250

P
er

ce
n
t 

o
v
er

h
ea

d softboundcets softboundcets-store

gzip vpr
mesa art

equake-m
crafty

ammp
parse

r
bzip2

mcf
milc

hmmer
sje

ng

lib
quant

h264ref
lbm

gobmk

Average

Figure 6 Runtime execution time overheads of the SoftBoundCETS compiler prototype with
comprehensive memory safety checking (left bar of each stack) and while checking only stores (right
bar of each stack) on a Intel Haswell machine. Smaller bars are better as they represent lower
runtime overheads.

33]. HardBound [11] and Watchdog [32, 33] implicitly check every memory access within
hardware by receiving information about pointer allocations from the runtime with additional
instructions. The benefits of implicit checking within hardware are streamlined execution of
checks and metadata accesses and the reduction in the number of register spills/restores by
leveraging hardware registers for metadata.

In the final design point we proposed, hardware provides acceleration for spatial checks,
temporal checks, metadata loads and metadata stores with ISA extensions and the compiler
performs metadata propagation, performs check elimination, introduces check instructions and
metadata access instructions into the binary [34]. This division of labor between the software
stack and the hardware reduces the invasiveness of the hardware changes. With compiler-
inserted checking instructions, we have demonstrated that comprehensive memory safety can
be enforced at approximately 20% performance overhead on average with SPEC benchmarks.
Further, these hardware instructions prevent all memory corruption vulnerabilities with
store-only checking with approximately 10% performance overhead on average for SPEC
benchmarks. Intel MPX has adopted a similar approach with compiler-based instrumentation
with hardware instructions for enforcing spatial safety.

3 Intel Memory Protection Extensions

q:0x73

0x50

0x70
0x54

0x74

metadata in a disjoint space

p:0x52

0x70 0x74

0x50 0x54

0xa0
base bound

0x08 0x52

0x73
ptr unused

Figure 7 MPX maintains four pieces of metadata with
each pointer: base, bound, the pointer redundantly in the
metadata space and the fourth unused space.

Intel has announced the specifica-
tion of Memory Protection Exten-
sions (MPX) [20] for providing hard-
ware acceleration for compiler-based
pointer-based checking with disjoint
metadata slated to appear in the
“Skylake” processors later in 2015.
Like SoftBoundCETS with hardware
instructions [34], MPX (1) provides
hardware acceleration for compiler-
based pointer-based checking, (2)
uses disjoint metadata for the point-
ers in memory, and (3) provides ISA
support for efficient bounds checking.
Significantly, MPX does not address
use-after-free errors. MPX uses the same basic approach pioneered by the SoftBoundCETS
project, and this section describes some of the differences.



S. Nagarakatte, M.M.K. Martin, and S. Zdancewic 201

3.1 MPX Instructions and Operation
The Intel MPX extension provides new instructions that a compiler can insert to accelerate
disjoint per-pointer metadata accesses and bounds checking. MPX aims for seamless inte-
gration with legacy and MPX code with minimal changes to the source code. One design
goal of MPX is to allow binaries instrumented with MPX to execute correctly (but without
performing bound checks) on pre-MPX hardware. MPX achieves this goal by selecting
opcodes that are NOOPs (no operation) on existing x86 hardware for the new instructions.
Hence, a MPX binary can run on MPX-enabled machines and non-MPX machines.

MPX introduces four new 128-bit bound registers (B0-B3). MPX provides the following
instructions: (1) BNDCL – check pointer with its lower bound, (2) BNDCU – check pointer to the
upper bound, (3) BNDSTX – store metadata to the disjoint metadata space, (4) BNDLDX – load
metadata from the disjoint metadata space, and (5) BNDMK – to create bounds metadata for
a pointer. MPX also extends function calling conventions to include these bound registers.

A key innovation of MPX beyond our work is the support for incremental deployment of
bounds checking. MPX redundantly stores the pointer value in the metadata space along
with the base and bound metadata as shown in Figure 7. When a pointer is loaded from
memory, the corresponding metadata is loaded from the disjoint metadata space and the
loaded pointer is compared with the pointer redundantly stored in the metadata space. If the
pointer in the metadata space and the pointer loaded do not match (typically occurs when
the non-instrumented code modifies the pointer and does not properly update the bounds
metadata), then MPX allows the pointer to access any memory location by un-bounding
it. MPX design adopts the compatible-but-unsafe model, allowing best-effort checking of
instrumented code until all code has been recompiled for MPX.

3.2 Type Casts and Comprehensiveness with Intel MPX
The Intel MPX’s support for incremental deployment of bounds checking results in the loss
of comprehensiveness in the presence of insidious type casts from integers to pointers either
directly or indirectly through memory. Particularly, the arbitrary pointer manufactured
through type casts in Figure 5(c) will be allowed by MPX to access any location in memory
because (1) the pointer in the metadata space is not updated during an integer store, (2) the
pointer loaded and the pointer in the metadata space would mismatch on a metadata load,
and (3) the result is an un-bounded pointer. The compiler can identify the occurrence of such
type casts either implicitly or explicitly and warn the programmer about them. Nevertheless,
MPX is a step in the practical deployment of memory safety checking in production. Although
Intel MPX may appear permissive, the spatial safety protection provided by Intel MPX is
similar or stronger to the protection provided by fat-pointer approaches while easing the
problem of interfacing with external libraries. Although the current ISA specification does
not disable this behavior with un-bounding, Intel could easily add a stricter mode that
changes this behavior to be safer by default.

4 Reflections on Memory Safety Enforcement

We briefly describe our experience in enforcing memory safety with large code bases and
reflect on the performance overheads, various aspects of the language, implementation, and
the hardware-software stack. We describe changes to the language and the hardware-software
stack, which can potentially make memory safety enforcement inexpensive while being
expressive for C’s domain.

SNAPL 2015



202 Everything You Want to Know About Pointer-Based Checking

4.1 Performance Overheads
Low performance overhead is one of the key requirements for adoption of memory safety
enforcement techniques. Our experiments indicate that compiler instrumentation with
hardware acceleration in the form of new instructions can provide comprehensive memory
safety with approximately 10–20% performance overhead for computation-based SPEC
benchmarks and less than 10% I/O intensive utilities and applications. These overheads are
within the reach of the acceptable threshold for a large class of applications. For example, a
large fraction of C code is compiled at the O2 optimization level because the code is unstable
with higher optimization levels (likely due aggressive optimizations by the compiler in the
presence of undefined behavior and implementation-dependent behavior [51]). For many “fast
enough” applications, an additional 5–10% overhead for enforcing memory safety will not be
perceivable to the user. The store-only instrumentation within the compiler with hardware
acceleration can prevent all memory corruption based security vulnerabilities is an attractive
option for reducing overheads further. Store-only checking provides much better safety than
control-flow integrity with similar performance overheads [24, 15]. An application’s observed
performance overhead depends on the memory footprint, amount of pointer-chasing code,
and the locality in the accesses. Hence, it remains to be seen what performance cost users
will tolerate in exchange for the security and safety of the computing ecosystem.

We have explored only simple check optimizations with our prototype. A wide range
of check optimizations based on loop invariant code motion and loop peeling can reduce
overhead. For example, compiler optimizations based on weakest preconditions have reduced
the performance overhead of spatial safety enforcement by 37% for the SPEC benchmarks [13].
Moreover, simple code transformations can significantly reduce performance overhead. For
example, a small change to the data structure used by the SPEC benchmark equake not
only improved the baseline execution time performance by 60% but also reduced overhead of
memory safety with SoftBoundCETS from 3× to 30%.

4.2 Implementation Specific C Dialects
Other than performance, one of the biggest impediments in the adoption of memory safety
enforcement techniques is the pervasiveness of implementation-specific C dialects. In contrast
to the C standard, a fraction of the C code base depends on the behaviors provided by
contemporary C implementations [4]. Are deviations from the C standard acceptable? There
is no unanimous answer but such reliance on implementation specific behaviors result in non-
portable code and can be exploited aggressively by an optimizing compiler (see classification
of undefined behaviors in LLVM in [28]). We highlight examples that are arguably not in
conformance with the C standard, which can cause false violations with our approach.

4.2.1 Narrowing of Bounds for Sub-Objects
When the program creates a pointer to a sub-field of an aggregate type, should the bounds
of the resultant pointer be just the sub-field or the entire aggregate object? Our approach
provides the ability to easily narrow the bounds of pointers, which in turn allows us to
prevent internal object overflows. When instructed to check for overflows within an object,
we shrink the bounds of pointer when creating a pointer to a field of a struct (e.g., when
passing a pointer to an element of a struct to a function). In such cases, we narrow the
pointer’s bounds to include only the individual field rather than the entire object.

Although most programmers expect shrinking of bounds, it can result in false violations
for particularly pathological C idioms. For example, a program that attempts to operate



S. Nagarakatte, M.M.K. Martin, and S. Zdancewic 203

on three consecutive fields of the same type (e.g., x, y, and z coordinates of a point) as a
three-element array of coordinates by taking the address of x will cause a false violation.
Another example of an idiom that can cause false violations comes from the Linux kernel’s
implementation of generic containers such as linked lists. Linux uses the ANSI C offsetof()
macro to create a container_of() macro, which is used when creating a pointer to an enclosing
container struct based only on a pointer to an internal struct [23]. Casts do not narrow
bounds, so one idiom that will not cause false violations is casting a pointer to a struct to a
char* or void*.

Another case in which we do not narrow bounds is when when creating a pointer to
an element of an array. Although tightening the bounds is such cases may often match
the programmer’s intent, C programs occasionally use array element pointers to denote a
sub-interval of an array. For example, a program might use memset to zero only a portion
of an array using memset(&arr[4], 0, size) or use the sort function to sort a sub-array
using sort(&arr[4], &arr[10]). We have found these assumptions and heuristics match the
source code we have experimented with, but programmer can control the exact behavior
with compiler command line flags.

4.2.2 Integer Arithmetic with Integer to Pointer Casts

Masking pointer values is a common idiom in low-level systems code to use the lower order
bits of the pointer representation to store additional information with aligned pointers.
The last three bits are always zero in the pointer representation on a 64-bit machine with
an aligned pointer. These bits can be used to store tags, which can maintain additional
information about the pointer. Such operations would involve casting pointers to integers,
masking the values, and casting integers back to pointers. Such casts may also be performed
after arbitrary integer arithmetic. Occasionally, pointers can be created from integers due to
(old) interfaces to utilities. For example, the interface to the system functions in Microsoft
Windows on 32-bit systems (Kernel32.dll) used integers for pointers, which resulted in pointer
to integer and integer to pointer casts. Our approach will set the metadata of the pointer
cast from an integer to be invalid and raise an exception on dereferencing such pointers.
Avoiding such exceptions require explicit setting of bounds by the programmer. If such cast
operations occur through memory, our approach allows dereference of such pointers as along
as the pointer type cast from an integer belongs to the same allocation and is within bounds
of the object pointed by the pointer before the cast.

4.3 Interoperability and Engineering

Pointer-based checking is more invasive compared to other approaches as each pointer
operation needs to be tracked, propagated with metadata, and checked. Hence, significant
engineering is required to make it practical. AddressSanitizer [46], which uses a tripwire
approach, is less invasive but still required significant engineering for use with code bases of the
Chromium browser and other utilities. Our experience indicates that significant engineering
and enabling memory safety checking using a simple compile time flag is crucial for adoption.
Maintaining interoperability with un-instrumented code is necessary to encourage incremental
deployment. Intel MPX with its support for incremental deployment will likely increase the
adoption of memory safety enforcement with pointer-based checking.

SNAPL 2015



204 Everything You Want to Know About Pointer-Based Checking

4.4 Language Design Considerations
We provide some suggestions for the future standards of the C programming language to ease
memory safety enforcement. One way to ease memory safety enforcement is by restricting type
casts. Enforcing spatial safety with strong typing is easier compared to weak typing (similar
to observations in CCured [37]). More restrictive type cast rules imply easier spatial safety
enforcement because only array bounds need to be checked. Unfortunately, implementing
large software systems (with some form of polymorphism/reusable code) requires type casts
in C. Object oriented variants of C such as C++ have reasonable subsets that can enforce
spatial safety while being suitable for building infrastructure/systems code [10].

Even when type casts are necessary, preventing the creation of pointers from non-pointers
will enable easier memory safety enforcement for a large class of applications compared to
the state-of-the-art now. When creation of pointers from non-pointers is essential, explicitly
creating a separate data type other than integers will ease the enforcement of memory safety.

The C language conflates arrays and pointers, which requires bounds checking on every
memory access. Annotations that identify non-array pointers, which point to a single element
in contrast to an array of elements, can avoid such checking. In the case of linked data
structures, such annotations will significantly reduce spatial safety overheads by reducing
not only the overheads due to checks but also disjoint metadata accesses. The overhead with
Intel MPX for spatial safety can be reduced significantly by revisiting annotations similar to
Cyclone [21] and Deputy [6].

4.5 Implementation Considerations
We highlight the implementation considerations for efficient pointer-based checking with
compiler assisted instrumentation and hardware acceleration similar to MPX.

Type information in the compiler is known to benefit numerous domain-specific instru-
mentation [30]. Maintaining information about types in the program within the compiler
tool chain will ease the enforcement of memory safety especially with Intel MPX. If main-
taining full type information is infeasible, the compiler should at least maintain information
about pointer and non-pointer types. This information must be preserved and maintained
with compiler optimizations, which would enable memory safety instrumentation on opti-
mized code. The LLVM compiler maintains best effort type information, which helped the
SoftBoundCETS project to perform pointer-based checking within the compiler with low
performance overhead.

Automatic memory management through garbage collection is an attractive alternative
to checked manual memory management. Automatic memory management can increase
programmer productivity as they do not have to manually manage memory. However, garbage
collection’s effectiveness decreases in the presence of weak typing with C and can cause memory
leaks. The pointer-based metadata can be used to perform precise garbage collection [10, 4].
In contrast to identifier metadata for enforcing temporal safety, spatial safety metadata can
be used enforcing temporal safety by setting the bounds of the deallocated pointer and all its
aliased pointers in the metadata space to a invalid value [47]. Any subsequent dereference of
such a deallocated pointer will raise an exception as the bounds metadata is invalid. Similar
dangling pointer nullification has been proposed to detect use-after-free errors [27]

4.6 Multithreading
A pointer-based approach should ensure atomicity of the checks, metadata accesses, and
the memory access in multithreaded programs, which can be ensured by relying on the



S. Nagarakatte, M.M.K. Martin, and S. Zdancewic 205

compiler. If a pointer operation, temporal safety check and the metadata accesses occur
non-atomically, interleaved execution and race conditions (either unintentional races or
intentional races) can result in false violations and miss true violations. To avoid them, the
compiler instrumentation must ensure that: (1) a pointer load/store’s data and metadata
access execute atomically, (2) checks execute atomically with the load/store operation, and
(3) allocation of metadata is thread safe. The compiler can satisfy requirement #3 by using
thread-local storage for the identifiers. The compiler can ensure requirements #1 and #2
for data-race free programs by inserting metadata access and check instructions within the
same synchronization region as the pointer operation. For programs with data races, if
the compiler can perform the metadata access as an atomic wide load/store and perform
the temporal check after the memory operation, then the approach can detect all memory
safety violations (but can experience false violations). Alternatively, the compiler can either
introduce additional locking or use best-effort bounded transactional memory support in
latest processors [19, 25](e.g., Intel’s TM support in Haswell) to avoid false violations.

5 Conclusion

Memory safety enforcement is the job of the language implementation. A language imple-
mentation that is compatible with the C standard can enforce comprehensive memory safety
at low overheads with pointer-based checking. Restrictions on the creation of pointers from
non-pointers, annotations distinguishing pointers to arrays from pointers to non-array objects,
and preserving the pointer information within the compiler can ease the job of enforcing
memory safety.

We conclude that it is possible to enforce comprehensive memory safety with low per-
formance overheads using pointer-based checking with disjoint metadata and an efficient
streamlined implementation. From our experience in building pointer-based checking in
various parts of the tool chain, we anticipate that hardware acceleration (like Intel MPX) will
reduce the performance overheads significantly while reducing the hardware changes. Intel
MPX with support for incremental deployment of memory safety checking and its store-only
instrumentation will likely make always-on deployment of spatial safety enforcement a reality.

Acknowledgments. We thank Vikram Adve, Emery Berger, John Criswell, Chrisitan De-
lozier, Joe Devietti, Michael Hicks, David Keaton, Peter-Michael Osera, Stelios Sidiroglou-
Douskos, Nikhil Swamy, and Adarsh Yoga for their inputs during the course of this project.
This research was funded in part by Intel Corporation, and the U.S. Government by DARPA
contract HR0011-10-9-0008, ONR award N000141110596 and NSF grants CNS-1116682,
CCF-1065166, CCF-0810947, and CNS-1441724. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Government.

References

1 Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy bounds checking:
An efficient and backwards-compatible defense against out-of-bounds errors. In Proceedings
of the 18th USENIX Security Symposium, August 2009.

2 Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all pointer
and array access errors. In Proceedings of the SIGPLAN 1994 Conference on Programming
Language Design and Implementation, 1994.

SNAPL 2015



206 Everything You Want to Know About Pointer-Based Checking

3 Stephen Bradshaw. Heap spray exploit tutorial: Internet explorer use af-
ter free aurora vulnerability. http://www.thegreycorner.com/2010/01/
heap-spray-exploit-tutorial-internet.html.

4 David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan Woodruff, Munraj Vadera,
Simon W. Moore, Michael Roe, Brooks Davis, and Peter G. Neumann. Beyond the pdp-
11: Architectural support for a memory-safe c abstract machine. In Proceedings of the
Twentieth International Conference on Architectural Support for Programming Languages
and Operating Systems, 2015.

5 Weihaw Chuang, Satish Narayanasamy, and Brad Calder. Accelerating meta data checks
for software correctness and security. Journal of Instruction Level Parallelism, 9, June
2007.

6 Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C. Necula.
Dependent types for low-level programming. In Proceedings of the 16th European Sympo-
sium on Programming, 2007.

7 Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and Westley Weimer.
Ccured in the real world. In Proceedings of the SIGPLAN 2003 Conference on Programming
Language Design and Implementation, 2003.

8 Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole. Buffer
overflows: Attacks and defenses for the vulnerability of the decade. In Proceedings of the
Foundations of Intrusion Tolerant Systems, pages 227–237, 2003.

9 John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. Secure virtual ar-
chitecture: A safe execution environment for commodity operating systems. In Proceedings
of the 21st ACM Symposium on Operating Systems Principles, 2007.

10 Christian DeLozier, Richard Eisenberg, Santosh Nagarakatte, Peter-Michael Osera,
Milo M.K. Martin, and Steve Zdancewic. IroncladC++: A Library-augmented Type-safe
Subset of C++. In Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages and Applications, OOPSLA’13, 2013.

11 Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hardbound: Ar-
chitectural support for spatial safety of the c programming language. In Proceedings of the
13th International Conference on Architectural Support for Programming Languages and
Operating Systems, 2008.

12 Dinakar Dhurjati and Vikram Adve. Backwards-compatible array bounds checking for c
with very low overhead. In Proceedings of the 28th International Conference on Software
Engineering (ICSE), pages 162–171, 2006.

13 Yulei Sui Ding Ye, Yu Su and Jingling Xue. Wpbound: Enforcing spatial memory safety effi-
ciently at runtime with weakest preconditions. In Proceedings of the 25th IEEE Symposium
on Software Reliability Engineering, 2014.

14 Frank Ch. Eigler. Mudflap: Pointer Use Checking for C/C++. In GCC Developer’s Summit,
2003.

15 Isaac Evans, Samuel Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang,
Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi. Missing
the point: On the effectiveness of code pointer integrity. In 36th IEEE Symposium on
Security and Privacy, 2015.

16 Kittur Ganesh. Pointer Checker: Easily Catch Out-of-Bounds Memory Accesses. In-
tel Corporation, 2012. http://software.intel.com/sites/products/parallelmag/
singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf.

17 Saugata Ghose, Latoya Gilgeous, Polina Dudnik, Aneesh Aggarwal, and Corey Waxman.
Architectural support for low overhead detection of memory viloations. In Proceedings of
the Design, Automation and Test in Europe, 2009.

http://www.thegreycorner.com/2010/01/heap-spray-exploit-tutorial-internet.html
http://www.thegreycorner.com/2010/01/heap-spray-exploit-tutorial-internet.html
http://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf
http://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf


S. Nagarakatte, M.M.K. Martin, and S. Zdancewic 207

18 Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and access errors.
In Proc. of the Winter Usenix Conference, 1992.

19 Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 289–300, 1993.

20 Intel Corporation. Intel Architecture Instruction Set Extensions Programming Refer-
ence, 319433-022 edition, October 2014. https://software.intel.com/sites/default/
files/managed/0d/53/319433-022.pdf.

21 Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and Yanling
Wang. Cyclone: A safe dialect of c. In Proceedings of the 2002 USENIX Annual Technical
Conference, 2002.

22 R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds checking for arrays and
pointers in C programs. In Third International Workshop on Automated Debugging, 1997.

23 Greg Kroah-Hartman. The linux kernel driver model: The benefits of working together. In
Andy Oram and Greg Wilson, editors, Beautiful Code: Leading Programmers Explain How
They Think. O’Reilly Media, Inc., June 2007.

24 Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, and
Dawn Song. Code-pointer integrity. In 11th USENIX Symposium on Operating Systems
Design and Implementation, 2014.

25 James R. Larus and Ravi Rajwar. Transactional Memory. Morgan and Claypool, 2007.
26 Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In Proceedings of the International Symposium on Code Gener-
ation and Optimization, page 75, 2004.

27 Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long Lu, and
Wenke Lee. Preventing use-after-free with dangling pointers nullification. In Proceedings of
the 2015 Internet Society Symposium on Network and Distributed Systems Security, 2015.

28 Nuno Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably correct
peephole optimizations with Alive. In Proceedings of the 36th Annual ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2015.

29 Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Implementation, 2005.

30 Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University, December
1995.

31 Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety for C Pro-
grams. PhD thesis, University of Pennsylvania, 2012.

32 Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watchdog: Hardware for
safe and secure manual memory management and full memory safety. In Proceedings of the
39th Annual International Symposium on Computer Architecture, 2012.

33 Santosh Nagarakatte, Milo M K Martin, and Steve Zdancewic. Hardware-enforced compre-
hensive memory safety. In IEEE MICRO 33(3), May/June 2013.

34 Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watchdoglite: Hardware-
accelerated compiler-based pointer checking. In 12th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO’14, page 175, 2014.

35 Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic. Soft-
bound: Highly compatible and complete spatial memory safety for c. In Proceedings of the
SIGPLAN 2009 Conference on Programming Language Design and Implementation, 2009.

SNAPL 2015

https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf


208 Everything You Want to Know About Pointer-Based Checking

36 Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic. Cets: Com-
piler enforced temporal safety for c. In Proceedings of the 2010 International Symposium
on Memory Management, 2010.

37 George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer.
Ccured: Type-safe retrofitting of legacy software. ACM Transactions on Programming
Languages and Systems, 27(3), May 2005.

38 Nicholas Nethercote and Jeremy Fitzhardinge. Bounds-checking entire programs without
recompiling. In Proceedings of the Second Workshop on Semantics, Program Analysis, and
Computing Environments for Memory Management, 2004.

39 Nicholas Nethercote and Julian Seward. How to shadow every byte of memory used by a
program. In Proceedings of the 3rd ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, pages 65–74, 2007.

40 Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. In Proceedings of the SIGPLAN 2007 Conference on Programming
Language Design and Implementation, pages 89–100, 2007.

41 Harish Patil and Charles N. Fischer. Low-Cost, Concurrent Checking of Pointer and Array
Accesses in C Programs. In Software Practice and Experience 27(1), pages 87–110, 1997.

42 J. Pincus and B. Baker. Beyond stack smashing: Recent advances in exploiting buffer
overruns. In IEEE Security and Privacy 2(4), pages 20–27, 2004.

43 Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. An analysis of conficker’s logic and
rendezvous points. Technical report, SRI International, February 2009.

44 Feng Qin, Shan Lu, and Yuanyuan Zhou. SafeMem: Exploiting ECC-Memory for Detecting
Memory Leaks and Memory Corruption During Production Runs. In Proceedings of the
11th Symposium on High-Performance Computer Architecture, pages 291–302, 2005.

45 Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer overflow detector. In
Proceedings of the Network and Distributed Systems Security Symposium, pages 159–169,
February 2004.

46 Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. Ad-
dresssanitizer: A fast address sanity checker. In Proceedings of the USENIX Annual Tech-
nical Conference, 2012.

47 Matthew S. Simpson and Rajeev Barua. Memsafe: Ensuring the spatial and temporal
memory safety of c at runtime. In Software Practice and Experience, 43(1), 2013.

48 Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in memory.
In Proceedings of the 2013 IEEE Symposium on Security and Privacy, 2013.

49 Guru Venkataramani, Brandyn Roemer, Milos Prvulovic, and Yan Solihin. Memtracker:
Efficient and programmable support for memory access monitoring and debugging. In
Proceedings of the 13th Symposium on High-Performance Computer Architecture, pages
273–284, 2007.

50 David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first step towards
automated detection of buffer overrun vulnerabilities. In Proceedings of the Network and
Distributed Systems Security Symposium, 2000.

51 Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando Solar-Lezama. Towards
optimization-safe systems: Analyzing the impact of undefined behavior. In Proceedings of
the 24th ACM Symposium on Operating System Principles, 2013.

52 Wei Xu, Daniel C. DuVarney, and R. Sekar. An efficient and backwards-compatible transfor-
mation to ensure memory safety of C programs. In Proceedings of the 12th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 117–126, 2004.

53 Suan Hsi Yong and Susan Horwitz. Protecting C programs from attacks via invalid pointer
dereferences. In Proceedings of the 11th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE), pages 307–316, 2003.


	Introduction
	Memory Safety for C versus Java/C#
	State-of-the-Art in Enforcing Memory Safety for C
	Goals of the Project

	Pointer-Based Checking with Disjoint Metadata
	Spatial Safety Metadata
	Temporal Safety Metadata
	Metadata Propagation
	Implications of Disjoint Metadata Design
	Comprehensive Protection in the Presence of Type Casts
	Compatibility with Existing Code and Libraries
	Efficient Instrumentation and Challenges

	Intel Memory Protection Extensions
	MPX Instructions and Operation
	Type Casts and Comprehensiveness with Intel MPX

	Reflections on Memory Safety Enforcement
	Performance Overheads
	Implementation Specific C Dialects
	Narrowing of Bounds for Sub-Objects
	Integer Arithmetic with Integer to Pointer Casts

	Interoperability and Engineering
	Language Design Considerations
	Implementation Considerations
	Multithreading

	Conclusion

