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Abstract
The age of the air-tight hardware abstraction is over. As the computing ecosystem moves beyond
the predictable yearly advances of Moore’s Law, appeals to familiarity and backwards compat-
ibility will become less convincing: fundamental shifts in abstraction and design will look more
enticing. It is time to embrace hardware–software co-design in earnest, to cooperate between pro-
gramming languages and architecture to upend legacy constraints on computing. We describe
our work on approximate computing, a new avenue spanning the system stack from applications
and languages to microarchitectures. We reflect on the challenges and successes of approxima-
tion research and, with these lessons in mind, distill opportunities for future hardware–software
co-design efforts.
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1 Introduction

Generations of computer scientists and practitioners have worked under the assumption that
computers will keep improving themselves: just wait a few years and Moore’s Law will solve
your scaling problems. This reliable march of electrical-engineering progress has sparked
revolutions in the ways humans use computers and interact with the world and each other.
But growth in computing power has protected outdated abstractions and encouraged layering
even more abstractions, whatever the cost.

The free lunch seems to be over: single-thread performance has stagnated, Dennard
scaling has broken down, and Moore’s Law threatens to do the same. The shift to multi-core
designs worked as a stopgap in the final years of frequency advancements, but physical limits
have dashed hopes of long-term exponential gains through parallelism.

Hardware–software co-design presents significant performance and efficiency opportunities
that are unavailable without crossing the abstraction gap. For example, embedded systems
depended on co-design from their inception. The embedded domain uses software for flexibility
while specialized hardware delivers performance. General-purpose computing features many
hardware extensions employed to better serve software – virtual memory, ISA extensions for
security, and so on. While these mechanisms have been successful, they are ad hoc responses
to trends in software design.

Hybrid hardware–software research cannot just be a cliché: now more than ever, true
cooperation is crucial to improving the performance and efficiency of future computing systems.
Over the past five years, our research group has been exploring approximate computing, a
classic example of a hardware–software co-design problem. Approximate computing trades
accuracy for performance or efficiency, exploiting the fact that many applications are robust
to some level of imprecision. Our experience has shown that neither software nor hardware
alone can unlock the full potential of approximation; optimal solutions require co-design
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between programming models and hardware accelerators or ISA extensions. We discuss our
experience with approximate computing and highlight lessons for future co-design efforts.

We believe we can go much further by truly designing hardware and software in unison.
We survey the opportunities for hardware software co-design in four broad categories. The
first is effective hardware acceleration, where the best algorithm for general-purpose hardware
and the best custom hardware for generic algorithms both fall short. For example, the
Anton [12] special machine for molecular dynamics, co-designed a simulation algorithm with
the hardware. The second category is reducing redundancy and reassigning responsibilities.
For example, if all programs were guaranteed to be free of memory bugs, can we drop support
for memory protection? Or if programs were free of data-races by construction, can we rethink
cache coherence? The third category is hardware support for domain-specific languages,
whose booming popularity democratizes programming by providing higher-level semantics
and tooling, but today must still compile to low-level general-purpose hardware. The final
category is research beyond the CPU: unexplored opportunities abound for hardware–software
cooperation in networks, memory, storage, and less glamorous parts of computer hardware
such as power supplies.

2 Approximate Computing

For the last five years, our group has explored one instance of a hardware–software co-design
opportunity: approximate computing. The idea is that current abstractions in computer
systems fail to incorporate an important dimension of the application design space: not every
application needs the same degree of accuracy all the time. These applications span a wide
range of domains including big-data analytics, web search, machine learning, cyber-physical
systems, speech and pattern recognition, augmented reality, and many more. These kinds of
programs can tolerate unreliable and inaccurate computation, and approximate computing
research shows how to exploit this tolerance for gains in performance and efficiency [1, 7, 10,
11, 25, 26, 28, 30, 35].

Approximate computing is a classic cross-cutting concern: its full potential is not reachable
through software or hardware alone, but only through changing the abstractions and contracts
between hardware and software. Advances in approximation require co-design between
architectures that expose accuracy–efficiency trade-offs and the programming systems that
make those trade-offs useful for programmers. We have explored projects across the entire
system stack – from programming languages and tools down through the hardware – that
enable computer systems to trade off accuracy of computation, communication, and storage
for gains in efficiency and performance.

Our research direction spans languages [38], runtime systems, programmer tools including
debuggers [36], compilers [41], synthesis tools for both software and hardware, microarchitec-
ture [13], hardware techniques [43, 29], data stores [40], and communication services.

Safety and Quality-of-Results

A core requirement in writing programs with approximate components is safety: approximate
components must not compromise safe execution (e.g., no uncontrolled jumps or critical data
corruption) and must interact with precise components only in well-defined ways allowed by
the programmer. Our work met this need with language support in the form of type qualifiers
for approximate data and type-based static information-flow tracking [38]. Other work
from MIT consists of a proof system for deriving safety guarantees in the face of unreliable

SNAPL 2015



264 Hardware–Software Co-Design: Not Just a Cliché

components [5]. These crucial safety guarantees allow systems to prove at compile time that
approximation cannot introduce catastrophic failures into otherwise-good programs.

Beyond safety, another key requirement is ways to specify and ensure acceptable quality-of-
results (QoR). Languages must enable programmers to declare the magnitude of acceptable
approximation in multiple forms and granularities. For example, QoR can be set for a
specific value (X should be at most Y% from its value in a fully precise execution), or
one could attach QoR to a set of values (at most N values in a set can be in error). One
can provide a QoR specification only for the final output of a program or for intermediate
values. QoR specifications can then guide the compiler and runtime to choose and control the
optimal approximate execution engine from a variety of software and hardware approximation
mechanisms. While quality constraints are more general and therefore more difficult to
enforce statically than safety requirements, initial tactics have seen success by limiting the
kinds of approximation they can work with [41, 6] or by relying on dynamic checks [36, 17].

Approximation Techniques

The purpose of allowing approximation is to trade accuracy for energy savings. At the highest
level, there are three categories of approximation techniques: algorithmic, compiler/runtime,
and hardware. Algorithmic approximation can be achieved by the programmer providing
multiple implementations of a given computation and the compiler/runtime choosing among
them based on QoR needs. A compiler can generate code for approximate execution
by eliding some computations [28] or reducing value precision whenever allowed by the
approximation specification. Approximation research has explored several approximate
execution techniques with hardware support, among them: compiler-controlled voltage
overscaling [13]; using learning-based techniques such as neural networks or synthesis to
approximate kernels of imperative programs in a coarse-grain way [14]; adopting analog
components for computation [43]; designing efficient storage systems that can lose bits [40];
and extending architecture mechanisms with imprecise modes [27].

While approximation only at the algorithm level together with compiler/runtime support
applies to off-the-shelf hardware (and we intend to further explore that space too), our
experience has shown that the greatest energy benefit comes from hardware-supported
approximation with language/architecture co-design [29].

Tools

A final key component for making approximate programming practical is software-development
tools. We need tools to help programmers identify approximation opportunities, understand
the effect of approximation at the application level, assist with specifying QoR requirements,
and help test and debug applications with approximate components. Our first steps in this
direction are a debugger and a post-deployment monitoring framework for approximate
programs [36].

2.1 Next Steps in Approximation
Controlling Quality

The community has allocated more attention to assuring safety of approximate programs than
to controlling quality. Decoupling safety from quality has been crucial to enabling progress
on that half of the equation [38, 5] but more nuanced quality properties have proven more
challenging. We have initial ways to prove and reason about limited probabilistic quality
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properties [6, 4, 41], but we still lack techniques that can cope with arbitrary approximation
strategies and still produce useful guarantees.

We also need ways to measure quality at run time. If approximate programs could measure
how accurate they are without too much overhead, they could offer better guarantees to
programmers while simultaneously exploiting more aggressive optimizations [17, 36]. But
there is not yet a general way to derive a cheap, dynamic quality check for an arbitrary
program and arbitrary quality criterion. Even limited solutions to the dynamic-check problem
will amplify the benefits of approximation.

Defining Quality

Any application of approximate computing rests on a quality metric. Even evaluations for
papers on approximation need to measure their effectiveness with some accuracy criterion.
Unlike traditional criteria – energy or performance, for example – the right metric for quality
is not obvious. It varies per program, per deployment, and even per user. The community
does not have a satisfactory way to decide on the right metric for a given scenario: we are so
far stuck with guesses.

A next step in approximation research should help build confidence that we are using
the right quality metrics. We should adopt techniques from software engineering, human-
computer interaction, and application domains like graphics to help gather evidence for
good quality metrics. Ultimately, programmers need a sound methodology for designing and
evaluating quality metrics for new scenarios.

The Right Accelerator

Hardware approximation research has fallen into two categories: extensions to traditional
architectures [13, 27] and new, discrete accelerators [47, 14]. The former category has
yielded simpler programming models, but the fine-grained nature of the model means that
efficiency gains have been limited. Coarser-grained, accelerator-oriented approaches have
yielded the best results to date. There are still opportunities for co-designing accelerators
with programming models that capture the best of both approaches. The next generation
of approximate hardware research should co-design an accelerator design with a software
interface and compiler workflow that together attack the programmability challenges in
approximation: safety and quality. By decoupling approximation from traditional processors,
new accelerators could unlock new levels of efficiency while finally making approximate
computing palatable hardware vendors.

2.2 Lessons from Approximation
Our group’s experience with approximate computing as a cross-cutting concern has had
both successes and failures. The path through this research has yielded lessons both for
approximation research specifically and hardware–software co-design generally.

The von Neumann Curse

When doing approximation at the instruction granularity in a typical von Neumann machine,
the data path can be approximate but the control circuitry likely can’t. Given that control
accounts for about 50% of hardware resources, gains are fundamentally limited to 2×, which
is hardly enough to justify the trouble. We therefore have more hopes for coarse-grain
approximation techniques than fine-grain.
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And that was just an example. Many other promising avenues of our work have fallen
afoul of the conflation of program control flow and data flow. For example, if we want to
approximate the contents of a register, we need to know whether it represents pixel data
amenable to approximation or a pointer, which may be disastrous to approximate.

Separation problems are not unique to approximation. Secure systems, for example,
could profit from a guarantee that code pointers are never manipulated as raw data. Future
explorations of hardware–software co-design would benefit from architectural support for
separating control flow from data flow.

The High Cost of Hardware Design

In our work on approximation with neural networks, we achieve the best energy efficiency
when we use a custom hardware neural processing unit, or NPU [14, 43]. Our first evaluations
of the work used cycle-based architectural simulation, which predicted an average 3× energy
savings. Later, we implemented the NPU on an FPGA [29]. On this hardware, we measured
an average energy savings of 1.7×. The difference is due partially to the FPGA’s overhead and
clock speed and partially due to the disconnect between simulation and reality. Determining
the exact balance would require a costly ASIC design process. Even building the FPGA
implementation took almost two years.

Hardware–software co-design involves an implied imbalance: software is much faster to
iterate on than hardware. Future explorations of hardware–software co-design opportunities
would benefit from more evolution of hardware description languages and simulation tools.
We should not have to implement hardware three times – first in simulation, second in an
HDL for an efficient FPGA implementation, and again for a high-performance ASIC.

Trust the Compiler

Hybrid hardware–software research constantly needs to divide work between the programmer,
the compiler, and the hardware. In our experience, a hybrid design should delegate as much
as possible to the compiler. For example, the Truffle CPU [13] has dual-voltage SRAM
arrays that require every load to match the precision level of its corresponding store. This
invariant would be expensive to enforce with per-register and per-cache-line metadata, and
it would be unreasonable for programmers to specify manually. Our final design leaves all
the responsibility to the compiler, where enforcement is trivial.

Relegating intelligence to the compiler comes at a cost in safety: programming to
the Truffle ISA directly is dangerous and error-prone. Fortunately, modern programmers
rarely write directly to the CPU’s hardware interface. Researchers should treat the ISA
as a serialization channel between the compiler and architecture – not a human interface.
Eschewing direct human–hardware interaction can pay off in fundamental efficiency gains.

3 Opportunities for Co-Design

3.1 Programming Hardware
The vast majority of programming languages research is on languages that target a very
traditional notation of “programming.” Programs must eventually be emitted as a sequence
of instructions, meant to be interpreted by processors that will load them from memory
and execute them in order. The programming languages and architecture communities
should not remain satisfied with this traditional division of labor. The instruction set
architecture abstraction imposes limits on the control that programmers can have over how
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hardware works, and compatibility concerns limit the creativity of architecture designs.
Hybrid hardware–software research projects should design new hardware abstractions that
violate the constraints of traditional ISAs.

Some recent work revived interest in languages for designing hardware and FPGA config-
urations [3, 31] or applied language techniques to special-purpose hardware like networking
equipment [15] and embedded processor arrays [33]. But we can do more. A new story for
programmable hardware will require radically new architecture designs, hardware interfaces
that expose the right costs and capabilities, programming models that can abstract these
interfaces’ complexity, and careful consideration of the application domains.

Rethinking Architectures from the Ground Up

The central challenge in designing programmable hardware is finding the right architectural
trade-off between reconfigurability and efficiency. Co-design is only possible if we expose more
than what current CPUs do, but providing too much flexibility can limit efficiency. Current
field-programmable gate arrays (FPGAs) are a prime example that misses the mark today:
FPGAs strive for bit-level reconfigurability, and they pay for it in both performance and
untenable tool complexity. New architectures will need to carefully choose the granularity of
reconfiguration to balance these opposing constraints.

Exposing Communication Costs

The von Neumann abstraction is computation-centric: the fundamental unit of work is com-
putation. But the costs in modern computers, especially in terms of energy, are increasingly
consumed by communication more than computation. New programmable hardware will
need to expose abstractions that reflect this inversion in the cost model. Unlike earlier
attempts to design processors with exposed communication costs [16], these new abstractions
need not be directly comprehensible for humans: we do not need to expect programmers to
write this “assembly language” directly. Instead, we should design abstractions with their
software toolchains in mind from the beginning.

Managing Complexity

New programmable hardware will need to work in concert with programming languages
and compiler workflows that can manage their inherent complexity. Crucially, the toolchain
will need to balance convenient automation with programmer control. It can be extremely
powerful to unleash programmers on the problem of extracting efficiency from hardware,
but history has also shown that overly complex programming models do not go mainstream.
New toolchains should combine both language ideas, which can safely expose complexity,
compiler techniques like program synthesis, which can hide the complexity.

General vs. Domain-Specific Architectures

There is a well-known trade-off in architecture between generality and efficiency [18]. The
best reconfigurable hardware may never be fully general purpose: domain-specific languages,
tools, and chips can have critical advantages for their sets of applications. At every level in
the stack, new designs should provide tools for building domain-specific components.
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3.2 Simpler Hardware With Software Verification

Modern computer architectures spend considerable resources protecting software from itself,
with kernel/user mode, process isolation through virtual memory, sophisticated cache coher-
ency and memory consistency models to extract maximum performance, and others. These
protections add complexity to hardware design and implementation, and cost both time and
energy during execution.

Rapid improvement in software verification has greatly expanded both the scope and the
strength of the safety properties we can (automatically or manually) prove about programs.
In particular, a system that is verified from the microkernel up to the application appears
within reach [24]. The power of verification presents an opportunity to design new hardware
architectures specifically for verified software. These architectures would avoid the energy
and time overhead of dynamic protection mechanisms and simplify future scaling efforts.

Virtual Memory

Major architectures provide virtual memory to help operating systems provide process
isolation. Each process sees its own address space and has no way of accessing the physical
memory allocated to other processes. While this abstraction is convenient for operating
system and application programmers, virtual memory protection entails considerable hardware
complexity and cost.

Aiken et al. showed in 2006 that the cycle overhead of hardware virtual memory protection
is up to 38% on the SPECweb99 benchmark [2]. Half this cost (19 pp) is due to switching
between multiple address spaces (kernel and application) on control transfers, and the pressure
these address spaces place on the TLB. An additional 12 pp is due to switching protection
modes between ring 0 (kernel) and ring 3 (application) on control transfers. Working sets are
growing much faster than the size of TLBs (combining L1 and L2, TLB entries have grown
from 560 pages or 2,240 kB on Nehalem (2008) to 1,088 pages or 4,352 kB on Haswell (2014),
and so TLB pressure and virtual memory overhead will only continue to increase.

The Singularity project explored the opportunity to abandon virtual memory in favor of
software-isolated processes (SIPs) [22]. Instead of asking virtual memory hardware to provide
process isolation, Singularity guarantees isolation between SIPs through static verification
and some runtime checks. The verification is made feasible by Singularity’s Sing# language
for applications, which is type- and memory-safe. The software runtime checks are very low
overhead; for example, a ping-pong message between two processes on Singularity is 7×
faster than Linux and 8× faster than Windows [21].

Concurrency

A substantial portion of multiprocessor hardware is dedicated to cache coherence and memory
consistency. These mechanisms work with the programming model, compilers and operating
systems to preserve a simple memory model for programmers. But coherence protocols and
consistency enforcement are neither simple nor cheap.

Memory models are complex to understand, and even more complex to implement
correctly. Verification efforts have uncovered bugs in both hardware implementations of
relaxed consistency models [19] and in the software memory models that attempt to abstract
over them [46]. Given these difficulties, some have advocated for abandoning shared-memory
hardware altogether (for example, Intel’s Single-Chip Cloud Computer (SCC) has 48 cores
without coherence), but this seems extreme.
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Coherence and consistency come with significant performance and hardware overheads.
DeNovo is a coherence protocol that works together with a disciplined shared-memory
programming model to reduce coherence overheads [8]. Compared to MESI, DeNovo executes
benchmarks up to 60% faster due to reduced network traffic, read misses and stall times.

Verification of data race freedom would enable simpler hardware designs and therefore
increase the potential for future scaling. Traditional work in verifying race freedom (including
the DeNovo programming model) has required explicit program annotations [23]. But recent
work in formalizing hardware memory models [42] suggests that we should work towards
automatically verifying race freedom. A hardware architecture for verified software would
take advantage of provable race freedom to reduce coherence traffic and state overhead, and
so save energy and time.

3.3 Hardware-backed DSLs

Today’s programming languages are too complex for many of the tasks today’s programmers
want to complete. We ask programmers to reason about subtle issues like memory man-
agement, concurrency and race conditions, and large standard libraries. Domain-specific
languages (DSLs) are a way to democratize programming by providing languages with higher-
level semantics and simpler tooling, and have seen considerable success [45]. But traditional
DSLs are often implemented as slow, interpreted languages, reducing their usefulness for
many programmers.

Delite is a compiler framework for implementing high-performance DSLs [44]. The
framework provides components common to high-performance implementations, such as
parallel versions of higher-order functions, compiler optimizations, and the ability for DSL
implementers to provide domain-specific optimizations for the code generator. Delite compiles
DSLs to an intermediate representation which can then be compiled to multiple targets such
as C++ and OpenCL.

While Delite makes for high-performance DSLs, they ultimately execute on general-
purpose hardware. There is the opportunity to build hardware accelerators specialized to
particular DSLs, or even to individual programs written in a given DSL. For example, the
Halide DSL for image processing compiles to SIMD or CPU+GPU code and sees considerable
performance gains [34]. But Darkroom, another DSL targeting the same domain, compiles
directly to pipelined ASIC implementations for even higher performance [20].

Previous work on compiling DSLs to hardware has required custom design and imple-
mentation work for each DSL compiler. Future work should target a more general compiler
from DSL implementation to hardware. We should take motivation from recent work on light-
weight modular staging [37], which builds high-performance compilers by staging interpreter
code. Existing high-level synthesis (HLS) tools for synthesizing circuits from higher-level
programming languages are difficult to use and even more difficult to debug, because they
are required to implement the rich and unsafe semantics of C. We should aim to build DSL
frameworks with hardware synthesis in mind to unlock the potential of ASIC performance.

3.4 Beyond the CPU

Researchers is both architecture and programming languages tend to focus on one component
above all others: the CPU. While the heart of a computer has special importance, it is not
the only piece that deserves attention. When the goal is energy efficiency, for example, it
is crucial to bear in mind that most of a smartphone’s battery capacity goes to powering
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the screen and radio – the CPU is a comparatively small drain [39]. And in the datacenter,
network and storage performance can outweigh the importance of raw compute power.

Hardware–software research is in a good position to seek out opportunities beyond the
CPU: in memory, storage, networking, and even more mundane systems such as displays,
sensors, and cooling infrastructure.

Non-volatile main memory is an example of an emerging architectural trend in desperate
need of attention from a programming-model perspective. Initial work has shown that
traditional abstractions are insufficient [32] and has proposed new approaches for managing
non-volatile state [9, 48].

Language research should also seek out opportunities in networking. Recent software-
defined networking work [15] has shown how to build better abstraction for networking
equipment, but that work focuses on traditional roles for the network. We should also consider
new ways to program the network. For instance, in the data center, what computation would
be best offloaded from servers into the network? How can we productively program mobile
device radio modems while preventing disastrous network attacks?

More experimental research should consider collaboration with the less glamorous parts
of computer hardware. Power supply systems are one such example that are typically hidden
at all costs from the end programmer. Researchers should question this separation. For
example, can datacenter applications extract more energy efficiency by programming their
power distribution systems? How can we re-design the battery and charging systems in a
mobile phone to specialize them to a particular use patterns? Can applications and operating
systems collaborate with hardware to fairly divide energy resources? Peripheral, traditionally
non-architectural components like power systems are ripe for rethinking, but only in the
context of co-design with a new programming model.

4 Conclusion

The air-tight hardware abstraction continues to serve innovation in programming languages
well. But as physical challenges begin to threaten Moore’s law, the biggest leaps in per-
formance and efficiency will come from true hardware–software co-design. We believe our
community can go far beyond the current primitive cooperation between hardware and
software by designing them together. We can take inspiration from successes in embedded
system design and our experiences with approximate computing. Exciting opportunities
abound for hardware accelerators co-designed with software, reduced redundancy between
hardware and software mechanisms, and entirely new classes of optimizations. We hope that
our experiences and successes with hardware–software co-design will encourage researchers
to cross the abstraction boundary to design more integrated and thoughtful systems.
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