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—— Abstract

We observe that compared to natural and modelling languages, the differences in expression
required to deal with no, one, or many objects in programming languages are particularly pro-
nounced. We identify some problems inherent in type-based unifications of different numbers,
and advocate a solution that builds on the introduction of multiplicity as a new grammatical
category of programming languages.
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1 Introduction

Programming languages like Smalltalk, Java, and C* abstract from pointers in that variables
holding (heap) objects have reference semantics by default. However, the pointers (or
references) become apparent, and need to be dealt with explicitly, in two not so rare cases:
when a variable holds no object, and when a variable holds many objects. The first is usually
represented by the null pointer; since its dereferencing causes the notorious null pointer
exception, accessing variables that may hold null must be explicitly guarded, requiring
stereotypical (and hence annoying) coding patterns. The second is usually implemented using
a collection, which reifies pointers to many objects as one object; accessing the many objects
then requires going through the collection, an indirection that is not unlike the explicit
dereferencing of a pointer (and that also requires stereotypical code). It follows that each
of the three cases, namely that a variable holds no, one, or many objects, must be handled
differently.

By looking at the differences in handling comparable cases in other disciplines, notably
natural language and modelling (Section 2), we find that the differences are not necessarily
grounded in the nature of the matter. Indeed, as we discuss in some detail in Section 3 (using
the programming languages Xen [11], Cw [1], and C* with LINQ [2] as examples), there
have been previous attempts at smoothing out the differences of none, one, and many in
object-oriented programming, but as we find, these attempts (which are mostly type-based)
have been only partly successful. In Section 4, we therefore advocate our own solution based
on the separation of type and multiplicity (previously studied in [19, 20]) which, given the
new insights presented here, amounts to introducing the grammatical category number to
programming. Section 5 then discusses some questions that may arise in the context of our
solution. We conclude by reporting on how we have come to depart from our previous view
on how number should be handled by programming languages (Section 6), and by outlining
research questions for future work (Section 7).
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F. Steimann

2 The Differences from Different Perspectives

2.1 Linguistic Perspective

In the English language, the difference between one and many materializes in the grammatical
category number, whose values are singular and plural. Number surfaces in the declension
of nouns (“person” — “persons”), and also in the conjugation of verbs (“laugh” — “laughs”);
in a sentence, the number of the verb representing the predicate must match the number of
the noun representing the subject. However, singulars can be combined to form plurals. For
instance, “Peter and Mary laugh.” is a grammatically well-formed sentence.

Interestingly, in English the word “many” can only be used with nouns that refer to
separate items, or individuals, such as “person”, “car”, etc. These nouns are called countable;
as their name suggests, only countable nouns can be used with cardinals (e.g., “one person”,
“two cars”). To make uncountable nouns such as “information” or “rain” countable nevertheless
(so that we can use them with “one” or “many”), they can be wrapped by countable nouns,
as in “piece of information” or “occasion of rain”.

Converting singulars to plurals, and uncountables to countables, is complemented by
the possibility to cast plurals to singulars, using the means of reification: e.g., “Peter and
Mary are a couple.” is grammatically well-formed. Reifications of many individuals, like
“couple”, are usually themselves countable, meaning that there can be many instances of
them, which can in turn be reified. It is characteristic for these kinds of reifications that
they have properties of their own, i.e., properties that are not (derived from) properties of
the individuals they reify. Neither nesting nor the attachment of properties are available for
plurals; instead, plurals are unstructured (“flat”), and properties associated with plurals are
lifted over the individual entities they represent: e.g., “Peter and Mary are happy.” means
that both are happy — a happy couple is something else.

There is however one property associated with plurals which is not lifted, and this is
the number of individuals being denoted. Few would dissent that when determining this
number (via counting), each individual is counted only once; e.g., for the sentence “Two
people laughed.” it is clear that the two are different entities. This appears to give plurals
set semantics, and yet counting each individual only once is different from saying that
each individual is contained only once, as the latter would require a container and hence
a reification of the plural. Also note that countability does not imply order; in fact, there
is nothing in a plural that would suggest an ordering — this is either an extrinsic property
implied by properties of the individuals (such as their age, position in space, etc.), or an
intrinsic property of the container (e.g., a sequence).

2.2 Modelling Perspective

Natural language is highly informal: Using it, misunderstandings are difficult to avoid and
resolve. Philosophers have therefore long strived for “the perfect language” (see, e.g., [5]).
The language of mathematics can be considered perfect: it has been used with great
success in modelling much of our world. Somewhat surprisingly, however, it was not before
the end of the 19*" century that mathematicians formalized the notion of many as what is
today known under the term “set”. Interestingly, set is a reification, not a plural (a set of
mathematical entities is itself a mathematical entity)!, and indeed, there are sets of sets; at

! but note that mathematical entities are not considered to have identity; sets in particular are extensionally
defined, i.e., two sets are the same (or identical) if their elements are the same
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the same time, however, there are multitudes that cannot be reified as sets — for instance,
what would naively be referred to as “the set of all sets” (which would need to contain itself)
is commonly not considered to be a set.

While there are multitudes that cannot be reified as sets, sets are sufficient to represent
many other kinds of collections that are in use in mathematics today (including vectors,
tuples, and sequences). Sets also capture the notion of none, namely as the empty set, and
hence can be used to express non-existence (for instance, that an equation has no solution).
Regarding one, however, mathematics distinguishes between a singleton set and its (sole)
member, as evidenced by the different operations available for each (unless of course the
member is itself a set).

In software modelling, various languages are in use. Interestingly, in several of these
languages, many appears as a plural (i.e., the many objects are not reified): for instance,
entity-relationship diagrams [4] (and in its wake also the class diagrams of the UML [12]) use
multiplicity annotations at the places of relationships (or ends of associations) to distinguish
numbers. In fact, it is these modelling languages that make the least difference between
none, one, and many — multiplicities are uniformly represented by (intervals of) cardinals?,
and changing a multiplicity never affects more than a single place. This ease of change is
intriguing; it is not found in mathematics (where a change from scalar to vector or vice versa
means a change of type) and not even in natural language (where, e.g., a change of number
propagates from the predicate to its subject or vice versa).

Other modelling languages have embraced this smooth transition from none to many,
and extended it to the expression of constraints and specifications. For instance, Alloy [§]
does not distinguish between single objects and sets, but treats the former as singletons.
Variables in Alloy are multiplicity-annotated, e.g. with one (for precisely one object), or with
set (for any number of objects). A navigation expression x.y, where x and y are variables,
always evaluates to a flat set, independently of the multiplicities of x and y. Navigation
expressions of OCL [13] are evaluated similarly: even though OCL does not represent single
objects as singletons, a navigation expression can mix multiplicities freely, and the resulting
collection (if any) is always flat. The difference in type of an expression with multiplicity
one (the type of the object) and with multiplicity many (a collection) that exists in OCL is
mitigated by allowing collection operations (such as forAll) on single objects also.

2.3 Computing Perspective

In the pre-object-oriented era of programming, when data items did not have identity, the
difference between one and many was basically that between a value and an array of values.?
However, this distinction was already quite prominent, as an array represents a different data
type than its values. Languages like APL eliminated this difference, by interpreting scalars
as special arrays, and by lifting functions defined on scalars over arrays; however, the lifted
functions may pose size constraints on their arguments, and may use padding to meet them
(see, e.g., [15], for a recent account). While this approach is well-suited to remove boilerplate
iterations from array computations, it seems less ideal for the handling of many objects
(plurals) in object-oriented programs, which are mostly about updating object structures.

2 Semantically, multiplicities as used in these languages can be interpreted as the cardinalities of sets, but
these sets never surface, not even at the instance level, where many objects at a place of a relationship
(at an association end) appear as just that: many objects (e.g., in a UML instance diagram).

3 There were of course dynamic data structures and pointers (including the null pointer), but the notion
of identity — a prerequisite of reifying many as one — had yet to emerge.
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Table 1 Seven differences to be observed by the object-oriented programmer when implementing
relationships to many, rather than one or no, objects using collections (see [19, 20] for details).

MANIFESTATION MurLrIpLICITY

OF DIFFERENCE IN none or one many

1: type of expression Account a; Set<Account> as;
a = new Account(); //OK as = new Account(); //type error
.. a.owner ... //OK ... as.owner ... //type error

2: “no object” a == null? ... a.isEmpty()? ...

3: subtyping conditions | Account a = new SavAccount(); | Set<? extends Account> as =
new HashSet<SavAccount>();

4: encapsulation Account getA() { Set<Account> getAs() {
return a; return as.clone();
} }
5: assignment semantics | Account backup = a; Set<Account> backups = as;
a = null; // oops! as.clear(); // oops!
a = backup; // phew! as = backups; // what??!
6: call semantics swap(a, backup); //cannot work | sort(as); //no problem
7: meaning of final final Account forLife = final Set<Account> allForLife =
new Account(); Arrays.asSet(forLife);

forLife = null; //compile error allForLife.remove(forLife); //OK

With the advent of object-oriented programming languages, the differences between
one and many became considerably more pronounced. At first glance, this may appear
paradoxical, as in object-oriented programming, collections are objects in the same right
as all others. Indeed, as mentioned in the introduction, with all objects residing on the
heap, a relationship to no object can be represented as the null pointer, a relationship to
one object as a pointer to that object, and a relationship to many objects as a pointer to a
collection (i.e., a relationship to one object) reifying the multitude. However, the indirection
introduced for implementing relationships to many objects does not only dominate the type
of the expressions representing the relationship (the dominance of the container over the
content noted in [19]), the reification of the relationship (in the form of the collection object)
also allows its aliasing. The same kind of aliasing is not possible for a relationship to one
object, unless this relationship is also reified (e.g., by using a singleton container type such
as Option<T>).

In previous work, we have identified seven practically relevant differences between imple-
menting relationships to no or one object on the one hand, and any number of (here referred
to as many) objects on the other [19, 20]. The differences are summarized in Table 1; for
reasons of space, we do not explain them further here, but point the reader to our earlier
works. Note that all differences not only have to be fully understood by programmers (which
may be a problem especially for beginners, or for people with a strong modelling background);
they also present tough maintenance problems, namely when multiplicities change.

3 Type-based Reconciliation of None, One, and Many

There have of course been previous attempts of reconciling representations of no, one, and
many objects in object-oriented programming (see, e.g., [19, 20] for overviews). However,
except for the indexed instance variables of Smalltalk, which let objects possess an arbitrary
number of pointers to other objects [7], the uniform solution seems to be that of going through
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some kind of container. To highlight the problems this causes, we use the Xen/Cw/C#
with language-integrated querying (LINQ) line of programming languages [1, 2, 11] as a
representative here. Note that the scope of these languages is bridging the gap between
object-oriented programming and relational and XML-based representations of data, which
is much wider, but here, we focus on their contributions to our problem, the reconciliation of
none, one, and many.

3.1 The Streams of Xen

In Xen [11], occurrences of no, one, and many objects are unified as streams, i.e., ordered
homogeneous collections of objects that can be iterated over. Streams are immutable, i.e.,
elements of a stream cannot be overwritten. Like other reifications of many objects, streams
have identity; however, like plurals, they are always flat, meaning that there are no streams
over streams. Hence, from a linguistic perspective, they are hybrids of reified multitudes and
plurals (cf. Section 2.1).

Xen introduces three different types of streams: T, a stream of one object of type T', T'?,
a stream of no or one object (also called an optional), and T*, a stream of any number of
objects. In addition, null is interpreted as the empty stream, resolving Item 2 in Table 1.
The subtyping relationship of Xen (and with it assignment compatibility) observes the axioms

T'<:T T<:T7 T7? <: Tx (1)

[11], which suggests that literals and constructor invocations of type T have type T'! instead
(otherwise, type T'! would have no instances). The insertion of the element type T in
the hierarchy of stream types seems awkward?®, yet provides for convenient assignment
compatibilities, partly resolving the difference noted under Item 1 in Table 1. Because
streams are immutable, covariance of streams in their element types is safe, resolving Item 3;
at the same time, immutability makes the remaining differences of Table 1 obsolete. However,
we note that immutability is not generally a useful property for variables holding (one or
many) objects; we will therefore drop it in our own approach (Section 4).

One of the most salient features of streams in Xen is that operations — including member
access — defined for a stream’s element type are lifted over the stream, resolving the remaining
difference of Item 1. For instance, if as has type Account* and owner is a field of Account,
as.owner evaluates to a stream of the owners of the accounts in as. At the type level, the
flattening of streams that is required when accessing stream-typed members on stream-typed
receivers is achieved in Xen by a type equivalence relation = defined so that

=T T?=2T? T Tx
TN=T? T7?2T? T =Tx (2)
T+l 2T Tx7=2Tx  Txx = Tx

Member access on an empty stream (represented by the value null; cf. above) results in no
member access rather than a null pointer exception; if the member is non-void, it returns
an empty stream of the member type. Since optionals are special streams, they share this
behaviour, gracefully handling the null case that makes other solutions (including the use of

4 In particular, it means that stream types cannot be subtypes of Object, since otherwise, Object <:
Objectx <: Object. Also, T! <: T seems strange, since it allows a stream to be its own element (the
same would hold for Objectx, if it were a subtype of Object; note that neither recursion can be cured
by flattening).
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Nullable<T> in C¥; see below) so awkward. This kind of propagation of null is also known
from other programming languages; however, the subsumption of member access on no object
and on one object under the general member access on streams goes further, and in any case
is very much in favour of unifying none, one, and many as we aspire for.

Unary and binary operators are lifted element-wise over streams in Xen [11]. For option
streams on value types, particularly on Booleans and numbers, this means that operations
can evaluate to “no value” (represented by null), effectively requiring introduction of a
ternary logic and calculation with null. For streams with more elements, lifting of binary
operators would either require that both streams have equal length (a dynamic multiplicity
check), or mean that all elements of the left operand are combined with all elements of the
right operand. In any case, one could argue that if binary operators receive special treatment,
binary methods [3] should receive it as well. We will return to this at the end of Section 4.

3.2 The Streams of Cw

While the nature of Xen appears to be more that of a proposal, its successor language, Cw [1],
comes with a formally specified type system which, compared to Xen, makes a number of
simplifications. In particular, it drops the streams T containing precisely one element (whose
full exploitation would require solving the problem of initializing circular structures; see, e.g.,
[14]); however, as we will see below, the multiplicity one of types T'! is actually useful in
bypassing the problems with lifting operations on value types sketched above.

Except for the omission of T'!, Cw adopts the subtyping relationship of Xen, and explicitly
adds Object as a supertype of all stream types® [1]:

null <: T T<:T? T7 <: Tx Tx <: Object (3)

The type equivalence relation of the streams of Xen (Eq. 2) is retained in Cw, but remains
implicit in the type rules, which code the flattening directly. These rules allow iterators
to contain themselves; e.g., int* i = {yield return i;}, which lets iteration attempts over
i recurse until stack overflow, is legal Cw code. Note that the same self-containment is
not allowed for arrays and generic collections (unless their element type is object): e.g.,
int[] i = new int[] {i} is ill-typed (cf. Section 2.2; note how this type-based exclusion of
self-containment, which is lifted for streams through flattening, is reminiscent of Russell’s
type theory).

The lifting of operators over streams, which we reviewed critically in Section 3.1, is not
addressed in [1]; the Cw compiler appears to implement it only very selectively.

3.3 The lterators of C*, and Language-Integrated Querying (LINQ)

In C¥, the stream types T* and T of Xen and Cw materialize as iterators (implementing the
IEnumerable<T> interface) and nullables (instances of struct Nullable<T> where T : struct),
respectively [2]. Unlike the streams of of Xen and Cw, however, iterators can be nested in
C*; their flattening can be enforced by using the SelectMany method (instead of Select) in
LINQ expressions (see below). By contrast, nesting is illegal for Nullable<T>, even though its
above definition would permit it: the declaration Nullable<Nullable<int>> n, for example,
does not compile (another ad hoc type check required by coding multiplicity in the type).

5 The Cw compiler, which can be obtained from http://research.microsoft.com/comega, refuses im-
plicit conversion from object to object*, hence breaking the circularity noted in footnote 4.
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Using the language-integrated querying (LINQ) facilities of C*, member access on ob-
jects can be lifted over collections of objects. E.g., revisiting our running example, the
expression from a in as select a.owner® yields an iterator over owners. If owners have
a field name, from a in as select a.owner.name yields an iterator over names (or a null
pointer exception if an account has no owner). On the other hand, the analogous query
from a in as select a.owners.name, where owners is iterable, will not compile — instead,
the query must be written as from a in as from o in a.owners select o.name, which is the
sugared version of as.SelectMany(a => a.owners).Select(o => o.name), and which differs
from the one account case.

A related issue is the fact that in C¥, Nullable<T> is not a subtype of IEnumerable<T>,
so that nullables cannot be the subject of language-integrated queries, losing much of the
uniform access of none, one, and many that was granted by Xen and Cw. Instead, avoiding
null pointer exceptions when accessing members on nullable receivers requires explicit tests
for nullness and explicit retrieval of the value, exposing the wrapper nature of Nullable<T>
to the programmer much like collections did before the introduction of LINQ.

3.4 Summary

To summarize, it appears that while Xen started off heading for a far-reaching reconciliation
of none, one, and many, casting its respective contributions into the rules of a formal
type system required certain concessions such as introducing type equivalences for the
purpose of flattening and ad hoc type checks preventing circularity and ill-defined behaviour.
Carrying over the contributions of Xen and Cw to C* and LINQ seems to have meant further
abandonment of the reconciliation, to the extent that it has almost disappeared.

4 Separating Multiplicity from Type

To improve on this situation, we learn from natural language and complement the collections
of programming (as reified multitudes) with (non-reified) plurals of countable entities. For
this, we extend the grammars of programming languages by introducing number or, to use
a more customary term, multiplicity, as a category that is largely orthogonal to type. In
so-extended languages, expressions can evaluate to many, rather than just one or no, objects
— they can be plural. The use and propagation of multiplicities is subject to specific rules
that, like type rules, can be checked statically. For instance, multiplicities are not allowed for
types whose instances do not have identity (value types); if multiplicity is required for these
types nevertheless, the values need to be wrapped first (observe the analogy with natural
language; cf. Section 2.1).

Following the example of Xen and several other (especially modelling) languages, we
introduce three static multiplicity annotations, named one (for precisely one object), option
(for no or one object), and any (for any number of, including many, objects). In addition, to
cater for the absence of a multiplicity annotation, we introduce a pseudo-multiplicity bare,
which, like option, means that there can be no or one object; its use will become clear below.
Also, for completeness, we add none (for no object) as the multiplicity of null (which makes
null the literal representation of “no object”). Like bare, none never appears literally in
declarations. All non-bare expressions can be converted to iterables (or streams) so that they
can be used in external and internal iterations.

6 as is a keyword in Cﬁ; however, we use it as an identifier here.
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Table 2 Dependence of the multiplicity of a member access expression r.m on the multiplicities
of the receiver r and the member m.

MULTIPLICITY OF: MEMBER m

RECEIVER r one bare | option | any
one one bare | option | any
bare one bare | option | any
option option | N/A | option | any
any any N/A any any

The numbers of objects each multiplicity represents give rise to the subsumption hierarchy
none < bare one < bare bare < option option < any (4)

(note the partial ordering required by consideration of none and one; also note the absence
of a type T'; cf. this with Egs. 1 and 3). This hierarchy, which is largely orthogonal to the
type hierarchy, says that expressions having a lesser multiplicity can occur where a greater
multiplicity is required (a multiplicity upcast is always safe and hence remains implicit)”.
In the reverse direction, explicit multiplicity downcasts are required which, except for casts
from option to bare, may fail at runtime (e.g., when an any expression which evaluates to
two objects is cast to option, or when an option expression evaluating to no object is cast to
one). A downcast from option to bare by itself cannot cause a runtime multiplicity error;
however, accessing a member on an option receiver cast to bare can cause a null pointer
exception (which is why bare is considered “less” than option). Note that such a cast may
be required, namely when a bare member is to be accessed on an option receiver (see below).

Table 2 shows how multiplicities propagate through member access expressions. Note
how the table corresponds to the type equivalence relation of Xen (Eq. 2), extending it with
rules for bare, disallowing the access of bare members on receivers having multiplicity option
or any. Together with the rule that all members having value types must be declared bare
(i.e., without an explicit multiplicity annotation; cf. above), this ensures that expressions
having value types always remain bare. This restriction of the use of multiplicities avoids the
problems of lifting (built-in) binary operations on value types over multitudes of values (cf.
Section 3.1); it is further justified in Section 5.2.

To be able to update variables having non-bare multiplicity, we provide three assignment
operations: =, letting the variable on the left-hand side hold (pointers to) the objects the
expression on the right-hand side evaluates to; +=, letting the variable hold the objects of the
expression, plus any objects it held before; and -=, letting the variable hold the objects it held

before, minus the objects of the expression (the latter two are reserved for any variables).

Note that since we do not use containers, = cannot create an alias for a container; therefore,
updating the right-hand side of an assignment after the assignment cannot affect the variable
on its left-hand side. Hence, all differences of Table 1 that can be reduced to differences
between value semantics and reference semantics dissolve.

With multiplicity and type separated as suggested, all differences of Table 1 that are
related to type also disappear. In particular, the following declarations and updates are all
well-typed:

7 Note that this displaces Object (with bare multiplicity) from the top of the assignment compatibility
hierarchy, which is now occupied by any Object.
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any SavAccount ss = new SavAccount ();
any Account as = ss;

as += new Account ();

any Owner os = as.owner;

Note that the last statement assigns the owners of the accounts held by as (a savings account
and an ordinary account) to os, which must therefore be annotated with any; as in Xen and
Cw, member access is applied to all objects held by as.

The use of multiplicities allows a number of simplifications of programs. Obviously, an
iteration like

for (Account a : as) a.changeToEuro();

can be replaced by

as.changeToEuro () ;

if as has multiplicity any. Also, guards for not null can be dropped if the null case means
“no operation” or “evaluate to null”:

owner = a.owner,;

completely replaces for

if (a != null) owner = a.owner;

else owner = null;

A pair of overloaded methods such as

void add(Account a) { as.add(a); 7}

void add(Collection<Account> as) { this.as.addAll(as); 1}

can be replaced by the single method

void add(any Acccount as) { this.as += as; }

More generally, changing the multiplicity of formal parameters to any where this makes sense

can save loops in method invocations in which the many objects occur in the argument rather
than the receiver position:

for (Account a : as) registry.add(a.owner);

can be replaced with the more fluent®

registry.add(as.owner) ;

The inherent asymmetry in method invocations with respect to multiplicity (while a
method invoked on many receivers is dispatched to each of the receivers separately, many
arguments passed in a single argument position are always passed together) prevents the
application of binary methods [3] to pairs of many receivers and many arguments in an
APL-like manner. For instance, invocation of equals(.) on many receivers passing many
objects as the argument will match each receiver individually with all arguments jointly.
However, while the problems of applying binary methods to many objects are largely the

8 http://martinfowler.com/bliki/FluentInterface.html
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same as for lifting binary operations over streams as discussed in Section 3.1, we note here
that it is possible to combine all receiver objects with all argument objects, by extending the
technique of double dispatching to multiplicity:

void pair (one Object arg) {
// this and arg make a pair

}

void pair (any Object args) {
args .pair (this);

}

(note that the multiplicity of this is one).

5 Discussion

5.1 More Multiplicity Annotations

While the static multiplicity annotations option, one, and any appear to be necessary for
achieving what we strive for, more can certainly be added. For instance, Alloy offers some,
meaning one or more [8]. More generally, since static multiplicities represent possible numbers
of objects, integer intervals can be used to express them (e.g., [0, 1] for option, [1,1] for one,
[0, 00) for any, etc.). Interval-based multiplicities can then be propagated through expressions,
but due to the imprecision of static data-flow and control-flow analyses, it is difficult to
see how this would work without ubiquitous use of dynamic multiplicity checks and casts.
For instance, subtracting objects from a [1, 00) variable (multiplicity some) using -= would
require a dynamic check that its multiplicity remains greater than zero. Given that numeric
multiplicity intervals account for only a small fraction of all desirable invariants regarding
the number of objects (others are non-contiguous intervals, predicates such as odd, relative
multiplicities [9], or arbitrary constraints relating multiplicities of different expressions), the
value they add seems somewhat limited (yet may pay off in certain domains).

5.2 Why bare?

English and other natural languages suggest that there are things of which one cannot have
many, namely those that are uncountable (cf. Section 2.1). However, values do not seem to
fall into this category: in computing, we have two Boolean values and countable numbers
of characters, integers, dates, etc. So, why do we require value-typed expressions to have
multiplicity bare, denying programmers the possibility to have many values in non-reified
form?

There are various reasons for this. One is that lifting operations defined for single values
(scalars) over many values (vectors) in a way that makes sense for these values requires
mechanisms like those of APL, which do not seem to carry over well to objects (cf. Sections
2.3 and 3.1). Another is that values typically do not have identity, which appears to be a
prerequisite for countability in natural language (cf. Section 2.1). While this argument may
appear weak, it gives rise to a third one.

In object-oriented programming, pointers to objects are typically used to express relation-
ships between objects, and annotations like option and any as put forward here are meant
to constrain the multiplicities of these relationships. However, objects typically do not relate
to values: a person for instance does not relate to her name, height, or date of birth. Data
models like the entity relationship model acknowledge this by storing values in attributes,
which are distinct from relationships. Wrapping values in objects may remove the distinction
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between values and objects technically, but conceptually, it remains intact: it is still unclear
why an object should relate to stateless and propertyless data items. Hence, in the context
of relationships, the distinction between objects and values is justified; given that natural
languages distinguish between countables and uncountables, we should not be too worried
about using different means for representing multitudes of objects and multitudes of values.

A last argument is technically motivated: bare introduces backward compatibility with
code that does not use multiplicity annotations. In fact, in contexts where one object is
expected, bare can by considered a dynamically checked variant of one, and the null pointer
exception the result of a failed dynamic multiplicity check.

5.3 Multiplicity and ldentity

Identity is a trait of single objects? — two objects are identical if they are in fact the same
object. It follows that more than one object (a plural in non-reified form) cannot be identical
to anything. For analogue reasons, it is meaningless to ask whether an object is identical to no
object. Tests for identity (==) should therefore be reserved for arguments with multiplicity one
(with e == null being shorthand for checking whether the dynamic multiplicity of expression
e is none).

It is however reasonable to ask whether two expressions with multiplicity other than
one evaluate to the same objects or, more specifically, to pairs of identical objects. This
would be the case if mutually applied subtractive updates (i.e., x1 -= x2 and x2 -= x1) both
evaluate to no objects. Equality of two expressions (in the sense of el.equals(e2)) is harder
to define, since each expression by itself may evaluate to any number of equal (but not
identical) objects.

6 Experience Gained from a Previous Case Study

Jesper Oqvist from Lund University implemented a variant of the multiplicities as described
in Section 4 as an extension to the Java 7 programming language, which we evaluated in a
case study [20]. The case study provided valuable insights, which in turn led to the writing
of this paper.

The main differences between our original design and what has been proposed here are:
1. The original design and its implementation do not consider multiplicity one.
2. The original design and its implementation allow any annotations to be complemented

with a collection type, which is used by the compiler to store the many objects internally.
The first proved to be a handicap for using multiplicities, since it required an explicit downcast
of an option receiver to bare whenever a value-typed member was to be accessed on it (see
Table 2), a constellation that occurred rather frequently in our case study. If the receiver
would have had multiplicity one instead, no such cast would have been necessary. However,
statically ensuring one-ness shares many of the problems of checking non-null annotations
(see, e.g., [14]), which is why we left it to future work.

The second was a tribute to earlier reviewers’ comments suggesting that in practice, the
programmer would want to have some control over the nature of a multitude. However, from
a theoretical stance, a non-reified multitude does not have a nature, which hence cannot be
controlled; if anything, it appears that when counting many objects, each counts only once
(and, as a corollary, iterating over many objects can yield each object only once). Any other

9 In object-oriented programming, the term object is defined as an item that has identity.
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property, such as sequence or order, would presuppose a container, suggesting that reification
of the multitude (with all its associated problems) is more appropriate (cf. the discussion at
the end of Section 2.1). Interestingly, the reverse dilemma exists in the relational database
world: originally (i.e., in the pure relational calculus), many entities could not be reified as
one entity, and all grouping and ordering had to be done in queries; only with the advent of
object-relational extensions, entities could be wrapped in containers, and stored as attributes
[6]. However, to our knowledge, these object-oriented extensions have not been embraced
in practice, perhaps because with non-reified multitudes available, their reification appears
unnecessary.

Concerning the utility of our multiplicities in practical programming, our case study
showed that, while incurring no measurable computing overhead, multiplicities offer many
opportunities for rewriting object-oriented code into more fluent style, avoiding the use
of control structures (see [20] for examples). With hindsight, this should not have been
surprising, given that we extended programming languages with a grammatical form that is
quite useful in natural language: the plural.

7 Research Opportunities

The author’s original motivation to conduct this work was to support his conception of object-
relational programming, that is, to enhance object-oriented programming with relationships
that are not first-class, but instead extend the object-oriented notion of a reference as a
unidirectional pointer to no or a single object (which is likewise not first-class) to bidirectional
to-many pointers.

7.1 Adding Bidirectionality

In object-oriented programming, a standard way of implementing bidirectional relationships
using pointers is to identify “opposite” fields that implement the reverse direction of a
pointer, a practice which is also adopted by object-relational mappers. For instance, to
implement a bidirectional relationship between objects of classes A and B, the declaration of
a field B b in class A would be annotated to indicate that field A a in class B implements its
reverse direction. Updating field a or b would then be complemented under the hood with
the necessary update of the opposite field. The to-many pointers advocated in this paper
can readily be used to implement one half of non-first-class many-to-many relationships
using fields; at the same time, extending multiplicities to other declared entities provides for
straightforward integration of bidirectional relationships with arbitrary expressions, without
having to resort to containers.

7.2 Connection with Roles

While the implementation of relationships using bidirectional to-many pointers is more
or less a technical detail (yet one which raises many interesting questions!), the notion of
interfaces as roles [17] is more central to the author’s notion of object-relational programming.
In the relational realm, roles are defined as the places of relationships, and every binary
relationship comes with two roles, a role and its counter-role. By a suitable definition of
role-playing [16], an object playing one role is necessarily related to one or more objects
playing the counter-role. The behaviour associated with a role (as expressed by the methods
offered by the corresponding interface) is then the behaviour available for the collaboration
relying on the defining relationship [18]. Conceptually, an upcast of an object to a role it

305

SNAPL 2015



306

None, One, Many — What'’s the Difference, Anyhow?

plays (an interface it implements) uniquely identifies the objects related to it by playing the
counter-role; technically, this can be realized by letting each role define access and update
operations for an implicit bidirectional to-many pointer to the objects playing the counter-role.
Hence, binary relationships and the collaborations between the participating objects can be
specified by pairing interfaces (a role with its counter-role), and by letting classes declare to
implement these interfaces (meaning that the classes’ instances can play the associated roles).
Conceptually simple as this may seem, it raises many research questions, such as specializing
relationships via subtyping roles and the relationship of roles to traits (see [21] for a proposal
of stateful traits that would lend itself to implementing roles as envisioned here).

7.3 Adding Swarm Behaviour

Section 4 ended with a brief example of overloading methods with different argument
multiplicities. The example suggests that, in analogy to type-based dispatch, static method
dispatching always selects the method with the most specific argument multiplicities. However,
differing from type-based dispatch, we do no dispatch on the receiver’s multiplicity (the
inherent asymmetry noted above): invoking a method on many receivers is implicitly resolved
by invoking it on each.

The notion of swarm behaviour put forward in [10] suggests that there is a different
interpretation of invoking a method on many receivers: that the receivers are expected to act
as a swarm. Multiplicity-based swarm behaviour could be implemented by static methods
that have access to a pseudo-variable these whose static multiplicity is any (or many) and
which evaluates to the objects the method was invoked on.'? In fact, one could assume a
default implementation of swarm behaviour, which dispatches a method invocation on many
objects to the individual objects and which can be overridden when needed (just like the
implicit default constructor can be overridden). Using multiplicities, no container would be
required to reify the swarm in swarm methods (as in [10]); these is simply the plural of this.

Pushing the idea of dispatching on multiplicities further, one could even provide methods
for multiplicity none (i.e., no receiver object), replacing for the NULL OBJECT pattern [22].
However, this would require dynamic dispatching on the receiver multiplicity.

8 Conclusion

The addition of multiplicity to programming languages as a new grammatical category
appears similarly fundamental as the introduction of types. It may prove a better foundation
for ridding programming of null pointer exceptions than current type-based approaches
(using containers), and can generalize non-null annotations to handling more multiplicities
than just bare and one. At the same time, the dropping of containers promises to solve a
number of anomalies that force code for handling many objects to look very different from
code for handling one or no object. However, as the author himself experienced during the
writing of this paper, there exists a mental obstacle to adopting multiplicities as proposed
here, and this is rooted in the entire dismissal of reification: sets in particular have become
so fundamental in our thinking that it is difficult to even talk about occurrences of many
objects without implicitly or explicitly reifying them into a set. It will be interesting to see
whether programming without collections comes more natural, at least in places where the
container is irrelevant.

10 Here it would pay that Java allows static member access on object expressions.
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