
Correlation Bounds Against Monotone NC1

Benjamin Rossman∗

National Institute of Informatics, Tokyo, Japan
Simons Institute for the Theory of Computation, Berkeley, USA
rossman@nii.ac.jp

Abstract
This paper gives the first correlation bounds under product distributions, including the uniform
distribution, against the class mNC1 of polynomial-size O(logn)-depth monotone circuits. Our
main theorem, proved using the pathset complexity framework introduced in [56], shows that
the average-case k-CYCLE problem (on Erdős-Rényi random graphs with an appropriate edge
density) is 1

2 + 1
poly(n) hard for mNC1. Combining this result with O’Donnell’s hardness amplifi-

cation theorem [43], we obtain an explicit monotone function of n variables (in the class mSAC1)
which is 1

2 +n−1/2+ε hard for mNC1 under the uniform distribution for any desired constant ε > 0.
This bound is nearly best possible, since every monotone function has agreement 1

2 + Ω( logn√
n

)
with some function in mNC1 [44].

Our correlation bounds against mNC1 extend smoothly to non-monotone NC1 circuits with
a bounded number of negation gates. Using Holley’s monotone coupling theorem [30], we prove
the following lemma: with respect to any product distribution, if a balanced monotone function
f is 1

2 + δ hard for monotone circuits of a given size and depth, then f is 1
2 + (2t+1 − 1)δ hard

for (non-monotone) circuits of the same size and depth with at most t negation gates. We thus
achieve a lower bound against NC1 circuits with ( 1

2 − ε) logn negation gates, improving the
previous record of 1

6 log logn [7]. Our bound on negations is “half” optimal, since dlog(n + 1)e
negation gates are known to be fully powerful for NC1 [3, 21].
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1 Introduction

The majority of research in boolean circuit complexity is focused on restricted classes of
circuits. Super-polynomial lower bounds are known in two basic settings: bounded-depth
circuits (i.e. AC0) [1, 24] and monotone circuits [51]. For another natural class, deMorgan
formulas (tree-like circuits with fan-out 1), nearly cubic n3−o(1) lower bounds are known [28].
For bounded-depth circuits as well as deMorgan formulas, the state-of-the-art worst-case lower
bounds (obtained in the 1980’s and 90’s) have recently been matched by tight average-case
lower bounds, also known as correlation bounds, under the uniform distribution. It is now
known that

PARITY is 1
2 + 2−Ω(n/(logS)d−1) hard for depth-d (unbounded fan-in) circuits of size S

[29],
there is an explicit function in P which is 1

2 + 2−Ω(r) hard for deMorgan formulas of size
n3−o(1)/r2 [40].
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(A boolean function f is said to be γ-hard for a class of circuits C under a distribution µ if
Px∼µ[ f(x) = C(x) ] ≤ γ for every circuit C ∈ C. By default µ is the uniform distribution and
γ is typically expressed as 1

2 + δ or 1− δ where δ(n)→ 0.)
In the monotone setting, there is an excellent knowledge of worst-case lower bounds:

a long line of works [4, 8, 27, 37, 45, 48, 46, 50, 51] (among many others) have achieved
separations between the monotone versions of nearly all the important complexity classes,
as defined by Grigni and Sipser [26]. However, when it comes to average-case lower bounds
under the uniform distribution or any product distribution, essentially nothing has been
known; it is still open, for instance, whether any monotone function in NP is 1− 1

poly(n) hard
for polynomial-size monotone circuits. This represents a major gap in the basic understanding
of monotone computation, given the importance of product distributions in the monotone
setting. Product distributions are believed to be a natural source of hard instances for many
monotone problem: k-SAT and k-CLIQUE are famously conjectured to be hard-on-average
at an appropriate threshold density [38]. Product distributions are also significant in the
real analysis of monotone functions (see the FKG inequality [22], the Bollobás-Thomason
theorem [18], Friedgut’s threshold theorem [23], etc.)

1.1 Previous Work
Many of the aforementioned worst-case lower bounds in the monotone setting can be viewed
as average-case lower bounds under specific non-product distributions. To take one example,
consider Razborov’s celebrated lower bound for the k-CLIQUE function [51]. Let µ denote
the distribution on n-vertex graphs which, half of the time, is a uniform random k-clique,
and the other half is a uniform random (k − 1)-coclique (i.e. complete (k − 1)-partite graph).
The result of [51] (together with the quantitative improvement [4]) shows that, for all
3 ≤ k ≤ n1/4, k-CLIQUE is 1

2 + n−Ω(
√
k) hard under µ for the class mP of polynomial-size

monotone circuits (for k ≤ logn, this bound improves to 1
2 + n−Ω(k)). (Correlation bounds

under similar (non-product) distributions were recently obtained for monotone classes within
mP [20, 25], strengthening previous worst-case separations among these classes.)

Toward the goal of worst-case lower bounds, this distribution µ has a very sensible
property: it is supported entirely on minterms (minimal 1-instances, i.e., k-cliques) and
maxterms (maximal 0-instances, of which (k − 1)-cocliques are a subset). Thus µ exploits
monotonicity in the strongest possible way. However, there is something backwards about
µ: every 1-instance has Hamming weight

(
k
2
)
(≤
√
n), which is less the minimum Hamming

weight
(
k−1

2
)(

n
k−1

)2 (≥ n2/2) of any 0-instance. It follows that k-CLIQUE is equivalent
under µ to the anti-monotone threshold function THR<n2/2 (which is 1 on graphs with fewer
than n2/2 edges). Therefore, even though k-CLIQUE is hard under µ for monotone circuits,
it is easy under µ for polynomial-size circuits with a single negation gate (in fact, THR<n2/2
is computable by polynomial-size formulas with a single negation [3]).

This discomfort was addressed in work of Amano and Maruoka [7], who extended
the k-CLIQUE lower bound of [4, 51] to polynomial-size circuits with 1

6 log logn negation
gates by considering a modified distribution µ′ (a certain convex combination, over various
` ∈ {k, . . . , n}, of `-cliques and (k − 1)-cocliques supported on sets of size `). While the
core of the proof in [7] is still a monotone circuit lower bound for cliques vs. cocliques, this
result contributed an insight that sufficiently strong lower bounds against monotone circuits
imply lower bounds against negation-limited boolean circuits (we capitalize on this insight in
Lemma 1.3).

A more natural distribution for the average-case analysis of k-CLIQUE is given by the
Erdős-Rényi random graph G(n, p). Here we take p (= p(n, k)) to be the unique “ 1

2 -threshold”
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such that P[G(n, p) contains a k-clique ] = 1
2 . (Note that G(n, p) is a product distribution on

{0, 1}(
n
2).) Karp [38] famously conjectured that k-CLIQUE is hard-on-average under G(n, p)

(in the regime k ≈ 2 logn). Previous work of the author [54] confirmed this conjecture in the
(non-monotone) AC0 setting by showing that k-CLIQUE is 1

2 + n−Ω(k) hard under G(n, p)
for AC0 (polynomial-size constant-depth circuits) for all k ≤ log1/2 n. Follow-up work of
the author [55] combined the technique of [54] with the “approximation method” framework
of Razborov [51] to prove a correlation bound against monotone circuits under a different
distribution ν on n-vertex graphs: half of the time, ν is G(n, p) plus a uniform random
planted k-clique, and the other half ν is G(n, 2p) conditioned on being k-clique-free. The
result of [55] shows that k-CLIQUE is 1

2 + n−Ω(k) hard under ν for mP for all k ≤ log1/2 n.
While ν is (morally speaking) similar to G(n, p), it is unfortunately not a product distribution
and suffers the same shortcoming as µ: the 0-instances and 1-instances under ν, although
no longer minterms and maxterms, are nevertheless separable with high probability by an
anti-monotone threshold function (in this case THR< 3

2 (n
2)p). It was left as an open problem

in [55] to prove a correlation bound against mP for k-CLIQUE under G(n, p). In the present
paper, we do not succeed in this task; however, we prove a correlation bound against a
significant subclass of mP (mNC1) for a different monotone graph property (k-CYCLE)
under an appropriate product distribution.

1.2 Our Results
Our main theorem is a correlation bound for the average-case k-CYCLE problem against the
class mNC1 of polynomial-size O(logn)-depth monotone circuits (equivalently, polynomial-
size monotone formulas). Rather than the standard Erdős-Rényi random graph, we find
it convenient to restrict attention to “Ck-partite” input graphs with kn vertices and kn2

potential edges (Def. 4.2). For the average-case analysis of k-CYCLE, we consider a random
Ck-partite graph, denoted Γ, in which each potential edge is independently included with
probability p where p is the unique “ 1

2 -threshold” such that P[ Γ contains a k-cycle ] = 1
2 .

(Note: p ∼ ck/n for a constant ck depending on k.) A monotone function f on kn2 variables
is said to compute k-CYCLE on Γ with advantage δ if P[ f(Γ) = k-CYCLE(Γ) ] ≥ 1

2 + δ.

I Theorem 1.1 (Main Theorem). For all k ≤ log logn, if a monotone formula computes
k-CYCLE on Γ with advantage n−1/2+c, then it has size nΩ(c log k). In particular, log logn-
CYCLE is 1

2 + n−1/2+o(1) hard under Γ for monotone formulas of size no(log log logn) (and
hence for mNC1).

The lower bound in Theorem 1.1 is essentially tight, since k-CYCLE is computable
(in the worst-case) by monotone formulas of size nO(log k), as well as by polynomial-size
O(log k)-depth monotone circuits with semi-unbounded fan-in (i.e. binary AND gates and
unbounded OR gates). This places k-CYCLE in the class mSAC1. (In terms of space
complexity, k-CYCLE is computable in NL as well as Ave-L, as defined in [12].) Theorem
1.1 thus gives a very sharp average-case separation of mNC1 from higher complexity classes.

As a corollary of Theorem 1.1, we obtain nearly optimal correlation bounds against mNC1

under the uniform distribution. Note that the random graph Γ, while a product distribution,
is not the uniform distribution on {0, 1}kn2 ; moreover, the correlation bound in Theorem 1.1
is only 1

2 + (kn2)−1/4+o(1) in terms of the input size kn2. Nevertheless, using O’Donnell’s
hardness amplification theorem [43], we have the following result:

I Corollary 1.2. For every ε > 0, there is an explicit monotone function of N variables (in
the class mSAC1) which is 1

2 +N−1/2+ε hard for mNC1 under the uniform distribution.
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This function is the composite function1 TRIBES⊗ log logn-CYCLE⊗ p-BIAS on N =
poly(n) variables where

p-BIAS : {0, 1}n → {0, 1} is any n-term monotone DNF with exactly dp2ne satisfying
assignments,2

TRIBES : {0, 1}nc → {0, 1} is the “tribes” function of Ben-Or and Linial [13] on nc

variables, where c (= Ω(1/ε)) is a sufficiently large constant.
See O’Donnell’s paper [43] for background on the hardness amplification theorem which
yields Corollary 1.2 from Theorem 1.1. We only remark that all results in [43], while stated in
terms of the class NP, apply equally to mNC1. This observation relies on the fact that MAJ
∈ mNC1 [3, 63] (where MAJ is the majority function); this is essential for the application of
Implagliazzo’s “hard-core set” theorem [31, 39], which is a main tool in [43].

The correlation bound in Corollary 1.2 is nearly best possible under the uniform
distribution, as O’Donnell and Wimmer [44] have shown that every monotone function
{0, 1}n → {0, 1} has agreement 1

2 +Ω( logn√
n

) with one of functions 0, 1, x1, . . . , xn,MAJ. Since
these functions are all in mNC1, it follows that no monotone function is 1

2 + o( logn√
n

) hard
for mNC1. Corollary 1.2 shows that this correlation bound is nearly achieved by an explicit
monotone function. (By counting arguments, there exist (non-explicit) monotone functions
achieving similar correlation bounds [9, 36].)

Finally, we extend these results to non-monotone circuits with a bounded number of
negation gates, by means of a general lemma on correlation bounds under product distribution.
In fact, our observation applies to the broader class of distributions µ on {0, 1}n which satisfy
the FKG lattice condition [22] if

µ(x)µ(y) ≤ µ(x ∧ y)µ(x ∨ y) for all x, y ∈ {0, 1}n. (1)

Note that every product distribution satisfies (1) with equality.

I Lemma 1.3. Let µ be a distribution which satisfies the FKG lattice condition (1) and let f
be a monotone function which is balanced under µ (i.e. Eµ(f) = 1

2). If f is 1
2 + δ hard under

µ for monotone circuits of a given size and depth, then f is 1
2 + (2t+1 − 1)δ hard under µ,

up to the same size and depth, for (non-monotone) circuits with t negation gates.

Via Lemma 1.3, the correlation bound of Corollary 1.2 extends to NC1 circuits with
( 1

2 − ε) logn negation gates.

I Corollary 1.4. For every ε > 0, there is an explicit function in mSAC1 which is 1
2 + o(1)

hard for NC1 circuits with ( 1
2 − ε) logn negations under the uniform distribution.

Corollary 1.4 is half optimal, in the sense that NC1 circuits with dlog(n+ 1)e negations
are known to be equivalent to full NC1 by well-known results of Markov [42] and Fischer [21]
(again using the fact that MAJ ∈ NC1). This improves a previous 1

6 log logn lower bound of
Amano and Maruoka [7] on the negation-limited complexity of an explicit monotone function
{0, 1}n → {0, 1} (however, unlike Corollary 1.4, the result of [7] applies to polynomial-size
circuits of unbounded depth). For multi-output monotone functions {0, 1}n → {0, 1}n, Jukna

1 For boolean functions h : {0, 1}l → {0, 1} and g : {0, 1}m → {0, 1}, the composite function g ⊗ h :
({0, 1}l)m → {0, 1} is defined by (g ⊗ h)(y1, . . . , ym) = g(h(y1), . . . , h(ym)).

2 It is an easy exercise to show that there is an n-term monotone DNF with exactly m satisfying
assignments for every m ∈ {0, . . . , 2n}. Note that p-BIAS generates a single p′-biased bit from the
uniform distribution on {0, 1}n where p ≤ p′ < p + 2−n.
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[34] proved a worst-case lower bound of logn−O(log logn). (There is an extensive literature
on negation-limited complexity; see Chapter 10 of [35] and papers [11, 14, 16, 36, 64, 67]
besides those already mentioned.)

1.3 Overview
We present an outline of the paper, highlighting the main ideas in the proof of Theorem 1.1.

Persistent Minterms

In Section 3 we introduce the key notion of persistent minterms of a monotone function f
under an increasing sequence of monotone restrictions. Formally, we consider the sequence
of monotone functions f∨ρ0 ≤ f∨ρ1 ≤ · · · ≤ f∨ρm where ρ0 ≤ ρ1 ≤ · · · ≤ ρm are elements
in {0, 1}n and f∨ρi(x) := f(x ∨ ρi). An element x ∈ {0, 1}n of Hamming weight |x| = k

is called a d-persistent minterm of f under ~ρ if it is a common minterm of
(
d+k−1
k−1

)
many

functions f∨ρi .
Persistent minterms behave like ordinary minterms under operations ∨ and ∧ (Lemma

3.4). In additional, persistent minterms have the desirable property of being “noise-insensitive”
in a certain sense. Suppose ξ(1), . . . , ξ(m) are independent samples from a distribution of
random “noise” over {0, 1}n. If we now define ρi by ξ(1) ∪ · · · ∪ ξ(i), then every persistent
minterm is noise-insensitive, insofar as it has survived at least one hit of random noise. This
translates into a lemma to the effect that every monotone function whatsoever has “few”
persistent minterms with high probability (Lemma 5.13).

Average-Case k-CYCLE

In Section 4 we consider the average-case k-CYCLE problem on the random graph Γ (i.e.
the p-biased product distribution on {0, 1}kn2 for appropriate p ∼ 1/n). We introduce
an auxiliary random graph Ξ` consisting of ` (�

√
n) independent paths of length k − 1.

Crucially, Ξ` lives “within the variance” of the random graph Γ, in the sense that Γ and Γ∪Ξ`
have small total variation distance. Roughly speaking, we are able to show: if a monotone
function f has correlation � `k2/

√
n with k-CYCLE under Γ, then a non-negligible fraction

(at least 1/
√
n) of k-cycles are persistent minterms of f with respect to random noise Ξ`

(Lemma 4.5).

Pathset Complexity

In Section 5 we present the pathset complexity framework and state a lower bound proved in
[56]. Very roughly speaking, for a subgraph A = (VA, EA) of the k-cycle, a pathset over A is
a set of isomorphic copies of A embedded (as “sections”) in VA × [n]. Pathset complexity is a
(formula-like) complexity measure on pathsets with respect to operations ∪ and ./ (union and
join). Crucially, pathsets are subject to a collection of density constraints called smallness;
this bottleneck accounts for the high complexity of constructing pathsets beyond a certain
size.

The pathset complexity framework was introduced in [56] for the purpose of separating
formula-size and circuit-size within AC0. The technique is tailored to the formula complexity
of the (virtually equivalent) average-case k-STCONN / k-CYCLE problems. The paper [56]
proves a lower bound of nΩ(log k) on the pathset complexity of any sufficiently dense pathset
over the k-path / k-cycle (Theorem 5.8).
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Our correlation bound against mNC1 (Theorem 1.1) is proved by reduction to this pathset
complexity lower bound. Given a monotone formula which correlates well with k-CYCLE
under Γ, we define (random) pathsets at all gates of the formula in terms of persistent
minterms. We show (Lemma 5.13) that all of these pathsets satisfy the smallness constraint
with high probability. In this way, we are able to obtain a formula-size lower bound from
pathset complexity. The proof of Theorem 1.1 is given in Section 6; proofs of various lemmas
are included in appendices (due to space limitation, two appendices which appear in the full
version of this paper have been removed from this version).

2 Preliminaries

Let N = {0, 1, 2, . . . }. For n ∈ N, let [n] = {1, . . . , n}. We write ln(·) for the natural
logarithm and log(·) for the base-2 logarithm. For random variables X and Y , notation
X

d= Y expresses “X and Y are identically distributed”.

I Definition 2.1 (Monotone Functions, Minterms, Monotone Restrictions). B+
n denotes the

lattice of monotone (non-decreasing) boolean functions {0, 1}n → {0, 1}. f, g represent
functions in B+

n. f ≤ g denotes f(x) ≤ g(x) for all x ∈ {0, 1}n. For f ∈ B+
n and x ∈ {0, 1}n,

we say that x is a minterm of f if f(x) = 1 and f(x′) = 0 for all x′ < x. The set of minterms
of f is denoted byM(f). (Note thatM(·) gives a bijection from B+

n to anti-chains in {0, 1}n.)
For f ∈ B+

n and ρ ∈ {0, 1}n, we denote by f∨ρ be the monotone function f∨ρ(x) := f(x ∨ ρ).
(Note that f ≤ f∨ρ.) In this context, we view ρ ∈ {0, 1}n as a “monotone restriction” which
sets some variables to 1 (namely, i ∈ [n] such that ρi = 1) and leaves the remaining variables
unset.

I Lemma 2.2 (Minterm Lemma). For all f, g ∈ B+
n,

M(f ∨ g) ⊆M(f) ∪M(g), M(f ∧ g) ⊆ {x ∨ y : x ∈M(f), y ∈M(g)}. (2)

In other words, every minterm of f ∨ g is a minterm of f or a minterm of of g, and every
minterm of f ∧ g is the disjunction of a minterm of f and a minterm of g. (This is easy to
see, for instance, by thinking of the DNF representations of f and g.)

I Definition 2.3 (Monotone Formulas). A monotone formula on n variables is a finite rooted
binary tree whose leaves (inputs) are labeled by elements of [n]∪{0, 1} and whose non-leaves
(gates) are labeled ∧ or ∨. (In this paper all AND and OR gates have fan-in 2.) Every
monotone formula Φ on n variables computes a monotone function in B+

n (in the usual way).
For x ∈ {0, 1}n, we write Φ(x) for the value of the monotone function computed by Φ on
input x. Sub(Φ) denotes the set of (syntactic) sub-formulas of Φ. For example, if Φ is the
formula Ψ∧Ψ, then Sub(Φ) contains both (left and right) copies of Ψ. Leaves(Φ) (⊆ Sub(Φ))
denotes the set of leaves in Φ. The (leaf) size of Φ is defined as size(Φ) := |Leaves(Φ)|
(= 1

2 (|Sub(Φ)|+ 1)). The depth of Φ is its height as a tree (where a single leaf has depth 0).

3 Persistent Minterms

I Notation 3.1. For a partially ordered set L and m ∈ N, we denote by Seqm≤ (L) the set
of non-decreasing chains ~λ = (λ0, λ1, . . . , λm) such that λ0 ≤ λ1 ≤ · · · ≤ λm. (We will
consistently index coordinates of ~λ by λs, λt where 0 ≤ s ≤ t ≤ m.)

I Notation 3.2. For d, k ∈ N, let
〈
d
k

〉
:=
(
d+k−1
k−1

)
. Note the identity

〈
d
k

〉
=
〈
d−1
k

〉
+
〈
d
k−1
〉
.

CCC 2015



398 Correlation Bounds Against Monotone NC1

I Lemma 3.1. For all d, k ≥ 1 and ~a ∈ Seqk≤(R), if ak − a0 >
〈
d
k

〉
, then aj − aj−1 >

〈
d−1
j

〉
for some j ∈ {1, . . . , k}.

Proof. By induction on k: assuming ak−a0 >
〈
d
k

〉
, either ak−ak−1 >

〈
d−1
k

〉
, in which case the

lemma is satisfied with j = k, or else ak−1−a0 = (ak−a0)−(ak−ak−1) >
〈
d
k

〉
−
〈
d−1
k

〉
=
〈
d
k−1
〉
,

in which case we use the induction hypothesis for (a0, . . . , ak−1) ∈ Seqk−1
≤ (R). J

By the same basic induction, we have:

I Lemma 3.2. For all d,m ≥ 1 and ~x ∈ Seqm≤ ({0, 1}n), if m ≥
〈

d
|xm|

〉
, then xs = xt for

some 0 ≤ s ≤ t ≤ m with t− s ≥
〈
d−1
|xs|
〉
.

Proof. Suppose m ≥
〈

d
|xm|

〉
and let ` := min{s ≥ 0 : |xs| = |xm|}. If m − ` ≥

〈
d−1
|xm|

〉
,

then we are done. Otherwise, ` − 1 = (m − 1) − (m − `) ≥ (
〈

d
|xm|

〉
− 1) − (

〈
d−1
|xm|

〉
−

1) ≥
〈

d
|xm|−1

〉
≥
〈

d
|x`−1|

〉
and we use the induction hypothesis for the truncated sequence

(x0, . . . , x`−1) ∈ Seq`−1
≤ ({0, 1}n). J

I Definition 3.3 (Persistent Minterms). For ~f ∈ Seqm≤ (B+
n) and x ∈ {0, 1}n, we say that x is

a d-persistent minterm of ~f if it is a common minterm of fs and ft (i.e. x ∈M(fs)∩M(ft))
for some 0 ≤ s ≤ t ≤ m such that t − s ≥

〈
d
|x|
〉
. The set of d-persistent minterms of ~f is

denoted byMd(~f).

We have defined persistent minterms in a general way for sequences f0 ≤ f1 ≤ · · · ≤ fm
of monotone functions. However, we will be interested in the persistent minterms of an
individual monotone function f under a sequence ρ0 ≤ ρ1 ≤ · · · ≤ ρd of monotone restrictions.
(Eventually, we will utilize this notion by choosing random restrictions ~ρ.)

I Notation 3.3. For f ∈ B+
n and ~ρ ∈ Seqm≤ ({0, 1}n), letM~ρ

d(f) :=Md(f∨ρ0 ≤ f∨ρ1 ≤ · · · ≤
f∨ρm).

I Lemma 3.4 (Persistent Minterm Lemma). For all f, g ∈ B+
n and ~ρ ∈ Seqm≤ ({0, 1}n) and

d,m ≥ 1,

M~ρ
d(f ∨ g) ⊆M~ρ

d−1(f) ∪M~ρ
d−1(g), (3)

M~ρ
d(f ∧ g) ⊆

{
x ∨ y : x ∈M~ρ

d−1(f), y ∈M~ρ
d−1(g)

}
. (4)

The proof, which we include in Appendix A, is straightforward (in particular, we show
(4) using Lemma 3.2). We will return to persistent minterms in Section 5.2.

4 Average-Case k-CYCLE

We depart from the setting of monotone functions {0, 1}n → {0, 1} (on n variables) and
instead consider a domain G ∼= {0, 1}k

2n of graphs (with kn2 possible edges). Before defining
G, let us first clarify the role of k:

I Definition 4.1. Throughout the rest of this paper, let k = k(n) ∈ N be an arbitrary
parameter (i.e. function of n) subject to k ≤ log logn.

The constraint k ≤ log logn is due to the factor of (1/2)O(2k) in Theorem 5.8. Outside of
this theorem, all other lemmas in this paper hold for a larger range of k.
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I Definition 4.2 (K-Partite Graphs). All graphs in this paper are finite directed graphs
without isolated vertices. Formally, a graph is a pair G = (VG, EG) where VG is a finite set and
EG ⊆ VG × VG and VG =

⋃
vw∈EG

{v, w}. As a special case, ∅ denotes the empty graph with
V∅ = E∅ = ∅ (the empty set). K denotes the k-cycle graph with VK = {v0, v1, . . . , vk−1}
and EK = {v0v1, v1v2, . . . , vk−1v0}. (We never write these indices explicitly, instead always
writing v ∈ VK , vw ∈ EK or e ∈ EK .) We denote by G (= G(k, n)) the set of K-partite
graphs G satisfying

VG ⊆ {v(i) : v ∈ VK , i ∈ [n]}, EG ⊆ {v(i)w(j) : vw ∈ EK , i, j ∈ [n]}.

Here v(i) and v(i)w(j) are just a friendly notation for ordered pairs (v, i) and ((v, i), (w, j)).
In the context of functions G→ {0, 1}, we identify G with the hypercube {0, 1}kn2 .

I Definition 4.3 (k-CYCLE). For G ∈ G, we say that G is a k-cycle if G is isomorphic to
K. Note that G is a k-cycle if and only if there exists a function ι : VK → [n] such that
EG = {v(ι(v))w(ι(w)) : vw ∈ EK}. We say that G has a k-cycle if it contains a k-cycle as a
subgraph. k-CYCLE denotes the monotone function G→ {0, 1} which takes value 1 on G if,
and only if, G has a k-cycle.

We are interested in the average-case analysis of k-CYCLE. For this purpose, we define
three random graphs needed to state our main lemma (on the noise-invariance of minterms
of k-CYCLE).

I Definition 4.4 (Random Graphs Γ, � and Ξ`). Let Γ, � and Ξ` be the following (indepen-
dent) random graphs in G:

Let Γ be the (K-partite, Erdős-Rényi) random graph in G which includes each potential
edge independently with probability p (i.e. P[ Γ = G ] = p|EG|(1− p)kn2−|EG|) where p =
p(k, n) (∼ (ln 2)1/k/n) is the unique “ 1

2 -threshold” such that P[ k-CYCLE(Γ) = 1 ] = 1
2 .

Let � be a uniform random k-cycle in G. For e ∈ EK , we write �−e for the graph
obtained from � by deleting the edge in � corresponding to e. Note that �−e is a path
of length k − 1.
For ` ∈ N, let Ξ` be the random graph �−e11 ∪ · · · ∪�−e`

` where �1, . . . ,�` are uniform
random k-cycles and e1, . . . , e` are uniform random edges in EK . Equivalently, Ξ` is the
union of ` uniform random paths of length k − 1.

We will only consider values of ` much less than
√
n, where random paths �−e11 ∪ · · · ∪�−e`

`

are likely to be vertex-disjoint. The letter Ξ is mnemonic for this situation.

We state the key lemma of this section, whose proof is included in the full paper.

I Lemma 4.5. For every monotone function f : G→ {0, 1} and ` ∈ N, if

P
Γ

[
f(Γ) = k-CYCLE(Γ)

]
≥ 1

2 + C(`+ 1)k2
√
n

(5)

where C > 0 is a universal constant, then there exists G ∈ G such that

P
Ξ`

[
P
�

[
� ∈M(f∪G) ∩M(f∪G∪Ξ`)

]
≥ n−1/2

]
≥ n−1/2. (6)

Lemma 4.5 says the following: (in the case ` = 0) if a monotone function f has correlation
� k2/

√
n with k-CYCLE on Γ, then there exists a graph G such that a non-negligible fraction

of k-cycles are minterms of f∪G. Moreover, (for ` ≥ 1) if this correlation is � `k2/
√
n, then

these minterms are “Ξ`-noise-invariant” in the following sense: with probability ≥ n−1/2 over
Ξ`, at least 1/

√
n fraction of k-cycles are common minterms of f∪G and f∪G∪Ξ` .
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The tie-in to persistent minterms is clear. Let d ∈ N and suppose ` is a multiple of
m :=

〈
d
k

〉
. We may generate Ξ` as a union of independent Ξ(1)

`/m, . . . ,Ξ
(m)
`/m. Writing ρs for

the partial union Ξ(1)
`/m ∪ · · · ∪ Ξ(s)

`/m, we have a non-decreasing sequence ~ρ ∈ Seqm≤ (G). Notice
that every k-cycle which is a common minterm inM(f∪G) ∩M(f∪G∪Ξ`) is a d-persistent
minterm inM~ρ

d(f∪G). (This observation shows up in the proof of Theorem 1.1 in Section 6.)

5 Pathset Complexity

5.1 The Basic Framework
We present the definitions required to state the pathset complexity lower bound (Theorem
5.8), which we use in our main theorem (Theorem 1.1). For background on these definitions
(key examples, upper bounds, etc.), the reader is referred to the paper [56].

I Definition 5.1 (Pattern Graphs). Subgraphs of K are called pattern graphs and designated
by letters A,B,C. Recall that graphs (by definition in this paper) have no isolated vertices.
Therefore, pattern graphs A ⊆ K are in one-to-one correspondence with subsets EA ⊆ EK .

An important parameter of pattern graphs A ⊆ K is the number |VA| − |EA|. Note that
every pattern graph, other than K itself, is a disjoint union of paths. Therefore,

A 6= K ⇒ |VA| − |EA| = |{connected components of A}|. (7)

Also note that 0 ≤ |VA| − |EA| ≤ k/2 and |VA| − |EA| = 0 ⇔ A ∈ {∅,K}.

I Definition 5.2 (Sections). For A ⊆ K, an A-section is a graph A′ ∈ G such that EA′ =
{v(ι(v))w(ι(w)) : vw ∈ EA} for some function ι : VA → [n]. (As a special case, the empty
graph ∅ is the unique ∅-section.) The set of all A-sections is denoted by GA. As a matter
of notation, we consistently write A-sections using primes (A′, A′′, etc.) Every A′ ∈ GA is
isomorphic to A via the projection v(i) 7→ v.

We have already encountered K-sections and K \ {e}-sections in the guise of random
graphs � and �−e. (Note that K-sections are the same as k-cycles in G (Def. 4.2).)

I Definition 5.3 (Pathsets). For A ⊆ K, subsets of GA (i.e. sets of A-sections) are called
pathsets over A. As a special case, note that there are two distinct pathsets over ∅: the
empty set ∅ and the “identity” pathset {∅}. Every non-empty pathset A is a pathset over
a unique A ⊆ K, which we call its underlying pattern graph. Pathsets over A,B,C,K are
consistently designated by the respective calligraphic letters A,B, C,K. The density of a
pathset A is defined by

density(A) := |A| / n|VA| = P
A′∈GA

[A′ ∈ A ]. (8)

I Definition 5.4 (Joins). For any two pathsets A and B, the join A ./ B is the pathset (over
A ∪B) defined by

A ./ B :=
{
C ′ ∈ GA∪B : C ′ = A′ ∪B′ for some A′ ∈ A and B′ ∈ B

}
. (9)

Note that ./ is an associative, commutative and idempotent operation on pathsets. Moreover,
∅ and {∅} act as the zero and identity: A ./ ∅ = ∅ and A ./ {∅} = A. (Taking the view of
a pathset A as a “VA-ary relation” (i.e. a subset of [n]VA), ./ is the standard relational join
operation.)



Benjamin Rossman 401

I Definition 5.5 (Restrictions). For pathsets A and B, we say that B is a restriction of A,
denoted B � A, if B ⊆ A and there exists B′ ∈ GA\B such that B = {B′ ∈ GB : B′∪B′ ∈ A}.
B is a proper restriction of A, denoted B ≺ A, if B � A and B 6= A.

I Definition 5.6 (Smallness). For ε > 0, a pathset A is ε-small if it satisfies

density(B) ≤ ε|VB |−|EB | for all B � A. (10)

The set of ε-small pathsets (over all pattern graphs) is denoted by Pε.

Note that every pathset over ∅ or K is ε-small, since |V∅| − |E∅| = |VK | − |EK | = 0.
ε-smallness is obviously preserved under subsets, as well as under restrictions: if A ∈ Pε,
then A0 ∈ Pε and B ∈ Pε for every A0 ⊆ A and B � A. Somewhat less obvious is the
fact that ε-smallness is also preserved under joins (Lemma 5.5 of [56]): if A,B ∈ Pε, then
A ./ B ∈ Pε.

I Definition 5.7 (Pathset Complexity). For any ε > 0 (“smallness parameter”), pathset
complexity is the function χε : Pε → N defined inductively as follows:

(base case) χε(∅) = χε({∅}) = 0 and χε(A) = |A| if |EA| = 1,
(induction case) if |EA| ≥ 2, then

χε(A) := min
(Bi,Ci)i

∑
i χε(Bi) + χε(Ci)

where (Bi, Ci)i ranges over all sequences of ε-small pathsets Bi, Ci ∈ Pε such that
Bi, Ci $ A and Bi ∪ Ci = A and A ⊆

⋃
i Bi ./ Ci.

In other words, for the (induction case) we consider all possible coverings of A by joins of
ε-small pathsets over proper subgraphs of A.

It is clear from this definition that pathset complexity satisfies the following inequalities:
(monotonicity) χε(A1) ≤ χε(A2) for all A1 ⊆ A2 ∈ Pε,
(sub-additivity) χε(A1∪A2) ≤ χε(A1)+χε(A2) for all A1,A2 such that A1∪A2 ∈ Pε,
(join inequality) χε(A ./ B) ≤ χε(A) + χε(B) for all A,B ∈ Pε.

In fact, these three inequalities provide a dual characterization of pathset complexity: χε is
the unique pointwise maximal function Pε → N which satisfies (base case), (monotonicity),
(sub-additivity) and (join inequality).

The following lower bound on pathset complexity was shown in [56]:

I Theorem 5.8 (Pathset Complexity Lower Bound). For every pathset K over K,

χε(K) ≥ (1/2)O(2k) · (1/ε) 1
6 log k · density(K). (11)

Theorem 5.8 corresponds to Theorem 5.8 of [56]. We remark that the lower bound proved
in [56] applies more broadly to pathsets A ∈ Pε over any pattern graph A ⊆ K:

χε(A) ≥ (1/2)O(2|EA|) · (1/ε) 1
6 log(length(A)) + |VA|−|EA| · density(A) (12)

where length(A) equals the number of edges in the largest connected component of A. In
fact, (12) follows from an even more general lower bound for pathset complexity with respect
to patterns (Theorem 8.3 of [56]). However, for the application in this paper, we only require
the bound (11) for pathsets over K.
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5.2 Pathsets of Persistent Minterms
In order to prove formula-size lower bounds using pathset complexity, we associate pathsets
with all monotone formulas on kn2 variables. The pathsets need to satisfy certain consistency
conditions; moreover, these (random) pathsets must be ε-small (with high probability).
Persistent minterms and random restrictions Ξ` accomplish both of these goals. In this
subsection, we show how to define appropriate pathsets using persistent minterms; we deal
with ε-smallness in the next subsection.

I Definition 5.9 (PathsetsMA(f) and P~ρA(Φ)). For a monotone function f : G→ {0, 1} and
A ⊆ K, letMA(f) := GA ∩M(f) be the pathset of A-sections which are minterms of f . For
a monotone formula Φ and ~ρ ∈ Seqm≤ (G) and A ⊆ K, the pathset P~ρA(Φ) (over A) is defined
by

P~ρA(Φ) := GA ∩M~ρ
depth(Φ)(Φ). (13)

That is, the P~ρA(Φ) is the set of A-sections which are depth(Φ)-persistent minterms of Φ
under the sequence ~ρ.

Unpacking definitions, for all A 6= ∅, we have the expression

P~ρA(Φ) =
⋃

0≤s≤t≤m :
t−s≥〈depth(Φ)

|EA|
〉

(
MA(Φ∪ρs) ∩MA(Φ∪ρt)

)
⊆

⋃
0≤s≤m−1

(
MA(Φ∪ρs) ∩MA(Φ∪ρs+1)

)
. (14)

The following lemma is a straightforward consequence of (14).

I Lemma 5.10. If P~ρA(Φ) is not ε-small, thenMA(Φ∪ρs)∩MA(Φ∪ρs+1) is not (ε/m)-small
for some s ∈ {0, . . . ,m− 1}.

Proof. Assume P~ρA(Φ) is not ε-small. By Def. 5.6, there exists a restriction B � P~ρA(Φ)
such that density(B) > ε|VB |−|EB |. (Note that A,B /∈ {∅,K}.) By Def. 5.5, there exists an
(A \ B)-section B′ ∈ GA\B such that B = {B′ ∈ GB : B′ ∪ B′ ∈ P~ρA(Φ)}. Writing As for
MA(Φ∪ρs) ∩MA(Φ∪ρs+1), we have P~ρA(Φ) ⊆

⋃m−1
s=0 As by (14), hence B ⊆

⋃m−1
s=0 {B′ ∈ GB :

B′ ∪B′ ∈ As}. It follows that there exists s ∈ {0, . . . ,m− 1} such that

density({B′ ∈ GB : B′ ∪B′ ∈ As}) ≥ density(B)/m > ε|VB |−|EB |/m ≥ (ε/m)|VB |−|EB |.

Since {B′ ∈ GB : B′ ∪B′ ∈ As} � As, we conclude that As is not (ε/m)-small. J

We next restate the Persistent Minterm Lemma 3.4 in terms of pathsets P~ρA(Φ).

I Lemma 5.11. For all monotone functions f, g and monotone formulas Φ,Ψ and ~ρ ∈
Seqm≤ (G) and A ⊆ K,

P~ρA(Φ ∨Ψ) ⊆ P~ρA(Φ) ∪ P~ρA(Ψ), (15)

P~ρA(Φ ∧Ψ) ⊆
⋃

B,C⊆A :B∪C=A
P~ρB(Φ) ./ P~ρC(Ψ). (16)

The main lemma of this subsection gives the key relationship between pathset complexity
and formula size and depth.

I Lemma 5.12. Suppose Φ is a monotone formula and ~ρ ∈ Seqm≤ (G) such that pathsets
P~ρA(Ψ) are ε-small for all Ψ ∈ Sub(Φ) and A ⊆ K. Then

χε(P~ρK(Φ)) ≤ 2O(k2) · depth(Φ)k · size(Φ). (17)
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Although the statement of Lemma 5.12 might appear complicated, the proof is actually
quite simple. The derivation of (17) uses only Lemma 5.11 and the key properties (mono-
tonicity), (sub-additivity) and (join inequality) of pathset complexity. The proof of Lemma
5.12, which is essentially the same as Lemma 6.7 in [56], is included in Appendix B.

5.3 Smallness Lemma
In the last subsection, we defined pathsets P~ρA(Φ) (for an arbitrary sequence ~ρ ∈ Seqm≤ (G))
and showed a relationship between pathset complexity and formula size under the condition
that all of the relevant pathsets are ε-small. The next lemma give a means of establishing
ε-smallness.

I Lemma 5.13. For every monotone function f : G → {0, 1} and A ⊆ K and ` ∈ N and
ε > 0,

P
Ξ`

[
MA(f) ∩MA(f∪Ξ`) is not ε-small

]
≤ (2n)k · exp

(
−Ω(ε`/k2)

)
. (18)

The main tools in the proof of Lemma 5.13 (included in the full version of this paper)
are Janson’s Inequality [33] and the sunflower-plucking technique of Razborov [51].

6 Proof of Theorem 1.1 (Correlation Bound for k-CYCLE)

Proof of Theorem 1.1. Let k ≤ log logn and suppose Φ is a monotone formula such that

P
Γ

[
f(Γ) = k-CYCLE(Γ)

]
= 1

2 + n−1/2+c.

Our goal is to show the lower bound size(Φ) = nΩ(c log k).
Using the fact that nO(log k) is an upper bound on the size of monotone formulas for

k-CYCLE (together with the “formula balancing lemma” [59, 66]: every monotone formula
of size S is equivalent to a monotone formula of depth O(logS)) we may assume that
size(Φ) = nO(log k) and depth(Φ) = O(log k · logn). However, for purposes of this proof, it is
enough for us to assume much weaker upper bounds size(Φ) ≤ exp(n1/k) and depth(Φ) ≤ n1/k.
We also assume c = Ω(1/ log k), since otherwise there is nothing to prove.

We set parameters m, `, ε as follows:

m :=
〈depth(Φ)

k

〉
(=
(depth(Φ)+k−1

k−1
)
), ` := nc/2, ε := n−c/4. (19)

Note that m = O(depth(Φ))k = no(c). We have n−1/2+c = ω((m` + 1)k2/
√
n), that is, Φ

satisfies the hypothesis (5) of Lemma 4.5 (for all sufficiently large n). Therefore, by Lemma
4.5, there exists G ∈ G such that

P
Ξ`m

[
P
�

[
� ∈M(Φ∪G) ∩M(Φ∪G∪Ξm`)

]
≥ n−1/2

]
= Ω(n−1/2). (20)

Fixing any such G, we now generate random ~ρρρ ∈ Seqm≤ (G) as follows:
Let Ξ(1)

` , . . . ,Ξ(m)
` be independent random copies of Ξ`.

For s ∈ {0, . . . ,m}, let ρρρs := G ∪ (Ξ(1)
` ∪ · · · ∪ Ξ(s)

` ).

By our choice of m =
〈depth(Φ)

k

〉
and Def. 5.9 of P~ρρρK(Φ) (see (14)), we have

P~ρρρK(Φ) =MK(Φ∪ρρρ0) ∩MK(Φ∪ρρρm).
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Since � is uniform in GK , it follows (by definition (8) of density(·)) that

density(P~ρρρK(Φ)) = P
�

[
� ∈M(Φ∪ρρρ0) ∩M(Φ∪ρρρm)

]
.

Since ρρρ0 = G and ρρρm
d= G ∪ Ξm`, we see that (20) is equivalent to

P
~ρρρ

[
density(P~ρρρK(Φ)) ≥ n−1/2 ] = Ω(n−1/2). (21)

We next observe that, with all-but-negligible probability 1− n−ω(1), pathsets P~ρρρA(Ψ) are
all ε-small:

P
~ρρρ

[ ∨
Ψ∈Sub(Φ)

∨
∅⊂A⊂K

P~ρρρA(Ψ) is not ε-small
]

(Lemma 5.10) (22)

≤
∑

Ψ∈Sub(Φ)

∑
∅⊂A⊂K

∑
0≤s≤m−1

P
~ρρρ

[
MA(Ψ∪ρρρs) ∩MA(Ψ∪ρρρs+1) is not (ε/m)-small

]
≤ size(Φ) · 2k ·m · exp

(
−Ω(ε`/k2m)

)
(Lemma 5.13)

= exp(O(n1/k)) · exp(−nc/4−o(c)) (size(Φ) ≤ exp(n1/k))

= n−ω(1) (c = Ω(1/ log k)).

As the upshot of (21) and (22), (for all sufficiently large n) there exists ~ρ ∈ Seqm≤ (G)
satisfying both

Dense(~ρ), the event that density(P~ρK(Φ)) ≥ n−1/2, and
Small(~ρ), the event that pathsets P~ρA(Ψ) are ε-small for all Ψ ∈ Sub(Φ) and A ⊆ K.

Fixing any such ~ρ, we complete the reduction to our pathset complexity lower bound (using
k ≤ log logn):

size(Φ) ≥ depth(Φ)−k · 2−O(k2) · χε(P~ρK(Φ)) (Small(~ρ) and Lemma 5.12)

≥ n−O(1) · χε(P~ρK(Φ)) (depth(Φ) ≤ n1/k)

≥ n−O(1) · 2−O(2k) · (1/ε) 1
6 log k · density(P~ρK(Φ)) (Theorem 5.8)

= n(c/24) log k−O(1) (Dense(~ρ)).

Therefore, size(Φ) = nΩ(c log k) as required. J
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A Proof of Lemma 3.4 (Persistent Minterms Under ∨ and ∧)

To simplify notation, we write fs for f∨ρs and gs for g∨ρs .
Proof of (3): Consider any x ∈ M~ρ

d(f ∨ g). Fix 0 ≤ s ≤ t ≤ m such that t − s ≥
〈
d
|x|
〉

and x ∈ M(fs ∨ gs) ∩M(ft ∨ gt). Since x is a minterm of fs ∨ gs, we have fs(x) = 1 or
gs(x) = 1. Without loss of generality, assume fs(x) = 1. We claim that x is also a minterm
of ft. Clearly ft(x) = 1 since fs ≤ ft. It suffices to show that ft(y) = 0 for all y < x. This
follows from the fact that x is a minterm of ft ∨ gt, hence (ft ∨ gt)(y) = 0 for all y < x.
Therefore, x ∈M(fs) ∩M(ft). Since t− s ≥

〈
d
j

〉
≥
〈
d−1
j

〉
, we conclude that x ∈M~ρ

d−1(f).
Proof of (4): Consider any x ∈M~ρ

d(f ∧ g). Fix 0 ≤ s ≤ t ≤ m such that t− s ≥
〈
d
|x|
〉
and

x ∈M(fs∧gs)∩M(ft∧gt). Let ` := t−s. We will construct, by induction on i = 0, 1, . . . , `,
two sequences y0 ≥ y1 ≥ · · · ≥ y` and z0 ≥ z1 ≥ · · · ≥ z` such that yi ∈ M(fs+i) and
zi ∈M(gs+i) and yi ∨ zi = x:

For the base case i = 0, since x is a minterm of fs ∧ gs, we have fs(x) = gs(x) = 1.
Therefore, there exist y ∈ M(fs) and z ∈ M(gs) such that y, z ≤ x. Note that
(fs ∧ gs)(y ∨ z) = 1 and y ∨ z ≤ x. Again using the fact that x is a minterm of fs ∧ gs, it
follows that y ∨ z = x. These are the starting terms of our sequence: y0 = y and z0 = z.
For the induction step, suppose we have chosen yi−1 ∈M(fs+i−1) and zi−1 ∈M(gs+i−1)
such that yi−1 ∨ zi−1 = x. Since fs+i−1 ≤ fs+i and gs+i−1 ≤ gs+i, we have fs+i(yi−1) =
gs+i(zi−1) = 1. Therefore, there exist y ∈M(fs+i) and z ∈M(gs+i) such that y ≤ yi−1
and z ≤ zi−1. Note that (fs+i ∧ gs+i)(y ∨ z) = 1 and y ∨ z ≤ x. Since x is a minterm of
fs+i ∧ gs+i, it follows that y ∨ z = x. These are the next terms in our sequence: yi = y

and zi = z.
Having constructed sequences ~y, ~z ∈ Seq`≥({0, 1}n), we finish the proof using Lemma 3.2.
Since ` ≥

〈
d
|x|
〉
≥
〈
d
|y0|
〉
, we may apply Lemma 3.2 to the reversed sequence (y`, y`−1, . . . , y0) ∈

Seq`≤({0, 1}n); we get 0 ≤ a ≤ b ≤ ` such that ya = yb and b − a ≥
〈
d−1
|ya|
〉
. Therefore,

ya ∈M~ρ
d−1(f). Similarly, we get zc ∈M~ρ

d−1(g) for some 0 ≤ c ≤ `. Since y0 ≤ ya ≤ y` and
z0 ≤ zc ≤ z` and z0 ∨ y0 = y` ∨ z` = x, we conclude that ya ∨ zc = x. J

B Proof of Lemma 5.12 (Pathset Complexity and Formula Size)

Assume Φ is a monotone formula and ~ρ ∈ Seqm≤ (G) such that P~ρA(Ψ) is ε-small for every
subformula Ψ of Φ and every A ⊆ K.

Consider any φ ∈ Leaves(Φ) labeled by the indicator variable for a potential edge v(i)w(j).
Clearly P~ρA(φ) = ∅ for all A ⊆ K except possibly when EA = {vw}, in which case the only
possibility for P~ρA(φ) other than ∅ is the singleton pathset {A′} where A′ is the A-section
with EA′ = {v(i)w(j)}. It follows that

∑
A⊆K |P

~ρ
A(φ)| ≤ 1.

Next, consider Ψ ∈ Sub(Φ) with an ∨-gate on top: Ψ = Ψ1 ∨ Ψ2. For all A ⊆ K,
by Lemma 5.11, we have P~ρA(Ψ) ⊆ P~ρA(Ψ1) ∪ P~ρA(Ψ2). By properties (monotonicity) and
(sub-additivity) of χε, it follows that

χε(P~ρA(Ψ)) ≤ χε(P~ρA(Ψ1)) + χε(P~ρA(Ψ2)). (23)

Now consider Ψ = Ψ1 ∧Ψ2 ∈ Sub(Φ). By Lemma 5.11, we have

P~ρA(Ψ) ⊆ P~ρA(Ψ1) ∪ P~ρA(Ψ2) ∪
⋃

B,C$A :B∪C=A

P~ρB(Ψ1) ./ P~ρC(Ψ2). (24)
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(This expression extracts from (16) the case where B = A, noting that P~ρA(Ψ1) ./ P~ρC(Ψ2) ⊆
P~ρA(Ψ1); and similarly the case where C = A.) By properties (monotonicity), (sub-additivity)
and (join inequality) of χε,

χε(P~ρA(Ψ)) ≤ χε(P~ρA(Ψ1)) + χε(P~ρA(Ψ2)) +
∑

B,C$A :B∪C=A

(
χε(P~ρB(Ψ1)) + χε(P~ρC(Ψ2))

)
≤
(
χε(P~ρA(Ψ1)) + 2k

∑
B$A

χε(P~ρB(Ψ1))
)

+
(
χε(P~ρA(Ψ2)) + 2k

∑
B$A

χε(P~ρB(Ψ2))
)
. (25)

If we now start with χε(P~ρK(Φ)) and repeatedly expand according to (25) and (23) down
to the leaves of Φ, we get a bound of the form

P~ρK(Φ) ≤
∑

φ∈Leaves(Φ)

∑
A⊆K

cφ,A · χε(P~ρA(φ))

for some cφ,A ∈ N. For φ ∈ Leaves(Φ) at depth d (≤ depth(Φ)), the coefficient cφ,A equals
the sum, over all chains K = B0 ⊃ B1 ⊃ · · · ⊃ Bt = A, of 2kt times the binomial coefficient(
d
t

)
(counting the locations of the ∧-gates above φ where branching occurred in the expansion

of (25)). Thus, we have the upper bound cφ,A ≤ 2O(k2) · depth(Φ)k. Using the fact that∑
A⊆K |P

~ρ
A(φ)| ≤ 1 for all φ ∈ Leaves(Φ) and the definition size(Φ) = |Leaves(Φ)|, we

conclude that P~ρK(Φ) ≤ 2O(k2) · depth(Φ)k · size(Φ). J

C Proof of Lemma 1.3 (Negation-Limited Circuits)

Our proof of Lemma 1.3 combines a monotone coupling theorem of Holley [30] (which is
the main ingredient in the proof of his generalization the FKG inequalities [22]) with an
observation about negations in circuits due to Amano and Maruoka [7]. We require one
definition:

I Definition 3.1. For a boolean (not necessarily monotone) function h : {0, 1}n → {0, 1}, let

mon-pairs(h) :=
{

(x, y) ∈ {0, 1}n × {0, 1}n : h(x) = 0 and h(y) = 1 and x < y
}
.

The following lemma and its proof are adapted from Theorem 3.2 of [7]. The only
difference is that we consider all monotone pairs, rather than only the monotone boundary
(i.e. only monotone pairs (x, y) with |y| − |x| = 1).

I Lemma 3.2. For every circuit C with t negation gates, there exist t′ = 2t+1−1 monotone cir-
cuits M1, . . . ,Mt′ of the same size and depth such that mon-pairs(C) ⊆

⋃t′
i=1 mon-pairs(Mi).

Proof. Let C1, . . . ,Ct be the sub-circuits of C which feed directly into negation gates, listed
in “topological order” such that i < j whenever Ci is a sub-circuit of Cj . Also, let Ct+1 be
C itself. For every j ∈ {1, . . . , t + 1} and α ∈ {0, 1}j−1, let Mα be the monotone circuit
obtained from Cj by, for each i ∈ {1, . . . , j − 1} such that Ci is a sub-circuit of Cj , replacing
the negation gate above Ci with the constant αi. The number of these monotone circuits
is
∑t+1
j=1 2j−1 = 2t+1 − 1. To finish the argument, consider any (x, y) ∈ mon-pairs(C).

Let j be the first index such that Cj(x) 6= Cj(y), and let α ∈ {0, 1}j−1 be the element
αi := Ci(x) = Ci(y). Then (x, y) ∈ mon-pairs(Mα). We conclude that mon-pairs(C) ⊆⋃
j∈[t+1]

⋃
α∈{0,1}j−1 mon-pairs(Mα). J
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I Lemma 3.3 (Holley [30]). Let µ0, µ1 be two strictly positive probability distributions on
{0, 1}n which satisfy the “Holley condition”

µ0(x)µ1(y) ≤ µ0(x ∧ y)µ1(x ∨ y) for all x, y. (26)

Then there exists a probability distribution ν on {0, 1}n × {0, 1}n (“monotone coupling of µ0
and µ1”) such that∑

y ν(x, y) = µ0(x) for all x,∑
x ν(x, y) = µ1(y) for all y,

ν(x, y) > 0⇒ x ≤ y for all x, y.

Holley’s proof of Lemma 3.3 uses a Markov chain coupling argument. We remark that
Lemma 3.3 also follows from an earlier (and much more general) monotone coupling theorem
of Strassen [60].

I Lemma 3.4. Let µ be a distribution on {0, 1}n which satisfies the FKG lattice condition
(1), and let f : {0, 1}n → {0, 1} be a monotone function such that Eµ(f) ∈ (0, 1). For
b ∈ {0, 1}, define the distribution µb on {0, 1}n by

µb(x) :=


µ(x)/(1− Eµ(f)) if f(x) = b = 0,
µ(x)/Eµ(f) if f(x) = b = 1,
0 otherwise.

(27)

Then the pair µ0, µ1 satisfy the Holley condition (26).

Proof. We simply observe:
If f(x) = 1, then µ0(x) = µ0(x ∧ y) = 0.
If f(y) = 0, then µ1(y) = µ1(x ∨ y) = 0.
If f(x) = 0 and f(y) = 1, then

µ0(x)µ1(y) = µ(x)µ(y)
Eµ(f)(1− Eµ(f)) ≤

µ(x ∧ y)µ(x ∨ y)
Eµ(f)(1− Eµ(f)) = µ0(x ∧ y)µ1(x ∨ y). J

Proof of Lemma 1.3. Let µ be a distribution on {0, 1}n which satisfies the FKG lattice
condition (1), and suppose f ∈ B+

n such that Eµ(f) = 1/2 (i.e. f is balanced with respect to
µ). We prove the contrapositive statement to Lemma 1.3. Assume C is a monotone circuit
which computes f on µ with advantage δ, that is,

P
x∼µ

[
C(x) = f(x)

]
= 1

2 + δ.

We will show that f is computed with advantage ≥ δ/(2t+1 − 1) by a monotone circuit of
the same size and depth.

Define µ0, µ1 by (27) as in Lemma 3.4. By Lemma 3.3 there is a monotone coupling ν of
µ0, µ1, which is supported on mon-pairs(f). For every monotone function h ∈ B+

n, we have

ν
(
mon-pairs(h)

)
= E

(x,y)∼ν

[
h(y)− h(x)

]
(28)

= E
(x,y)∼ν

[
h(y)

]
− E

(x,y)∼ν

[
h(x)

]
= P

(x,y)∼ν

[
h(y) = 1

]
+ P

(x,y)∼ν

[
h(x) = 0

]
− 1

= 2
(
P
y∼µ

[
h(y) = f(y) = 1

]
+ P
x∼µ

[
h(x) = f(x) = 0

])
− 1

= 2 P
x∼µ

[
h(x) = f(x)

]
− 1.
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It follows from Lemma 3.2 that there exists a monotone circuit M, of the same size and
depth as C, such that

ν
(
mon-pairs(M)

)
≥ 1

2t+1 − 1ν
(
mon-pairs(C)

)
.

We complete the proof by two applications of (28):

P
x∼µ

[
M(x) = f(x)

]
= 1

2

(
1 + ν

(
mon-pairs(M)

))
≥ 1

2

(
1 + 1

2t+1 − 1ν
(
mon-pairs(C)

))
= 1

2

(
1 + 1

2t+1 − 1

(
2 P
x∼µ

[
C(x) = f(x)

]
− 1
))

= 1
2 + δ

2t+1 − 1 . J
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