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Abstract
The problem of constructing explicit functions which cannot be approximated by low degree poly-
nomials has been extensively studied in computational complexity, motivated by applications in
circuit lower bounds, pseudo-randomness, constructions of Ramsey graphs and locally decodable
codes. Still, most of the known lower bounds become trivial for polynomials of super-logarithmic
degree. Here, we suggest a new barrier explaining this phenomenon. We show that many of
the existing lower bound proof techniques extend to nonclassical polynomials, an extension of
classical polynomials which arose in higher order Fourier analysis. Moreover, these techniques
are tight for nonclassical polynomials of logarithmic degree.
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1 Introduction

Polynomials play a fundamental role in computer science with important applications in
algorithm design, coding theory, pseudo-randomness, cryptography and complexity theory.
They are also instrumental in proving lower bounds, as many lower bounds techniques first
reduce the computational model to a computation or an approximation by a low degree
polynomial, and then continue to show that certain hard functions cannot be computed or
approximated by low degree polynomials. Motivated by these applications, the problem of
constructing explicit functions which cannot be computed or approximated (in certain ways)
by low degree polynomials has been widely explored in computational complexity. However,
most techniques to date apply only to relative low degree polynomials. In this paper, we focus
on understanding this phenomenon, when the polynomials are defined over fixed size finite
fields. In this regime, many lower bound techniques become trivial when the degree grows
beyond logarithmic in the number of variables. We propose a new barrier explaining the lack
of ability to prove strong lower bounds for polynomials of super-logarithmic degree. The
barrier is based on nonclassical polynomials, an extension of standard (classical) polynomials
which arose in higher order Fourier analysis. We show that several existing lower bound
techniques extend to nonclassical polynomials, for which the logarithmic degree bound is
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tight. Hence, to prove stronger lower bounds, one should either focus on techniques which
distinguish classical from nonclassical polynomials, or consider functions which are hard also
for nonclassical polynomials.

1.1 Nonclassical polynomials
Nonclassical polynomials were introduced by Tao and Ziegler [24] in their works on the
inverse theorem for the Gowers uniformity norms. To introduce these, it will be beneficial
to first consider classical polynomials. Fix a prime finite field Fp, where we consider p to
be a constant. A function f : Fn

p → Fp is a degree d polynomial if it can be written as a
linear combination of monomials of degree at most d. An equivalent definition is that f is
annihilated by taking any d+ 1 directional derivatives. That is, for a direction h ∈ Fn

p define
the derivative of f in direction h as Dhf(x) = f(x+ h)− f(x). Then, f is a polynomial of
degree at most d iff

Dh1 . . . Dhd+1f ≡ 0 ∀h1, . . . , hd+1 ∈ Fn
p .

Nonclassical polynomials extend this definition to a larger class of objects. Let T = R/Z
denote the torus. For a function f : Fn

p → T, define its directional derivative in direction
h ∈ Fn

p as before, as Dhf(x) = f(x + h) − f(x). Then, we define f to be a nonclassical
polynomial of degree at most d if it is annihilated by any d+ 1 derivatives,

Dh1 . . . Dhd+1f ≡ 0 ∀h1, . . . , hd+1 ∈ Fn
p .

While not immediately obvious, the class of nonclassical polynomials contains the classical
polynomials. Let | · | : Fp → {0, . . . , p−1} ⊂ Z denote the natural embedding. If f : Fn

p → Fp

is a classical polynomial of degree d then |f(x)|/p (mod 1) is a nonclassical polynomial of
degree d. It turns out that as long as d < p, these capture all the nonclassical polynomials.
However, for d ≥ p nonclassical polynomials strictly extend classical polynomials of the same
degree. For example, the following is a nonclassical polynomial of degree p:

f(x) =
∑
|xi|
p2 .

See Section 2 for more details on nonclassical polynomials.

1.2 Correlation bounds for polynomials
We first consider the problem of constructing explicit boolean functions which cannot be
approximated by low-degree polynomials. For simplicity, we focus on polynomials defined
over F2, but note that the results below extend to any constant prime finite field. This
problem was studied by Razborov [22] and Smolensky [23] in the context of proving lower
bounds for AC0(⊕) circuits (and more generally, bounded depth circuits with modular gates
modulo a fixed prime). Consider for example the function MOD3 : {0, 1}n → {0, 1}, which
outputs 1 if the sum of the bits is zero modulo 3, and outputs 0 otherwise. The probability
that it outputs 0 is very close to 2/3. They showed that low degree polynomials over F2
cannot improve this significantly. If f : Fn

2 → F2 be a polynomial of degree d then

Prx∈{0,1}n [f(x) = MOD3(x)] ≤ 2
3 +O

(
d√
n

)
.

This is sufficient to prove that the MOD3 function cannot be computed by sub-exponential
AC0(⊕) circuits. However, one would like to prove that it cannot even be slightly ap-
proximated by such circuits. Such a result would be a major step towards constructing
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74 Nonclassical Polynomials as a Barrier to Polynomial Lower Bounds

pseudorandom generators for AC0(⊕) circuits [20, 21], a well known open problem in circuit
complexity. It turns out that the Razborov-Smolensky bound is tight for very large degrees,
as there exist polynomials of degree d = Ω(

√
n) which approximate the MOD3 function with

probability 0.99, say. However, it seems to be far from tight for d �
√
n, which suggests

that an alternative proof technique may be needed.
Viola and Wigderson [26] proved stronger inapproximability results for degrees d� logn.

These are better described if one considers the correlation of f with the sum of the bits
modulo 3. In the following, let ω3 = exp(2πi/3) be a cubic root of unity. They showed that
if f : Fn

2 → F2 is a polynomial of degree d then

Ex∈{0,1}n

[
(−1)f(x)ωx1+...+xn

3

]
≤ 2−Ω(n/4d).

The technique of [26] proves exponential correlation bounds for constant degrees, but decays
quickly and becomes trivial at d = O(logn). Our first result is that this is because of a good
reason. Their technique is based on derivatives, and hence extends to nonclassical polynomials.
Moreover, it is tight for nonclassical polynomials. In the following, let e : T→ C∗ be defined
as e(x) = exp(2πix).

I Theorem 1.1 (Correlation bounds with modular sums for nonclassical polynomials (informal)).
Let f : Fn

2 → T be a nonclassical polynomial of degree d. Then

Ex∈{0,1}n

[
e(f(x))ωx1+...+xn

3
]
≤ 2−Ω(n/4d).

Moreover, for any ε > 0 there exists a nonclassical polynomial f : Fn
2 → T of degree

O(log(n/ε)) such that
Ex∈{0,1}n

[
e(f(x))ωx1+...+xn

3
]
≥ 1− ε.

So, the Viola-Wigderson technique is bounded for degrees smaller than O(logn), because it
extends to nonclassical polynomials of that degree, for which it is tight. We note that the
modulus 3 in Theorem 1.1 can be replaced with any fixed odd modulus.

Another boolean function which was shown by Razborov and Smolensky [22,23] to be
hard for AC0(⊕) circuits is the majority function MAJ : Fn

2 → F2. The proof relies on the
following key fact. If f : Fn

2 → F2 is a degree d polynomial then

Prx∈{0,1}n [f(x) = MAJ(x)] ≤ 1
2 +O

(
d√
n

)
.

Equivalently, this can be presented as a correlation bound

Ex∈{0,1}n

[
(−1)f(x)(−1)MAJ(x)

]
≤ O

(
d√
n

)
.

This is known to be tight for degree d = 1 (as say x1 has correlation Ω(1/
√
n) with the

majority function) and also for d = Ω(
√
n), since there exist polynomials of that degree

which approximate well the majority function, or any symmetric function for that matter.
However, it is not known if these bounds are tight for degrees 1� d�

√
n. We study this

question for nonclassical polynomials. We show that there are nonclassical polynomials of
degree O(logn) with a constant correlation with the majority function.

I Theorem 1.2 (Correlation bounds with majority for nonclassical polynomials (informal)).
There exists a nonclassical polynomial f : Fn

2 → T of degree O(logn) such that∣∣∣E [e(f(x))(−1)MAJ(x)
]∣∣∣ ≥ Ω(1).
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So, the Razborov-Smolensky technique separates classical from nonclassical polynomials,
since classical polynomials of degree O(logn) have negligible correlation with the majority
function, while as we show above, this is false for nonclassical polynomials.

1.3 Exact computation by polynomials
A related problem to correlation bounds is that of exact computation with good probability.
For classical polynomials the two problems are equivalent, but this is not the case for
nonclassical polynomials. Given a nonclassical polynomial f : Fn

2 → T, we can ask what is
the probability that f is equal to a boolean function, say the majority function. To do so,
we identify naturally F2 with {0, 1/2} ⊂ T, and consider MAJ : Fn

2 → {0, 1/2}. We show the
following result, which gives a partial answer to the question.

I Theorem 1.3 (Exact computation of majority by nonclassical polynomials (informal)). Let
f : Fn

2 → T be a nonclassical polynomial of degree d. Then,

Prx∈{0,1}n [f(x) = MAJ(x)] ≤ 1
2 +O

(
d2d

√
n

)
.

We believe that the bound is not tight, and that, unlike for correlation bounds, nonclassical
polynomials should not be able to exactly compute boolean functions better than classical
polynomials. Specifically, we ask the following question.

I Open Problem 1.4. Let f : Fn
2 → T be a nonclassical polynomial of degree d. Show that

Prx∈{0,1}n [f(x) = MAJ(x)] ≤ 1
2 +O

(
d√
n

)
.

1.4 Weak representation of the OR function
We next move to the problem of weak representation of the OR function. Let p1, . . . , pr

be distinct primes and let m = p1 · · · pr. The goal is to construct a low degree polynomial
f ∈ Zm[x1, . . . , xn] such that f(0n) = 0 but f(x) 6= 0 for all nonzero x ∈ {0, 1}n. Such
polynomials stand at the core of some of the best constructions of Ramsey graphs [13,14,16]1
and locally decodable codes [8, 10–12,27], and were further investigated in [3–7,23]. There
are currently exponential gaps between the best constructions and lower bounds. Barrington,
Beigel and Rudich [5] showed that there exist polynomials of degree O(n1/r) that weakly
represent the OR function. The best lower bound is Ω(log1/(r−1) n), due to Barrington and
Tardos [3].

The definition of weak representation can be equivalently defined (via the Chinese
Remainder Theorem) as follows. There exist polynomials fi : Fn

pi
→ Fpi

for i = 1, . . . , r such
that f1(0n) = . . . = fr(0n) = 0 but for any nonzero x ∈ {0, 1}n, there exists an i for which
fi(x) 6= 0. This definition can be naturally extended to nonclassical polynomials, where
we consider fi : Fn

pi
→ T. We show that the Barrington-Tardos lower bound extends to

nonclassical polynomials, and it is tight up to polynomial factors.

I Theorem 1.5 (Weak representation of OR for nonclassical polynomials (informal)). Let
p1, . . . , pr be distinct primes, and fi : Fn

pi
→ T be nonclassical polynomials which weakly

represent the OR function. Then

max deg(fi) ≥ Ω(log1/r n).

1 The current record is due to [2] which uses different techniques.
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76 Nonclassical Polynomials as a Barrier to Polynomial Lower Bounds

Moreover, for any fixed prime p, there exists a nonclassical polynomial f : Fn
p → T of degree

O(logn) which weakly represents the OR function.

Thus, the proof technique of Barrington-Tardos cannot extend beyond degree O(logn),
as it applies to nonclassical polynomials as well, for which the O(logn) bound holds even
for prime modulus. We note that unlike in the case of Theorem 1.1, where the lower bound
proof of [26] extended naturally to nonclassical polynomials, extending the lower bound
technique of [3] to nonclassical polynomials requires several nontrivial modifications of the
original proof.

As an aside, in the classical setting, we present an improvement in the degree of a
symmetric polynomial that weakly represents OR. This improves the result in [5] in the
growing modulus case and constructs a polynomial whose degree is modulus independent.
For more details, see Appendix A.

1.5 Pseudorandom generators for low degree polynomials
Consider for simplicity polynomials over F2. A distribution D over Fn

2 is said to fool
polynomials of degree d with error ε, if for any polynomial f : Fn

2 → F2 of degree at most d,
we have ∣∣Prx∼D[f(x) = 0]−Prx∈Fn

2
[f(x) = 0]

∣∣ ≤ ε.
Distributions which fool linear functions (e.g. d = 1) are called small bias generators, and
optimal constructions of them (up to polynomial factors) were given in [1, 19], with seed
length O(logn/ε). A sequence of works [9, 17,25] showed that small bias generators can be
combined to yield generators for larger degree polynomials. The best construction to date is
by Viola [25], who showed that the sum of d independent small bias generators with error
approximately ε2d fools degree d polynomials with error ε. Thus, his construction has seed
length O(2d log(1/ε) + d logn), and becomes trivial for d = Ω(logn). It is not clear whether
it is necessary to require the small bias generators to have smaller error than the required
error for the degree d polynomials, and this is the main source for the loss in parameters
when considering large degrees.

There is a natural extension of these definitions to nonclassical polynomials. If f : Fn
2 → T

is a nonclassical polynomial of degree d, then we require that∣∣Ex∼D[e(f(x))]− Ex∈Fn
2
[e(f(x))]

∣∣ ≤ ε.
The proof technique of Viola is based on derivatives, and we note here (without proof) that it
extends to nonclassical polynomials in a straightforward way. We suspect that it is tight for
nonclassical polynomials, however we were unable to show that. Thus, we raise the following
question.

I Open Problem 1.6. Fix ε > 0, d ≥ 1. Does there exist a small bias generator with error
� ε2d , such that the sum of d independent copies of the generator does not fool degree d
nonclassical polynomials with error ε?

Organisation. Section 2 covers preliminary definitions. In Section 3 we prove bounds
on approximation of modular sums by nonclassical polynomials. In Section 4 we analyze
the approximation of the majority function by nonclassical polynomials in the correlation
model and the exact computation model. In Section 5 we prove the results on the weak
representation of the OR function. We describe in Appendix A an improvement in the degree
of classical polynomials which weakly represent the OR function.



A. Bhowmick and S. Lovett 77

2 Preliminaries

Let N = {1, 2, . . .} denote the set of positive integers. For n ∈ N, let [n] := {1, 2, . . . , n}. Let
T = R/Z denote the torus. This is an abelian group under addition. Let e : T → C∗ be
defined by e(x) = exp(2πix).

2.1 Nonclassical polynomials
Let Fp be a prime finite field. Given a function f : Fn

p → T, its directional derivative in
direction h ∈ Fn

p is Dhf : Fn
p → T, given by

Dhf(x) = f(x+ h)− f(x).

Polynomials are defined as functions which are annihilated by repeated derivatives.

I Definition 2.1 (Nonclassical polynomials). A function f : Fn
p → T is a polynomial of degree

at most d if Dh1 . . . Dhd+1f ≡ 0 for any h1, . . . , hd+1 ∈ Fn
p . The degree of f is the minimal d

for which this holds.

Classical polynomials satisfy this definition. Let | · | denote the natural map from Fp

to {0, 1, . . . , p − 1} ⊆ Z. If P : Fn
p → Fp is a (classical) polynomial of degree d, then

f(x) = |P (x)|/p (mod 1) is a nonclassical polynomial of degree d. For degrees d ≤ p, it
turns out that these are the only possible polynomials. However, when d > p, there are more
polynomials than just these arising from the classical ones, from which the term nonclassical
polynomials arise. A complete characterization of nonclassical polynomials was developed by
Tao and Ziegler [24]. They showed that a function f : Fn → T is a polynomial of degree ≤ d
if and only if it has the following form:

f(x1, . . . , xn) = α+
∑

0≤e1,...,en≤p−1,k≥0:
∑

ei+(p−1)k≤d

ce1,...,en,k|x1|e1 . . . |xn|en

pk+1 (mod 1).

Here, α ∈ T and ce1,...,en,k ∈ {0, 1, . . . , p− 1} are uniquely determined. The coefficient α is
called the shift of f , and the largest k for which ce1,...,en,k 6= 0 for some e1, . . . , en is called
the depth of f . Classical polynomials correspond to polynomials with 0 shift and 0 depth.
In this work, we assume without loss of generality that all polynomials have 0 shift. Define
Up,k := 1

pk Z/Z which is a subgroup of T. Then, the image of polynomials of depth k − 1 lie
in Up,k. We prove the following lemma which shows that nonclassical polynomials can be
“translated" to classical polynomials of a somewhat higher degree, at least if we restrict our
attention to boolean inputs.

I Lemma 2.2. Let f : Fn
p → T be a polynomial of degree d and depth ≤ k − 1. Let

ϕ : Up,k → Fp be any function. Then there exists a classical polynomial g : Fn
p → Fp of degree

at most (pk − 1)d, such that

g(x) = ϕ(f(x)) ∀x ∈ {0, 1}n.

Proof. By the characterization of nonclassical polynomials, we have

f(x) =
∑
e,j

ce,j |x1|e1 . . . |xn|en

pj

where the sum is over e = (e1, . . . , en) with ei ∈ {0, . . . , p − 1}, 1 ≤ j ≤ k such that∑
ei + (p− 1)(j − 1) ≤ d. We only care about the evaluation of f on the boolean hypercube,
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78 Nonclassical Polynomials as a Barrier to Polynomial Lower Bounds

which allows for some simplifications. For any x ∈ {0, 1}n we have |x1|e1 . . . |xn|en =
∏

i∈I xi

where I = {i : ei 6= 0}. Thus, we can define an integer polynomial P (x) =
∑

I c
′
I

∏
i∈I xi

such that
f(x) = P (x)

pk
(mod 1) ∀x ∈ {0, 1}n,

where c′I =
∑

e:{i:ei 6=0}=I

∑
j p

k−jce,j . In particular, note that P has degree at most d. We
may further simplify P (x) = M1(x) + . . . + Mt(x), where each Mi is a monomial of the
form

∏
i∈I xi, and monomials may be repeated (indeed, the monomial

∏
i∈I xi is repeated c′I

times). Hence

f(x) = M1(x) + . . .+Mt(x)
pk

(mod 1) ∀x ∈ {0, 1}n.

We care about the first k digits in base p of P (x) =
∑
Mi(x). These can be captured via

the symmetric polynomials, using the fact that Mi(x) ∈ {0, 1} for all x ∈ {0, 1}n.
The `-th symmetric polynomial in z = (z1, . . . , zt), for 1 ≤ ` ≤ t, is a classical polynomial

of degree ` defined as
S`(z) =

∑
S⊂[t],|S|=`

∏
i∈S

zi.

When z ∈ {0, 1}t, it follows by Lucas theorem [18] that the i-th digit of z1 + . . .+ zt in base
p is given by Spi(z) (mod p).

So, define a polynomial Q : Fk
p → Fp such that Q(a0, . . . , ak−1) = ϕ(

∑
aip

i/pk) for all
a0, . . . , ak−1 ∈ {0, . . . , p− 1}, and polynomials Ri : Fn

p → Fp for i = 0, . . . , k − 1 by Ri(x) =
Spi(M1(x), . . . ,Mt(x)). Note that deg(Ri) ≤ pid. Define g(x) = Q(R0(x), . . . , Rk−1(x)).
Then we have that

g(x) = ϕ(f(x)) ∀x ∈ {0, 1}n.

To conclude, we need to bound the degree of g. As monomials in Q raise each variable to
degree at most p− 1, we have deg(g) ≤ (p− 1)

∑
deg(Ri) ≤ (pk − 1)d. J

2.2 Gowers uniformity norms
Let F : Fn → C. The (multiplicative) derivative of F in direction h ∈ Fn is given by
(∆hF )(x) = F (x + h)F (x). One can verify that if f : Fn → T and F = e(f) then
∆hF = e(Dhf). The d-th Gowers uniformity norm ‖ · ‖Ud is defined as

‖F‖Ud := (Eh1,...,hd,x∈Fn [∆h1 . . .∆hd
F (x)])1/2d

.

Observe that ‖F‖U1 = |Ex[F (x)]|, which is a semi-norm. For d ≥ 2, the Gowers uniformity
norm turns out to indeed be a norm (but we will not need that). The following lists the
properties of the Gowers uniformity norm that we would need. For a proof and further
details, see [15].

Let f : Fn → T and F = e(f). Then 0 ≤ ‖F‖Ud ≤ 1, where ‖F‖Ud = 1 if and only if f is
a polynomial of degree ≤ d− 1.
If f : Fn → T is a polynomial of degree ≤ d − 1 then ‖Fe(f)‖Ud = ‖F‖Ud for any
F : Fn → C.
If F (x1, . . . , xn) = F1(x1) . . . Fn(xn) then ‖F‖Ud = ‖F1‖Ud . . . ‖Fn‖Ud .
(Gowers-Cauchy-Schwarz) For any F : Fn → C and any d ≥ 1,

0 ≤ ‖F‖U1 ≤ ‖F‖U2 ≤ . . . ≤ ‖F‖Ud .
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3 Approximating modular sums by polynomials

Viola and Wigderson [26] proved that low-degree polynomials over F2 cannot correlate to the
sum modulo m, as long as m is odd. Their proof technique is based on the Gowers uniformity
norm. As such, it extends naturally to nonclassical polynomials. We capture that by the
following theorem. In the following, let ωm = exp(2πi/m) be a primitive m-th root of unity.
I Theorem 3.1 (Extension of [26] to nonclassical polynomials). Let f : Fn

2 → T be a polynomial
of degree < d. Let m ∈ N be odd. Then for any a ∈ {1, . . . ,m− 1},

Ex∈{0,1}n

[
e(f(x)) · ωa(x1+...+xn)

m

]
≤ exp(−cn/4d)

where c = cm > 0.
Proof. Let F (x) = e(f(x)) · ωa(x1+...+xn)

m . By the properties of the Gowers uniformity norm,

|Ex[F (x)]| ≤ ‖F‖Ud = ‖ωa(x1+...+xn)
m ‖Ud =

n∏
i=1
‖ωaxi

m ‖Ud = ‖e(g)‖n
Ud ,

where g : F2 → T is given by g(0) = 0, g(1) = a/m. A routine calculation shows that

Dh1 . . . Dhd
g(x) =

{ a′/m if h1 = . . . = hd = 1, x = 0
−a′/m if h1 = . . . = hd = 1, x = 1
0 otherwise

where a′ = a2d−1 is nonzero modulo m. Hence ‖e(g)‖2d

Ud = (1− 2−d) + 2−d cos(2πa′/m) ≤
1− 2−d · Ω(1/m2) and

|E[F ]| ≤
(
1− 2−d · Ω(1/m2)

)n/2d

≤ exp(−cn/4d)

where c = Ω(1/m2). J

This proof technique gives trivial bounds for d� logn. Here, we show that this is for a
good reason, as there are nonclassical polynomials of degree O(logn) which well approximate
the sum modulo m.
I Theorem 3.2. Let m ∈ N be odd and fix a ∈ {1, . . . ,m− 1}. For any ε > 0 there exists a
polynomial f : Fn

2 → T of degree log
(

n+m
ε

)
+O(1) such that

Ex∈{0,1}n

[
e(f(x)) · ωa(x1+...+xn)

m

]
= 1 + u

where |u| ≤ ε.
Proof. Let k ≥ 1 to be specified later. Let r ∈ {0, . . . ,m− 1} be such that r ≡ a2k (mod m)
and let A = r−a2k

m ∈ Z. Define f : Fn
2 → T as

f(x) = A(|x1|+ . . .+ |xn|)
2k

(mod 1).

Note that f is a polynomial of degree ≤ k. For x ∈ {0, 1}n, if x1 + . . .+ xn = pm+ q where
q ∈ {0, . . . ,m− 1}, then

f(x) ≡ A(pm+ q)
2k

≡
rp+ rq

m

2k
− aq

m
= −aq

m
+ θx (mod 1),

where 0 ≤ θx ≤ (n+m)/2k. We choose k ≥ log
(

n+m
ε

)
+ c for some absolute constant c > 0

so that |e(θx)− 1| ≤ ε for all x. Hence∣∣∣E [e(f(x)) · ωa(x1+...+xn)
m

]
− 1
∣∣∣ = |E [e(θx)− 1]| ≤ E [|e(θx)− 1|] ≤ ε.

J
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4 Approximating majority by nonclassical polynomials

The majority function MAJ : Fn
2 → F2 is defined as

MAJ(x) =
{

0 if
∑n

i=1 |xi| ≤ n/2
1 otherwise

We first show that it correlates well with a nonclassical polynomial of degree O(logn).

I Theorem 4.1. There is a nonclassical polynomial f : Fn
2 → T of degree logn+ 1 such that∣∣∣E [(−1)MAJ(x)e(f(x))

]∣∣∣ ≥ c,
where c > 0 is an absolute constant.

Proof. We assume that n is even for the proof. The proof is similar for odd n. Let A = ba
√
nc

for a > 0 to be specified later. Let k be the smallest integer such that 2k ≥ n. Set

f(x) =
A(
∑n

i=1 |xi| − n/2)
2k

.

Note that deg(f) ≤ logn+ 1. Now,

E
[
(−1)MAJ(x)e(f(x))

]
= 2−n

n/2∑
i=0

(
n

i

)
e
(
A(i− n/2)/2k

)
− 2−n

n∑
i=n/2+1

(
n

i

)
e
(
A(i− n/2)/2k

)

= 2−n

n/2∑
j=1

(
n

n/2− j

)
e
(
−Aj/2k

)
− 2−n

n/2∑
j=1

(
n

n/2− j

)
e
(
Aj/2k

)
+ 2−n

(
n

n/2

)

= −2i · 2−n

n/2∑
j=1

(
n

n/2− j

)
sin
(
2πAj/2k

)
+ 2−n

(
n

n/2

)
,

where in the last equation i =
√
−1. Let C = 2−n

∑n/2
j=1

(
n

n/2−j

)
sin
(
2πAj/2k

)
, so that∣∣E [(−1)MAJ(x)e(f(x))

]∣∣ ≥ 2C. We will show that C ≥ Ω(1). Let b > 0 be a constant to be
specified later. We bound

C ≥ 2−n

b
√

n∑
j=1

(
n

n/2− j

)
sin
(
2πAj/2k

)
− exp(−2b2),

where the error term follows from the Chernoff bound. We set a = 1/8b. For all 1 ≤ j ≤ b
√
n

we have 2πAj/2k ≤ π/4. Applying the estimate sin(x) ≥ x/2 which holds for all 0 ≤ x ≤ π/4,
we obtain that

C ≥ π

32b
√
n
· 2−n

b
√

n∑
j=1

(
n

n/2− j

)
j − exp(−2b2).

Now, if b is a large enough constant, standard bounds on the binomial coefficients give that

2−n

b
√

n∑
j=1

(
n

n/2− j

)
j = Ω(

√
n).

Hence, we obtain that
C ≥ Ω(1/b)− exp(−2b2).

If b is chosen a large enough constant, this shows that C ≥ Ω(1) as claimed. J



A. Bhowmick and S. Lovett 81

We next show that the Razborov-Smolensky technique generalizes to nonclassical polyno-
mials when we require the polynomial to exactly compute MAJ. Recall that we identify F2
with {0, 1/2} ⊂ T and consider MAJ : Fn

2 → {0, 1/2}.

I Theorem 4.2. Let f : Fn
2 → T be a nonclassical polynomial of degree d and depth < k.

Then,

Prx∈{0,1}n [f(x) = MAJ(x)] ≤ 1
2 +O

(
2kd√
n

)
.

Proof. Let ϕ : U2,k → F2 be defined as ϕ(0) = 0, ϕ(1/2) = 1 and choose arbitrarily ϕ(x) for
x ∈ U2,k \ {0, 1/2}. Applying Lemma 2.2, there exists a classical polynomial g : Fn

2 → F2
such that g(x) = ϕ(f(x)) for all x ∈ Fn

2 , where deg(g) ≤ (2k − 1)d. In particular,

Prx∈Fn
2
[g(x) = MAJ(x)] ≥ Prx∈Fn

2
[f(x) = MAJ(x)].

Hence, we can apply the Razborov-Smolensky bound [22,23] to g and conclude that

Pr[f(x) = MAJ(x)] ≤ 1
2 +O

(
deg(g)√

n

)
.

J

5 Weak representation of the OR function

A set of classical polynomials fi : Fn
pi
→ Fpi is said to weakly represent the OR function if

they all map 0n to zero, and for any other point in the boolean hypercube, at least one of
them map it to a nonzero value. This definition extends naturally to nonclassical polynomials.

I Definition 5.1. Let p1, . . . , pr be distinct primes. The polynomials fi : Fn
pi
→ T weakly

represent the OR function if
f1(0n) = . . . = fr(0n) = 0.
For any x ∈ {0, 1}n \ 0n, there exists some i such that fi(x) 6= 0.

It is well known that a single classical polynomial f : Fn
p → Fp which weakly represents

the OR function, must have degree at least n/(p− 1). This is since f(x)p−1 computes the
OR function on {0, 1}n, and hence its multi-linearization (obtained by replacing any power
xei

i , ei ≥ 1 with xi) must be the unique multi-linear extension of the OR function, which has
degree n.

We first show that there is a nonclassical polynomial of degree O(logn) which weakly
represents the OR function.

I Lemma 5.2. There exists a polynomial f : Fn
p → T of degree O(pdlogp ne) which weakly

represents the OR function.

Proof. Let k ≥ 1 be minimal such that pk > n. Define f(x) = |x1|+...+|xn|
pk . This is

a polynomial of degree 1 + (p − 1)(k − 1). Clearly f(0n) = 0 and f(x) 6= 0 for any
x ∈ {0, 1}n \ 0n. J

We show that allowing for multiple nonclassical polynomials can only improve this simple
construction by a polynomial factor.

I Theorem 5.3. Let p1, . . . , pr be distinct primes, and let p = max(p1, . . . , pr). Let fi :
Fn

pi
→ T be polynomials which weakly represent the OR function. Then at least one of the

polynomials must have degree Ω((logp n)1/r).
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The proof is an adaptation of the result of Barrington and Tardos [3], who proved similar
lower bounds for classical polynomials. We start by showing that a low degree polynomial f
with f(0) = 0 must have another point x with f(x) = 0.

I Claim 5.4. Let f : Fn
p → T be a polynomial of degree d and depth ≤ k − 1 such that

f(0) = 0. If n > (pk − 1)d then there exists x ∈ {0, 1}n \ 0n such that f(x) = 0.

We note that the bound on n is fairly tight, as f(x) = (x1 + . . .+xn)/pk (mod 1) violates
the conclusion of the claim whenever n < pk.

Proof. Let ϕ : Up,k → Fp be given by ϕ(0) = 0, ϕ(a) = 1 for all a 6= 0. Applying Lemma 2.2,
there exists a classical polynomial g : Fn

p → Fp of degree ≤ (pk − 1)d such that g(x) = 0
if f(x) = 0, and g(x) = 1 if f(x) 6= 0, for all x ∈ {0, 1}n. If f(0n) = 0 but f(x) 6= 0 for
all nonzero x ∈ {0, 1}n, then g computes the OR function over {0, 1}n. Hence, deg(g) ≥ n,
which leads to a contradiction whenever n > (pk − 1)d. J

We next extend Claim 5.4 to a find a common root for a number of polynomials.

I Claim 5.5. Let f1, . . . fr : Fn
p → T be polynomials of degree d and depth ≤ k − 1 such

that fi(0) = 0 for all i ∈ [r]. If n > (pk − 1)dr then there exists x ∈ {0, 1}n \ 0n such that
fi(x) = 0 for all i ∈ [r].

Proof. We construct an interpolating polynomial for f1, . . . , fr. Following the proof of
Claim 5.4, for each fi there exists a classical polynomial gi : Fn

p → Fp satisfying the following.
For any x ∈ {0, 1}n, if fi(x) = 0 then gi(x) = 0, and if fi(x) 6= 0 then gi(x) = 1. Moreover,
deg(gi) ≤ (pk − 1)d. Define g : Fn

p → Fp as

g(x) = 1−
r∏

i=1
(1− gi(x)).

Note that deg(g) ≤
∑

deg(gi) ≤ (pk − 1)dr. Suppose for contradiction that for every
x ∈ {0, 1}n \ 0n there is an i ∈ [r] such that fi(x) 6= 0. Then g(0) = 0 as fi(0) = 0 for all
i ∈ [r], but g(x) = 1 for all x ∈ {0, 1}n \ 0n. Then g computes the OR function over {0, 1}n,
and hence deg(g) ≥ n. This leads to a contradiction whenever n > (pk − 1)dr. J

Next, we argue that the hamming ball of radius d is an interpolating set for polynomials
of degree d over {0, 1}n. In the following, let B(n, d) = {x ∈ {0, 1}n :

∑
xi ≤ d}.

I Claim 5.6. Let f : Fn
p → T be a polynomial of degree d such that f(x) = 0 for all

x ∈ B(n, d). Then f(x) = 0 for all x ∈ {0, 1}n.

Proof. Towards contradiction, let x∗ ∈ {0, 1}n be a point such that f(x∗) 6= 0, with a
minimal hamming weight. By assumption, the hamming weight of x∗ is at least d+ 1. Let
i1, . . . , id+1 ∈ [n] be distinct coordinates such that x∗i1

= . . . = x∗id+1
= 1. Let ej ∈ {0, 1}n

be the j-th unit vector, defined as (ej)j = 1 and (ej)j′ = 0 for j′ 6= j. Define vectors
h1, . . . , hd+1 ∈ Fn

p by hj = −eij
. Since f is a degree d polynomial, we have

Dh1 . . . Dhd+1f ≡ 0.

Evaluating this on x∗ gives ∑
I⊂{i1,...,id+1}

(−1)|I|f(x∗ −
∑
i∈I

ei) = 0.

However, as we chose x∗ with minimal hamming weight such that f(x∗) 6= 0, we have
f(x∗ −

∑
i∈I ei) = 0 for all nonempty I. Hence also f(x∗) = 0. J
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Next, we prove that low degree polynomials must be zero on a large combinatorial cube.
In the following, we identify subsets S ⊂ [n] with their indicators in {0, 1}n.

I Lemma 5.7. Let f : Fn
p → T be a polynomial of degree d and depth ≤ k − 1 such that

f(0) = 0. For ` ≥ 1, if n ≥ 2dpk`d+1 then there exist pairwise disjoint and nonempty sets of
variables S1, . . . , S` ⊂ [n] such that

f

(∑̀
i=1

yiSi

)
= 0 ∀y ∈ {0, 1}`.

Proof. Fix a1, . . . , a` to be determined later such that n ≥ a1 + . . .+a`. Let A1, . . . , A` ⊂ [n]
be disjoint subsets of variables of size |Ai| = ai. We will find subsets Si ⊂ Ai such that
f(
∑
yiSi) = 0 for all y ∈ {0, 1}`. As we may set the variables outside A1, . . . , A` to zero, we

assume from now on that n = a1 + . . .+ a`.
First, set a1 = pkd. Consider the restriction of f to A1 by setting the remaining variables

to zero. By Claim 5.4, there exists a nonempty set S1 ⊂ A1 such that f(S1) = 0.
Next, suppose that we already constructed S1 ⊂ A1, . . . , Sj ⊂ Aj for some 1 ≤ j < `,

such that f(
∑
yiSi) = 0 for all y ∈ {0, 1}j . For each y ∈ {0, 1}j , define a polynomial

fy : FAj+1
p → T by

fy(x′) = f

(
j∑

i=1
yiSi + x′

)

where x′ ∈ FAj+1
p denotes the variables in Aj+1. We will find a common nonzero root for

fy(x′).
First, consider only y ∈ B(j, d). The number of such polynomials is r =

(
j
≤d

)
=
∑d

i=0
(

j
i

)
.

Applying claim 5.5, if we choose aj+1 ≥ drpk then there exists Sj+1 ⊂ Aj+1 such that

fy (Sj+1) = 0 ∀y ∈ B(j, d).

We claim that this implies that fy(Sj+1) = 0 for all y ∈ {0, 1}j . To see that, define g : Fj
p → T

by

g(y) = f

(
j∑

i=1
yiSi + Sj+1

)
.

This a polynomial of degree d, and by Claim 5.6, if it is zero for all y ∈ B(j, d), then it is
zero on all {0, 1}d. Hence, we have that f(

∑j+1
i=1 yiSi) = 0 for all y ∈ {0, 1}j+1.

We next estimate the parameters. We have
(

j
≤d

)
≤ 2jd, and hence it suffices to take

aj+1 = 2djdpk. Hence, we need n ≥ n0 for

n0 =
∑̀
j=1

aj ≤ 2dpk
∑̀
j=1

jd ≤ 2dpk`d+1.

J

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let p1, . . . , pr be distinct primes, and let p = max(p1, . . . , pr). Let
fi : Fn

pi
→ T be polynomials of degree at most d and depth at most k − 1 which weakly

represent the OR function. We fix integers n ≥ n0 = `0 ≥ `1 . . . ≥ `r−1 ≥ `r = 1 which
will be specified later. Applying Lemma 5.7 to f1 with parameter `1, we get that as long
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as n is large enough, we can find disjoint nonempty subsets S1,1, . . . , S1,`1 ⊂ [n] such that
f1(
∑
yiS1,i) = 0 for all y ∈ {0, 1}`1 .

Next, consider the restriction of f2 to the combinatorial cube formed by {S1,i}. That is,
define f ′2 : F`1

p → T by f ′2(y) = f2(
∑
yiS1,i). Note that f ′2 is a polynomial of degree at most

d and depth at most k − 1. Applying Lemma 5.7 to f ′2 with parameter `2, we get that as
long as `1 is large enough, we can find disjoint nonempty subsets S′2,1, . . . , S

′
2,`2
⊂ [`1] such

that f ′2(
∑
yiS
′
2,i) = 0 for all y ∈ {0, 1}`2 . Define S2,1, . . . , S2,`2 ⊂ [n] by S2,i = ∪j∈S′2,i

S1,j .
Then S2,1, . . . , S2,`2 are disjoint nonempty subsets of [n], such that

f1

(
`2∑

i=1
yiS2,i

)
= f2

(
`2∑

i=1
yiS2,i

)
= 0 ∀y ∈ {0, 1}`2 .

Continuing in this fashion, we ultimately find disjoint nonempty subsets Sr,1, . . . , Sr,`r ⊂
[n] such that

f1

(
`r∑

i=1
yiSr,i

)
= . . . = fr

(
`r∑

i=1
yiSr,i

)
= 0 ∀y ∈ {0, 1}`r .

In particular, f1, . . . , fr cannot weakly represent the OR function. This argument requires
that for each 0 ≤ i ≤ r − 1, `i ≥ 2dpk`d+1

i+1 , which can be satisfied if

n ≥ n0 = (2dpk)(d+1)r−1
.

Now, k ≤ d/(p− 1) + 1 and hence pk ≤ pd/(p−1)+1 ≤ 2dp. As we can trivially bound 2d ≤ 2d

we obtain the simplified bound
n0 ≤ 24(d+1)r·log p.

Thus, if f1, . . . , fr weakly represent the OR function, at least one of the must have degree
d ≥ Ω((logp n)1/r). J
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A Improved weak OR representation by classical polynomials

In this section, we construct a low degree polynomial over Zm that weakly represents the OR
function. Recall that the task is to construct a polynomial P in Zm[x1, . . . , xn] such that
P (0) = 0 and P (x) 6= 0 for any nonzero x ∈ {0, 1}n. Let m = p1 · · · pr for pairwise distinct
primes pi. Let `(m) be the largest prime divisor of m. As mentioned before, the best result
is due to Barrington, Beigel and Rudich [5], who constructed a symmetric polynomial of
degree O

(
`(m)n1/r

)
that weakly represents the OR function. It is also well known [5], by

Lucas’ theorem that for symmetric functions, d = Ω
(
`(m)−1n1/r

)
.

Our construction takes us closer to the lower bound. We construct symmetric polynomials
that have modulus independent degree, that is, d = O

(
n1/r

)
.

I Theorem 1.1. Let m =
∏r

i=1 pi for pairwise distinct primes pi. Then there exists an
explicit polynomial P ∈ Zm[x1, . . . , xn] of degree at most 2dn1/re such that P weakly represents
OR modulo m.

Proof. For each 1 ≤ i ≤ r, let ei be the smallest integer such that pei
i >

⌈
n1/r

⌉
. Let Sj be

the j-th symmetric polynomial in x = (x1, . . . , xn). Let γi be a quadratic non-residue in Zpi

for odd pi. Define P ∈ Zm[x1, . . . , xn] as follows. For odd pi define

P (x) = Qi(x)2 − γiRi(x)2 mod pi

and for pi = 2 (if it exists) define

P (x) = Qi(x)2 +Qi(x)Ri(x) +Ri(x)2 mod 2.

The polynomials Qi, Ri are defined as

Qi(x) = 1−
ei−2∏
j=0

(1− Spj
i
(x)pi−1)

and
Ri(x) = S

p
ei−1
i

(x).

This uniquely defines P (x) mod m.
We next observe that P (x) = 0 mod pi if and only if Qi(x) = Ri(x) = 0 mod pi. This

follows from the irreducibility of x2 − γi over Zpi
for odd pi and x2 + x + 1 over Z2. In

particular, as Qi(0) = Ri(0) = 0 for all pi, we obtain that P (0) = 0. We next show that
P (x) 6= 0 for all x ∈ {0, 1}n \ 0n.

Let wt(x) :=
∑n

i=1 |xi|. If x ∈ {0, 1}n \ 0n then 1 ≤ wt(x) ≤ n. Hence, there exists
1 ≤ i ≤ r such that wt(x) 6= 0 mod pi

ei . To simplify notation, set p := pi, e := ei, Q :=
Qi, R := Ri from here onwards.

Consider the p-ary expansion of wt(x). Let wt(x) =
∑e−1

j=0 ajp
j + tpe, 0 ≤ aj ≤ p − 1.

Since wt(x) 6= 0 mod pe, we have aj 6= 0 for some 0 ≤ j ≤ e− 1. As x ∈ {0, 1}n, we have
Spj (x) =

(wt(x)
pj

)
. Therefore, by Lucas’ theorem, we have that aj = Spj (x) mod p.

We consider now two cases. If ae−1 6= 0 then Spe−1(x) 6= 0 mod p and hence (by
definition) R(x) 6= 0 mod p. If, on the other hand, aj 6= 0 for some j ≤ e − 2, then
Spj (x) 6= 0 mod p and hence Q(x) ≡ 1 mod p. Thus, in any case, we cannot have that
both Q(x) = R(x) = 0 mod p and hence P (x) 6= 0 mod p.

To conclude, we bound the degree of P (x). The degree of each Qi(x) is at most
(pi−1)

∑ei−2
j=0 pj

i = pei−1
i −1. The degree of each Ri(x) is pei−1

i . Therefore the degree of P (x)
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is maxi 2pei−1
i . This is where we improve on [5], as the upper bound that they obtain is pei

i .
Since ei was chosen as the least integer such that pei

i >
⌈
n1/r

⌉
, we have that pei−1

i ≤
⌈
n1/r

⌉
and hence deg(P ) ≤ 2dn1/re as claimed.

J
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