
Effectiveness of Local Search for Geometric
Optimization
Vincent Cohen-Addad and Claire Mathieu∗

Département d’Informatique, UMR CNRS 8548
École Normale Supérieure, Paris, France
{vcohen, cmathieu}@di.ens.fr

Abstract
What is the effectiveness of local search algorithms for geometric problems in the plane? We
prove that local search with neighborhoods of magnitude 1/εc is an approximation scheme for
the following problems in the Euclidean plane: TSP with random inputs, Steiner tree with
random inputs, uniform facility location (with worst case inputs), and bicriteria k-median (also
with worst case inputs). The randomness assumption is necessary for TSP.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling,
F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Local Search, PTAS, Facility Location, k-Median, TSP, Steiner Tree

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.329

1 Introduction

Local search. Local search techniques are popular heuristics for hard combinatorial opti-
mization problems. Given a feasible solution, the algorithm repeatedly performs operations
from the given class, each improving the cost of the current solution, until a solution is reached
for which no operation yields an improvement (a locally optimal solution). Alternatively,
we can view this as a neighborhood search process, where each solution has an associated
neighborhood of adjacent solutions, i.e., those that can be reached with a single operation,
and one moves to a better neighbor until none. Such techniques are easy to implement,
easy to parallelize, and fast and give good results. One advantageous feature of local search
algorithms is their flexibility; they can be applied to arbitrary cost functions, even in the
presence of additional constraints. However, there has long been a gap between worst-case
guarantees and real-world experience. Thus, it is interesting to analyze such algorithms
rigorously and, even in settings where alternative, theoretically optimal polynomial-time
algorithms are known.

Problems studied. We focus on Euclidean problems in the plane (the results extend to small
dimensions), and study clustering and network connectivity type problems: the traveling
salesman problem (TSP), Steiner tree, facility location, and k-median. The traveling salesman
problem is to connect n input points with a tour of minimum total length. The Steiner tree
problem, given n terminal points, is to choose additional Steiner points so as to minimize
the length of the minimum tree spanning terminal and Steiner points. The facility location
problem, given n client points and a facility opening cost f , chooses how many facilities to
open and where to open them to minimize the combination of the cost of opening facilities

∗ Partially supported by ANR RDAM.

© Vincent Cohen-Addad and Claire Mathieu;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 329–344

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.329
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

330 Effectiveness of Local Search for Geometric Optimization

and of the total distance from each client to the nearest open facility. The k-median problem,
given n points and an integer k, chooses where to open k facilities so as to minimize the
total distance from each client to the nearest open facility.

Algorithms. Our goal is to prove, under minimal assumptions, that local search finds
solutions whose cost is within a (1 + ε) factor of optimal. For that goal, local search must do
a little more: instead of modifying the current solution by swapping a single point, edge or
edge pair (depending on the problem) in and out of the solution, our version of local search
swaps up to 1/εc points, edges or edge pairs. This is a standard variation of local search
(particularly for the traveling salesman tour), whereby each iteration is slowed down due to
an increase in the size of the neighborhood, but the local optimum tends to be reached after
fewer iterations and is of higher quality. Moreover, most implementations of local search
do not continue iterating all the way to a local optimum, but stop once the gain obtained
by each additional iteration is essentially negligible. Our algorithm thus has a stopping
condition, when no local exchange could improve the cost by more than a factor of 1− 1/n.
Then, the runtime is polynomial, at most n1/εO(1) .

Results. Our results are as follows.
1. For TSP, we assume that the input points are random uniform in [0, 1]2. Here local

search swaps O(1/εc) edges in the tour. Then local search finds a solution with cost
(1 +O(ε))OPT . The proof is not difficult and serves as a warm-up to the later sections.
The random input assumption is necessary : in the worst-case setting, we give an example
where a locally optimal solution has cost more than (2− ε)OPT .

2. Similarly, for Steiner tree, assuming random uniform input, again local search finds a
solution with cost (1 + ε)OPT .

3. For facility location, we prove the following: consider the version of local search where
local moves consist of adding, deleting or swapping O(1/εc) facilities. Then, even for
worst case inputs, local search finds a solution with cost (1 + ε)OPT . This is the core
result of the paper. We transform the dissection technique from Kolliopoulos and Rao [14]
into a tool for analyzing local search.

4. For k-median, our result is similar, except that local search uses (1 + ε)k medians instead
of k, so that result is bicriteria. This is a technical, variant of the facility location result.

Related work

TSP and Steiner Tree. The TSP problem in the Euclidean plane has a long history, in-
cluding work with local search [9, 17, 18]. Most relevant is the work of Karp [13] giving a
simple construction of a near-optimal tour when points are drawn from a random distribu-
tion. That work has been subsumed by the approximation schemes of Arora [1] (and its
improvements [2, 23]) and of Mitchell [21], using a hierarchical dissection technique. Arora
noted the relation between that technique and local search, observing:

Local-exchange algorithms for the TSP work by identifying possible edge exchanges in
the current tour that lower the cost [. . .]. Our dynamic programming algorithm can be
restated as a slightly more inefficient backtracking [. . .]. Thus it resembles k-OPT for
k = O(c), except that cost-increasing exchanges have to be allowed in order to undo
bad guesses. Maybe it is closer in spirit to more ad-hoc heuristics such as genetic
algorithms, which do allow cost-increasing exchanges.

V. Cohen-Addad and C. Mathieu 331

In fact, even with neighborhoods of size f(ε), even in the Euclidean plane, local search for
TSP can get stuck in a local optimum whose value is far from the global optimum. However,
in the case of random inputs the intuition is correct. Local search algorithms have been
widely studied for TSP, but mostly for either a local neighborhood limited to size of 2 or 3
(the 2-OPT or 3-OPT algorithms), or for the general metric case. Those studies lead to proofs
of constant factor approximations, see [6, 11, 20, 18, 25]. In particular, in [6], it is proved
(by example) that for Euclidean TSP 2-OPT cannot be a constant-factor approximation in
the worst case. For the metric Steiner Tree problem, the best approximation algorithm up to
2010 was a constant factor approximation due to Robins and Zelikovsky and was by local
search [24].

Facility Location and k-Median. For clustering problems – facility location and k-median –
there has also been much prior work. A proof of NP-Hardness of k-median even in the
Euclidean setting is given in [19]. The first theoretical guarantees for local search algorithms
for clustering problems are due to Korupolu et al. [15]. They show that the local search
algorithm which allows swaps of size p is a constant factor approximation for the metric
case of the k-Median and Facility Location problems. However, for k-Median the algorithm
requires a constant-factor blowup in the parameter k. By further refining the analysis,
Charikar et al. [7] improved the approximation ratio. More recently, Arya et al. showed in
[3] that the local search algorithm which allows swaps of size p is a 3 + 2/p-approximation
without any blowup in the number of medians. Nevertheless, no better results were known
for the Euclidean case (See the survey paper [26]). Kolliopoulos and Rao define in [14] a
recursive “adaptive” dissection of a square enclosing the input points. At each dissection
step 1, they cut the longer side of each rectangle produced by the previous step in such a
way that each of the two parts has roughly the same surface area. Our analysis uses a new
version of their dissection algorithm to analyze the local search algoritm.

Other related work. The question of the efficiency of local search for Euclidean problems
was already posed by Mustafa and Ray and Chan and Har-Peled. They proved that local
search (with local neighborhood enabling moves of size Θ(1/ε)) gives approximation schemes
for hitting circular disks in two dimensions with the fewest points, for several other Euclidean
hitting set problems [22], and for independent sets of pseudo-disks [5]. This led to further
PTASs by local search for dominating set in disks graph [10] and for terrain guarding [16].
Those papers rely on the combinatorial properties of bipartite planar graphs. Our analysis
technique is different since we rely on dissections.

One problem related to facility location is k-means. For k-means, Kanungo, Mount,
Netanyahu and Piatko [12] proved that local search gives a constant factor approximation.
Much remains to be understood.

We also note that there exists proofs of constant factor approximation by local search for
the metric capacitated facility location [8].

Plan. The paper is organized as follows: in the next section, as a warm-up we prove the
results on TSP and Steiner tree for random inputs. We then analyze local search for facility
location, proposing a new recursive dissection. We suitably extend lemmas from [14]. The
meat of that section is the proof of Proposition 4.2, which is our main technical contribution.

1 There is also a “sub-rectangle” step not described here.

SoCG’15

332 Effectiveness of Local Search for Geometric Optimization

We end with the k-median result, that requires additional ideas to deal with the cardinality
constraint.

2 Polynomial-Time Local Search Algorithms

Throughout this paper, we denote by L4 L′ the symmetric difference of the sets L and
L′. We present the local search algorithm that is considered in this paper (see Algorithm 1
below).

Algorithm 1 Local Search (ε)
1: Input: A set C of points in the Euclidean plane
2: S ← Arbitrary feasible solution (of cost at most O(2nOPT)).
3: while ∃ S′ s.t. Condition(S′, ε) and cost(S′) ≤ (1− 1/n) cost(S)
4: do
5: S ← S′

6: end while
7: Output: S

Note that the type of S, Condition, f(ε) and Cost(S) are problem dependent. Namely,
for Facility Location, S is a set of points, Condition(S′, ε) is |S 4 S′| = O(1/ε3) and
Cost(S) = |S|+

∑
c∈C

min
s∈S

d(c, s);

for k-Median, S is a set of points, Condition(S′, ε) is |S4S′| = O(1/ε9) and |S′| ≤ (1+3ε)k
and Cost(S) =

∑
c∈C

min
s∈S

d(c, s);

for TSP S is a set of edges, Condition(S′, ε) is |S 4 S′| = O(1/ε2) and “S′ is a tour and
there is no two edges intersecting” (if the initial tour contains intersecting edges we start
by modifying the tour so that no two edges intersect) and Cost(S) =

∑
s∈S

length(s);

for Steiner Tree, S is a set of points, Condition(S′, ε) is |S 4 S′| = O(1/ε2) and |S′| ≤ n
(if the initial set of Steiner vertices is greater than n, we greedily remove Steiner vertices
until the set has size n) and Cost(S) = MST(S ∪ C), where MST(S ∪ C) is the length of
the minimum spanning tree of the points in S ∪ C.

We now focus on the guarantees on the execution time of the algorithms presented in
this paper. The proof of the following Lemma is deferred to the Appendix.

I Lemma 2.1. The number of iterations of Algorithm 1 is polynomial for the Facility
Location, k-Median, Traveling Salesman and Steiner Tree Problems.

I Remark. Up to discretizing the plane and replacing (1− 1/n) by (1−Θ(1/n)), finding S′
takes time O(nO(1/εc)ε−1), for some constant c which depends on the algorithm.

3 Euclidean Traveling Salesman Problem and Steiner Tree

I Theorem 3.1. Consider a set of points chosen independently and uniformly in [0, 1]2.
Algorithm 1 produces:

In the case of the Traveling Salesman problem, a tour whose length is at most (1 +
O(ε))TOPT, where TOPT is the length of the optimal solution.
In the case of the Steiner Tree problem, a tree whose length is at most (1 +O(ε))TOPT,
where TOPT is the length of the optimal solution.

V. Cohen-Addad and C. Mathieu 333

To prove Theorem 3.1, we first prove the following result.

I Theorem 3.2. Consider an arbitrary set of points in [0, 1]2. Algorithm 1 produces:
In the case of the Traveling Salesman problem, a tour whose length is at most (1 +
O(ε2))TOPT +O(ε

√
n), where TOPT is the length of the optimal solution.

In the case of the Steiner Tree problem, a tree whose length is at most (1 +O(ε2))TOPT +
O(ε
√
n), where TOPT is the length of the optimal solution.

We model a random distribution of points in a region P of the plane by a two-dimensional
Poisson distribution Πn(P). The distribution Πn(P) is determined by the following assump-
tions:
1. the numbers of points occurring in two or more disjoint sub-regions are distributed

independently of each other;
2. the expected number of points in a region A is nv(A) where v(A) is the area of A; and
3. as v(A) tends to zero, the probability of more than one point occurring in A tends to

zero faster than v(A).
From these assumptions it follows that Pr[A contains exactly m points] = e−λλm/m!, where
λ = nv(A). The following result is known.

I Theorem 3.3 ([4]). Let P be a set of n points distributed according to a two-dimensional
Poisson distribution Πn(P) in [0, 1]2 and let Tn(P) be the random variable that denotes
the length of the shortest tour through the points in P. There exists a positive constant β
(independent of P) such that Tn(P)/

√
n→ β with probability 1.

Assuming Theorems 3.2 and 3.3, we can prove Theorem 3.1.

Proof of Theorem 3.1. We focus on the Traveling Salesman case. Let L be the tour produced
by Algorithm 1 and TOPT be the optimal tour. By Theorem 3.3, we have that Cost(TOPT) =
O(
√
n) with probability 1. Hence, Theorem 3.2 implies

(1− ε2) · Cost(L) ≤ Cost(TOPT) +O(ε
√
n) = (1 +O(ε)) · Cost(TOPT).

We now consider the random variable STn(P) that denotes the length of the shortest
Steiner Tree through the points in P . Since the length of the optimal Steiner Tree is at least
half the length of the optimal Traveling Salesman Tour, Theorem 3.3 implies that there exists
a constant δ such that STn(P)/

√
n ≥ δ with probability 1. Then, the exact same reasoning

applies to prove the Steiner Tree case. J

The rest of the section is dedicated to the proof of Theorem 3.2. To this aim, we define a
recursive dissection of the unit square according to a set of points P. At each step we cut
the longer side of each rectangle produced by the previous step in such a way that each of
the two parts contains half the points of P that lie in the rectangle. The process stops when
each rectangle contains Θ(1/ε2) points of P. We now consider the final rectangles and we
refer to them as boxes. Let B be the set of boxes.

I Lemma 3.4 ([13]).
∑
b∈B
|∂b| = O(ε

√
|P|), where |∂b| is the perimeter of box b and |P| is

the number of points in P.

For any set of segments S and box b and for each segment s, let sb be the part of s
that lies inside b. We define In(S, b) := {sb | s ∈ S and s has at least one endpoint in b}
and Cross(S, b) := {sb | s ∈ S and s has no endpoint in b}. Moreover we define Out(S, b) :=
{sb′ | s ∈ S and b 6= b′}. Additionally, let S(b) =

∑
s∈S length(sb).

We can now prove the two following structural Lemmas. See Fig. 1 for an illustration of
the proof.

SoCG’15

334 Effectiveness of Local Search for Geometric Optimization

Box b

Tours LTSP and L'Tours TTSP and L'

Figure 1 The solid black segments form the tour LTSP outside b. The dotted line segments are
the tour TTSP inside b. The red segments are the one needed to connect the two tours.

I Lemma 3.5. Let LST be a locally optimal solution to the Steiner Tree problem and let
TST be any Steiner Tree. Let B be a set of boxes produced by a dissection of P ∪ LST ∪ TST.
Using the same notation for a set of segments and their total length, we then have for any
box b ∈ B

(1−O(ε2))LST(b) ≤ In(TST, b) + |∂b|+ LST/n,

where |∂b| is the perimeter of b.

Proof. For each box b, the segments of Cross(LST, b) can be distributed into 6 different
classes according to which side of b they intersect.

We divide further. Since the segments of a class are pairwise disjoint, there is a natural
ordering of the segments inside each class. For each class that contains more than 1/ε2

segments, we partition them into subsets that contain Θ(1/ε2) consecutive segments (in the
natural order of the class). We define a sub-box for each subset of each class as follows. Let
s and s′ be the two extreme segments of the set in the ordering of the class. The sides of the
sub-box associated to this subset consists of s and s′ and the two shortest paths p, p′ along
the sides of b that connects the endpoints of s and s′.

Remark that the sum of the lengths of the sides of all the sub-boxes is at most |∂b| +
O(ε2LST(b)). For each sub-box b0, let L′ be the set of vertices of LST that are outside b0,
plus the set of vertices of TST that are inside b0, plus the set of the intersection points of
the edges of LST and TST with the sides of b0. Thus, L′ ≤ Out(LST, b0) + In(TST, b0) + |∂b0|.
Moreover, we have |LST 4 L′| = O(1/ε2) and the local near-optimality argument applies.
Namely, we obtain that (1− 1/n)LST ≤ L′, and so

−1/n · LST + In(LST, b0) + Cross(LST, b0) ≤ In(TST, b0) + |∂b0|.

We now sum over all sub-boxes of box b and we obtain

LST(b) = In(LST, b0) + Cross(LST, b0) ≤ In(TST, b) + |∂b|+O(ε2LST(b)) + LST/n.

J

I Lemma 3.6. Let LTSP be a locally optimal solution to the Traveling Salesman problem
and let TTSP be any tour. Let B be a set of boxes produced by a dissection of P. Using the
same notation for a set of segments and their total length, we then have for any box b ∈ B

(1−O(ε2))LTSP(b) ≤ In(TTSP, b) + 3|∂b|/2 + LTSP/n,

where |∂b| is the perimeter of b.

V. Cohen-Addad and C. Mathieu 335

Proof. We again further divide the boxes into sub-boxes as we did for Lemma 3.5. For each
sub-box b0, we define a tour L′ obtained by a traversal of the following Eulerian graph. The
graph vertices are P , plus the corners of ∂b0, plus all points of intersection of LTSP and TTSP
with ∂b0. The edges are the segments of Out(LTSP, b0), plus the segments of In(TTSP, b0),
plus ∂b0 (so that the result is connected), plus a minimum length matching of the odd vertices
of ∂b0 (so that the result is Eulerian). Thus, L′ ≤ Out(LTSP, b0) + In(TTSP, b0) + 3|∂b0|/2.

Since the number of edges of L intersecting b0 is O(1/ε2) and the number of edges
in In(TTSP, b0) is O(1/ε2), we have |LTSP 4 L′| = O(1/ε2) and the local near-optimality
argument applies. Namely, we obtain (1− 1/n)LTSP ≤ L′, and so

−1/n · LTSP + In(LTSP, b0) + Cross(LTSP, b0) ≤ In(TTSP, b0) + 3|∂b0|/2.

We now sum over all sub-boxes of box b and we obtain

LTSP(b) = In(LTSP, b) + Cross(LTSP, b) ≤ In(TTSP, b) + 3|∂b|/2 +O(ε2LTSP(b)) + LTSP/n.

J

We can now prove Theorem 3.2.

Proof of Theorem 3.2. We first consider the Traveling Salesman case. Let LTSP be a tour
produced by Algorithm 1 and TTSP be any tour. Lemma 3.6 implies that for any box b, we
have

(1−O(ε2))LTSP(b) ≤ In(TTSP, b) + 3|∂b|/2 + LTSP/n.

Since there are O(ε2n) boxes in total, by summing over all boxes, we obtain

−O(ε2LTSP)+
∑
b∈B

LTSP(b) = (1−O(ε2))LTSP ≤
∑
b∈B

(In(TTSP, b)+3|∂b|/2) ≤ TTSP+3
2

∑
b∈B

|∂b|.

By Lemma 3.4,
∑
b∈B |∂b| = O(ε

√
n) and so,

(1−O(ε2)) · LTSP ≤ TTSP +O(ε
√
n).

To prove the Steiner Tree case, it is sufficient to notice that the total number of vertices
in P ∪ LST ∪ TST is at most 3n. It follows that the total number of boxes is O(ε2n) and by
Lemma 3.4,

∑
b∈B |∂b| = O(ε

√
n). We apply a reasoning similar to the one for the TSP case

to conclude the proof. J

Notice that we do not assume that the points are randomly distributed in the [0, 1]2 for
the proofs of Lemmas 3.5 and 3.6 and Theorem 3.2, thus they hold in the worst-case.
I Remark. One can ask whether it is possible to prove that the local search for TSP is a
PTAS without the random input assumption. However, there exists a set of points such that
there is a local optimum whose length is at least (2− o(ε))Cost(OPT).

4 Clustering Problems

We now tackle the analysis of the local search algorithm for some Clustering problems. Recall
that L and G denote the local and global optima respectively. In the following, for each
facility l of L (resp. G), we denote by VL(l) (resp. VG(l)) the Voronoi cell of l in the Voronoi
diagram induced by L (resp. G). We extend this notation to any subset F of L, namely,
VL(F) denotes the union of the Voronoi cells of the facilities of F induced by L. We define

SoCG’15

336 Effectiveness of Local Search for Geometric Optimization

a recursive randomized decomposition (Algorithm 2) based on L and G (and the Voronoi
cells induced by L). This decomposition produces a tree encoded by the function Children(),
where each node is associated to a region of the Euclidean plane. In the first step of the
dissection, B is the smallest square that contains all the facilities of L∪G. At every recursive
call of the procedure for (Br, Lr, Gr), the algorithm maintains the following invariants:

Br is a rectangle of bounded aspect ratio;
Lr consists of all the facilities of L that are contained in Br;
Gr consists of all the facilities of G that are contained in Br, plus some facilities of G
that belong to VL(Lr).

Algorithm 2 Recursive Adaptive Dissection Algorithm
1: procedure Adaptive_Dissection(B,L,G, VL)
2: if |L|+ |G| ≥ 1/2ε2 then
3: if |L| > 1/2ε then
4: Sub-Rectangle Process:
5: B′ ← minimal rectangle containing all facilities of L in B
6: b′ ← maximum side-length of B′
7: B′+ ← Rectangle centered on B′ and extended by b′/3 in all four directions.
8: B′′ ← B′+ ∩B
9: Cut-Rectangle Process:
10: s′′ ←maximum side-length of B′′
11: `←line segment that is orthogonal to the side of length s′′ and intersects it in

a random position in the middle s′′/3.
12: Cut B′′ into two rectangles B1 and B2 with `.
13:
14: Children(B) ← {B1, B2}
15: L1 ← L ∩B1
16: L2 ← L ∩B2
17: G1 ← G ∩ {g | g ∈ VL(L1) and g /∈ B2}
18: G2 ← G \G1
19: Dissection(B1, L1, G1, VL)
20: Dissection(B2, L2, G2, VL)
21: else
22: Partition Process:
23: Children(B) ← Arbitrary partition of the facilities of L ∪G in parts of size in

[1/2ε2, 1/ε2]
24: end if
25: end if
26: end procedure

Regions. We now introduce the crucial definition of regions of a dissection tree T of solutions
L and G. For any node N of the dissection produced by the Partition Process, we consider
that the associated rectangle is the bounding box of the facilities of LN ∪GN . We assign
labels to the nodes of the tree. The label of a leaf B is |LB | + |GB |. Then we proceed
bottom-up, for each node of the tree, the labels of a node is equal to the sum of the labels
of its two children. Once a node has a label greater than 1/2ε2, we say that this node is a
region node of the tree and set its label to 0. We define the regions according to the region

V. Cohen-Addad and C. Mathieu 337

Region R2

Region R4

Region R3

Region R1

Figure 2 Details of the regions and portals associated to a dissection. The star-shaped points
are the portals associated to Region R1. Regions R2, R3, R4 are the only regions sharing portals
with region R1. All the regions are disjoint.

nodes. For each region node R, the associated region is the rectangle defined by the node
minus the regions of its descendants, namely minus the rectangles of nodes of label 0 that are
descendants of R. See Fig. 2 for an illustration of the regions. In the following, we denote by
R the set of regions.

Portals. Let D be a dissection produced by Algorithm 2. For any region R of D not
produced by the Partition Process, we place p equally-spaced portals along each boundary of
R. We refer to the dissection D along with the associated portals as Dp. See Fig. 2 for more
details on the regions and portals.

Definitions and Notations. For any clustering problem, we denote by C the sets of the
input points. We refer to an input point as a client. A solution to a clustering problem is a
set of facilities S ⊂ R2.

For any solution S and any client c, we denote by cS the distance from client c to the
closest facility of S: cS = min

s∈S
d(c, s). The service cost of a solution S to a clustering problem

is
∑
c∈C

cS . Additionally, for any solution S and client c, we define c(S) as the facility of S

that serves c in solution S, namely c(S) := argmins∈Sd(c, s)
Let B be the smallest rectangle that contains all the clients. Let L and G be two sets

of facilities. We now give the definition of an assignment which is crucial for the main
proposition.

I Definition 4.1. We define an assignment as a function that maps the clients to the facility
of L ∪G.

Let E0 be the assignment that maps each client c to the facility of {c(L), c(G)} that is the
farther, namely, ∀c ∈ C, E0(c) = argmax(dist(c, c(G)), dist(c, c(L))).

We show the following proposition which is the technical center of the proof.

I Proposition 4.2. Let 1/ε2 > 0 be an integer, G and L be two sets of facilities. Let D1/ε2

be a dissection tree with portals. There exists an assignment E that satisfies the following
properties. Let R be a region not produced by the Partition Process. If a client c is such that
c(L) ∈ R and c(G) /∈ R then E(c) is either a portal of R or a facility of L \R.
Moreover,

E[
∑
c∈C
|dist(c, E(c))− dist(c, E0(c))|] =

∑
c∈C
O(ε2 log(1/ε2) · (cG + cL)).

SoCG’15

338 Effectiveness of Local Search for Geometric Optimization

We start by proving some properties of Algorithm 22. The proofs of the following Lemmas
are deferred to the Appendix.

I Definition 4.3 (Aspect Ratio). We define the aspect ratio of a rectangle R that has sides
of lengths r and r′ as max(rr′ ,

r′

r).

I Lemma 4.4. Let R be a rectangle produced by either the Sub-Rectangle or the Cut-Rectangle
process of Algorithm 2. The aspect ratio of R is at most 5.

I Lemma 4.5 ([14]). Let l ∈ L be a facility and v ∈ R2 be any point. Let d be the distance
between v and l. If a cutting line segment s produced by the Sub-Rectangle process during
Algorithm 2 separates v and l for the first time, then length(s) ≤ 5d.

I Lemma 4.6. Let L be a set of facilities. Let v ∈ R2, l ∈ L, d0 = dist(v, l). Suppose that,
in Algorithm 2, v and l are first separated by a line s that is vertical and that l is to the right
of s. Let d1 be the distance from v to the closest open facility located to its left. Then, the
length of s is either: (i) larger than d1/4 or (ii) smaller than 12d0.

I Lemma 4.7 ([14]). Let Event0(d, s) denote the event that an edge e of length d is separated
by a cutting line of side-length s that is produced by Cut-Rectangle.
Then, Pr[Event0(d, s)] ≤ 3d/s.

We now show the proof of the Structure Theorem.

Proof of Proposition 4.2. Let p := 1/ε2. By linearity of expectation, we only need to show
this on a per-client basis.

Let c be a client and R a region containing l := c(L) but not g := c(G). Let B be the
first box of the dissection, in top-down order, that contains l but not g, and let s be the
side of B that is crossed by [l, g]. We have: dist(g, l) ≤ dist(g, c) + dist(c, l) = cG + cL. Up
to a rotation of center g, l is to the north-west of g. Let u,w be the closest facilities of L
respectively to the south and to the east of g.

To construct E, we start with E := E0, and modify E one client at a time so that each
client satisfies the first property, and we bound the corresponding expected cost increase.
The initial cost of E is

∑
c∈C

max(cG, cL). We modify E(c) depending on whether s is vertical

or horizontal and according to the length of s. We first provide an upper bound on the
expected cost increase induced by E(c) for the case where s is vertical. It is easy to see that,
when s is horizontal, applying the same reasoning on w instead of u leads to an identical
cost increase and thus, the total cost increase is at most twice the cost increase computed
for the case where s is vertical.

By Lemma 4.6, the following cases cover all possibilities for the case where s is vertical.
s is vertical and s was produced by Sub-Rectangle. Then we define E(c) as the portal on
s that is closest to [g, l]. By Lemma 4.5, the cost increase is at most O((cG + cL)/p).
s is vertical and s was produced by Cut-Rectangle and its length is at most 12(cL + cG).
Then again we define E(c) as the portal on s that is closest to [g, l]. By assumption,
again the cost increase is at most O((cG + cL)/p).
s is vertical and s was produced by Cut-Rectangle and its length is greater that 12(cL+cG).
Lemma 4.6 implies that s has length greater than du/4. If the length of s is in [du/4, pdu].
Then again we define E(c) as the portal on s that is closest to [g, l]. Let E0 be the event

2 Lemma 4.5 is essentially Lemma 4 from [14] but a careful writing of the details of the calculation reveals
slightly different constants.

V. Cohen-Addad and C. Mathieu 339

that du/4 ≤ |s| ≤ p · du and s is vertical. The expected cost increase in this case is, by
Lemma 4.7, at most∑

du/4≤i≤p·du

s.t i/du is power of 2

pr[|s| = i and E0] · (i/p) ≤ O(log(p)/p · (cG + cL)).

We now turn to the last case. Namely, s was produced by Cut-Rectangle and its length
is greater than or equal to p · du. We define E(c) depending on whether u is in R or not.
This leads to two different sub-cases.

1. u /∈ R. Then we define E(c) := u. The cost is bounded by the cost to go to g

(max(cG, cL)) plus the cost to go from g to u, which is du. Let E1 be the event that
u /∈ R and p · du < |s| and s is vertical. The cost increase is, by Lemma 4.7, at most,∑

i>p·du

s.t i/du is power of 2

pr[|s| = i and E1] · (du) ≤ O((cG + cL)/p).

2. u ∈ R. Let d denotes the first line that separates u from g. Since u is to the right of g,
d is different from s and has size at least du. We have two sub-cases.
First, if d was produced before s in the dissection, then we also have |d| > |s|. Let E2
be the event |d| > |s| > p · du and s is vertical. We now fix d. We assign E(c) to be
the closest portal on R, the expected cost increase conditioned upon d is then at most:∑

p·du<i≤|d|
s.t i/du is power of 2

pr[|s| = i and E2] · (i/p) ≤ O(log(|d|
p · du

) · (cG + cL)/p).

We then remove the conditioning on d. If d was produced by the Sub-Rectangle
process, then p · du < |d| ≤ 5du by Lemma 4.5 and the expected cost increase is at
most O((cG + cL)/p). Otherwise, d was produced by the Cut-Rectangle process, and
then the expected cost increase is at most∑

i>p·du

s.t i/du is power of 2

pr[|d| = i and E2] · O(log(i

p · du
) · (cG + cL)/p) ≤ O((cG + cL)/p).

Second, if d was produced after s in the dissection, namely |s| > |d|. Let E3 denote
the event that |s| > |d| and |s| > p · du and s is vertical. We assign c to the closest
portal located on d, which is at distance at most du + |d|/p from g (and so at distance
at most cG + du + |d|/p from c). We start by fixing s. The expected cost conditioned
upon s is then (no matter how d was produced), at most∑

du<i<|s|
s.t i/du is power of 2

pr[|d| = i and E3] · (du + i/p)

We then remove the conditioning on s, which leads to an expected cost of at most∑
j>p·du

s.t i/du is power of 2

pr[|s| = j and E3]
∑

du<i<j

3(du/i) · (du + i/p) ≤ O((cG + cL)/p)

Thus, the total expected cost increase for E is at most O((log(p)/p) · (cG + cL)).

J

SoCG’15

340 Effectiveness of Local Search for Geometric Optimization

client a

facil. l

facil. s

client b
client c

Region R

client d

Figure 3 Details of the partitioning of the client. The star-shaped points are the facilities of G

and the square-shaped one are the facilities of L. The blue star-shaped and square-shaped belong
to respectively GR and LR. Since client a is closer to facility l than to facility s, it belongs to the
set CL. Moreover, it is served in L by a facility that does not belong to VL(LR), and so, it is not
included in set CR. Client b is closer to facility s than to facility l and so, it is included in set CR

albeit it is served by a facility located on another region in L. Client c is served by a facilities
that belongs to VL(LR) (in L and G) and so, it belongs to CR. Finally, client d does not belong to
VG(GR) and so, is no included in set CR.

Partitioning the Clients and the Facilities. Before going further, we need to define a
partition of the clients and the facilities according to the dissection produced by Algorithm 2.

We partition the clients into two sets CG and CL. CG contains the clients that are closer
to a facility of G than to a facility of L and CL contains the rest of the clients, namely
CG := {c | cL = max(cL, cG)} and CL := {c | cG 6= min(cL, cG)}. Let D be a dissection
produced by Algorithm 2 and the set of its associated regions R. For any region R, we
denote CG(R) the set of clients that are served by GR in G and that do not lay on a region
not in P . Furthermore, we define CL(R) as the set of clients that are served by LR in L
and let CR := VG(GR) \ (CL ∩ (VL(L \ LR)) 3. This set contains the clients served by GR
in G except those that belong to CL and that are served by L \ LR in L. See Fig. 3 for an
illustration. Additionally, we define ∆R := VL(LR) \ VG(GR).

4.1 Facility Location
We now prove the approximation ratio of Algorithm 1 for facility location.

I Theorem 4.8. For Facility Location, Algorithm 1 produces a solution L of cost at most
(1 +O(ε)) · Cost(OPT).

Proof. Let OPT be a globally optimum solution and L be a locally optimum solution. By
Proposition 4.2, for any p > 0 there exists an assignment E for each random dissection Dp
with portals of L ∪OPT, such that for any client c and region R, if c(L) ∈ R and c(G) /∈ R
then c is served by a portal of R or a facility of L \R in E and the expected cost of E is at
most E =

∑
c∈C

max(cL, cG) +O(log(p)/p · (
∑
c∈C

(cG + cL))). This implies that there exists a

dissection Dp for which E has value at most E.
Throughout the proof, we consider this dissection Dp and fix ε := log(p)/p. Let R be the

set of regions associated to Dp. We start by constructing a solution G based on OPT and we
compare the cost of L to the cost of G. The solution G contains all the facilities of OPT plus
some extra facilities. First, it has one facility at each portal of Dp. Moreover, for each region
R that is produced by the Partition Process, we open the facilities of LR. Recall that for

3 This can be rewritten as CR := VG(GR) ∩ (CG ∪ VL(LR)).

V. Cohen-Addad and C. Mathieu 341

each of these regions, |LR| ≤ 1/ε. We keep the same assignment for the clients. Since there
are O(ε2(|G|+ |L|)) regions and that for each region G uses at most 1/ε extra facilities, the
cost of G is at most Cost(OPT)+ O(ε(|OPT|+ |L|)f). We now prove that the cost of L is
at most (1 +O(ε))/(1−O(ε)) times the cost of G, namely

|L| · f +
∑
c∈C

cL ≤ (1 +O(ε)
1−O(ε))(|G| · f +

∑
c∈C

cG).

We focus on the cost of a region R. We show that, by local optimality, for each region R,
replacing solution L by solution G does not lead to a much better cost. We serve the clients of
CR optimally (namely by the facilities that serve them in G) and the clients of LR \GR by the
facilities located on the portals of R or by the facilities of L \LR, depending on whether they
belong to CL or CG and according to the assignment E. Since |LR\GR|+|GR\LR| = O(ε−3),
the locality argument applies. Namely, we have

(|GR| − |LR|)f +
∑

c/∈CR∪∆R

cL +
∑
c∈CR

cG +
∑
c∈∆R

cE ≥ (1− 1/n)(|L|f +
∑
c

cL).

The rest of the proof is mainly computational and can be found in the appendix. J

4.2 k-Median
Let L and OPT be respectively local and global optimal solutions to the k-Median problem.
We start with a technical Lemma which allows us to find “clusters” of regions of the plane
that have roughly the same number of facilities of L and G. See Fig. 4 for an illustration.
The proof of the Lemma is deferred to the Appendix.

I Lemma 4.9 (Balanced Clustering). Let R = {r1, ..., rp} be a collection of disjoint sets.
Each set contains elements of type either L or G and has size at least 1/2ε2 and at most
1/ε2. The total number of elements of type L is (1 + 3ε) times higher than the number of
elements of type G.

There exists a clustering of {r1, ..., rp} in clusters satisfying the following two properties.
For any cluster C,

C contains at most O(1/ε5) elements of R, namely |C| = O(1/ε5);
the difference between the number of elements of L in the sets contained in C and the
number of elements of G in the sets contained in C is at least |C|/ε:∑

ri∈C
|ri ∩ L| −

∑
ri∈C

|ri ∩G| ≥ |C|/ε,

for any 1/ε ∈ N.

I Theorem 4.10. For k-Median, Algorithm 1 for k-Median produces a solution L of cost at
most (1 +O(ε)Cost(OPT) using at most 1 +O(ε))k Medians.

Proof. Remark first that solution L uses (1 +O(ε))k facilities. We now show that the cost
of solution L is at most 1 +O(ε) times higher than the cost of the optimal solution.
Recall that by Proposition 4.2, for any p > 0 there exists an assignment E for each random
dissection Dp of L ∪OPT with portals, such that for any client c and region R, if c(L) ∈ R
and c(OPT) /∈ R then c is served by a portal of R or a facility of L\R in E and the expected
cost of E is at most E =

∑
c∈C

max(cL, cOPT) +O(log(p)/p · (
∑
c∈C

(cOPT + cL))).

SoCG’15

342 Effectiveness of Local Search for Geometric Optimization

Figure 4 The circle-shaped points are the elements of type L and the square-shaped ones the
elements of type G. The black circles mark the sets {r1, . . . , rp} and the red ones show a clustering
of those sets that satisfy the property of Lemma 4.9.

This implies that there exists a dissection Dp for which E has value at most E. Throughout
the proof, we consider such a dissection Dp and fix ε := log(p)/p. Let R be the set of regions
associated to Dp. We prove that the cost of L is at most (1 +O(ε))/(1−O(ε)) times the
cost of S, namely ∑

c∈C
cL ≤

1 +O(ε)
1−O(ε)

∑
c∈C

cOPT.

Let P be a clustering of the regions satisfying the properties of Lemma 4.9 (depending
on L and OPT). We start by constructing a solution G based on OPT and we compare the
cost of L to the cost of G. We construct G in a similar way to in the proof of Theorem 4.8.
Namely, the solution G contains all the facilities of OPT plus some extra facilities: one
facility at each portal of Dp and for each region R that is produced by the Partition Process,
we open the facilities of LR. Recall that for each of these regions, |LR| ≤ 1/ε. We keep
the same assignment for the clients. We now compare the costs of L and G. To do so, we
consider all the regions of each cluster of the clustering P at the same time. Namely for each
cluster R, L uses at least as many facilities as G. Therefore |SP \ L|+ |L \ SP | = O(1/ε9)
and the locality argument applies. The rest of the proof is similar to the proof of 4.8 and is
mainly computational and can be found in the Appendix. J

Higher Dimensions. Previous results generalize to any dimension d. It leads to algorithms
that have exponential dependency in d. More precisely, for any dimension d, more portals are
needed to maintain the expected cost increase for the assignment E provided by the Structure
Theorem. Each of the 2d faces of each region has to count pd−1 portals. Proposition 4.2
generalizes to any dimension d with O(dpd−1) portals instead of p. For Facility Location,
Condition(S′, ε) has to be adapted to |S \ S| + |S \ S| = O(d/εd+1). Thus, Theorem 4.8
still applies to show that the adapted Algorithm provides a (1 + O(ε)) approximation.
For the k-Median problem, Condition(S′, ε) has to be adapted to |S′| ≤ (1 + 3ε)k and
|S \ S′|+ |S′ \ S| = O(d/ε7+d). Theorem 4.10 still applies to prove the approximation ratio
of the adapted Algorithm.

References

1 S. Arora. Polynomial time approximation schemes for euclidean TSP and other geometric
problems. In Symp. on Foundations of Computer Science, FOCS’96, Burlington, Vermont,
USA, 14-16 October, 1996, pages 2–11, 1996.

2 S. Arora. Nearly linear time approximation schemes for euclidean TSP and other geometric
problems. In Symp. on Foundations of Computer Science, FOCS’97, Miami Beach, Florida,
USA, October 19-22, 1997, pages 554–563, 1997.

V. Cohen-Addad and C. Mathieu 343

3 V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search
heuristics for k-median and facility location problems. SIAM J. Comput., 33(3):544–562,
2004.

4 J. Beardwood, J. H. Halton, and J. M. Hammersley. The shortest path through many
points. Mathematical Proc. of the Cambridge Philosophical Society, 55:299–327, 1959.

5 T. M. Chan and S. Har-Peled. Approximation algorithms for maximum independent set of
pseudo-disks. In Proc. of the Symp. on Computational Geometry, SCG’09, pages 333–340.
ACM, 2009.

6 B. Chandra, H. J. Karloff, and C. A. Tovey. New results on the old k-opt algorithm for
the TSP. In Proc. of the ACM-SIAM Symp. on Discrete Algorithms. 23-25 January 1994,
Arlington, Virginia., pages 150–159, 1994.

7 M. Charikar and S. Guha. Improved combinatorial algorithms for facility location problems.
SIAM J. Comput., 34(4):803–824, 2005.

8 F. A. Chudak and D. P. Williamson. Improved approximation algorithms for capacitated
facility location problems. Math. Program., 102(2):207–222, March 2005.

9 G. A. Croes. A method for solving traveling salesman problems. Operations Research,
6(6):791–812, 1958.

10 M. Gibson and I. A. Pirwani. Algorithms for dominating set in disk graphs: Breaking the
logn barrier – (extended abstract). In Algorithms – ESA 2010, European Symp., Liverpool,
UK, September 6-8, 2010. Proc., Part I, pages 243–254, 2010.

11 D. S Johnson and L. A McGeoch. The traveling salesman problem : A case study in local
optimization. Local Search in Combinatorial Optimization, 1:215–310, 1997.

12 T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. A
local search approximation algorithm for k-means clustering. Comput. Geom., 28(2-3):89–
112, 2004.

13 R. M. Karp. Probabilistic analysis of partitioning algorithms for the traveling-salesman
problem in the plane. Mathematics of Operations Research, 2(3):209–224, 1977.

14 S. G. Kolliopoulos and S. Rao. A nearly linear-time approximation scheme for the euclidean
k-median problem. SIAM J. Comput., 37(3):757–782, 2007.

15 M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search heuristic for
facility location problems. J. Algorithms, 37(1):146–188, 2000.

16 E. Krohn, M. Gibson, G. Kanade, and K. R. Varadarajan. Guarding terrains via local
search. JoCG, 5(1):168–178, 2014.

17 S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, The, 44(10):2245–2269, 1965.

18 S. Lin and B. W Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations research, 21(2):498–516, 1973.

19 N. Megiddo and K. J. Supowit. On the complexity of some common geometric location
problems. SIAM J. Comput., 13(1):182–196, 1984.

20 O. Mersmann, B. Bischl, J. Bossek, H. Trautmann, M. Wagner, and F. Neumann. Local
search and the traveling salesman problem: A feature-based characterization of problem
hardness. In Learning and Intelligent Optimization – 6th International Conference, LION
6, Paris, France, January 16-20, 2012, Revised Selected Papers, pages 115–129, 2012.

21 J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric tsp, k-mst, and related problems.
SIAM J. Comput., 28(4):1298–1309, 1999.

22 N. H. Mustafa and S. Ray. PTAS for geometric hitting set problems via local search. In
Proc. of the ACM Symp. on Computational Geometry, Aarhus, Denmark, pages 17–22,
2009.

SoCG’15

344 Effectiveness of Local Search for Geometric Optimization

23 S. Rao and W. D. Smith. Approximating geometrical graphs via “spanners” and “banyans”.
In Proc. of the ACM Symp. on the Theory of Computing, Dallas, Texas, USA, May 23-26,
1998, pages 540–550, 1998.

24 G. Robins and A. Zelikovsky. Improved steiner tree approximation in graphs. In Proc. of
the ACM-SIAM Symp. on Discrete Algorithms, SODA, pages 770–779. SIAM, 2000.

25 D. J. Rosenkrantz, R. Edwin Stearns, and P. M. Lewis II. An analysis of several heuristics
for the traveling salesman problem. SIAM J. Comput., 6(3):563–581, 1977.

26 J. Vygen. Approximation algorithms for facility location problems. Technical Report 05950,
Research Institute for Discrete Mathematics, University of Bonn, 2005.

	Introduction
	Polynomial-Time Local Search Algorithms
	Euclidean Traveling Salesman Problem and Steiner Tree
	Clustering Problems
	Facility Location
	k-Median

