The Dirac-Motzkin Problem on Ordinary Lines and the Orchard Problem*

Ben J. Green
Mathematical Institute, University of Oxford Oxford, UK
ben.green@maths.ox.ac.uk

Abstract

Suppose you have n points in the plane, not all on a line. A famous theorem of Sylvester-Gallai asserts that there is at least one ordinary line, that is to say a line passing through precisely two of the n points. But how many ordinary lines must there be? It turns out that the answer is at least $n / 2$ (if n is even) and roughly $3 n / 4$ (if n is odd), provided that n is sufficiently large. This resolves a conjecture of Dirac and Motzkin from the 1950s. We will also discuss the classical orchard problem, which asks how to arrange n trees so that there are as many triples of colinear trees as possible, but no four in a line. This is joint work with Terence Tao and reports on the results of [1].

1998 ACM Subject Classification G. 2 Discrete Mathematics
Keywords and phrases combinatorial geometry, incidences
Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.405
Category Invited Talk

- References

1 B. J. Green and T. C. Tao, On sets with few ordinary lines, Discrete and Computational Geometry 50 (2013), no. 2, 409-468.

[^0]
[^0]: * This work was partially supported by ERC Starting Grant number 279438, Approximate algebraic structure and applications.

