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—— Abstract

The Restricted Isometry Property (RIP) is a fundamental property of a matrix which enables
sparse recovery. Informally, an m x n matrix satisfies RIP of order k for the ¢, norm, if || Az||, ~
lz||, for every vector x with at most k non-zero coordinates.

For every 1 < p < oo we obtain almost tight bounds on the minimum number of rows m
necessary for the RIP property to hold. Prior to this work, only the cases p = 1, 1+ 1/logk,
and 2 were studied. Interestingly, our results show that the case p = 2 is a “singularity” point:
the optimal number of rows m is é(kp) for all p € [1,00) \ {2}, as opposed to (:)(k) for k = 2.

We also obtain almost tight bounds for the column sparsity of RIP matrices and discuss
implications of our results for the Stable Sparse Recovery problem.
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1 Introduction

The main object of our interest is a matrix with Restricted Isometry Property for the £y,
norm (RIP-p). Informally speaking, we are interested in a linear map from R™ to R™ with
m < n that approximately preserves £, norms for all vectors that have only few non-zero
coordinates.

More precisely, an m x n matrix A € R™*™ is said to have (k, D)-RIP-p property for
sparsity k € [n] = {1,...,n}, distortion D > 1, and the £, norm for p € [1, 00), if for every
vector x € R™ with at most k non-zero coordinates one has

lellp < [[Azll, < D -zl -

In this work we investigate the following question: given p € [1,00), n € N, k € [n], and
D> 1,

What is the smallest m € N so that there exists a (k,D)-RIP-p matriz A € R™*"?
Besides that, the following question arises naturally from the complexity of computing Ax:
What is the smallest column sparsity d for such a (k, D)-RIP-p matriz A € R™*"?

(Above, we denote by column sparsity the maximum number of non-zero entries in a column

of A))

* The full version of this paper can be found at http://arxiv.org/abs/1407.2178 [2].
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1.1 Motivation

Why are RIP matrices important? RIP-2 matrices were introduced by Candés and Tao [7]
for decoding a vector f from corrupted linear measurements B f + e under the assumption
that the vector of errors e is sufficiently sparse (has only few non-zero entries). Later Candes,
Romberg and Tao [6] used RIP-2 matrices to solve the (Noisy) Stable Sparse Recovery
problem, which has since found numerous applications in areas such as compressive sensing
of signals [6, 11], genetic data analysis [16], and data stream algorithms [19, 12].

The (noisy) stable sparse recovery problem is defined as follows. The input signal z € R™
is assumed to be close to k-sparse, that is, to have most of the “mass” concentrated on k
coordinates. The goal is to design a set of m linear measurements that can be represented as
a single m x n matrix A such that, given a noisy sketch y = Ax + e € R, where e € R" is a
noise vector, one can “approximately” recover x. Formally, the recovered vector € R" is
required to satisfy

lo =7, <C min o —a* s +Ca - fell, (L1)
k-sparse x
for some C1,Cy > 0, p € [1,00), and k € [n].

(In order for (1.1) to be meaningful, we also require ||Al|, <1 — or equivalently, || Az||, <
|||, for all 2 — since otherwise, by scaling A up, the noise vector e will become negligible.)

We refer to (1.1) as the £,/¢1 guarantee. The parameters of interest include: the number
of measurements m, the column sparsity of the measurement matrix A, the approximation
factors C1, Cy and the complexity of the recovery procedure.

Candes, Romberg and Tao [6] proved that if A is (O(k), 1 + €)-RIP-2 for a sufficiently
small € > 0, then one can achieve the f5/¢; guarantee with C; = O(k~/2) and Cy = O(1)
in polynomial time.

The p = 1 case was first studied by Berinde et al. [4]. They prove that if A is (O(k), 1+¢)-
RIP-1 for a sufficiently small ¢ > 0 and has a certain additional property, then one can
achieve the ¢; /¢; guarantee with C; = O(1), Cy = O(1).

We note that any matrix A that allows the (noisy) stable sparse recovery with the £,/¢;
guarantee must have the (k, Co)-RIP-p property. For the proof see the full version.

Known constructions and limitations. Candés and Tao [7] proved that for every € > 0, a
matrix with m = O(klog(n/k)/e?) rows and n columns whose entries are sampled from i.i.d.
Gaussians is (k, 1 + ¢)-RIP-2 with high probability. Later, a simpler proof of the same result
was discovered by Baraniuk et al. [3]!. Berinde et al. [4] showed that a (scaled) random sparse
binary matriz with m = O(klog(n/k)/e?) rows is (k,1 + €)-RIP-1 with high probability?.

Since the number of measurements is very important in practice, it is natural to ask, how
optimal is the dimension bound m = O(klog(n/k)) that the above constructions achieve?
The results of Do Ba et al. [10] and Candés [8] imply the lower bound m = Q(klog(n/k)) for
(k, 1+ &)-RIP-p matrices for p € {1, 2}, provided that £ > 0 is sufficiently small.

Another important parameter of a measurement matrix A is its column sparsity: the
maximum number of non-zero entries in a single column of A. If A has column sparsity d,
then we can perform multiplication z — Ax in time O(nd) as opposed to the naive O(nm)
bound. Moreover, for sparse matrices A, one can maintain the sketch y = Ax very efficiently

L This proof has an advantage that it works for any subgaussian random variables, such as random +1’s.
2 In the same paper [4] it is observed that the same construction works for p =14 1/logk.
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Table 1 Prior and new bounds on RIP-p matrices.

rows m column sparsity d | references
1 O(klog(n/k)) O(log(n/k)) [4, 10, 20, 14]
Lt ghe | Olklog(n/k)) | O(log(n/k)) | []
(1,2) O(kP) O(kP™h) this work
2 O(klog(n/k)) O(klog(n/k)) [7, 6, 8, 3, 10, 9, 23]
(2, 00) O(k?) O(kP™h) this work

if we update x. Namely, if we set x < x + « - ¢;, where « € R and e; € R" is a basis vector,
then we can update y in time O(d) instead of the naive bound O(m).

The aforementioned constructions of RIP matrices exhibit very different behavior with
respect to column sparsity. RIP-2 matrices obtained from random Gaussian matrices are
obviously dense, whereas the construction of RIP-1 matrices of Berinde et al. [4] gives very
small column sparsity d = O(log(n/k)/e). It is known that in both cases the bounds on
column sparsity are essentially tight.

Indeed, Nelson and Nguyén showed [23] that any non-trivial column sparsity is impossible
for RIP-2 matrices unless m is much larger than O(klog(n/k)). Nachin showed [20] that any
RIP-1 matrix with O(klog(n/k)) rows must have column sparsity Q(log(n/k)). Besides that,
Indyk and Razenshteyn showed [14] that every RIP-1 matrix ‘must be sparse’: any RIP-1
matrix with O(klog(n/k)) rows can be perturbed slightly and made O(log(n/k))-sparse.

Another notable difference between RIP-1 and RIP-2 matrices is the following. The
construction of Berinde et al. [4] provides RIP-1 matrices with non-negative entries, whereas
Chandar proved [9] that any RIP-2 matrix with non-negative entries must have m = Q(k?)
(and this was later improved to m = Q(k? log(n/k)) [23, 1]). In other words, negative signs
are crucial in the construction of RIP-2 matrices but not for the RIP-1 case.

1.2 Our results

Motivated by these discrepancies between the optimal constructions for RIP-p matrices with
pE {1, 1+ @, 2}, we initiate the study of RIP-p matrices for the general p € [1, 00).

Having in mind that the upper bound m = O(klog(n/k)) holds for RIP-p matrices with
pE {1, 1+ @, 2}, it would be natural to conjecture that the same bound holds at least for
every p € (1,2). As we will see, surprisingly, this conjecture is very far from being true.

Also, knowing that the column sparsity d = O(klog(n/k)) can be obtained for p = 2
while d = O(log(n/k)) can be obtained for p = 1, it is interesting to “interpolate” these two
bounds.

Besides the mathematical interest, a more “applied” reason to study RIP-p matrices for
the general p is to get new guarantees for the stable sparse recovery. Indeed, we obtain new
results in this direction.

Our upper bounds. On the positive side, for all ¢ > 0 and all p € (1,00), we construct
(k,1 + &)-RIP-p matrices with m = O(kP?) rows. Here, we use the O(-)-notation to hide
factors that depend on ¢, p, and are polynomial in logn. More precisely, we show that a
(scaled) random sparse 0/1 matriz with O(kP) rows and column sparsity O(k?~1) has the
desired RIP property with high probability.

This construction essentially matches that of Berinde et al. [4] when p approaches 1. At

the same time, when p = 2, our result matches known constructions of non-negative RIP-2
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matrices based on the incoherence argument.?

Our lower bounds. Surprisingly, we show that, despite our upper bounds being suboptimal
for p = 2, the are essentially tight for every constant p € (1,00) except 2. Namely, they are
optimal both in terms of the dimension m and the column sparsity d.

More formally, on the dimension side, for every p € (1,00) \ {2}, distortion D > 1, and
(k, D)-RIP-p matrix A € R™*", we show that m = Q(k?), where Q(-) hides factors that
depend on p and D. Note that, it is not hard to extend an argument of Chandar [9] and
obtain a lower bound m = Q(kP~1).* This additional factor k is exactly what makes our
lower bound non-trivial and tight for p € (1,00) \ {2}, and thus enables us to conclude that
p =2 is a “singularity”.®

As for the column sparsity, we present a simple extension of the argument of Chandar [9]
and prove that for every p € [1,00) any (k, D)-RIP-p matrix must have column sparsity
Q(kP~1).

RIP matrices and sparse recovery. We extend the result of Candés, Romberg and Tao [6]
to show that, for every p > 1, RIP-p matrices allow the stable sparse recovery with the £,/¢;
guarantee and approximation factors C; = O(k’lﬂ/ p), C3 = O(1) in polynomial time. This
extension is quite straightforward and seems to be folklore, but, to the best of our knowledge,
it is not recorded anywhere.

On the other hand, for every p > 1, it is almost immediate that any matrix A that allows
the stable sparse recovery with the ¢,,/¢; guarantee — even if it works only for k-sparse signals —
must have the (k,Cy)-RIP-p property. For the sake of completeness, we have included both
the above proofs in the full version.

Implications to sparse recovery. Using the above equivalent relationship between the stable
sparse recovery problem and the RIP-p matrices, we conclude that the stable sparse recovery
with the ¢,/¢; guarantee requires m = O(kP) measurements for every p € [1;00) \ {2},
and requires d = ©(kP~1) column sparsity for every p € [1,00). Our results together draw
tradeoffs between the following three parameters in stable sparse recovery:

p, the £,/¢; guarantee for the stable sparse recovery,’

m, the number of measurements needed for sketching, and

d, the running time (per input coordinate) needed for sketching.

It was pointed out by an anonymous referee that for the noiseless case — that is, when the
noise vector e is always zero — better upper bounds are possible. Using the result of Gilbert
et al. [13], one can obtain, for every p > 2, the noiseless stable sparse recovery procedure

That is, a (scaled) random m x n binary matrix with m = O(e~2k?log(n/k)) rows and sparsity
d = O(e *klog(n/k)) satisfies the (k, 1 + )-RIP-2 property. This can be proved using for instance
the incoherence argument from [24]: any incoherent matrix satisfies the RIP-2 property with certain
parameters.

Also, the same argument gives the lower bound Q(kP) for binary RIP-p matrices for every p € [1,00).
A similar singularity is known to exist for linear dimension reduction for arbitrary point sets with
respect to ¢, norms [18]; alas, tight bounds for that problem are not known.

We note that the £,/¢1 and the ¢,/¢1 guarantees are incomparable. However, it is often more desirable
to have larger p in this £,/¢1 guarantee to ensure a better recovery quality. This is because, if the noise
vector e = 0, the £,/¢; guarantee (with C1 = O(k~*+1/9)) can be shown to be stronger than the £, /¢
one (with C1 = O(k~'T'/?)) whenever ¢ > p. However, when there is a noise term, the guarantee
I — llp < O(1) - [lell is incomparable to [z — &lly < O(1) - [lely for p #
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with the ¢,/¢1 guarantee using only m = 5(k2_2/ P) measurements. Therefore, our results
also imply a very large gap, both in terms of m and d, between the noiseless and the noisy
stable sparse recovery problems.

2 Overview of the Proofs

2.1 Upper bounds

We construct RIP-p matrices as follows. Beginning with a zero matrix A with m = 6(k'p)
rows and n columns, independently for each column of A, we choose d = 6(14:”’1) out of
m entries uniformly at random (without replacement), and assign the value d~1/? to those
selected entries. For this construction, we have two very different analyses of its correctness:
one works only for p > 2, and the other works only for 1 < p < 2.

For p > 2, the most challenging part is to show that ||Az||, < (1+¢)|/z||, holds with high
probability, for all k-sparse vectors . We reduce this problem to a probabilistic question
similar in spirit to the following “balls and bins” question. Consider n bins in which we
throw n balls uniformly and independently. As a result, we get n numbers X7, Xo, ..., X,
where X; is the number of balls falling into the i-th bin. We would like to upper bound the
tail Pr [S > 1000 - E [S]] for the random variable S = 27 XP~'. (Here, the constant 1000
can be replaced with any large enough one since we do not care about constant factors in
this paper.) The first challenge is that X;’s are not independent. To deal with this issue we
employ the notion of negative association of random variables introduced by Joag-Dev and
Proschan [15]. The second problem is that the random variables X7 L are heavy tailed: they
have tails of the form Pr [Xf 1> t] & exp(ftﬁ), so the standard technique of bounding
the moment-generating function does not work. Instead, we bound the high moments of S
directly, which introduces certain technical challenges. Let us remark that sums of i.i.d.
heavy-tailed variables were thoroughly studied by Nagaev [21, 22], but it seems that for the
results in these papers the independence of summands is crucial.

One major reason the above approach fails to work for 1 < p < 2 is that, in this range, even
the best possible tail inequality for S is too weak for our purposes. Another challenge in this
regime is that, to bound the “lower tail” of || Az[|} (that is, to prove that || Az, > (1—¢)|zl,
holds for all k-sparse x), the simple argument used for p > 2 no longer works. Our solution
to both problems above is to instead build our RIP matrices based on the following general
notion of bipartite expanders.

» Definition 2.1. Let G = (U, V, E) with |U| =n, |[V| =m and E C U x V be a bipartite
graph such that all vertices from U have the same degree d. We say that G is an (¢,d, J)-
expander, if for every S C U with |S| < £ we have

[{veV|3ues (uv)e E}|>(1-0)dS| .

It is known that random d-regular graphs are good expanders, and we can take the (scaled)
adjacency matrix of such an expander and prove that it satisfies the desired RIP-p property
for 1 < p < 2. Our argument can be seen as a subtle interpolation between the argument
from [4], which proves that (scaled) adjacency matrices of (k, d, ©(¢))-expanders (with O(k)
rows) are (k,1+ €)-RIP-1 and the one using incoherence argument,” which shows that
(2,d,0(e/k))-expanders give (k, 1 + ¢)-RIP-2 matrices (with O(k2) rows).

7 It is known [24] that an incoherent matrix satisfies the RIP-2 property with certain parameters. At the
same time, the notion of incoherence can be interpreted as expansion for ¢ = 2.

455

SoCG’15



456

Restricted Isometry Property for General p-Norms

2.2 Lower bounds

In the full version of our paper [2], we derive our dimension lower bound m = Q(kP) essentially
from norm inequalities. The high-level idea can be described in four simple steps. Consider
any (k, D)-RIP-p matrix A € R™*™ and assume that D is very close to 1 in this high-level
description.

In the first three steps, we deduce from the RIP property that (a) the sum of the p-th
powers of all entries in A is approximately n, (b) the largest entry in A (i.e., the vector
lso-norm of A) is essentially at most k'/P~1 and (c) the sum of squares of all entries in A
is at least n(%)z/pfl if p € (1,2), or at most n(%)wpfl if p > 2. In the fourth step, we
combine (a) (b) and (c) together by arguing about the relationships between the ¢, ¢, and
£5 norms of entries of A, and prove the desired lower bound on m.

The sparsity lower bound d = Q(kP~!) can be obtained via a simple extension of the
argument of Chandar [9]. Tt is possible to extend the techniques of Nelson and Nguyén [23]
to obtain a slightly better sparsity lower bound. However, since we were unable to obtain a
tight bound this way, we decided not to include it.

3 RIP Construction for p > 2

In this section, we construct (k,1 + )-RIP-p matrices for p > 2 by proving the following
theorem.

» Definition 3.1. We say that an m x n matrix A is a random binary matriz with sparsity
d € [m], if A is generated by assigning d~'/? to d random entries per column (selected
uniformly at random without replacement), and assigning 0 to the remaining entries.

» Theorem 3.2. For alln € Zy, k € [n], € € (0,1) and p € [2,00), there exist m,d € Z.
with .

—
i JdogP tn<m

kP
m = pO(p) 3 1ogp71 n and d= pO(P) .

such that, letting A be a random binary m X n matriz of sparsity d, with probability at least
98%, A satisfies (1 —¢)||z|[h < [[Az|b < (1 +¢)|[z[|} for all k-sparse vectors x € R™.

Our proof is divided into two steps: (1) the “lower-tail step”, that is, with probability
at least 0.99 we have [[Az|[5 > (1 —¢)||z||} for all k-sparse z, and (2) the “upper-tail step”,
that is, with probability at least 0.99, we have [|Az[|) < (1+¢)||z|}.

For every j € [n], let us denote by S; C [m] the set of non-zero rows of the j-th column
of A.

3.1 The Lower-Tail Step

To lower-tail step is very simple. It suffices to show that, with high probability, |\S; N .S;]| is
small for every pair of different ¢, j € [n], which will then imply that if only k& columns of
A are considered, every S; has to be almost disjoint from the union of the S; of the k — 1
remaining columns. This can be summarized by the following claim, whose proof is deferred
to the full version of this paper.

» Claim 3.3. Ifd > Ce'klogn and m > 2dk/e, where C is some large enough constant,
then

Privi<i<j<n |Smsj|§%zo.99.
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Now, to prove the lower tail, without loss of generality, let us assume that x is supported
on [k], the first k coordinates. For every j € [k], we denote by S7 = S; \ U,/ e\ 3 Si» the
set of non-zero rows in column j that are not shared with the supports of other columns
n [k] \ {j}. If the event in Claim 3.3 holds, then for every j € [k], we have |S}| > (1 — ¢)d.
Thus, we can lower bound ||Az||, as

1 m
o3

p
1
=7 D ISi gl = (1 =e) 2l -

j€lk]

p
> @) =

jE(k]:i€S;

Ly
je[k]:iESJ’.

1 m
sl = =+
i=1

(3.1)

» Remark. The above claim only works when m = Q(k? logn/e?), and therefore we cannot
use it in for the case of 1 < p < 2.

3.2 The Upper-Tail Step

Below we describe the framework of our proof for the upper-tail step, deferring all technical
details to the full version of this paper.
Suppose again that x is supported on [k]. Then, we upper bound ||Az||} as

sl =5 Y wf <I S (pemiiesa s Y

i=1"je[kl:ies; i=1 jelk]:ies;

&M—‘

1 . . -1
=7 Sh il Y, [ € K] i€ Sp [T, (32)

where the first inequality follows from the fact that (a1 +---+an)? < NP~1(al +---+ak;) for
any sequence of N non-negative reals ai, ..., ay. Note that the quantity | {j’ € [k] | i € S} | €
[k] captures the number of non-zeros of A in the i-th row and the first k£ columns. From now
on, in order to prove the desired upper tail, it suffices to show that, with high probability

Vi€ kl, Yies |l €lklliesy}[/™ < (1+e)d . (3.3)

To prove this, let us fix some j* € [k] and upper bound the probability that (3.3) holds
for j = j*, and then take a union bound over the choices of j*. Without loss of generality,
assume that S;- = {1,2,...,d}, consisting of the first d rows. For every i € S;«, define a
random variable X; = | {j’ € [k] | i € S;} | — 1. It is easy to see that X; is distributed as
Bin(k—1,d/m), the binomial distribution that is the sum of k¥ —1 i.i.d. random 0/1 variables,
each being 1 with probability d/m. For notational simplicity, let us define ¢ = dk /m. We
will later choose § < € to be very small. Our goal in (3.3) can now be reformulated as follows:

upper bound the probability

Pr| Y0 (X +1)P 1 —1)> az} .

We begin with a lemma showing an upper bound on the moments of each Y; S (X, +

1Pt — 1.

» Lemma 3.4. There exists a constant C' > 1 such that, if X is drawn from the binomial
distribution Bin(k — 1,6 /k) for some § < 1/(2¢?), and p > 2, then for any real £ > 1,

E[(X + 171 —=1)] < C-5(t(p — 1) + 1)!- D1
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Next, we note that although the random variables X;’s are dependent, they can be verified
to be negatively associated, a notion introduced by Joag-Dev and Proschan [15]. This theory
allows us to conclude the following bound on the moments.

» Lemma 3.5. Let )Z’l, e ,X’d be d random wvariables, each drawn independently from
Bin(k — 1,6/k). Then, for every integer t > 1 we have

E [(Z?—l((xi F1)pt - 1)>t] <E [(Zf_l(()@- + 1)t - 1)>t]

Now, using the moments of random variables Y; = (X; + 1)?~! — 1 from Lemma 3.4, as
well as Lemma 3.5, we can compute the tail bound of the sum Z?:l Y;. Our proof of the
following Lemma uses the result of Latala [17].

» Lemma 3.6. There exists constants C > 1 such that, whenever § < ¢/p°? and d > p°P /e,
we have
(ed)l/(p—1)

Pr S (X + )Pt = 1) > ed] <)

Finally, we are ready to prove Theorem 3.2.

kPl 1 _Q((Ed)l/(;ﬂfl))
Proof of Theorem 3.2. We can choose d = O(p)P~*- £—logP™" n so that e P <
(
T%oﬁ' Since our choice of m = dkp:) ” ensures that § = dk/m < ¢/p°P, and our choice of
d ensures d > p©P? /e, we can apply Lemma 3.6 and conclude that with probability at least
11
~ 0 A7) one has

Sies, | I €M li€ S} = T (X + 1 < (1 +e)d

Therefore, by applying the union bound over all j* € [k], we conclude that with probability
at least 1 — ﬁﬁ, the desired inequality (3.3) is satisfied for all j € [k].
k

Recall that, owing to (3.2), the inequality (3.3) implies that [[Az[5 < (1 + ¢)|z|[? for
every ¢ € R" that is supported on the first k coordinates. By another union bound over the
choices of all possible (Z) subsets of [n], we conclude that with probability at least 0.99, we
have [[Az|[b < (1 + ¢)||z[]5 for all k-sparse vectors z.

On the other hand, since our choice of d and m satisfies the assumptions d > Q(klogn/e)
and m > 2dk/¢ in Claim 3.3, the lower tail ||Az||} > (1 — ¢)||z||} also holds with probability
at least 0.99. Overall we conclude that with probability at least 0.98, we have ||Az[]} €

(1 £¢)||z|[p for every k-sparse vector x € R™. <

4 RIP Construction for 1 < p < 2

In this section, we construct (k, 1 + €)-RIP-p matrices for 1 < p < 2 by proving the following
theorem.

We assume that 1 +7 < p < 2 — 7 for some 7 > 0, and whenever we write O,(-), we
assume that some factor that depends on 7 is hidden. (For instance, factors of p/(1 — p) may
be hidden.)

» Theorem 4.1. For everyn € Zy, k€ [n],0<e<1/2 and 1 +7 <p<2— 17, there exist
m,d € Z, with

—1 1
m= O (kpl()ng?l+k4—2/p—p logn ) and  d=0. (k‘p -logn+k(P )/p.logn>

£2/(p—1) e el/(p—1)
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such that, letting A be a random binary m X n matriz of sparsity d, with probability at least
98%, A satisfies (1 —¢)||z||b < [[Az|b < (1 +¢)||z||5 for all k-sparse vectors x € R™.

p(2—p)

Note that, when k > ¢ ®-V% | the above bounds on m and k can be simplified as
B kP -logn B kP~ .logn

Our proof of the above theorem is based on the existence of (¢, d, J) bipartite expanders
(recall the definition of such expanders from Definition 2.1):

» Lemma 4.2 (|5, Lemma 3.10]). For every § € (O,%), and € € [n], there exist (¢,d,J)-

expanders with d = O(l"%") and m = O(dl/§) = O(“gggn).

In fact, the proof of Lemma 4.2 implies a simple probabilistic construction of such expanders:
with probability at least 98%, a random binary matrix A of sparsity d is the adjacency matrix
of a (2¢,d, §)-expander scaled by d='/P, for § = G(IOEn) and £ = ©(°m).

In the full version of this paper [2] we argue that, when A is the (scaled) adjacency matrix of
a (2¢,d, §)-expander, for parameters choices £ = ©,(k*P) and § = O, ( min {%, Zz;(_%}),
it satisfies that || Az[|} = 1+e. This proof is very technical, but we have included a high-level
description of its idea in the full version of this paper.

It is perhaps interesting to be noted that, our construction confirms our description in the

introduction: it interpolates between the expander construction of RIP-1 matrices from [4]
that uses ¢ = k, and the construction of RIP-2 matrices using incoherence argument that
essentially corresponds to £ = 2.

Acknowledgments. We thank Piotr Indyk for encouraging us to work on this project and
for many valuable conversations. We are grateful to Piotr Indyk and Ronitt Rubinfeld for
teaching “Sublinear Algorithms”, where parts of this work appeared as a final project. We
thank Arturs Backurs, Chinmay Hegde, Gautam Kamath, Sepideh Mahabadi, Jelani Nelson,
Huy Nguyén, Eric Price and Ludwig Schmidt for useful conversations and feedback. Thanks
to Leonid Boytsov for pointing us to [21, 22]. We are grateful to anonymous referees for
pointing out some relevant literature. The first author is partly supported by a Simons
Graduate Student Award under grant no. 284059.

—— References

1 Zeyuan Allen-Zhu, Rati Gelashvili, Silvio Micali, and Nir Shavit. Johnson-Lindenstrauss
Compression with Neuroscience-Based Constraints. ArXiv e-prints, abs/1411.5383, Novem-
ber 2014. Also appeared in the Proceedings of the National Academy of Sciences of the
USA, vol 111, no 47.

2 Zeyuan Allen-Zhu, Rati Gelashvili, and Ilya Razenshteyn. Restricted Isometry Property
for General p-Norms. ArXiv e-prints, abs/1407.2178v3, February 2015.

3 Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A simple proof
of the restricted isometry property for random matrices. Constructive Approximation,
28(3):253-263, 2008.

4  Radu Berinde, Anna C. Gilbert, Piotr Indyk, Howard Karloff, and Martin J. Strauss. Com-
bining geometry and combinatorics: A unified approach to sparse signal recovery. In Pro-
ceedings of the 46th Annual Allerton Conference on Communication, Control, and Com-
puting (Allerton 2008), pages 798-805, 2008.

5 Harry Buhrman, Peter Bro Miltersen, Jaikumar Radhakrishnan, and Srinivasan Venkatesh.
Are bitvectors optimal? SIAM Journal on Computing, 31(6):1723-1744, 2002.

459

SoCG’15



460

Restricted Isometry Property for General p-Norms

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Emmanuel Candes, Justin Romberg, and Terence Tao. Stable signal recovery from incom-
plete and inaccurate measurements. Communications on Pure and Applied Mathematics,
59(8):1207-1223, 2006.

Emmanuel Candeés and Terence Tao. Decoding by linear programming. IEEFE Transactions
on Information Theory, 51(12):4203-4215, 2005.

Emmanuel J. Candeés. The restricted isometry property and its implications for compressed
sensing. Comptes Rendus Mathematique, 346(9-10):589-592, 2008.

Venkat B. Chandar. Sparse Graph Codes for Compression, Sensing, and Secrecy. PhD
thesis, Massachusetts Institute of Technology, 2010.

Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds for sparse
recovery. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’10), pages 1190-1197, 2010.

David L. Donoho. Compressed sensing. I[IEEE Transactions on Information Theory,
52(4):1289-1306, 2006.

Anna C. Gilbert and Piotr Indyk. Sparse recovery using sparse matrices. Proceedings of
IEEE, 98(6):937-947, 2010.

Anna C. Gilbert, Martin J. Strauss, Joel A. Tropp, and Roman Vershynin. One sketch
for all: fast algorithms for compressed sensing. In Proceedings of the 39th Annual ACM
Symposium on Theory of Computing (STOC 2007), pages 237-246, 2007.

Piotr Indyk and Ilya Razenshteyn. On model-based RIP-1 matrices. In Proceedings of the
40th International Colloguium on Automata, Languages, and Programming (ICALP’13),
pages 564-575, 2013.

Kumar Joag-Dev and Frank Proschan. Negative association of random variables with
applications. Annals of Statistics, 11(1):286-295, 1983.

Raghunandan M. Kainkaryam, Angela Bruex, Anna C. Gilbert, John Schiefelbein, and
Peter J. Woolf. poolMC: Smart pooling of mRNA samples in microarray experiments.
BMC Bioinformatics, 11(299), 2010.

Rafal Latala. Estimation of moments of sums of independent real random variables. Annals
of Probability, 25(3):1502-1513, 1997.

James R. Lee, Manor Mendel, and Assaf Naor. Metric structures in L;: dimension,
snowflakes, and average distortion. Furopean Journal of Combinatorics, 26(8):1180-1190,
2005.

S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 1(2):117-236, 2005.

Mergen Nachin. Lower bounds on the column sparsity of sparse recovery matrices. under-
graduate thesis, MIT, 2010.

A.V. Nagaev. Integral limit theorems taking large deviations into account when Cramér’s
condition does not hold. I. Theory of Probability and Its Applications, 14(1):51-64, 1969.
A.V. Nagaev. Integral limit theorems taking large deviations into account when Cramér’s
condition does not hold. II. Theory of Probability and Its Applications, 14(2):193-208, 1969.
Jelani Nelson and Huy L. Nguyén. Sparsity lower bounds for dimensionality reducing maps.
In Proceedings of the 45th ACM Symposium on the Theory of Computing (STOC’13), pages
101-110, 2013.

Holger Rauhut. Compressive sensing and structured random matrices. Theoretical founda-
tions and numerical methods for sparse recovery, 9:1-92, 2010.



	Introduction
	Motivation
	Our results

	Overview of the Proofs
	Upper bounds
	Lower bounds

	RIP Construction for p 2
	The Lower-Tail Step
	The Upper-Tail Step

	RIP Construction for 1<p<2

