
Generic Trace Semantics and Graded Monads∗

Stefan Milius1, Dirk Pattinson2, and Lutz Schröder1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
2 The Australian National University, Australia

Abstract
Models of concurrent systems employ a wide variety of semantics inducing various notions of pro-
cess equivalence, ranging from linear-time semantics such as trace equivalence to branching-time
semantics such as strong bisimilarity. Many of these generalize to system types beyond standard
transition systems, featuring, for example, weighted, probabilistic, or game-based transitions;
this motivates the search for suitable coalgebraic abstractions of process equivalence that cover
these orthogonal dimensions of generality, i.e. are generic both in the system type and in the
notion of system equivalence. In recent joint work with Kurz, we have proposed a parametriza-
tion of system equivalence over an embedding of the coalgebraic type functor into a monad. In
the present paper, we refine this abstraction to use graded monads, which come with a notion
of depth that corresponds, e.g., to trace length or bisimulation depth. We introduce a notion of
graded algebras and show how they play the role of formulas in trace logics.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.4.1 Mathem-
atical Logic, D.3.1 Formal Definitions and Theory

Keywords and phrases Traces, transition systems, monads, coalgebra, trace logics

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.253

1 Introduction

Concurrent systems are typically modelled as state-based systems of some form, with a
notion of state transition. Often, transitions between states are given by a transition relation,
i.e. the system records only whether or not a transition between two given states is possible.
More generally, however, the transition system may implement a more fine-grained modelling
that specifies also, for example, the probability or the weight of a given transition, games
determining transitions depending on the choices of participating agents, or sets of jointly
reachable states. The aim of universal coalgebra [25] is to provide a unified framework for
the treatment of various system types such as these.

A core topic in concurrent systems are notions of observable equivalence, which range
from linear-time equivalences to branching-time equivalences [33]. While branching-time
equivalences, based on suitable notions of bisimilarity, fit in seamlessly with the coalgebraic
paradigm [25, 32, 11], other, in particular linear-time, equivalences require more effort.
Coalgebraic treatments of trace semantics have previously been based on splitting the functor
into a monad, the so-called branching type, and a functor, the transition type; the transition
type is then transferred, by means of suitable distributive laws, to the Kleisli category [12] or
the Eilenberg-Moore category [17, 14, 30, 5] of the branching monad, and trace equivalence
is cast as bisimilarity in the new category.

∗ The first and the last author acknowledge support by the German Research Council (DFG) in the
project COAX (MI 717/5-1/SCHR 1118/12-1).

© Stefan Milius, Dirk Pattinson, and Lutz Schröder;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 253–269

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.253
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

254 Generic Trace Semantics and Graded Monads

In recent joint work with Kurz [19], we have proposed a quite simple-minded approach
where the coalgebraic type functor, for which no particular form of decomposition needs
to be assumed, is embedded into a monad M ; monadic trace semantics is then obtained
by iterating the coalgebra structure in the Kleisli category of M . This approach covers
the standard examples including traces without explicit termination (not handled in other
approaches) and probabilistic traces; moreover, it subsumes Kleisli-style and Eilenberg-Moore
style trace semantics in the sense that these coarser semantics are obtained by applying
natural quotient maps to monadic traces for the expected monads.

In more detail, monadic traces for a monad M (e.g. MX = P(Σ∗ × X) in the basic
example of labelled transition systems) are sequences of elements of M1; the n-th element of
such a sequence represents the traces obtained after n transitions. These traces typically all
have length n, so the typeM1 given to the n-th element of the trace sequence is unnecessarily
general. This observation motivates using graded monads: a graded monad [31] associates
to each set X a family of sets MnX intuitively understood as consisting of the terms of
uniform depth n over X in a given algebraic theory. It turns out that the key examples
for trace semantics have easier and more general descriptions using graded monads than
ordinary monads. We introduce graded Eilenberg-Moore algebras for graded monads, and
observe that unlike in the modelling via vanilla monads, taking graded Eilenberg-Moore
algebras as formulas leads to reasonable trace logics, i.e. logics that are invariant under trace
equivalence. As a particularly tractable class of graded monads, we identify depth-1 graded
monads, corresponding to algebraic theories with only shallow equations; this class contains
most of the leading examples. For depth-1 graded monads, we establish a compositionality
result for graded algebras, which amounts to a compositional syntax for trace formulas.

Related Work. We study finite traces, orthogonally to work on coalgebraic infinite traces [7].
The previous coalgebraic treatments of finite traces mentioned above [12, 17, 14, 30, 5]
generally restrict to traces ending in accepting states, i.e. focus on language semantics in the
sense of automata theory rather than on trace semantics of reactive systems [1]. Especially
in the approach via the Eilenberg-Moore category [14, 30, 5], trace semantics is defined
via determinization, while in the present paper we opt for a direct definition. Recent work
by Klin and Rot [18] is, like the present paper and [17], concerned with trace logics. It
takes a principled choice of trace logic as the definition of trace equivalence, while we give
a semantic definition of trace equivalence and then develop logics that are invariant under
trace equivalence. The path-based semantics of linear-time logics considered in [8] implicitly
uses Kleisli composition in the graded monad induced by a Kleisli law.

2 Preliminaries

We fix a base category C throughout. A G-coalgebra (X, γ) for a functor G : C→ C consists
of a C-object X and a morphism γ : X → GX. A coalgebra morphism between G-coalgebras
(X, γ) and (Y, δ) is a morphism f : X → Y such that δ ◦ f = Gf ◦ γ. When C = Set, we say
that states x ∈ X and y ∈ Y in G-coalgebras (X, γ) and (Y, δ) are behaviourally equivalent
if there exist coalgebra morphisms f, g with common codomain such that f(x) = g(y).
Behavioural equivalence can be approximated using the (initial ω-segment of the) final
coalgebra sequence (Gn1)n∈N where 1 is a final object in C and Gn is n-fold composition
of G. The projections pn+1

n : Gn+11 → Gn1 are defined by induction where p1
0 : G1 → 1

is the unique arrow to 1 and pn+2
n+1 = G(pn+1

n). For every G-coalgebra (X, γ), there is a
canonical cone γn : X → Gn1 defined inductively by γ0 : X → 1 and γn+1 = G(γn)γ. We

Stefan Milius, Dirk Pattinson, and Lutz Schröder 255

say that states x ∈ X, y ∈ Y in G-coalgebras (X, γ) and (Y, δ) are finite-depth behaviourally
equivalent if γn(x) = δn(y) for all n ∈ N. If G is a finitary functor on Set, then finite-depth
behavioural equivalence coincides with behavioural equivalence [34].

A monad is a triple (M,η, µ) where M : C → C is a functor, and η : Id → M

and µ : MM → M are natural transformations such that µ ◦Mη = µ ◦ ηM = id and
µ◦Mµ = µ◦µM . Examples of monads are the powerset monad P and the distribution monad
D, which maps a set X to the set of functions f : X → [0, 1] such that

∑
x∈X f(x) = 1. An

Eilenberg-Moore algebra for a monad M is a morphism a : MX → X such that a ◦ ηX = idX
and a ◦Ma = a ◦ µX .

3 Monadic Trace Semantics, Informally

We recall monad-based trace semantics [19] using the basic example of labelled transition
systems, and then motivate the transition to the more fine-grained modelling using graded
monads. Consider the labelled transition system (LTS) over the alphabet Σ = {a, b} depicted
on the left below,

s0
a

}}

a

!!
s10

b

��

s11

s20

Pretraces Traces

Stage 0 : {(ε, s0)} {ε}

Stage 1 : {(a, s10), (a, s11)} {a}

Stage 2 : {(ab, s20))} {ab}

Stage 3 : ∅ ∅

whose traces at s0 are the prefixes of ab. The idea of monadic trace semantics is to produce
these traces from what we call pretraces, which in the case of LTS are pairs consisting of
a trace and a poststate; pretraces are generated incrementally by iterating the coalgebra
map representing the system in the Kleisli category of a suitable monad. LTS are standardly
modelled as coalgebras for the functor G given on sets by GX = P(Σ×X) ∼= P(X)Σ. We
embed G into the monadM given byMX = P(Σ∗×X) via an evident natural transformation
α. Let γ be the G-coalgebra structure representing the above LTS. Then the pretraces of s0
at stage n are the elements of (αγ)n(s0) where (αγ)n denotes the n-fold Kleisli composite of
αγ : X →MX, a morphism X → X in the Kleisli category of M . The traces are obtained
as the first projections of the pretraces, i.e. at each stage the trace set is an element of
M1 ∼= P(Σ∗), as summarized in the table above right. We observe that the pretraces at stage
n all have length n, so that viewing them just as elements of P(Σ∗ ×X) loses information.
One consequence of this loss of information is that a natural idea for developing a trace logic
for a monadic trace semantics fails, as explained in Remark 3.2.

I Remark 3.1. A property of states is trace-invariant if it is closed under trace equivalence.
In what follows, by a trace logic we mean a compositional syntax for trace-invariant properties.
To set the stage for our considerations on trace logics, we remark that being trace-invariant
alone is not a compositional property. E.g. in Hennessy-Milner logic, the formula ♦a>∧♦b>
is trace-invariant – it states that a and b are both traces. Now any sufficiently expressive
trace logic for LTS should presumably feature the operator ♦a; however, ♦a(♦a> ∧ ♦b>)
fails to be trace invariant. Indeed, the (known) logics that characterise trace equivalence in
labelled and probabilistic transition systems [3] (necessarily) do not come with the full set of
standard boolean connectives.

CALCO’15

256 Generic Trace Semantics and Graded Monads

Note also that in the case of probabilistic trace equivalence, the corresponding trace logic
is not interpreted over the standard set {⊥,>} of truth values: for probabilistic systems, a
formula ♦a1 . . .♦an

> evaluates to the probability of a system exhibiting a trace beginning
with a1 . . . an.

I Remark 3.2. In the above standard example, trace sets (at a given stage) are elements
of M1, the carrier of the free Eilenberg-Moore algebra for M on one generator. A putative
trace logic would have formulas whose evaluation at a state depends only on the traces of
that state, i.e. the evaluation map will, at each stage, factor through M1. It is thus tempting
to postulate that the semantics of trace formulas will arise via Eilenberg-Moore algebras for
M on the set of intended truth values, say, on 2 = {⊥,>} (see also a similar suggestion by
Moggi [22]). Specifically, an M -algebra on 2 consists of a complete lattice structure, w.l.o.g.
the usual one, and unary operations a, b; since the monad M arises via a distributive law
between P and Σ∗ × (−), a and b must moreover be join-continuous. There are only two
join-continuous self-maps of 2, the identity and the constant map ⊥. Thus, an M -algebra on
2 is determined by the subset Σ0 ⊆ Σ of letters that it interprets as the identity. Such an
algebra yields an operator 〈Σ0〉 of our trace logic, and the formula 〈Σ0〉> holds for a state
if each of its traces has a prefix mentioning only actions in Σ0. However, this constraint is
trivially satisfied for every trace by considering the empty prefix. Hence, we clearly want
to impose a more precise condition: 〈Σ0〉> should be satisfied by states all of whose traces
start with an action from Σ0.

Let us make this point more formal. For any formula φ of a trace logic, its semantics JφK
should be a sequence of predicates JφKn : M1→ 2, n ∈ N, determining at each stage n the sets
of traces satisfying φ. Now for any operator L of the logic we expect to have a compositional
definition of the semantics of L; that is, given a formula φ we wish to define the semantics
of Lφ knowing only the semantics JφK and using the interpretation of L as an M -algebra
JLK : M2→ 2. With only the monad structure of M available, the only natural definition
of the semantics of Lφ that comes to mind requires that JLKMJφKn : MM1 → 2 factors
through µ1 : MM1 → M1, yielding JLφKn : M1 → 2. But then JLφKn = JLφKnµ1Mη1 =
JLKMJφKnMη1 = JLKM(JφKnη1) so that JLφKn depends only on JφKnη1, i.e. only on whether
φ holds for the trace set {ε}. Again, the problem here is that in the preimage of a trace
set T under µ1 we have the element {({ε}, T)}, i.e. we have no control over the length of
prefixes that are split off T in the preimage under µ1.

It is the core contribution of the current work to show that under a more fine-grained modelling
via graded monads, discussed next, Eilenberg-Moore algebras do induce a reasonable notion
of trace logic that is expressive enough in several important examples and, for so-called
depth-1 graded monads, admits a compositional semantics, in fact following the ideas of the
above remark.

4 Graded Monads

We discuss some of the basic theory of graded monads, originally introduced by Smirnov [31]
(with grades in an arbitrary commutative monoid; here, we need only the case where grades
are natural numbers). Recall that finitary monads on Set correspond to algebraic theories;
under this correspondence, the functor part M of a monad may be thought of as mapping a
set X to the set MX of terms over X modulo equality. A graded monad has sets MnX for
all n ∈ N, which may be thought of as sets of terms of uniform depth n.

Stefan Milius, Dirk Pattinson, and Lutz Schröder 257

I Definition 4.1 (Graded Monad). A graded monad on C consists of a family of functors
Mn : C → C, n ∈ N, a natural transformation η : Id → M0 (the unit), and a family of
natural transformations

µnk : MnMk →Mn+k (n, k ∈ N),

the multiplication. These data are subject to the unit laws for each n ∈ N on the left below,

µ0nηMn = idMn = µn0Mnη

MnMkMm
Mnµ

km

//

µnkMm

��

MnMk+m

µn,k+m

��

Mn+kMm
µn+k,m

// Mn+k+m

and the associative law stating that for all n, k,m ∈ N, the above right diagram commutes.

Notice that the above definition implies that (M0, η, µ
00) is a monad. More abstractly,

a graded monad can be defined either as a graded monoid in the endofunctor category
[C,C] [31] or as a lax monoidal functor N→ [C,C] (with N viewed as a discrete monoidal
category), the latter making it an instance of the notion of parametric monad [21, 16].

Two standard equivalent presentations of monads carry over mutatis mutandis to the
graded setting, namely Kleisli triples and, over Set, algebraic theories. Graded Kleisli triples
have been introduced (in a more general setting) and proved equivalent to graded monads by
Katsumata [16]. All we need here is the Kleisli star notation: For f : X →MkY , we write

f∗n = µnkY Mnf : MnX →Mn+kY.

The presentation of graded monads in terms of graded theories is a stepping stone for isolating
depth-1 theories, which in turn are the key to obtaining compositional trace logics:

I Definition 4.2 (Graded theory). A graded theory (Σ, E, d) consists of an algebraic theory, i.e.
a (possibly class-sized) algebraic signature Σ and a class E of equations, and an assignment
d of a depth d(f) ∈ N to every operation f ∈ Σ. This induces a notion of a term having
uniform depth n: all variables have uniform depth 0, and f(t1, . . . , tn) with d(f) = k has
uniform depth n+ k if all ti have uniform depth n. (In particular, a constant c has uniform
depth n for all n ≥ d(c)). We then require that all equations t = s in E have uniform depth,
i.e. there exists n such that both t and s have uniform depth n. Moreover, we require that
for every set X and every k ∈ N, the class of terms of uniform depth k over variables from
X modulo provable equality is small (i.e. in bijection with a set).

We defer the discussion of an example to the next section (Example 5.2.3).
Graded theories and graded monads on Set are essentially equivalent concepts; for the

finitary case, this is implicit in [31]. In detail, a graded theory (Σ, E, d) induces a graded
monad by taking MnX to be the set of Σ-terms over X that have uniform depth n, modulo
equality derivable under E. Unit and multiplication are then defined as usual as conversion of
variables into terms and collapsing of layered terms, respectively, noting that these operations
behave as required w.r.t. uniform depth.

Conversely, a graded monad (Mn) over Set induces a graded theory (Σ, E, d) by taking Σ
to be the disjoint union of all sets Mnκ taken over all n ∈ N and all cardinals κ (so Σ is a
proper class) and letting f ∈Mnκ have arity κ and depth n. Then every Σ-term t over X of
uniform depth n has a canonical interpretation JtK ∈MnX defined recursively in the usual

CALCO’15

258 Generic Trace Semantics and Graded Monads

way, noting that this definition does produce an element of MnX. We take E to consist of
all equations s = t of uniform depth n over X such that JsK = JtK in MnX.

Formally, these constructions establish an equivalence of categories between graded
monads and graded monad morphisms in the obvious sense on one side, and graded theories
and derived theory morphisms on the other side (i.e. maps that take signature symbols to
terms, mapping axioms to derivable equations).

Examples. We proceed to discuss examples of graded monads; some of these are generic
constructions that depend on grades being natural numbers.

I Example 4.3.
1. Every monadM with multiplication µ and unit η gives rise to a graded monad, by putting

Mn = M and µnk = µ.
2. If F : C→ C is a functor, then Mn = Fn, the n-fold composition of F , defines a graded

monad with unit η = id and multiplication µnk = idFn+k .
3. Let C have binary coproducts, and let M0 = Id and Mn+1 = FMn + Id. Define the

natural transformations εn,n+k : Mn →Mn+k by ε00 = id, ε0,k+1 = inr (right injection)
and εn+1,n+1+k = Fεnk+Id, and the multiplication µnk : MnMk →Mn+k by µ0k = idMk

and µn+1,k = [inl ◦ Fµnk, εk,n+k+1] : FMnMk + Mk → FMn+k + Id. Then (Mn) is a
graded monad with multiplication (µnk) and unit η = id. For C = Set, we may think
of MnX as the set of terms of depth at most n in an algebraic theory, i.e. (Mn) is the
stratification of the free monad on F .

When C is monoidal, we have the following more specific example motivated fairly directly
by trace semantics. For the sake of readability, we elide coherence isomorphisms.

I Lemma 4.4. Let (C,⊗, I) be a monoidal category, and let M be a strong monad on C
with unit η, multiplication µ and strength t. Then for every object Σ of C, the assignment

MnX = M(Σn ⊗X)

with the unit η and the multiplication with components

µnkX = (M(Σn ⊗M(Σk ⊗X)) Mt //M2(Σn+k ⊗X) µ
//M(Σn+k ⊗X)),

where Σn denotes the n-th tensor power of the object Σ, defines a graded monad on C.

(Σ = I yields Example 4.3.1.) We may think of Σn as an object of length-n traces; cf.
Example 5.2.1.

Another example of graded monads is provided by monads that distribute over a functor
by means of a so-called Kleisli law. Given a monad T with multiplication µ and unit η, and
a functor F , a Kleisli law is a natural transformation λ : FT → TF such that λ ◦ Fη = ηF

and λ ◦ Fµ = µF ◦ Tλ ◦ λT . It is well-known [23] that Kleisli laws are in 1-1 correspondence
with liftings of F to the Kleisli category of M ; they also induce graded monads:

I Lemma 4.5. Let T be a monad with multiplication µ and unit η, F a functor, and
λ : FT → TF a Kleisli-law. Define λn : FnT → TFn by

λ0 = id and λn = λn−1F ◦ Fn−1λ.

Then the data

Mn = TFn µnk = µFn+k ◦ TλnF k

define a graded monad whose unit is the unit η of M .

Stefan Milius, Dirk Pattinson, and Lutz Schröder 259

A related example is obtained from a distributive law of a monad T over an endofunctor F
(also called an EM-law), i.e., a natural transformation δ : TF → FT such that λ ◦ ηF = Fη

and λ ◦ µF = Fµ ◦ λT ◦ Tλ. Such distributive laws are in 1-1 correspondence with liftings of
F to the category of Eilenberg-Moore algebras for T [15], and like Kleisli laws they induce
graded monads:

I Lemma 4.6. Let M be a monad with multiplication µ and unit η, F a functor, and
λ : TF → FT an EM-law. Define λn : TFn → FnT by

λ0 = id and λn = Fλn−1 ◦ λFn−1.

Then the data

Mn = FnT µnk = Fn+kµ ◦ FnλkT

define a graded monad whose unit is the unit η of M .

(Lemmas 4.5 and 4.6 both have Example 4.3.2 as a trivial special case.) This lemma is a
2-categorical dual of Lemma 4.5. Note that no accessibility assumptions on F or T are needed;
contrastingly, to obtain a monad from F and T in the situation of the lemma as in [19], one
needs to assume that F and T are finitary. Intuitively, a distributive law TF → FT allows
shifting all F -operations to the top of a term only for terms of sufficiently uniform shape, i.e.
those in TFn.

5 Trace Semantics Via Graded Monads

We now give our generic definition of coalgebraic trace semantics, induced by a natural
transformation from the coalgebraic type functor into a graded monad.

I Definition 5.1 (Trace semantics). A trace semantics for G-coalgebras consists of a graded
monad (Mn)n∈N and a natural transformation

α : G→M1.

The α-pretrace sequence (γ(n) : X →MnX)n∈N for a G-coalgebra γ : X → GX is defined by
induction on n: γ(0) = ηX : X →M0X and

γ(n+1) = (γ(n))∗1 ◦ αX ◦ γ = (X αγ
//M1X

M1γ
(n)

//M1MnX
µ1n

X //Mn+1X).

The α-trace sequence Tαγ is the sequence

(Mn! ◦ γ(n) : X →Mn1)n∈N.

Over an unrestricted base category, we just view the α-trace sequence as the α-trace semantics,
speaking informally of α-trace equivalence as identification under α-trace semantics, and of
properties of states being α-trace invariant if they depend only on the α-trace sequence. If
C = Set then states x ∈ X, y ∈ Y in G-coalgebras (X, γ), (Y, δ) are α-trace equivalent if
Mn!◦γ(n)(x) = Mn!◦δ(n)(y) for all n ∈ N. We think ofMnX as containing length-n pretraces
over X and of Mn1 as containing length-n traces. The morphism Mn! : MnX →Mn1 forgets
the poststate of a pretrace.

The graded monad (Mn) is a parameter of the framework, and typically arises by
imposing additional equational laws such as distributivity on the graded monad (Gn)n<ω of
Example 5.2.4.

CALCO’15

260 Generic Trace Semantics and Graded Monads

I Example 5.2. We proceed to elaborate some concrete instances of trace semantics via
graded monads, beginning with our initial motivating example. In all these examples, α is
just identity. (As a trivial example where α is not identity, take MnX = 1, which makes all
states α-trace equivalent.)
1. Trace semantics of labelled transition systems: Labelled transition systems are coalgebras

for the functor G defined by GX = P(Σ×X). To capture standard trace semantics, we
define a graded monad ((Mn), η, (µnk)) by

MnX = P(Σn ×X),

with ηX(x) = {(ε, x)} ∈M0(X) for x ∈ X, and µnk(S) = {(uv, x) | ∃(u, V) ∈ S. (v, x) ∈
V }. This is in fact just a special case of Lemma 4.4. We then have that given a state x in a
G-coalgebra γ : X → P(Σ×X), i.e. in a labelled transition system, γ(n)(x) ∈ P(Σn ×X)
is the set of pairs (w, y) where w is a length-n trace of x and y is the corresponding
poststate. Thus, the n-th component Mn!γ(n) of the α-trace sequence maps x to the the
set of its length-n traces.

2. Trace semantics of probabilistic labelled transition systems: Recall that generative probab-
ilistic (transition) systems (for simplicity without the possibility of deadlock, the latter
not to be confused with explicit termination) are modelled as coalgebras for the functor
D(Σ × −) where D denotes the discrete distribution functor (i.e. D(X) is the set of
discrete probability distributions on X, and D(f) takes image measures under f). That
is, a coalgebra structure γ : X → D(Σ ×X) assigns to each state x ∈ X a probability
distribution over pairs of actions and successor states. As in the previous example, we
obtain a graded monad for probabilistic trace semantics as an instance of the construction
from Lemma 4.4. In this case, we have MnX = D(Σn×−); η(x) is the Dirac distribution
at (ε, x); and for ν ∈ D(Σn ×D(Σk ×X)),

µnk(ν)(u, y) =
∑

u=vw,w∈Σk,ρ∈D(Σk×X)

ν(v, ρ)ρ(w, y)

for (u, y) ∈ Σn+k × X. We identify Mn1 with D(Σn). Thus, given a state x in a G-
coalgebra γ, i.e. in a generative probabilistic system, (Mn!γ(n))(x)(u) is the probability
of x to exhibit a trace u ∈ Σn when run for n steps; this captures the standard notion of
probabilistic trace [6].

3. Mazurkiewicz traces: The trace semantics proposed by Mazurkiewicz [20] takes concurrent
actions into account. Given an action alphabet Σ and an independence relation I, i.e.,
a symmetric and irreflexive relation I ⊆ Σ× Σ, let WI denote the monoid obtained by
quotienting Σ∗ modulo commutation of independent letters, and put Wn

I = {[w] ∈WI |
|w| = n}. Then MnX = P(Wn

I ×X) models length-n Mazurkiewicz pretraces, consisting
of a Mazurkiewicz trace and a poststate. Defining the unit and multiplication analogously
as for standard traces, we obtain a graded monad M for Mazurkiewicz traces.
By the considerations in Section 4, M corresponds to a graded theory. For the finitely
branching case, i.e. replacing P with the finite powerset functor Pf , this theory is explicitly
described as follows. It has the join semilattice operations and equations as operations
and equations of depth 0, and one unary operation a of depth 1, called an action, for every
a ∈ Σ. The theory expresses distribution of actions over the join semilattice structure, by
the depth-1 equations

a(⊥) = ⊥ a(x ∨ y) = a(x) ∨ a(y), (1)

and commutation of independent actions a, b by depth-2 equations a(b(x)) = b(a(x)).

Stefan Milius, Dirk Pattinson, and Lutz Schröder 261

4. Finite-depth behavioural equivalence: Recall that states in labelled transition systems
are finitely bisimilar [10] if Duplicator wins all finite-length bisimulation games. More
generally, two states in G-coalgebras are finite-depth behaviourally equivalent if their
images coincide in all stages of the final sequence [27]; see Section 2. Finite-depth
behavioural equivalence is an instance of α-trace equivalence: take the graded monad
induced by G as in Example 4.3.2, i.e. Mn = Gn. Then for a state x in a G-coalgebra
γ, M ! ◦ γ(n)(x) ∈ Gn1 is the image of x in the n-th stage of the final sequence under
the canonical cone [19]; i.e. two states are α-trace equivalent iff they are finite-depth
behaviourally equivalent.

5. Kleisli liftings: If G is of the form G = TF for a functor F and a monad T with
a Kleisli law λ : FT → TF , then we obtain a graded monad with Mn = TFn as in
Lemma 4.5. The arising α-trace equivalence is typically finer than the language equivalence
targeted in previous work on Kleisli-lifting based semantics [12], which for the sake of
distinction we shall refer to as generic language semantics. E.g. in the base example
for language semantics, non-deterministic automata, the coalgebraic model is given by
G = P(1 + Σ × (−)) for an alphabet Σ, with 1 = {X} denoting explicit termination,
i.e. acceptance; here, T = P, and F = 1 + Σ × −. Language semantics effectively has
TA as its semantic domain, where A is the initial F -algebra; in this case, TA = P(Σ∗),
and indeed generic language semantics instantiates exactly to the standard language
semantics of nondeterministic automata. In other words, generic language semantics
focusses entirely on explicit termination; in cases where the latter is not present, e.g.
labelled transition systems, generic language semantics becomes trivial.
Contrastingly, α-trace equivalence in TFn1 ∼= P(

∑n
i=0 Σi) records, at stage n, not only

the accepted words of length at most n−1 (gathered in the first n−1 summands) but also
those words of length n that are traces in the same sense as for labelled transition systems,
i.e. can be run without blocking. This is similar in spirit to the denotational semantics of
CSP [13], which distinguishes deadlock from successful termination X. Generic language
semantics is obtained by just forgetting this last summand, and one can generalize this
observation to show that generic language semantics is obtained as a natural quotient of
α-trace semantics [19].

6. Eilenberg-Moore liftings: An alternative approach to generic language semantics defines
trace equivalence as bisimilarity in a generic determinization that can be constructed under
certain conditions [14]. We shall refer to this approach as extension semantics. It is based
on assuming a coalgebraic type functor of the form G = FT where F is a functor and T
is a monad, together with a EM-law δ : TF → FT . The domain of extension semantics
is the final coalgebra Z of F . The standard example of non-deterministic automata is
subsumed under this approach by taking FX = 2×XΣ and T = P. Here, Z ∼= P(Σ∗),
and extension semantics captures precisely the language semantics of non-deterministic
automata. Like Kleisli-style generic language semantics, extension semantics becomes
trivial in the absence of explicit termination; e.g. when we change F to be just FX = XΣ,
then the final F -coalgebra becomes trivial.
In our framework, we define a graded monad with Mn = FnT as in Lemma 4.6. In
the example of non-deterministic automata, we have Mn1 = FnP1 with FX = 2×XΣ,
i.e. Mn1 consists of Σ-branching trees of uniform depth n, with inner nodes labelled in
2 = {⊥,>} and leaves in P1. Such a tree may be identified with a set A of words w of
length ≤ n over Σ: if |w| < n then w ∈ A iff the inner node addressed by w is labelled by
>; w is then accepted. If |w| = n then w ∈ A iff the leaf node addressed by w is labelled
by 1; w is then a trace, i.e. a state having w in its trace sequence at stage n can execute

CALCO’15

262 Generic Trace Semantics and Graded Monads

w without deadlocking. Language equivalence is recovered from α-trace equivalence by
canonically forgetting the information about traces; see [19] for details.

6 Graded Algebras

Fix for this section a graded monad M = ((Mn), η, (µnk)). As we think ofMn as constructing
terms of uniform depth n, it is natural to take graded algebras as providing an interpretation
of depth-n-terms to which additional layers can be added uniformly. The Mn-algebras
introduced below allow interpreting terms up to uniform depth n, and Mω-algebras terms of
arbitrary depth.

I Definition 6.1 (Graded algebras). For a given natural number n, an Mn-algebra A =
((Ak)k≤n, (amk)m+k≤n) consists of a family of carrier objects Ai and structure morphisms

amk : MmAk → Am+k

such that a0mηAm
= idAm

for all m ≤ n, and whenever m+ r + k ≤ n, the diagram on the
left

MmMrAk
Mma

rk

//

µmr
Ak

��

MmAr+k

am,r+k

��

Mm+rAk
am+r,k

// Am+r+k

MmAk
Mmfk //

amk

��

MmBk

bmk

��

Am+k
fm+k

// Bm+k

(2)

commutes. A morphism of Mn-algebras from A = ((Ak), (amk)) to B = ((Bk), (bmk)) is a
family of morphisms fk : Ak → Bk, k ≤ n, such that the right hand diagram above commutes
whenever m+ k ≤ n. Mω-algebras and their morphisms are defined similarly but with all
indices ranging over m, k, r ∈ N.

As expected, applying a graded monad to a given set yields a free algebra:

I Proposition 6.2. For every n ∈ N, FX = ((MmX)m≤n, (µmk)m+k≤n) is an Mn-algebra,
the freeMn-algebra over X w.r.t. the forgetful functor Un that maps anMn-algebra ((Ak), (amk))
to A0 and a morphism (fk) to f0; similarly for Mω-algebras.

In other words, Mn-algebras realize the monad M0 by an adjunction; for n = 0, we just
obtain the usual Eilenberg-Moore construction for M0. For later use in the semantics of
trace formulas, we note

I Proposition 6.3. If C has products, then the category ofMn-algebras has products described
as follows. The product of a family of Mn-algebras Ai = ((Aik)k≤n, (amki)m+k≤n) indexed
over i ∈ I has carriers

∏
i∈I A

k
i for k ≤ n and structure morphisms being composites

Mm

∏
i∈I A

i
k

〈Mmπi〉
//
∏
i∈IMmA

i
k

∏
i∈I

amk
i
//
∏
i∈I A

i
m+k.

7 Depth-1 Theories

Graded algebras in general need to be constructed monolithically – due to the entanglement
between the structure morphisms imposed by Diagram (2), it is not in general possible to
combine, say, an Mn-algebra and an Mk-algebra into an Mn+k-algebra. A combination
mechanism becomes possible, however, if we restrict the depth of equations in the associated
graded theory, as follows.

Stefan Milius, Dirk Pattinson, and Lutz Schröder 263

I Definition 7.1 (Depth-1 generation and presentation). We say that a graded theory is
depth-1-generated if all its operations have depth 1, and depth-1-presented or just depth-1 if
additionally all its equations have depth 1. A graded monad on Set is said to have these
properties if it can be generated by a corresponding graded theory.

I Example 7.2. All graded monads in Example 5.2 except the one in Example 5.2.3 are
depth-1.

We proceed to develop a more abstract characterization of depth-1 monads usable over
arbitrary base categories. Recall that an epi-transformation between set functors is a natural
transformation with surjective components.

I Proposition 7.3. A graded monad M = ((Mn), η, (µnk)) on Set is depth-1 generated iff
all µnk are epi-transformations, equivalently if all µ1k are epi-transformations. Moreover, M
is depth-1 iff additionally the diagram below is a coequalizer diagram for every n:

M1M0Mn

M1µ
0n

//

µ10Mn

//M1Mn
µ1n

//M1+n . (3)

I Remark 7.4. Notice that the coequalizer (3) is reflexive; indeed we haveM1µ
0n◦M1ηMn =

idM1Mn
= µ10Mn ◦M1ηMn by the unit law of the graded monad.

This motivates the following definition (over unrestricted base categories).

I Definition 7.5. A graded monad M = ((Mn), η, (µnk)) is depth-1 generated if all µnk are
epi-transformations. Moreover, M is depth-1 if it is depth-1 generated and for every n, the
diagram (3) is a coequalizer diagram, and M0µ

1n is an epi-transformation.

I Remark 7.6. [leftmargin=0pt,itemindent=3em]
1. Proposition 7.3 shows that Definition 7.1 and Definition 7.5 agree where both apply,

i.e. for graded monads on Set. The condition that M0µ
1n be an epi-transformation is

automatic in this case, since each µ1n
X is a coequalizer (hence a surjective map) and every

functor on Set preserves surjective maps.
2. The condition that M0µ

1n is an epi-transformation holds as soon as C is an algebraic
category such that every finitely presentable object is regular projective and M0 is finitary.
Indeed, by [2, 6.30] M0 preserves sifted colimits (and, in particular, reflexive coequalizers).
Thus, M0µ

1n is a (reflexive) coequalizer and therefore an epi-transformation.

The salient point about depth-1 monads is that they allow reducing Mn-algebras to families
of M1-algebras. We begin with morphisms:

I Proposition 7.7. If M is depth-1-generated then given Mn-algebras ((Ak), (akl)) and
((Bk), (bkl)), a family of maps fk : Ak → Bk is a morphism of Mn-algebras iff for each l < n,
(fl, fl+1) is a morphism of M1-algebras; i.e. f1+la

1l = b1lM1fl, and each fl is a morphism
(Al, a0l)→ (Bl, b0l) of M0-algebras.

We now present our main technical result, which states essentially that Mn-algebras for
depth-1 monads can be assembled from M1-algebras:

I Theorem 7.8. Let M = ((Mn), η, (µnk)) be a depth-1 graded monad, and let n ∈ N. Then
every family of morphisms

a1k : M1Ak → Ak+1, a0k : M0Ak → Ak (k ≤ n)

such that for each k < n, (a0k, a0,k+1, a1k) form an M1-algebra extends uniquely to an
Mn-algebra.

CALCO’15

264 Generic Trace Semantics and Graded Monads

In other words, combining this with the previous proposition, we have that in the depth-1-case,
an Mn-algebra is just a chain of M1-algebras with compatible M0-parts.

I Remark 7.9. In the corner case where Mn = Fn for an endofunctor F (Example 4.3.2),
M0-algebras are trivial and M1-algebras are just maps FA0 → A1. Therefore, the graded
objects studied by Ghilardi and Bezhanishvili [9, 4] can formally be seen as Mω-algebras with
additional structure.

8 Trace Logics

We now return to our original goal, to identify a generic notion of α-trace logic, understood as
a compositional syntax for α-trace-invariant properties (see Remark 3.1). The key ingredient
in our approach is the compositionality of graded algebras for depth-1 monads (Theorem 7.8):
We use M1-algebras as modal operators; by Theorem 7.8, we can build an Mn-algebra out
of n such operators. By Proposition 6.2, we can then use Mn-algebras (Ak) as formulas
describing α-traces of length n: we fix a truth value, i.e. an element τ : 1→ A0, and obtain
a morphism τ# of Mn-algebras by free extension. In particular, the diagram

M1Mk1

µ1k

��

M1τ
#
k // M1Ak

a1k

��

M1+k1
τ#

1+k

// A1+k

commutes for 1 + k ≤ n, thus precisely realizing the idea for a compositional semantics of
operators that previously failed for ordinary monads (Remark 3.2). Before we introduce
more specific syntax, we formally fix the semantics as just indicated:

I Definition 8.1. An α-trace property (A, τ) of rank n consists of an Mn-algebra A =
((Ak), (amk)) and a distinguished global element τ : 1→ A0 called the base. We think of the
elements of the Ak as truth values, and refer to An as the type of (A, τ). The evaluation of
(A, τ) on a G-coalgebra γ : C → GC is the morphism

C
γ(n)
//MnC

Mn!
//Mn1

τ#
n //An ,

where τ# is the unique homomorphism from the free Mn-algebra on 1, (Mk1)k≤n, to A such
that τ#

0 η = τ . (In particular, α-trace properties are, by definition, α-trace invariant, i.e their
evaluation factors through the α-trace sequence.)

We now develop a generic notion of α-trace formula as a syntax for α-trace properties, with
a number of syntactic and semantic parameters that can be chosen freely. Given an α-trace
property (A, τ), the Ai are, in principle, arbitrary M0-algebras; however, the current set of
examples suggests that it suffices to choose the Ai as powers of a fixed M0-algebra Ω of truth
values. We thus arrive at the following definition of generic α-trace logic.

Syntax. We parametrize the syntax over signatures Λ and Θ where Λ consists of modal
operators with given finite arities and Θ of truth constants. α-Trace formulas φ of rank n
are then defined by induction over n: the α-trace formulas of rank 0 are the truth constants;
α-trace formulas φ of rank n+ 1 have the form

φ ::= L(φ1, . . . , φk)

Stefan Milius, Dirk Pattinson, and Lutz Schröder 265

where L ∈ Λ is k-ary, and φ1, . . . , φk are α-trace formulas of rank n. (Again, observe that
this implies that when L is nullary, the formula L has rank n for every n ≥ 1.)

Semantics. We assume from now on that C has finite products. As parameters of the
semantics, we fix an M0-algebra Ω with structure map ω : M0Ω→ Ω serving as an object
of truth values, and interpretations of the signature symbols. We let Ωn denote the n-th
Cartesian power of Ω as anM0-algebra, with structure map ω(n) (formed as in Proposition 6.3).
An n-ary modal operator L ∈ Λ is interpreted as a morphism JLK : M1(Ωn)→ Ω such that
(ω(n), ω, JLK) form an M1-algebra with carriers Ω0 = Ωn, Ω1 = Ω; explicitly, ω and ω(n) are
algebras for the monad M0 and the diagrams

M1M0(Ωn) M1ω
(n)

//

µ10

��

M1(Ωn)

JLK
��

M0M1(Ωn)
M0JLK

//

µ01

��

M0Ω

ω

��

M1Ωn
JLK

// Ω M1(Ωn)
JLK

// Ω

commute. Finally, a truth constant c ∈ Θ is interpreted as a truth value JcK : 1→ Ω.
The semantics of an α-trace formula φ is an α-trace property JφK of type Ω, defined

recursively as follows. For c ∈ Θ, we put (overloading notation)

JcK = (Ω, JcK),

an α-trace property of rank 0. For an α-trace formula L(φ1, . . . , φk) of rank n+ 1, we form
the product of the rank-n α-trace properties Jφ1K, . . . , JφkK; explicitly, this product is formed
by taking products of Mn-algebras as in Proposition 6.3, and by tupling the bases (observe
that the evaluation of the product according to Definition 8.1 is the tuple formed from
the evaluations of the component properties). We thus obtain a rank-n α-trace property
(((Ar)r≤n, (amr)m+r≤n), τ) of type Ωk. Using Theorem 7.8, we then extend the latter to a
rank-(n+1) α-trace property (((Ar)r≤n+1, (amr)m+r≤n+1), τ) of type Ω by taking An+1 = Ω,
a0,n+1 = ω, and a1n = JLK : An = Ωk → Ω = An+1.

I Example 8.2.
1. Labelled transition systems. As truth value object, we take 2 = {⊥,>} with the usual

join semilattice structure; we put Θ = {>} and J>K = > : 1→ 2. We could then take Λ
to consist just of unary modal operators of the form 〈a〉, interpreted as

J〈a〉K : P(Σ× 2)→ 2, S 7→

{
> (a,>) ∈ S
⊥ otherwise

much as in Remark 3.2. This defines exactly the usual trace logic for LTS (in particular
is already sufficient to distinguish states up to trace equivalence): 〈a〉φ says that there
exists a trace that begins with a and continues with a trace satisfying φ.
We obtain a slightly more interesting logic by extending Λ with operators of higher arity.
Due to the equations imposed by the graded monad (Mn) = (P(Σn×−)), an M1-algebra
with carriers 2k, 2 interprets a ∈ Σ as a join-continuous map 2k → 2; such maps have
the form (b1, . . . , bk) 7→

∨
i∈I bi for some I ⊆ {1, . . . , k}. Thus, we can introduce k-ary

operators L of the form

L(φ1, . . . , φk) =
∨
a∈Σ〈a〉

∨
i∈Ia

φi (Ia ⊆ {1, . . . , k});

that is, we enrich the language with disjunction.

CALCO’15

266 Generic Trace Semantics and Graded Monads

2. Probabilistic trace logic: Recall that generative probabilistic transition systems are
coalgebras for D(Σ×−), and their trace semantics is given by the graded monad (Mn) =
(D(Σn×−)); in particular,M0 ∼= D. To obtain a trace logic, we take Λ = {〈Σ0〉 | Σ0 ⊆ Σ},
and Θ = {1}. We choose Ω = [0, 1] as the object of truth values, made into a D-algebra
by taking expected values, i.e. a formal convex combination

∑
piqi over [0, 1] is mapped

to the arithmetic sum
∑
piqi. We put J1K = 1 ∈ [0, 1]. Finally, we interpret the modal

operator 〈Σ0〉 by

J〈Σ0〉K : D(Σ× [0, 1])→ [0, 1], µ 7→
∑
a∈Σ0,p∈[0,1] pµ({(a, p)}).

Then a formula 〈Σn〉 · · · 〈Σ1〉p evaluates, at a state c, to p times the probability that c
takes a trace in Σn · · ·Σ1; up to the slightly more general syntax, this is exactly the usual
trace logic for generative probabilistic transition systems (see, e.g., [3]). Similarly as in
the previous example, we can move to a richer language with higher-arity modal operators.
As the distributive law behind the multiplication of D(Σn ×−) (Example 5.2.2) amounts
to requiring that an M1-algebra with carriers [0, 1]k, [0, 1] interprets every a ∈ Σ as a
morphism [0, 1]k → [0, 1] of D-algebras, we thus extend the language with affine maps (in
analogy to adding disjunction in the case of LTS), i.e. with formulas c+

∑
i qiφi, subject

to the proviso that (xi) 7→ c +
∑
qixi defines a map [0, 1]k → [0, 1]. In particular, the

extended language includes fuzzy negations 1− φ.
3. Coalgebraic modal logic: Recall that finite-depth behavioural equivalence on G-coalgebras

is α-trace equivalence for the graded monad MnX = GnX (Example 5.2.4). Now
finite-depth behavioural equivalence is precisely the equivalence described by coalgebraic
modal logic for a separating set of predicate liftings (no assumptions are needed on
the functor) [24, 28, 29]. The simplest example is Hennessy-Milner logic over labelled
transition systems; other examples include probabilistic, graded, and neighbourhood-
based logics [26]. In fact, coalgebraic modal logic can be seen as an α-trace logic.
Specifically, let Λ be a signature of finitary (possibly nullary) modal operators L, with
given interpretations as predicate liftings for G. The latter are equivalent to subsets
of G(2k) where k is the arity, i.e. to maps JLK : G(2k) → 2. Predicate liftings are
closed under Boolean combination [28], so we can assume that Λ is closed under Boolean
combinations. Therefore, we can restrict the syntax of coalgebraic modal logic to nothing
but closed terms formed from the operations in Λ (the only other standard ingredient are
Boolean operators, now absorbed by Λ).
We define an α-trace logic by taking the same Λ, and Θ = ∅; moreover, we take Ω = 2 to be
the truth value object. The interpretations Λ already have the required type G(2k)→ 2;
since M0 is the identity monad, and the M0-algebra structure on 2 is therefore trivial,
there are no further conditions to check. Trace formulas over Λ and Θ are, then, exactly
the same as formulas in coalgebraic modal logic over Λ, and the semantics is the same in
both settings.

I Remark 8.3. The above examples seem to indicate that there is no single canonical
choice for the truth value object Ω. In some cases, the free M0-algebra M01 will do,
as in Example 8.2.1 or in a variant of Example 8.2.2 that uses subprobabilities instead
of probabilities. As it stands, Ω is isomorphic to M02 in Example 8.2.2, similarly in
Example 8.2.3. Given Ω, a morphism M1(Ωn) → Ω corresponds to an n-ary lifting of
Ω-valued predicates for M1, i.e. a transformation (ΩX)n → ΩM1X , natural in X [28]; we
leave the analysis of the predicate liftings arising from the interpretations JLK : M1(Ωn)→ Ω
of n-ary modal operators L to future work.

Stefan Milius, Dirk Pattinson, and Lutz Schröder 267

I Remark 8.4. In all the above examples, the trace logic is expressive, i.e. logically equivalent
states are α-trace equivalent. In the general case, it is trivial to come up with an expressive
set of α-trace properties: just take, for each n, the free Mn-algebra over 1 (Proposition 6.2)
as an α-trace property of rank n. Of course, this is uninteresting, as it amounts to just
taking trace sets as logical formulas; also, it does not constitute a compositional syntax for
α-trace formulas. We leave the identification of criteria for expressiveness of a given trace
logic to future research.

9 Conclusions and Future Work

We have shown how many forms of trace semantics of coalgebras, including the usual trace
semantics of nondeterministic and probabilistic labelled transition systems and Mazurkiewicz
traces as well as finite-depth behavioural equivalence, can be modelled uniformly by embedding
the coalgebraic type functor into a graded monad. A salient point about this approach is
that it constitutes, to our best understanding, the first native semantic definition of generic
trace equivalence, while existing approaches start either from a determinization procedure or
a trace logic.

We have introduced a notion of graded algebras, which serve as trace-invariant properties.
As our main technical result, we have shown that for the more restrictive class of depth-1
monads, graded algebras can be built in a modular fashion. This gives rise to a compositional
syntax for trace-invariant logics. We have illustrated how such logics arise for our main
examples of trace semantics, thus regaining and extending standard logics in the case of plain
and probabilistic traces, and coalgebraic modal logic in the case of finite-depth behavioural
equivalence.

Future investigations will be directed at analysing the expressivity as well as algorithmic
aspects of trace logics, including the exploration of temporal extensions.

Acknowledgements. We wish to thank Alexander Kurz and Tadeusz Litak for useful
discussions and pointers to the literature, and Erwin R. Catesbeiana for hints on inconsistent
graded monads.

References
1 Luca Aceto, Anna Ingólfsdóttir, Kim Larsen, and Jiři Srba. Reactive systems: modelling,

specification and verification. Cambridge Univ. Press, 2007.
2 JiříAdámek, JiříRosický, and Enrico Vitale. Algebraic Theories. Cambridge Univ. Press,

2011.
3 Marco Bernardo and Stefania Botta. A survey of modal logics characterising behavioural

equivalences for non-deterministic and stochastic systems. Math. Struct. Comput. Sci.,
18:29–55, 2008.

4 Nick Bezhanishvili and Silvio Ghilardi. The bounded proof property via step algebras and
step frames. Ann. Pure Appl. Logic, 165:1832–1863, 2014.

5 Marcello Bonsangue, Stefan Milius, and Alexandra Silva. Sound and complete axiomatiza-
tions of coalgebraic language equivalence. ACM Trans. Comput. Log., 14, 2013.

6 Ivan Christoff. Testing equivalences and fully abstract models for probabilistic processes. In
Theories of Concurrency, CONCUR 1990, volume 458 of LNCS, pages 126–140. Springer,
1990.

7 Corina Cîrstea. A coalgebraic approach to linear-time logics. In Foundations of Software
Science and Computation Structures, FoSSaCS 2014, volume 8412 of LNCS, pages 426–440.
Springer, 2014.

CALCO’15

268 Generic Trace Semantics and Graded Monads

8 Corina Cîrstea. Canonical coalgebraic linear time logics. In Proc. CALCO, 2015. This
volume.

9 Silvio Ghilardi. An algebraic theory of normal forms. Ann. Pure Appl. Logic, 71:189–245,
1995.

10 Valentin Goranko and Martin Otto. Model theory of modal logic. In P. Blackburn, J. van
Benthem, and F. Wolter, editors, Handbook of Modal Logic, pages 249–329. Elsevier, 2006.

11 Daniel Gorín and Lutz Schröder. Simulations and bisimulations for coalgebraic modal logics.
In Algebra and Coalgebra in Computer Science, CALCO 2013, volume 8089 of LNCS, pages
253–266. Springer, 2013.

12 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Log. Meth. Comput. Sci., 3, 2007.

13 Antony Hoare. Communicating sequential processes. Prentice Hall, 1985.
14 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization.

In Coalgebraic Methods in Computer Science, CMCS 2012, volume 7399 of LNCS, pages
109–129. Springer, 2012.

15 Peter Johnstone. Adjoint lifting theorems for categories of algebras. Bull. London
Math. Soc., 7:294–297, 1975.

16 Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. In Principles
of Programming Languages, POPL 2014, pages 633–646. ACM, 2014.

17 Christian Kissig and Alexander Kurz. Generic trace logics. arXiv preprint 1103.3239, 2011.
18 Bartek Klin and Juriaan Rot. Coalgebraic trace semantics via forgetful logics. In Founda-

tions of Software Science and Computation Structures, FoSSaCS’15, 2015.
19 Alexander Kurz, Stefan Milius, Dirk Pattinson, and Lutz Schröder. Simplified coalgebraic

trace equivalence. In Software, Services, and Systems, volume 8950 of LNCS, pages 75–90.
Springer, 2015.

20 A. Mazurkiewicz. Concurrent Program Schemes and Their Interpretation. Aarhus Univer-
sity, Comp. Sci. Depart., DAIMI PB-78, July 1977.

21 P.-A. Mellies. The parametric continuation monad. Preprint, 2015.
22 Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93:55–92, 1991.
23 Philip Mulry. Lifting theorems for Kleisli categories. In Mathematical Foundations of

Programming Semantics, MFPS 1993, volume 802 of LNCS, pages 304–319. Springer, 1994.
24 D. Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame

J. Formal Logic, 45:19–33, 2004.
25 J. Rutten. Universal coalgebra: A theory of systems. Theor. Comput. Sci., 249:3–80, 2000.
26 L. Schröder and D. Pattinson. PSPACE bounds for rank-1 modal logics. ACM Trans.

Comput. Log., 10:13:1–13:33, 2009.
27 L. Schröder and D. Pattinson. Rank-1 modal logics are coalgebraic. J. Log. Comput., 20,

2010.
28 Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theor.

Comput. Sci., 390:230–247, 2008.
29 Lutz Schröder and Dirk Pattinson. Coalgebraic correspondence theory. In Foundations of

Software Structures and Computer Science, FoSSaCS 2010, volume 6014 of LNCS, pages
328–342. Springer, 2010.

30 Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rutten. Generalizing de-
terminization from automata to coalgebras. Log. Meth. Comput. Sci, 9(1:9), 2013.

31 A. Smirnov. Graded monads and rings of polynomials. J. Math. Sci., 151:3032–3051, 2008.
32 Sam Staton. Relating coalgebraic notions of bisimulation. Log. Meth. Comput. Sci., 7,

2011.

Stefan Milius, Dirk Pattinson, and Lutz Schröder 269

33 Rob van Glabbeek. The linear time-branching time spectrum (extended abstract). In
Theories of Concurrency, CONCUR’90, volume 458 of LNCS, pages 278–297. Springer,
1990.

34 James Worrell. On the final sequence of a finitary set functor. Theor. Comput. Sci.,
338:184–199, 2005.

CALCO’15

	Introduction
	Preliminaries
	Monadic Trace Semantics, Informally
	Graded Monads
	Trace Semantics Via Graded Monads
	Graded Algebras
	Depth-1 Theories
	Trace Logics
	Conclusions and Future Work

