
Constructing Orthogonal Designs in Powers of
Two: Gröbner Bases Meet Equational Unification
Ilias Kotsireas1, Temur Kutsia2, and Dimitris E. Simos∗3

1 Wilfrid Laurier University
Waterloo, Ontario, Canada
ikotsire@wlu.ca

2 RISC, Johannes Kepler University
Altenbergerstrasse 69, A-4040 Linz, Austria
kutsia@risc.jku.at

3 SBA Research
Favoritenstrasse 16, A-1040 Vienna, Austria
dsimos@sba-research.org

Abstract
In the past few decades, design theory has grown to encompass a wide variety of research direc-
tions. It comes as no surprise that applications in coding theory and communications continue to
arise, and also that designs have found applications in new areas. Computer science has provided
a new source of applications of designs, and simultaneously a field of new and challenging prob-
lems in design theory. In this paper, we revisit a construction for orthogonal designs using the
multiplication tables of Cayley-Dickson algebras of dimension 2n. The desired orthogonal designs
can be described by a system of equations with the aid of a Gröbner basis computation. For
orders greater than 16 the combinatorial explosion of the problem gives rise to equations that
are unfeasible to be handled by traditional search algorithms. However, the structural proper-
ties of the designs make this problem possible to be tackled in terms of rewriting techniques,
by equational unification. We establish connections between central concepts of design theory
and equational unification where equivalence operations of designs point to the computation of
a minimal complete set of unifiers. These connections make viable the computation of some
types of orthogonal designs that have not been found before with the aforementioned algebraic
modelling.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.4.1 Math-
ematical Logic, G.2.1 Combinatorics

Keywords and phrases Orthogonal designs, unification theory, algorithms, Gröbner bases.

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.241

1 Introduction

Orthogonal designs are an important class of combinatorial designs. They are of great interest
in applications for wireless communication [15] and in statistics [11]. Even though there
exist many combinatorial constructions for orthogonal designs [6], ones that originate from
Cayley-Dickson algebras [7, 8] have not been explored enough. In particular, as we exemplify
in this work, these algebras can provide a general framework for obtaining orthogonal designs

∗ The work of the third author was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme.

© Ilias Kotsireas, Temur Kutsia, and Dimitris E. Simos;
licensed under Creative Commons License CC-BY

26th International Conference on Rewriting Techniques and Applications (RTA’15).
Editor: Maribel Fernández; pp. 241–256

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2015.241
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

242 Orthogonal Designs in Powers of Two

for powers of two. Designs in these orders are also of theoretical interest due to their
connection to the asymptotic existence of orthogonal designs [6].
Contribution. In this paper, after revisiting past methods we formulate orthogonal design
problems in terms of equational unification. In particular, the Cayley-Dickson formulation
gives rise to a polynomial system of equations of a specific form, that due to its size cannot be
handled by traditional search algorithms. By establishing and proving connections between
central concepts of the theory of orthogonal designs and equational unification, we are able
to completely tackle these systems of equations, where each solution of them gives rise
to an orthogonal design. The efficiency of the unification algorithms needed to solve the
corresponding orthogonal design problems is evident also by the fact that we found some
types of orthogonal designs, that were not known before with this algebraic modelling of
Cayley-Dickson algebras. Our approach not only reports the orthogonal designs, but also
constructs the corresponding design matrices. In this way, we always give a constructive
solution to the problem which is not always the case with other approaches used in design
theory as we explain in the last section. Last but not least, we would like to emphasize the
novel connections we established between base orthogonal designs, a notion introduced in
this paper, and minimal complete sets of unifiers, as a means to advance the knowledge in
the field of design theory (orthogonal design equivalence among other topics) and also benefit
from the algorithmic notions of unification theory as we applied them in this paper.

Structure of the paper. In Section 2 we give some details regarding orthogonal designs and
list some of their applications. Afterwards, in Section 3 we detail the algebraic framework
for constructing orthogonal designs via computation algebra where we also introduce some
new terms for designs. Some first connections with unification theory are also shown. In the
subsequent section we give some basic notions of unification theory while in Section 5 we
establish additional connections of designs with concepts of unification theory that allow us
to formulate orthogonal design problems as unification problems. In Section 6 we describe
the unification algorithms we developed for solving the unification problems and in the last
section, we translate the solutions obtained via unifiers back to orthogonal designs.

2 Orthogonal Designs

In this section, we give some details regarding orthogonal designs. We provide the necessary
definitions and related concepts that will be needed for our approach and list also some
applications of orthogonal designs that are of broader interest.

2.1 Definitions and Related Concepts
An orthogonal design of order n and type (s1, s2, . . . , su) (si > 0), denoted
OD(n; s1, s2, . . . , su), on the commuting variables x1, x2, . . . , xu, is an n× n matrix D with
entries from {0,±x1,±x2, . . . ,±xu} such that

DDT =
(

u∑
i=1

six
2
i

)
In

where by In we denote the identity matrix of order n. Alternatively, the rows of D are
formally orthogonal and each row has precisely si entries of the type ±xi. The design matrix
D, may be considered as a matrix with entries in the field of quotients of the integral domain

I. Kotsireas, T. Kutsia and D. E. Simos 243

Z[x1, x2, . . . , xu]. In [5], where this was first defined, it was mentioned that

DTD =
(

u∑
i=1

six
2
i

)
In

and so our alternative description of D applies equally well to the columns of D. It was
also shown in [5] that u ≤ ρ(n), where ρ(n) (Radon’s function) is defined by ρ(n) = 8c+ 2d,
when n = 2ab, b odd, a = 4c + d, 0 ≤ d < 4. D will be called a full orthogonal design, if
n = s1 + s2 + . . .+ su. Due to the Equating-Killing Lemma, given below, which is of central
importance in the theory of Orthogonal Designs, one is interested in full orthogonal designs.

I Lemma 1 (The Equating and Killing Lemma, Geramita and Seberry [6]). If D is an orthogonal
design OD(n; s1, s2, . . . , su) on the commuting variables {0,±x1,±x2, . . . ,±xu} then there
exists an orthogonal design:
(i) OD(n; s1, s2, . . . , si + sj , . . . , su) (si = sj, equating variables)
(ii) OD(n; s1, s2, . . . , sj−1, sj+1, . . . , su) (sj = 0, killing variables)
on the u− 1 commuting variables {0,±x1,±x2, . . . ,±xj−1,±xj+1, . . . ,±xu}.

We also list the Doubling Lemma, which will be needed in the last section of the paper.

I Lemma 2 (The Doubling Lemma, Geramita and Seberry [6]). If there exists an orthogonal
design of order n and type (s1, s2, . . . , su), then there exists orthogonal designs of type
(i) (e1s1, e2s2, . . . , eusu) where ei = 1 or 2,
(ii) (s1, s1, fs2, . . . , fsu) where f = 1 or 2.

I Example 3. We give an example of some small orthogonal designs, and how we can obtain
one from another due to Lemma 1 and related equivalence operations.

[
x1 x2
x2 −x1

]
,


x1 −x2 −x3 −x4
x2 x1 −x4 x3
x3 x4 x1 −x2
x4 −x3 x2 x1

 ,


x1 x2 x2 x4
−x2 x1 x4 −x2
−x2 −x4 x1 x2
−x4 x2 −x2 x1

 ,

x1 0 −x3 0
0 x1 0 x3
c 0 x1 0
0 −x3 0 x1


OD(2; 1, 1) OD(4; 1, 1, 1, 1) OD(4; 1, 1, 2) OD(4; 1, 1)

OD(4; 1, 1, 2) can be obtained from OD(4; 1, 1, 1, 1) by setting x3 = −x2 in its design
matrix.
OD(4; 1, 1) can be obtained from OD(4; 1, 1, 1, 1) by setting x2 = x4 = 0 in its design
matrix.

It is important to note here that in the first case the transformation is composed by the
equating operation of the Equating and Killing Lemma and also changing the sign of the
variable. The last operation leaves invariant the type of the design, however changes the
design matrix. We describe more formally equivalence of orthogonal designs taken from [18].

Given two designs D1 and D2 of the same order, we say that D2 is a variant of D1, if it
is obtained from D1 by the following operations, performed in any order and any number of
times:

1. Multiply one row (one column) by -1.
2. Swap two rows (columns).
3. Rename or negate a variable throughout the design.

RTA 2015

244 Orthogonal Designs in Powers of Two

It is easy to prove that the relation of being a variant is an equivalence relation. Below
we write D1 ' D2 to express this fact. Note also that if D1 ' D2, then D1 and D2 have the
same type. This follows directly from the definition of orthogonal design.

The general discussion of equivalence of orthogonal designs is very difficult because of
the lack of a nice canonical form. It also means that it is quite difficult to decide whether
or not two given orthogonal designs of the same order are equivalent. To the best of our
knowledge, there has been little effort contributing at this point. In [18], where the above
mentioned notion of equivalence was introduced, some designs for small orders have been
classified by hand.

The approach proposed in this paper, besides providing a systematic search method for
orthogonal designs in order of powers of two, also exhibits some interesting connections
between the Equating and Killing Lemma and equivalence of orthogonal designs on the one
hand, and fundamental concepts of unification theory such as subsumption and equi-generality
on the other hand, as we can see below in Section 5.

2.2 Applications of Orthogonal Designs
We give some references to works describing applications of orthogonal designs. We do not
aim to provide a comprehensive, or by all means complete, treatment of the subject, as this
is not the purpose of the present paper. We are merely interesting in giving a flavor of the
many different application areas involved, in order to exhibit that while orthogonal designs
are specialized types of combinatorial structures their applications are of a broader interest.

As first noted in [11], orthogonal designs are used in statistics where they generate optimal
statistical designs used in weighing experiments. A special case of orthogonal designs, the
so called Hadamard matrices play an important role also in coding theory where they have
been used to generate the so called Hadamard codes ([10]), i.e. error-correcting codes that
correct the maximum number of errors. It is worthwhile to note that, a Hadamard code
was used during the 1971 space probe Mariner 9 mission by NASA to correct for picture
transmission error. The Mariner 9 mission and the Coding Theory used in that project
are the subjects of [12] and [16]. Recently, complex orthogonal designs were used in [15] to
generate space-time block codes, a relatively new paradigm for communication over Rayleigh
fading channels using multiple transmit antennas. In this case, the orthogonal structure
of the space-time block code derived by the orthogonal design gives a maximum-likelihood
decoding algorithm which is based only on linear processing at the receiver.

Orthogonal designs are also used in telecommunications where they generate sequences
used in digital communications and in optics for the improvement of the quality and
resolution of image scanners. More details, regarding their applications in communications
and signal/image processing can be found in [6, 13,17].

3 Orthogonal Designs via Computational Algebra

In this section, we revisit a construction for orthogonal designs based on the multiplication
tables of algebras of order n. These multiplication tables are used to construct right
multiplication matrices that in the sequel are used to construct orthogonal designs. Using
the right multiplication operator is a way to overcome the obstacle of non-associativity of
the algebra. Non-associativity is an obstacle, because it is incompatible with the existence
of matrix representations, that we could use directly to construct orthogonal designs. To
circumvent this obstacle we use the right multiplication operator, as it seems that left
multiplication is not suitable for our purposes.

I. Kotsireas, T. Kutsia and D. E. Simos 245

First, we give an account of the classical Williamson construction for orthogonal designs [2],
from the point of view of quaternions, following Baumert and Hall to be able to use it as
reference in subsequent constructions.

A basis for quaternions is given by the four elements 1, i, j, k, having the properties

i2 = −1, j2 = −1, k2 = −1, ij = k, ji = −k, ik = −j, ki = j, jk = i, kj = −i.

These properties are enough to specify the full multiplication table for the four basis
elements. We note that quaternion multiplication is not commutative.

To associate a 4× 4 matrix to each basis element, we use the right multiplication operator
on the column vector v =

[
1 i j k

]t
. Then the right multiplications v ·1, v · i, v ·j, v ·k,

give rise to the following four 4× 4 matrices respectively:

q1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , q2 =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 ,

q3 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , q4 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 .
Let A, B, C, D be commuting variables. Then the sum

Aq1 +Bq2 + Cq3 +Dq4

is equal to the classical Williamson array

H4 =


A B C D

−B A −D C

−C D A −B

−D −C B A


which has the property

H4H
T
4 = (A2 +B2 + C2 +D2)I4.

The matrix H is the design matrix of an OD(4; 1, 1, 1, 1).
The Cayley-Dickson process allows us to obtain an algebra of dimension 2n from an

algebra of dimension n, see [4]. One limitation of this process is that restricts our method to
study ODs in powers of two. By applying the Cayley-Dickson process successively to the
algebras of quaternions we get octonions and sedenions [7]. Repeating the Cayley-Dickson
process to the algebra of sedenions one obtains a Cayley-Dickson algebra of dimension 32 and
doing the same for the latter algebra we can obtain a Cayley-Dickson algebra of order 64 [8].

3.1 Cayley-Dickson Orthogonal Designs
It is important to note that the Cayley-Dickson process essentially constructs the multiplica-
tion tables we need to model orthogonal designs. Now we describe a generic formulation of

RTA 2015

246 Orthogonal Designs in Powers of Two

the algebraic modelling with multiplication tables of appropriate Cayley-Dickson algebras of
order n to obtain orthogonal designs of order n.

Take a Cayley-Dickson algebra of dimension n with basis e0 = 1, e1, . . . , en−1. To associate
an n×n matrix to each basis element, we use the right multiplication operator on the column
vector v =

[
1 e1 . . . en−1

]t
. Then the n right multiplications v ·e0, v ·e1, . . . , v ·en−1

give rise to n matrices q0, . . . , qn−1 of order n. Let A1, . . . , An be commuting variables. Then

the sum A =
n−1∑
i=0

Ai+1qi is equal to an n × n matrix with the property that the diagonal

elements of AAT are all equal to
n∑
i=1

A2
i , but whose other elements are not necessarily all

zero.
By requiring that all elements of AAT (except the diagonal ones) are equal to zero, we

obtain a polynomial system of equations in the set of variables {A1, . . . , An}. We define this
problem as the Cayley-Dickson Orthogonal Design (CDOD) problem.

To represent solutions, we introduce a special kind of mapping that we call substitution
mapping or, simply, a substitution. Formally, a substitution from a set S1 to a set S2 ⊇ S1
is a mapping from S1 to S2 which is identity almost everywhere. We use lower case Greek
letters to denote them. The identity substitution is denoted by ε. The domain and the
range of a substitution σ are defined, respectively, as dom(σ) := {u | u ∈ S1, u 6= σ(u)} and
ran(σ) := ∪u∈dom(σ){σ(u)}. A substitution, usually, is represented as a function by a finite
set of bindings of variables in its domain. For instance, a substitution σ is represented as
{u 7→ σ(u) | u ∈ dom(σ)}.

It is important to highlight that we seek solutions of CDOD’s in an endomorphic form, i.e.,
substitutions from a set S to itself. For a CDOD of order n, this set is {A1, . . . , An}. Moreover,
the domain and the range of such substitutions should be disjoint, i.e., the substitutions
should be idempotent. These requirements are justified by the following:

Mapping of variables Ai to variables Aj , for i, j ∈ {1, . . . , n}, is due to the fact that we
force the matrix A to be an orthogonal design and by definition the diagonal elements
give rise to a quadratic form that is a sum of squares.
In particular, if several variables map to the same variable, it is the analogue of the
equating operation of the Equating-Killing Lemma for orthogonal designs for the equations
that are produced by the algebraic modelling. It is clear from the context that equating
variables in the polynomial system of equations, is the same as equating variables in the
design matrix representation.

I Theorem 4. Let n = 2m for some m > 0. Any endomorphic idempotent solution to CDOD
of order n gives rise to an orthogonal design of order n, which we call a Cayley-Dickson
orthogonal design of order n.

Proof. Let σ be an endomorphic idempotent solution of the CDOD of order n over the set of
variables {A1, . . . , An}. From σ, we associate with each Ai a number si as follows:

If Ai ∈ dom(σ) and Ai /∈ ran(σ), then si = 0.
If Ai /∈ dom(σ) and Ai /∈ ran(σ), then si = 1.
If Ai /∈ dom(σ) and Ai ∈ ran(σ), then si = m+ 1, where m is the number of variables
that map to Ai by sigma.

These si’s, together with the corresponding Ai, give a matrix A with the property AAT =

(
k∑
j=1

sjA
2
j)In, for k ≤ ρ(n), and ρ(n) is the Radon function that gives an upper bound on the

I. Kotsireas, T. Kutsia and D. E. Simos 247

number of variables that can appear in a design. This is by definition an orthogonal design
of order n and type (s1, . . . , sk). J

Now, it is important to note that the CDOD problem is instantiated for orders of power of
two, since in these orders we are able to construct the multiplication tables of the respective
algebras by using successively the Cayley-Dickson process on the construction of designs via
quaternions of Baumert and Hall. We are interested in Cayley-Dickson orthogonal designs in
orders 16, 32 and 64.

CDOD16: An instance of the CDOD problem for order 16, consists of a polynomial system
of 42 equations in 14 variables.
CDOD32: An instance of the CDOD problem for order 32, consists of a polynomial system
of 252 equations in 30 variables.
CDOD64: An instance of the CDOD problem for order 64, consists of a polynomial system
of 1182 equations in 62 variables.

We emphasize here the computational difficulty of retrieving all endomorphic solutions of
the previous three problems. We have used Gröbner bases to verify the computations of [7]
and [8], for orders 16 and 32, 64, respectively. In particular, we have computed in Magma
V2.12-14 a reduced Gröbner basis (for a total degree reverse lexicographical ordering) for the
polynomial systems of the CDOD16 and CDOD32 problem. For order 64 we have not managed
to compute a Gröbner basis due to its enormous computational cost. Clearly, a solution of
the reduced polynomial system obtained by a Gröbner basis corresponds to a solution of the
original system. We formulate the CDOD problems in terms of Gröbner bases, below.

CDODGB16: A reduced Gröbner basis of the CDOD problem for order 16, consists of a
polynomial system of 21 equations in 14 variables.
CDODGB32: A reduced Gröbner basis of the CDOD problem for order 32, consists of a
polynomial system of 290 equations in 30 variables.

Gröbner bases give some insight how to locate endomorphic solutions due to the fact that
binomial terms of the polynomial system could be written in a canonical form. However, this
is not sufficient to compute all required solutions as there is no indication for the structure of
substitution of different variables. Moreover, using this property that distills from Gröbner
bases in [7] and [8], it was feasible only to compute a handful of solutions and respectively
orthogonal designs.

It is clear that a specialized equation solver is needed to retrieve all endomorphic solutions
for the previous five problems. Performing some post-processing on the structure of the
polynomial systems we obtained for these problems, we observe that each equation consists
of the same number of positive and negative monomial terms, and within each equation,
all monomials have the same degree. This property, together with some statistics for the
structure of the equations, makes the CDOD problems and their Gröbner basis counterpart
very suitable to be attacked by equational unification as we later explain in Sections 5 and 6.

4 Equational Unification

Unification theory [1] studies unification problems: sets of equations between terms. The
latter, as usual, are constructed by a set of function symbols F and a (countably infinite) set
of variables V. We denote the set of terms over F and V by T (F ,V). Variables are denoted
by x, y, z, function symbols by f, g, and terms by s, t, r.

RTA 2015

248 Orthogonal Designs in Powers of Two

Our substitutions are a special case of the substitutions defined in Section 3.1, mapping
variables to terms. An application of a substitution σ to a term t, denoted tσ, is defined as
follows: If t = x, then tσ := σ(x). If t = f(s1, . . . , sn), n ≥ 0, then tσ := f(s1σ, . . . , snσ).
Composition of two substitutions σ and ϕ, written as σϕ, is defined as tσϕ := (tσ)ϕ for
any t.

An equational theory, defined by a set equational axioms E ⊆ T (F ,V) × T (F ,V), is
the least congruence relation on T (F ,V), that is closed under substitution application
and contains E. It is denoted by .=E . If s .=E t, then we say that s and t are equal
modulo E. The axioms (i.e., the elements of E) are written as s ≈ t. For instance,
E = {f(x, f(y, z)) ≈ f(f(x, y), z), f(x, y) ≈ f(y, x)} defines the equational theory of
associativity and commutativity of f .

Given an E and a set of variables X , the substitution σ is more general modulo E on
X than the substitution ϕ, written σ 4XE ϕ, iff there exists a substitution ϑ such that
xσϑ

.=E xϕ for all x ∈ X . The relation 4XE is a quasi-order, and the induced equivalence is
denoted by 'XE .

Given an E and a set of function symbols F , an E-unification problem Γ over F is a finite
set of equations between terms over F and a countable infinite set of variables V , written as
Γ := {s1

.=?
E t1, . . . , sn

.=?
E tn}. An E-unifier of Γ is a substitution σ such that siσ

.=E tiσ

for all 1 ≤ i ≤ n.
Let Γ be an E-unification problem over F and let X be the set of all variables that occur

in Γ. A minimal complete set of unifiers (mcsu, in short) of Γ, denoted mcsu(Γ), is the set
of substitutions such that the following three conditions are satisfied:

Correctness: Each element of mcsu(Γ) is an E-unifier of Γ.
Completeness: For each unifier ϕ of Γ there exists σ ∈ mcsu(Γ) such that σ 4XE ϕ.
Minimality: For all σ1, σ2 ∈ mcsu(Γ), if σ1 4XE σ2, then σ1 = σ2.

The signature of an equational theory E, denoted by sig(E), is the set of all function
symbols that appear in the axioms of E. An E-unification problem Γ over F is elementary,
if F \ sig(E) = ∅. It is a problem with constants, if F \ sig(E) is a set of constants. It is
called a general problem, if F \ sig(E) may contain arbitrary function symbols.

When we are interested in E-unification problems of a special form, we talk about a
fragment of E-unification. When solutions only of a special form are needed, then we say
that a variant of E-unification is considered.

5 Orthogonal Designs Meet Equational Unification

In this section, we establish the connections between orthogonal designs and equational
unification. In particular, we show that Cayley-Dickson orthogonal designs defined in Section
3.1 can be constructed from unifiers of certain unification problems.

Recall that, as we observed, each equation in a CDOD consists of an equal number of
positive and negative monomial terms. Moreover, within an equation, all monomials have the
same degree. That means that the equations have the form A11 · · ·A1n+ · · ·+Am1 · · ·Amn−
B11 · · ·B1n − · · · −Bm1 · · ·Bmn = 0 with n,m > 0. By changing the design variables with
unification variables (A with x, B with y), making the multiplication explicit, and placing
negative monomials on the other side of equation, we obtain a unification problem of the
form x11 ∗ · · · ∗ x1n + · · · + xm1 ∗ · · · ∗ xmn

.=?
AC(+,∗) y11 ∗ · · · ∗ y1n + · · · + ym1 ∗ · · · ∗ ymn,

where ∗ and + are associative and commutative (and the subscript AC(+, ∗) indicates this
fact). We refer to the unification problem obtained from an CDOD (of order n) in this way as
CDODU (of order n). The important property, that is straightforward to see, is that there is a

I. Kotsireas, T. Kutsia and D. E. Simos 249

direct correspondence between endomorphic solutions of unification equations in the CDODU
and those of the corresponding polynomial equations in the given CDOD.

I Theorem 5. Let n = 2m for some m > 0. If there exists an endomorphic idempotent
unifier for an CDODU problem of order n, then there exists a Cayley-Dickson orthogonal design
of order n.

Proof. CDODU of order n has an idempotent endomorphic unifier iff the corresponding CDOD
of order n has an idempotent endomorphic solution. By Theorem 4, the latter implies the
existence of an Cayley-Dickson orthogonal design of order n. J

For an endomorphic idempotent solution σ of the CDOD, the corresponding Cayley-Dickson
orthogonal design is denoted by CDOD(σ).

In the theory of orthogonal designs, as we have already mentioned the Equating-Killing
Lemma plays a pivotal role, as it can produce a vast number of orthogonal designs from any
given one. It is natural to distinguish between orthogonal designs that can be produced or
not by the Equating-Killing Lemma.

Given two ODs of the same order, D1 and D2, we say D1 is more general than D2 and
write D1 DD2, if there exists an OD D3 of the same order as D1 and D2 such that D1 ' D3
and D2 is obtained from D3 by equating zero or more variables. Strictly more generality
relation is written D1 BD2 and requires equating one or more variables to get D3 from D1.

I Definition 6 (Basis). Let D be a set of orthogonal designs of order n. A basis for D is a
set B ⊆ D such that for each D ∈ D, there is B ∈ B such that B DD.

A trivial basis for D is D itself. The interesting ones are reduced bases defined below:

I Definition 7 (Reduced Basis, Base OD). Let B be a basis of the set D of orthogonal designs
of the same order. B is a reduced basis of D, written rb(D), if B does not contain two elements
B1, B2 such that B1 D B2. The elements of rb(D) are called the base orthogonal designs
for D.

This notion of base orthogonal designs introduced here for the first time, exhibits a
remarkable connection with unification theory.

I Theorem 8. Consider a CDOD problem of order n and the corresponding CDODU unification
problem. Let σ be an element of the minimal complete set of endomorphic idempotent unifiers
of CDODU . Assume D is a set of Cayley-Dickson orthogonal designs of order n (i.e, the
solutions of the CDOD problem). Then CDOD(σ) ∈ D is a base orthogonal design for D.

Proof. Let χ be the set of variables of CDODU and A be the set of variables of CDOD. The
theorem follows from the following fact: For two endomorphic idempotent unifiers ϕ1 and ϕ2
of CDODU , if ϕ1 4χAC(+,∗) ϕ2, then CDOD(ϕ1) D CDOD(ϕ2). Since ϕ1 and ϕ2 are endomorphic,
ϕ1 4χAC(+,∗) ϕ2 means that for some ϑ, xϕ1ϑ = xϕ2 for all x ∈ χ. Hence, ϑ is also
endomorphic on χ and can be decomposed into ϑ1ϑ2, where ϑ1 is a permutation (a bijective
mapping from dom(ϑ) to dom(ϑ)), and ϑ2 is an arbitrary endomorphic substitution. Then
from CDOD(ϕ1) we first can obtain an OD D by renaming variables that correspond to ϑ1. It
gives CDOD(ϕ1) ' D. Afterwards, from D we can perform variable equating according to ϑ2,
which will give CDOD(ϕ2). By the definition of D, we get CDOD(ϕ1) D CDOD(ϕ2). J

The connections between orthogonal designs and unification theory presented in this
section are essential for translating CDOD problems to unification problems, and in addition
provide some concrete guidelines on how to efficiently perform a systematic solving of the
respective polynomial systems.

RTA 2015

250 Orthogonal Designs in Powers of Two

6 Solving Unification Problems

Our unification problem Γ contains only equations in the flattened form x1
1 ∗ · · · ∗ x1

n + · · ·+
xm1 ∗ · · · ∗ xmn

.=?
AC(+,∗) y

1
1 ∗ · · · ∗ y1

n + · · ·+ ym1 ∗ · · · ∗ ymn for some n,m > 0, where + and ∗
are the AC symbols. We call it a balanced fragment of AC-unification. We are looking for
AC-unifiers of Γ that map variables of Γ to variables of Γ, i.e., both domain and range of
unifiers should be subsets of var(Γ). We call such variants endomorphic. Hence, the problem
we would like to solve is an endomorphic variant of a balanced fragment of the elementary
AC-unification. For brevity, we refer to it as an ACEB-unification problem.

Note that this problem always has a unifier: Just map all variables to one of them, and it
will be a solution. What we are looking for is the minimal complete set of unifiers.

AC-unification problems are solved by reducing them to systems of linear Diophantine
equations, see, e.g., [3, 14]. However, it is pretty easy to formulate a direct algorithm that
computes a complete set of unifiers for ACEB-unification problems. In fact, as we will see,
the four rules below are sufficient to construct it. The rules transform systems (pairs Γ;σ of
an unification problem and a substitution) into systems. The symbol ∪· stands for disjoint
union. The subscript AC(+, ∗) is omitted, as well as the symbol ∗.

T: Trivial
{x .=?

x} ∪· Γ′; σ =⇒ Γ′; σ.

D-sum: Decomposition for Sums
{s1 + · · ·+ sn

.=?
t1 + · · ·+ tn} ∪· Γ′; σ =⇒ {s1

.=?
π(t1), . . . , sn

.=?
π(tn)} ∪ Γ′; σ,

where n > 1 and π is a permutation of the multiset {t1, . . . , tn}.

D-prod: Decomposition for Products
{x1 · · ·xn

.=?
y1 · · · yn} ∪· Γ′; σ =⇒ {x1

.=?
π(y1), . . . , xn

.=?
π(yn)} ∪ Γ′; σ,

where n > 1 and π is a permutation of the multiset {t1, . . . , tn}.

S: Solve
{x .=?

y} ∪· Γ′; σ =⇒ Γ′{x 7→ y}; σ{x 7→ y}, where x 6= y.

We call a system Γ;σ a balanced system, if Γ is a balanced AC-unification problem. By
inspecting the rules, it is easy to see that the rules transform balanced systems into balanced
systems. Note that any balanced system Γ;σ, where Γ 6= ∅, can be transformed, and each
selected equation can be transformed by only one rule.

To solve an unification problem Γ, we create the initial system Γ; ε and apply the rules
exhaustively. Let BF denote this algorithm, to indicate that it is a brute force approach, i.e.,
BF := (T | D-sum | D-prod | S)∗, where | stands for choice and ∗ for iteration. The terminal
systems have the form ∅;σ. We say in this case that the algorithm computes σ. Given a
balanced Γ, the set of all substitutions computed by BF is denoted by ΣBF(Γ). This set
is finite, because there can be finitely many terminal systems (since rules that produce all
possible permutations lead to finite branching).

I Theorem 9. Given a balanced AC-unification problem Γ, the algorithm BF terminates
and computes ΣBF(Γ), which is a complete set of endomorphic idempotent AC-unifiers of Γ.

Proof. (Sketch) To prove termination, we first define the size of an equation as the number
of symbol occurrences in it (including the ∗ that is omitted in the rules). Next, we associate
to each AC-unification problem its measure: the multiset of sizes of equations in it. Then we

I. Kotsireas, T. Kutsia and D. E. Simos 251

can see that each rule strictly decreases this measure. For the rules T and S it is obvious.
For the other two rules it follows from the condition n > 1, which implies that the resulting
set of equations reduces the number of occurrences of + or ∗, while the rest does not increase.
These facts, together with the observation that the number of branching alternatives the
rules produce is finite, imply termination.

The S rule guarantees that the computed substitutions are endomorphic and idempotent.
Each rule preserves the set of unifiers for the problems it transforms. Hence the computed
substitutions are endomorphic idempotent unifiers. Completeness is implied by the fact that
the permutations in the decomposition rules generate all possible branchings in the search
tree. J

The set ΣBF(Γ) is not minimal, in general. This is not surprising, since ACEB-unification
is, in fact, variadic commutative (aka orderless) unification [9]. No algorithm is known
that would directly compute minimal complete set of unifiers for commutative unification
problems. There is an additional minimization step required.

Our main challenge, however, was related to the size of the problem. The unification
problems contain hundreds of equations and the brute-force approach of BF usually is not
feasible. We need to keep the alternatives as small as possible. For this purpose, we elaborated
several heuristics. Two of them concern equation selection, and two more unification problem
simplification:

Sel1: For transformation, select an equation with the minimal number of arguments. For
instance, if the unification problem is {x1x2 + y3x3

.=?
x3y3 + y2y1, x1

.=?
y1}, the

equation x1
.=?
y1 will be selected and transformed by the rule Solve.

Sel2: In the decomposition rules, permute that side of the selected equation that generates
fewer permutations (i.e., the side that has more repeated arguments). It reduces the
branching factor, but completeness is not violated, since equality is symmetric.

Simp1: Given an ordering on variables that is extended lexicographically to products and
sums, rearrange unordered subterms in equations in the ordered form. For instance, if
x1 > x2 > x3 > y1 > y2 > y3, then the equation x1x2 + y3x3

.=?
x3y3 + y2y1 would

be transformed in one step to, e.g., x1x2 + x3y3
.=?

x3y3 + y2y1 and in two steps to
x1x2 + x3y3

.=?
x3y3 + y1y2.

Simp2: Remove all common arguments from both sides of equations. This is a well-known
technique used in AC-unification. It reduces, for instance, the equation x1x2 + x3y3

.=?

x3y3 + y1y2 in one step to x1x2
.=?
y1y2. Two applications of this strategy would reduce

the equation x1x2y1
.=?
y1x2y2 to x1

.=?
y2.

Let T-s and S-s be the variations of the T and S rules, respectively, where equations are
selected according to Sel1. Similarly, D-sum-s and D-prod-s stand for the variants of D-sum
and D-prod rules, where the equation is selected according to Sel1, and the permutation side
is selected according to Sel2. Simp1 should be used in combination with Simp2 to detect
common arguments in the sides of equations. Then we define the refined algorithm Ref with
the following strategy (◦ stands for composition, | for choice, ∗ for iteration):

Ref :=
(
(Simp1 | Simp2)∗ ◦ (T-s | S-s | D-sum-s | D-prod-s)

)∗
.

In words, it means that Ref works with a set of systems, selects one of them nondetermin-
istically, normalizes it with respect to the Simp1 and Simp2, transforms the obtained system
into new ones with one of the rules T-s, S-s, D-sum-s, or D-prod-s, and iterates.

Since unification problems are sets, simplification steps may decrease the number of
equations, when several equations simplify to the same one. It is not hard to see that the

RTA 2015

252 Orthogonal Designs in Powers of Two

selection and simplification heuristics affect neither soundness nor completeness. Therefore,
based on Theorem 9 we have that ΣRef(Γ) is a complete set of endomorphic idempotent
unifiers of Γ.

As it turns out, Simp2 plays an important role in reducing the number of computed unifiers.
For instance, for an unification problem Γ originated from CDODGB16, ΣRef(Γ) contains 7
unifiers. For a Γ coming from CDODGB32, this number is 33. If we skipped the Simp2 step in
Ref, then we would get 45 unifiers for CDODGB16, and 1574 for CDODGB32. Similarly, for an
unification problem Γ originated from CDOD16, ΣRef(Γ) contains 65 unifiers. For a Γ coming
from CDOD32, this number is 6935. If we again skip the Simp2 step in Ref, then we get 264
unifiers for CDOD16.

The set computed by Ref is complete but not minimal. A minimal and complete algorithm
ACEB for ACEB-unification problems can be formulated as

ACEB(Γ) := minimize
(
ΣRef(Γ)

)
,

where minimize is a function that minimizes a set of substitutions. Therefore, we have the
following theorem:

I Theorem 10. ACEB(Γ) = mcsu(Γ).

For efficiency reasons, it makes sense to have an incremental version of the algorithm
ACEB: Instead of working with the entire set of equations at once, we split this set into
smaller subsets of some fixed size size. After ACEB computes an mcsu U of one such subset,
we generate all possible instances of the next subset with respect to the unifiers in U , and
proceed further in a similar way for each new set. Such early minimization efforts reduce
the number of redundant potential solutions. This method is sensitive to the choice of size.
It should be not too small not to trigger frequent calls of the expensive minimize function,
and not too big not to postpone minimization too much. As experiments showed, a good
strategy for the unification problems originated from the original polynomials is, for instance,
to set size close to the number of equations of the smallest size. For instance, in CDOD32, the
polynomials of the smallest size are those that contain 4 monomials, each of degree 2. There
are 42 such polynomials (out of 252) there. Setting size to 42 led to the fastest computation
of the result. However, for equations coming from the polynomials in Gröbner bases, we
could not observe such a pattern.

Now we give the elements of ACEB(Γ) for unification problems Γ that originate from
CDOD16, CDODGB16, CDOD32, CDODGB32 and CDOD64 problems:

CDOD16 and CDODGB16:

σ16
1 = {x10 → x2, x11 → x3, x12 → x4, x13 → x5, x14 → x6, x15 → x7, x16 → x8}

σ16
2 = {x2 → x8, x3 → x8, x4 → x8, x5 → x8, x6 → x8, x7 → x8, x10 → x16,

x11 → x16, x12 → x16, x13 → x16, x14 → x16, x15 → x16}

CDOD32 and CDODGB32:

σ32
1 = {x2 → x8, x3 → x8, x4 → x8, x5 → x8, x6 → x8, x7 → x8, x10 → x32,

x11 → x32, x12 → x32, x13 → x32, x14 → x32, x15 → x32, x16 → x32,

x18 → x8, x19 → x8, x20 → x8, x21 → x8, x22 → x8, x23 → x8, x24 → x8,

x25 → x9, x26 → x32, x27 → x32, x28 → x32, x29 → x32, x30 → x32,

x31 → x32}

σ32
2 = {x2 → x26, x10 → x26, x11 → x3, x12 → x4, x13 → x5, x14 → x6, x15 → x7,

I. Kotsireas, T. Kutsia and D. E. Simos 253

x16 → x8, x18 → x26, x19 → x3, x20 → x4, x21 → x5, x22 → x6, x23 → x7,

x24 → x8, x25 → x9, x27 → x3, x28 → x4, x29 → x5, x30 → x6, x31 → x7,

x32 → x8}

σ32
3 = {x2 → x9, x3 → x9, x4 → x9, x5 → x9, x6 → x9, x7 → x9, x8 → x9,

x10 → x9, x11 → x9, x12 → x9, x13 → x9, x14 → x9, x15 → x9, x16 → x9,

x18 → x32, x19 → x32, x20 → x32, x21 → x32, x22 → x32, x23 → x32,

x24 → x32, x25 → x32, x26 → x32, x27 → x32, x28 → x32, x29 → x32,

x30 → x32, x31 → x32}

CDOD64:

σ64
1 = {x2 → x9, x3 → x9, x4 → x9, x5 → x9, x6 → x9, x7 → x9, x8 → x9,

x10 → x9, x11 → x9, x12 → x9, x13 → x9, x14 → x9, x15 → x9, x16 → x9,

x17 → x9, x18 → x9, x19 → x9, x20 → x9, x21 → x9, x22 → x9, x23 → x9,

x24 → x9, x25 → x9, x26 → x9, x27 → x9, x28 → x9, x29 → x9, x30 → x9,

x31 → x9, x32 → x9, x34 → x64, x35 → x64, x36 → x64, x37 → x64,

x38 → x64, x39 → x64, x40 → x64, x41 → x64, x42 → x64, x43 → x64,

x44 → x64, x45 → x64, x46 → x64, x47 → x64, x48 → x64, x49 → x64,

x50 → x64, x51 → x64, x52 → x64, x53 → x64, x54 → x64, x55 → x64,

x56 → x64, x57 → x64, x58 → x64, x59 → x64, x60 → x64, x61 → x64,

x62 → x64, x63 → x64}

σ64
2 = {x2 → x8, x3 → x8, x4 → x8, x5 → x8, x6 → x8, x7 → x8, x10 → x64,

x11 → x64, x12 → x64, x13 → x64, x14 → x64, x15 → x64, x16 → x64,

x17 → x49, x18 → x8, x19 → x8, x20 → x8, x21 → x8, x22 → x8, x23 → x8,

x24 → x8, x25 → x9, x26 → x64, x27 → x64, x28 → x64, x29 → x64,

x30 → x64, x31 → x64, x32 → x64, x34 → x8, x35 → x8, x36 → x8,

x37 → x8, x38 → x8, x39 → x8, x40 → x8, x41 → x9, x42 → x64, x43 → x64,

x44 → x64, x45 → x64, x46 → x64, x47 → x64, x48 → x64, x50 → x8,

x51 → x8, x52 → x8, x53 → x8, x54 → x8, x55 → x8, x56 → x8, x57 → x9,

x58 → x64, x59 → x64, x60 → x64, x61 → x64, x62 → x64, x63 → x64}

σ64
3 = {x2 → x58, x3 → x59, x4 → x60, x5 → x61, x6 → x62, x10 → x58, x11 → x59,

x12 → x60, x13 → x61, x14 → x62, x15 → x7, x16 → x8, x17 → x49, x18 → x58,

x19 → x59, x20 → x60, x21 → x61, x22 → x62, x23 → x7, x24 → x8, x25 → x9,

x26 → x58, x27 → x59, x28 → x60, x29 → x61, x30 → x62, x31 → x7, x32 → x8,

x34 → x58, x35 → x59, x36 → x60, x37 → x61, x38 → x62, x39 → x7, x40 → x8,

x41 → x9, x42 → x58, x43 → x59, x44 → x60, x45 → x61, x46 → x62, x47 → x7,

x48 → x8, x50 → x58, x51 → x59, x52 → x60, x53 → x61, x54 → x62, x55 → x7,

x56 → x8, x57 → x9, x63 → x7, x64 → x8}

σ64
4 = {x2 → x9, x3 → x9, x4 → x9, x5 → x9, x6 → x9, x7 → x9, x8 → x9, x10 → x9,

x11 → x9, x12 → x9, x13 → x9, x14 → x9, x15 → x9, x16 → x9, x17 → x49,

x18 → x64, x19 → x64, x20 → x64, x21 → x64, x22 → x64, x23 → x64,

x24 → x64, x25 → x64, x26 → x64, x27 → x64, x28 → x64, x29 → x64,

x30 → x64, x31 → x64, x32 → x64, x34 → x9, x35 → x9, x36 → x9, x37 → x9,

x38 → x9, x39 → x9, x40 → x9, x41 → x9, x42 → x9, x43 → x9, x44 → x9,

x45 → x9, x46 → x9, x47 → x9, x48 → x9, x50 → x64, x51 → x64, x52 → x64,

RTA 2015

254 Orthogonal Designs in Powers of Two

x53 → x64, x54 → x64, x55 → x64, x56 → x64, x57 → x64, x58 → x64,

x59 → x64, x60 → x64, x61 → x64, x62 → x64, x63 → x64}

We remark that as expected the elements of the ACEB(Γ) for the unification problems Γ
that originate from CDOD16 and CDODGB16, are the same. This also applies for CDOD32 and
CDODGB32.

7 New Cayley-Dickson Orthogonal Designs via Equational Unification

In this section, we translate back from unifiers to solutions of the polynomial systems that
give rise to Cayley-Dickson orthogonal designs and list their types. As noted before the
elements of ACEB(Γ) correspond to base orthogonal designs from Corollary 8, which implies
that the designs we list below are sufficient to give all Cayley-Dickson orthogonal designs for
orders 16, 32 and 64. Therefore, we provide a complete solution to the CDOD problem for
these orders.

1. For order 16 we obtain the following two base Cayley-Dickson orthogonal designs:
From σ16

1 : OD(16; 1, 1, 2, 2, 2, 2, 2, 2, 2).
From σ16

2 : OD(16; 1, 1, 7, 7).
2. For order 32 we obtain the following three base Cayley-Dickson orthogonal designs:

From σ32
1 : OD(32; 1, 1, 2, 14, 14).

From σ32
2 : OD(32; 1, 1, 2, 4, 4, 4, 4, 4, 4, 4).

From σ32
3 : OD(32; 1, 1, 15, 15).

3. For order 64 we obtain the following four base Cayley-Dickson orthogonal designs:
From σ64

1 : OD(64; 1, 1, 31, 31).
From σ64

2 : OD(64; 1, 1, 2, 4, 28, 28).
From σ64

3 : OD(64; 1, 1, 2, 4, 8, 8, 8, 8, 8, 8, 8).
From σ64

4 : OD(64; 1, 1, 2, 30, 30).

It is important to note here that from the previous list of orthogonal designs, some
Cayley-Dickson orthogonal designs appear here for the first time. In particular, the
OD(32; 1, 1, 2, 14, 14) and OD(64; 1, 1, 2, 30, 30), OD(64; 1, 1, 2, 4, 28, 28) have not been repor-
ted in [7] and [8], respectively.

However, these types of orthogonal designs are not new in the literature of ortho-
gonal designs, as they can be obtained by other methods. In particular, the existence of
OD(32; 1, 1, 2, 14, 14) is attributed to a result of Robinson (p. 358, Corollary D.2., [6]) which
states that all orthogonal designs of type (1, 1, a, b, c), a+b+c = 2t−2 exist in order 2t, t ≥ 3,
for a = 2, b = 14, c = 14 and t = 5. Again from Robinson’s result the OD(64; 1, 1, 2, 30, 30)
is known for a = 2, b = 30, c = 30 and t = 6. Finally by applying the Doubling Lemma (c.f.
Lemma 2) to OD(32; 1, 1, 2, 14, 14) we can get OD(64; 1, 1, 2, 4, 28, 28).

From the previous discussion three patterns for the orthogonal designs that are modelled
by Cayley-Dickson algebras and obtained via equational unification are visible.

The four variable designs are of the form OD(2n; 1, 1, 2n−1 − 1, 2n−1 − 1), for orders 2n
where n = 4, 5, 6. These types of orthogonal designs can also be obtained via simple
Paley matrices [6].
The five variable designs are of the form OD(2n; 1, 1, a, b, c) where a = 2, b = 2n − 2,
c = 2n − 2 for n = 5, 6. As we already noted these types of orthogonal designs can be
obtained from Robinson’s results.

I. Kotsireas, T. Kutsia and D. E. Simos 255

It is clear that there is an analogy between the Cayley-Dickson process and the Doubling
Lemma. In particular, by applying the doubling lemma to the nine variable base
orthogonal design in order 16 we obtain the ten variable base orthogonal design in
order 32. Repeating the process to the latter design, we obtain the eleven variable base
orthogonal design in order 64. In addition, as we have shown earlier the six variable
design in order 64 can also obtained by doubling of the five variable design in order 32.

Moreover, we would like to explicitly state that these designs are new with respect to the
algebraic modelling of Cayley-Dickson algebras (in the class of Cayley-Dickson orthogonal
designs), however the corresponding types of ODs have been reported in the literature also
with other techniques. To make our contribution in this section more precise, we can say the
following:
1. It was not known before that most of the ODs we found belong also to the class of

Cayley-Dickson orthogonal designs.
2. Our approach not only reports the ODs, but also constructs the corresponding design

matrices. In this way, we always give a constructive solution to the problem. It is not
always the case with the other approaches. In some cases, there are semi-constructive
techniques (doubling method), but in some other, there is only the existential, non-
constructive method (Robinson’s Lemma). (The doubling method is semi-constructive in
the sense that one needs to know the design matrix of the initial OD in order to build
design matrices of the ODs the doubling method gives.)

3. The design matrices are of interest for the applications of ODs, since in that case it is
not enough to know that the design type exists. For example, in weighing experiments
you need the design matrix to perform the actual experiment.

4. The fact that the class of Cayley-Dickson orthogonal designs contains the previous types of
orthogonal designs is of interest also to the asymptotic existence of orthogonal designs [6]
and will be studied further in future work.

8 Conclusion

In this paper, we presented a algebraic framework for modelling orthogonal designs in order
of powers of two via Cayley-Dickson algebras of same orders. This framework gives rise to
a polynomial system of equations that is unfeasible to be tackled with traditional search
algorithms, as the order increases. We exhibited that the structural properties of this algebraic
framework can be written in terms of unification theory by establishing important connections
between orthogonal designs and unifiers. These connections enabled the development of
unification algorithms that can solve the problems arising from the algebraic modelling
of orthogonal designs and find solutions that were not known before with this algebraic
modelling of Cayley-Dickson algebras.

Acknowledgements. The first author is supported by an NSERC Discovery grant. The
second author has been supported by the Austrian Science Fund (FWF) under the project
SToUT (P 24087-N18). The third author has been funded in part by the Austrian COMET
Program from the Austrian Research Promotion Agency (FFG).

References
1 F. Baader and W. Snyder. Unification theory. In J. A. Robinson and A. Voronkov, editors,

Handbook of Automated Reasoning (in 2 volumes), pages 445–532. Elsevier and MIT Press,
2001.

RTA 2015

256 Orthogonal Designs in Powers of Two

2 L. D. Baumert and J. M. Hall. Hadamard matrices of the Williamson type. Math. Comput.,
19:442–447, 1965.

3 A. Boudet, E. Contejean, and H. Devie. A new AC unification algorithm with an algorithm
for solving systems of Diophantine equations. In Proceedings of the Fifth Annual Symposium
on Logic in Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA, June 4-7,
1990, pages 289–299. IEEE Computer Society, 1990.

4 G. M. Dixon. Division Algebras: Octonions, Quaternions, Complex Numbers and the
Algebraic Design of Physics, volume 290 of Mathematics and its Applications. Kluwer
Academic Publishers Group, Dordrecht, 1994.

5 A. V. Geramita, J. M. Geramita, and J. S. Wallis. Orthogonal designs. Linear and Multi-
linear Algebra, 3:281–306, 1976.

6 A. V. Geramita and J. Seberry. Orthogonal Designs. Quadratic Forms and Hadamard
Matrices, volume 45 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker,
Inc., New York, NY, 1979.

7 I. S. Kotsireas and C. Koukouvinos. Orthogonal designs via computational algebra. J.
Combin. Designs, 14:351–362, 2006.

8 I. S. Kotsireas and C. Koukouvinos. Orthogonal designs of order 32 and 64 via computa-
tional algebra. Australasian Journal of Combinatorics, 39:39–48, 2007.

9 T. Kutsia. Solving and Proving in Equational Theories with Sequence Variables and Flexible
Arity Symbols. PhD thesis, Johannes Kepler University, Linz, Austria, 2002.

10 F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes. North-Holland,
The Netherlands, Amsterdam, 1997.

11 R. L. Plackett and J. Burman. The design of optimum multifactorial experiments. Biomet-
rika, 33:305–325, 1946.

12 E. Posner. Combinatorial structures in planetary reconnaissance. In H. Mann, editor,
Proceedings of the 1968 Symposium on Error Correcting Codes, pages 15–46. Wiley, New
York, 1968.

13 J. Seberry and R. Craigen. Orthogonal designs. In C. Colbourn and J. Dinitz, editors, The
CRC Handbook of Combinatorial Designs, pages 400–406. CRC Press, Boca Raton, Fla.,
1996.

14 M. E. Stickel. A unification algorithm for associative-commutative functions. J. ACM,
28(3):423–434, 1981.

15 V. Taroch, H. Jafarkhani, and A. R. Calderbank. Space-time block codes from orthogonal
designs. IEEE Trans. Inf. Theory, 45:1456–1467, 1999.

16 J. Van Lint. Coding, decoding and combinatorics. In R. Wilson, editor, Applications of
Combinatorics. Shiva, Cheshire, 1982.

17 R. Yarlagadda and J. Hershey. Hadamard Matrix Analysis and Synthesis: With Applications
to Communications and Signal/Image Processing. Kluwer Acad. Pub., Boston, 1997.

18 Y. Zhao, Y. Wang, and J. Seberry. On amicable orthogonal designs of order 8. Australasian
Journal of Combinatorics, 34:321–329, 2006.

	Introduction
	Orthogonal Designs
	Definitions and Related Concepts
	Applications of Orthogonal Designs

	Orthogonal Designs via Computational Algebra
	Cayley-Dickson Orthogonal Designs

	Equational Unification
	Orthogonal Designs Meet Equational Unification
	Solving Unification Problems
	New Cayley-Dickson Orthogonal Designs via Equational Unification
	Conclusion

