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Abstract
Unification in Description Logics has been introduced as a means to detect redundancies in
ontologies. We try to extend the known decidability results for unification in the Description
Logic EL to disunification since negative constraints on unifiers can be used to avoid unwanted
unifiers. While decidability of the solvability of general EL-disunification problems remains an
open problem, we obtain NP-completeness results for two interesting special cases: dismatching
problems, where one side of each negative constraint must be ground, and local solvability of
disunification problems, where we restrict the attention to solutions that are built from so-called
atoms occurring in the input problem. More precisely, we first show that dismatching can be
reduced to local disunification, and then provide two complementary NP-algorithms for finding
local solutions of (general) disunification problems.
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1 Introduction

Description logics (DLs) [6] are a family of logic-based knowledge representation formalisms,
which can be used to represent the conceptual knowledge of an application domain in a
structured and formally well-understood way. They are employed in various application areas,
but their most notable success so far is the adoption of the DL-based language OWL [21]
as standard ontology language for the semantic web. DLs allow their users to define the
important notions (classes, relations) of the domain using concepts and roles; to state
constraints on the way these notions can be interpreted using terminological axioms; and to
deduce consequences such as subsumption (subclass) relationships from the definitions and
constraints. The expressivity of a particular DL is determined by the constructors available
for building concepts.

The DL EL, which offers the concept constructors conjunction (u), existential restriction
(∃r.C), and the top concept (>), has drawn considerable attention in the last decade since, on
the one hand, important inference problems such as the subsumption problem are polynomial
in EL, even with respect to expressive terminological axioms [16]. On the other hand, though
quite inexpressive, EL is used to define biomedical ontologies, such as the large medical
ontology SNOMEDCT.1 For these reasons, the most recent OWL version, OWL2, contains
the profile OWL2EL,2 which is based on a maximally tractable extension of EL [5].

∗ Supported by DFG under grant BA 1122/14-2.
1 http://www.ihtsdo.org/snomed-ct/
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Unification in Description Logics was introduced in [12] as a novel inference service that
can be used to detect redundancies in ontologies. It is shown there that unification in the
DL FL0, which differs from EL in that existential restriction is replaced by value restriction
(∀r.C), is ExpTime-complete. The applicability of this result was not only hampered by this
high complexity, but also by the fact that FL0 is not used in practice to formulate ontologies.

In contrast, as mentioned above, EL is employed to build large biomedical ontologies for
which detecting redundancies is a useful inference service. For example, assume that one
developer of a medical ontology defines the concept of a patient with severe head injury as

Patient u ∃finding.(Head_injury u ∃severity.Severe), (1)

whereas another one represents it as

Patient u ∃finding.(Severe_finding u Injury u ∃finding_site.Head). (2)

Formally, these two concepts are not equivalent, but they are nevertheless meant to represent
the same concept. They can obviously be made equivalent by treating the concept names
Head_injury and Severe_finding as variables, and substituting the first one by Injury u
∃finding_site.Head and the second one by ∃severity.Severe. In this case, we say that the
concepts are unifiable, and call the substitution that makes them equivalent a unifier. In [10],
we were able to show that unification in EL is of considerably lower complexity than unification
in FL0: the decision problem for EL is NP-complete. The main idea underlying the proof
of this result is to show that any solvable EL-unification problem has a local unifier, i.e., a
unifier built from a polynomial number of so-called atoms determined by the unification
problem. However, the brute-force “guess and then test” NP-algorithm obtained from this
result, which guesses a local substitution and then checks (in polynomial time) whether it is
a unifier, is not useful in practice. We thus developed a goal-oriented unification algorithm
for EL, which is more efficient since nondeterministic decisions are only made if they are
triggered by “unsolved parts” of the unification problem. Another option for obtaining a more
efficient unification algorithm is a translation to satisfiability in propositional logic (SAT):
in [9] it is shown how a given EL-unification problem Γ can be translated in polynomial time
into a propositional formula whose satisfying valuations correspond to the local unifiers of Γ.

Intuitively, a unifier of two EL concepts proposes definitions for the concept names
that are used as variables: in our example, we know that, if we define Head_injury as
Injury u ∃finding_site.Head and Severe_finding as ∃severity.Severe, then the two concepts (1)
and (2) are equivalent w.r.t. these definitions. Of course, this example was constructed
such that the unifier (which is actually local) provides sensible definitions for the concept
names used as variables. In general, the existence of a unifier only says that there is a
structural similarity between the two concepts. The developer who uses unification as
a tool for finding redundancies in an ontology or between two different ontologies needs
to inspect the unifier(s) to see whether the definitions it suggests really make sense. For
example, the substitution that replaces Head_injury by Patient u Injury u ∃finding_site.Head
and Severe_finding by Patientu∃severity.Severe is also a local unifier, which however does not
make sense. Unfortunately, even small unification problems like the one in our example can
have too many local unifiers for manual inspection. In [2] we propose to restrict the attention
to so-called minimal unifiers, which form a subset of all local unifiers. In our example, the
nonsensical unifier is indeed not minimal. In general, however, the restriction to minimal
unifiers may preclude interesting local unifiers. In addition, as shown in [2], computing
minimal unifiers is actually harder than computing local unifiers (unless the polynomial
hierarchy collapses). In the present paper, we propose disunification as a more direct approach
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for avoiding local unifiers that do not make sense. In addition to positive constraints (requiring
equivalence or subsumption between concepts), a disunification problem may also contain
negative constraints (preventing equivalence or subsumption between concepts). In our
example, the nonsensical unifier can be avoided by adding the dissubsumption constraint

Head_injury 6v? Patient (3)

to the equivalence constraint (1) ≡? (2).
Unification and disunification in DLs is actually a special case of unification and disunifi-

cation modulo equational theories (see [12] and [10] for the equational theories respectively
corresponding to FL0 and EL). Disunification modulo equational theories has, e.g., been
investigated in [17, 18]. It is well-known in unification theory that for effectively finitary
equational theories, i.e., theories for which finite complete sets of unifiers can effectively be
computed, disunification can be reduced to unification: to decide whether a disunification
problem has a solution, one computes a finite complete set of unifiers of the equations and
then checks whether any of the unifiers in this set also solves the disequations. Unfortunately,
for FL0 and EL, this approach is not feasible since the corresponding equational theories
have unification type zero [10, 12], and thus finite complete sets of unifiers need not even
exist. Nevertheless, it was shown in [14] that the approach used in [12] to decide unification
(reduction to language equations, which are then solved using tree automata) can be adapted
such that it can also deal with disunification. This yields the result that disunification in
FL0 has the same complexity (ExpTime-complete) as unification.

For EL, going from unification to disunification appears to be more problematic. In fact,
the main reason for unification to be decidable and in NP is locality: if the problem has
a unifier then it has a local unifier. We will show that disunification in EL is not local in
this sense by providing an example of a disunification problem that has a solution, but no
local solution. Decidability and complexity of disunification in EL remains an open problem,
but we provide partial solutions that are of interest in practice. On the one hand, we
investigate dismatching problems, i.e., disunification problems where the negative constraints
are dissubsumptions C 6v? D for which C or D is ground (i.e., does not contain a variable).
Note that the dissubsumption (3) from above actually satisfies this restriction since Patient
is not a variable. We prove that (general) solvability of dismatching problems can be reduced
to local disunification, i.e., the question whether a given EL-disunification problem has a
local solution, which shows that dismatching in EL is NP-complete. On the other hand, we
develop two specialized algorithms to solve local disunification problems that extend the ones
for unification [9, 10]: a goal-oriented algorithm that reduces the amount of nondeterministic
guesses necessary to find a local solution, as well as a translation to SAT. The reason
we present two kinds of algorithms is that, in the case of unification, they have proved
to complement each other well in first evaluations [1]: the goal-oriented algorithm needs
less memory and finds minimal solutions faster, while the SAT reduction generates larger
data structures (of cubic size), but outperforms the goal-oriented algorithm on unsolvable
problems.

Full proofs of the results presented below can be found in [4].

2 Subsumption and dissubsumption in EL

The syntax of EL is defined based on two sets NC and NR of concept names and role names,
respectively. Concept terms are built from concept names using the constructors conjunction
(CuD), existential restriction (∃r.C for r ∈ NR), and top (>). An interpretation I = (∆I , ·I)
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Table 1 Syntax and semantics of EL.

Name Syntax Semantics

top > >I := ∆I

conjunction C uD (C uD)I := CI ∩DI

existential restriction ∃r.C (∃r.C)I := {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

consists of a non-empty domain ∆I and an interpretation function that maps concept names
to subsets of ∆I and role names to binary relations over ∆I . This function is extended to
concept terms as shown in the semantics column of Table 1.

A concept term C is subsumed by a concept term D (written C v D) if for every
interpretation I it holds that CI ⊆ DI . We write a dissubsumption C 6v D to abbreviate
the fact that C v D does not hold. The two concept terms C and D are equivalent (written
C ≡ D) if C v D and D v C. Note that we use “=” to denote syntactic equality between
concept terms, whereas “≡” denotes semantic equivalence.

Since conjunction is interpreted as intersection, we can treat u as a commutative and
associative operator, and thus dispense with parentheses in nested conjunctions. An atom is
a concept name or an existential restriction. Hence, every concept term C is a conjunction of
atoms or >. We call the atoms in this conjunction the top-level atoms of C. Obviously, C is
equivalent to the conjunction of its top-level atoms, where the empty conjunction corresponds
to >. An atom is flat if it is a concept name or an existential restriction of the form ∃r.A
with A ∈ NC.

Subsumption in EL is decidable in polynomial time [8] and can be checked by recursively
comparing the top-level atoms of the two concept terms.

I Lemma 1 ([10]). For two atoms C,D, we have C v D iff C = D is a concept name or
C = ∃r.C ′, D = ∃r.D′, and C ′ v D′. If C,D are concept terms, then C v D iff for every
top-level atom D′ of D there is a top-level atom C ′ of C such that C ′ v D′.

We obtain the following contrapositive formulation characterizing dissubsumption.

I Lemma 2. For two concept terms C,D, we have C 6v D iff there is a top-level atom D′

of D such that for all top-level atoms C ′ of C it holds that C ′ 6v D′.

In particular, C 6v D is characterized by the existence of a top-level atom D′ of D for which
C 6v D′ holds. By further analyzing the structure of atoms, we obtain the following.

I Lemma 3. Let C,D be two atoms. Then we have C 6v D iff either
1. C or D is a concept name and C 6= D; or
2. D = ∃r.D′, C = ∃s.C ′, and r 6= s; or
3. D = ∃r.D′, C = ∃r.C ′, and C ′ 6v D′.

3 Disunification

As described in the introduction, we now partition the set NC into a set of (concept)
variables (Nv) and a set of (concept) constants (Nc). A concept term is ground if it does not
contain any variables. We define a quite general notion of disunification problems that is
similar to the equational formulae used in [18].
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I Definition 4. A disunification problem Γ is a formula built from subsumptions of the
form C v? D, where C and D are concept terms, using the logical connectives ∧, ∨, and ¬.
We use equations C ≡? D to abbreviate (C v? D) ∧ (D v? C), disequations C 6≡? D for
¬(C v? D) ∨ ¬(D v? C), and dissubsumptions C 6v? D instead of ¬(C v? D). A basic
disunification problem is a conjunction of subsumptions and dissubsumptions. A dismatching
problem is a basic disunification problem in which all dissubsumptions C 6v? D are such that
C or D is ground. Finally, a unification problem is a conjunction of subsumptions.

The definition of dismatching problems is partially motivated by the definition of matching in
description logics, where similar restrictions are imposed on unification problems [7, 11, 23].
Another motivation comes from our experience that dismatching problems already suffice to
formulate most of the negative constraints one may want to put on unification problems, as
described in the introduction.

To define the semantics of disunification problems, we now fix a finite signature Σ ⊆ NC∪NR
and assume that all disunification problems contain only concept terms constructed over
the symbols in Σ. A substitution σ maps every variable in Σ to a ground concept term
constructed over the symbols of Σ. This mapping can be extended to all concept terms
(over Σ) in the usual way. A substitution σ solves a subsumption C v? D if σ(C) v σ(D);
it solves Γ1 ∧ Γ2 if it solves both Γ1 and Γ2; it solves Γ1 ∨ Γ2 if it solves Γ1 or Γ2; and it
solves ¬Γ if it does not solve Γ. A substitution that solves a given disunification problem is
called a solution of this problem. A disunification problem is solvable if it has a solution.

In contrast to unification, in disunification it does make a difference whether or not
solutions may contain variables from Nv ∩ Σ or additional symbols from (NC ∪ NR) \ Σ [17].
In the context of the application sketched in the introduction, restricting solutions to ground
terms over Σ is appropriate: the finite signature Σ contains exactly the symbols that occur
in the ontology to be checked for redundancy, and since a solution σ is supposed to provide
definitions for the variables in Σ, it should not use the variables themselves to define them;
moreover, definitions that contain symbols that are not in Σ would be meaningless to the
user.

Reduction to basic disunification problems

We will consider only basic disunification problems in the following. The reason is that there
is a straightforward NP-reduction from solvability of arbitrary disunification problems to
solvability of basic disunification problems. In this reduction, we view all subsumptions
occurring in the disunification problem as propositional variables and guess a satisfying
valuation of the resulting propositional formula. It then suffices to check solvability of the
basic disunification problem obtained as the conjunction of all subsumptions evaluated to
true and the negations of all subsumptions evaluated to false. Since the problems considered
in the following sections are all NP-complete, the restriction to basic disunification problems
does not affect our complexity results. In the following, we thus restrict the attention to
basic disunification problems, which we simply call disunification problems and consider them
to be sets of subsumptions and dissubsumptions.

Reduction to flat disunification problems

We further simplify our analysis by considering flat disunification problems, which means
that they may only contain flat dissubsumptions of the form C1 u · · · uCn 6v? D1 u · · · uDm
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for flat atoms C1, . . . , Cn, D1, . . . , Dm with m,n ≥ 0,3 and flat subsumptions of the form
C1 u · · · u Cn v? D1 for flat atoms C1, . . . , Cn, D1 with n ≥ 0.

The restriction to flat disunification problems is without loss of generality: to flatten con-
cept terms, one can simply introduce new variables and equations to abbreviate subterms [10].
Moreover, a subsumption of the form C v? D1 u · · · uDm is equivalent to C v? D1, . . . ,
C v? Dm. Any solution of a disunification problem Γ can be extended to a solution of the
resulting flat disunification problem Γ′, and conversely every solution of Γ′ also solves Γ.

This flattening procedure also works for unification problems. However, dismatching
problems cannot without loss of generality be restricted to being flat since the introduction
of new variables to abbreviate subterms may destroy the property that one side of each
dissubsumption is ground (see also Section 4).

For solving flat unification problems, it has been shown that it suffices to consider so-called
local solutions [10], which are restricted to use only the atoms occurring in the input problem.
We extend this notion to disunification as follows. Let Γ be a flat disunification problem.
We denote by At the set of all (flat) atoms occurring as subterms in Γ, by Var the set of
variables occurring in Γ, and by Atnv := At \ Var the set of non-variable atoms of Γ. Let
S : Var→ 2Atnv be an assignment (for Γ), i.e. a function that assigns to each variable X ∈ Var
a set SX ⊆ Atnv of non-variable atoms. The relation >S on Var is defined as the transitive
closure of {(X,Y ) ∈ Var2 | Y occurs in an atom of SX}. If this defines a strict partial order,
i.e. >S is irreflexive, then S is called acyclic. In this case, we can define the substitution
σS inductively along >S as follows: if X is minimal, then σS(X) :=

d
D∈SX D; otherwise,

assume that σS(Y ) is defined for all Y ∈ Var with X > Y , and define

σS(X) :=
l

D∈SX

σS(D).

It is easy to see that the concept terms σS(D) are ground and constructed from the symbols
of Σ, and hence σS is a valid candidate for a solution of Γ according to Definition 4.

I Definition 5. Let Γ be a flat disunification problem. A substitution σ is called local if
there exists an acyclic assignment S for Γ such that σ = σS . The disunification problem Γ
is locally solvable if it has a local solution, i.e. a solution that is a local substitution. Local
disunification is the problem of checking flat disunification problems for local solvability.

Note that assignments and local solutions are defined only for flat disunification problems.
Obviously, local disunification is decidable in NP: We can guess an assignment S, and

check it for acyclicity and whether the induced substitution solves the disunification problem
in polynomial time. It has been shown [10] that unification in EL is local in the sense that the
equivalent flattened problem has a local solution iff the original problem is solvable. Hence
not only local, but also general solvability of unification problems in EL can be decided in
NP. In addition, this shows that NP-hardness already holds for local unification, and thus
also for local disunification.

I Fact 6. Deciding local solvability of flat disunification problems in EL is NP-complete.

The next example shows that disunification in EL is not local in this sense.

I Example 7. Consider the flat disunification problem

Γ := {X v? B, A uB u C v? X, ∃r.X v? Y, > 6v? Y, Y 6v? ∃r.B}

3 Recall that the empty conjunction is >.
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with variables X,Y and constants A,B,C. The substitution σ with σ(X) := A uB uC and
σ(Y ) := ∃r.(A u C) is a solution of Γ. For σ to be local, the atom ∃r.(A u C) would have to
be of the form σ(D) for a non-variable atom D occurring in Γ. But the only candidates for
D are ∃r.X and ∃r.B, none of which satisfy ∃r.(A u C) = σ(D).

We show that Γ cannot have another solution that is local. Assume to the contrary
that Γ has a local solution γ. We know that γ(Y ) cannot be > since γ must solve the first
dissubsumption. Furthermore, none of the constants A,B,C can be a top-level atom of γ(Y )
since this would contradict the third subsumption. That leaves only the non-variable atoms
∃r.γ(X) and ∃r.B, which are ruled out by the last dissubsumption since both γ(X) and B
are subsumed by B.

The decidability and complexity of general solvability of disunification problems is still open.
In the following, we first consider the special case of solving dismatching problems, for which
we show a similar result as for unification: every dismatching problem can be polynomially
reduced to a flat problem that has a local solution iff the original problem is solvable. The
main difference is that this reduction is nondeterministic. In this way, we reduce dismatching
to local disunification. We then provide two different NP-algorithms for the latter problem
by extending the rule-based unification algorithm from [10] and adapting the SAT encoding
of unification problems from [9]. These algorithms are more efficient than the brute-force
“guess and then test” procedure on which our argument for Fact 6 was based.

4 Reducing dismatching to local disunification

As mentioned in Section 3, we cannot restrict our attention to flat dismatching problems
without loss of generality. Instead, the nondeterministic algorithm we present in the following
reduces any dismatching problem Γ to a flat disunification problem Γ′ with the property that
local solvability of Γ′ is equivalent to the solvability of Γ. Since the algorithm takes at most
polynomial time in the size of Γ, this shows that dismatching in EL is NP-complete. For
simplicity, we assume that the subsumptions and the non-ground sides of the dissubsumptions
have already been flattened using the approach mentioned in the previous section. This
retains the property that all dissubsumptions have one ground side and does not affect the
solvability of the problem.

Our procedure exhaustively applies a set of rules to the (dis)subsumptions in a dismatching
problem (see Figures 1 and 2). In these rules, C1, . . . , Cn and D1, . . . , Dm are atoms. The
rule Left Decomposition includes the special case where the left-hand side of s is >, in which
case s is simply removed from the problem. Note that at most one rule is applicable to any
given (dis)subsumption. The choice which (dis)subsumption to consider next is don’t care
nondeterministic, but the choices in the rules Right Decomposition and Solving Left-Ground
Dissubsumptions are don’t know nondeterministic.

I Algorithm 8. Let Γ0 be a dismatching problem. We initialize Γ := Γ0. While any of the
rules of Figures 1 and 2 is applicable to any element of Γ, choose one such element and apply
the corresponding rule. If any rule application fails, then return “failure”.

To see that every run of the nondeterministic algorithm terminates in polynomial time,
note that each rule application takes only polynomial time in the size of the chosen
(dis)subsumption. In particular, subsumptions between ground atoms can be checked in
polynomial time [8]. Additionally, we can show that the algorithm needs at most polynomially
many rule applications since each rule application decreases the following measure on Γ: we
sum up all sizes of (dis)subsumptions in Γ to which a rule is still applicable, where the size
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Right Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn 6v? D1 u · · · uDm if m = 0 or m > 1, and
C1, . . . , Cn, D1, . . . , Dm are atoms.
Action: If m = 0, then fail. Otherwise, choose an index i ∈ {1, . . . , m} and replace s by
C1 u · · · u Cn 6v? Di.

Left Decomposition:
Condition: This rule applies to s = C1 u · · ·uCn 6v? D if n = 0 or n > 1, C1, . . . , Cn are atoms,
and D is a non-variable atom.
Action: Replace s by C1 6v? D, . . . , Cn 6v? D.

Atomic Decomposition:
Condition: This rule applies to s = C 6v? D if C and D are non-variable atoms.
Action: Apply the first case that matches s:
a) if C and D are ground and C v D, then fail;
b) if C and D are ground and C 6v D, then remove s from Γ;
c) if C or D is a constant, then remove s from Γ;
d) if C = ∃r.C′ and D = ∃s.D′ with r 6= s, then remove s from Γ;
e) if C = ∃r.C′ and D = ∃r.D′, then replace s by C′ 6v? D′.

Figure 1 Decomposition rules.

of C v? D or C 6v? D is defined as |C| · |D|, and |C| is the number of symbols needed to
write down C (for details, see [4]).

Note that the Solving rule for left-ground dissubsumptions is not limited to non-flat
dissubsumptions, and thus the algorithm completely eliminates all left-ground dissubsump-
tions from Γ. It is also easy to see that, if the algorithm is successful, then the resulting
disunification problem Γ is flat. We now prove that this nondeterministic procedure is correct
in the following sense.

I Lemma 9. The dismatching problem Γ0 is solvable iff there is a successful run of Algorithm 8
such that the resulting flat disunification problem Γ has a local solution.

Proof Sketch. Soundness (i.e., the if direction) is easy to show, using Lemmas 1–3. Showing
completeness (i.e., the only-if direction) is more involved. Basically, given a solution γ of Γ0,
we can use γ to guide the rule applications and extend γ to the newly introduced variables
such that each rule application is successful and the invariant “γ solves all (dis)subsumptions
of Γ” is maintained. Once no more rules can be applied, we have a flat disunification
problem Γ of which the extended substitution γ is a (possibly non-local) solution. To obtain
a local solution, we denote by At, Var, and Atnv the sets as defined in Section 3 and define
the assignment S induced by γ as:

SX := {D ∈ Atnv | γ(X) v γ(D)},

for all (old and new) variables X ∈ Var. It can be shown that this assignment is acyclic and
that the induced local substitution σS solves Γ, and thus also Γ0 (see [4] for details). J

The disunification problem of Example 7 is in fact a dismatching problem. The rule Solving
Left-Ground Dissubsumptions can be used to replace > 6v? Y with Y v? ∃r.Z. The presence
of the new atom ∃r.Z makes the solution σ introduced in Example 7 local.
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Flattening Right-Ground Dissubsumptions:
Condition: This rule applies to s = X 6v? ∃r.D if X is a variable and D is ground and is not a
concept name.
Action: Introduce a new variable XD and replace s by X 6v? ∃r.XD and D v? XD.

Flattening Left-Ground Subsumptions:
Condition: This rule applies to s = C1u· · ·uCnu∃r1.D1u· · ·u∃rm.Dm v? X if m > 0,X is a
variable, C1, . . . , Cn are flat ground atoms, and ∃r1.D1, . . . , ∃rm.Dm are non-flat ground atoms.
Action: Introduce new variables XD1 , . . . , XDm and replace s by D1 v? XD1 , . . . , Dm v? XDm

and C1 u · · · u Cn u ∃r1.XD1 u · · · u ∃rm.XDm v? X.

Solving Left-Ground Dissubsumptions:
Condition: This rule applies to s = C1 u · · · u Cn 6v? X if X is a variable and C1, . . . , Cn are
ground atoms.
Action: Choose one of the following options:

Choose a constant A ∈ Σ and replace s by X v? A. If C1 u · · · u Cn v A, then fail.
Choose a role r ∈ Σ, introduce a new variable Z, replace s by X v? ∃r.Z, C1 6v? ∃r.Z, . . . ,
Cn 6v? ∃r.Z, and immediately apply Atomic Decomposition to each of these dissubsumptions.

Figure 2 Flattening and solving rules.

Together with Fact 6 and the NP-hardness of unification in EL [10], Lemma 9 yields the
following complexity result.

I Theorem 10. Deciding solvability of dismatching problems in EL is NP-complete.

5 A goal-oriented algorithm for local disunification

In this section, we present an algorithm for local disunification that is based on transformation
rules. Basically, to solve the subsumptions, this algorithm uses the rules of the goal-oriented
algorithm for unification in EL [10, 3], which produces only local unifiers. Since any local
solution of the disunification problem is a local unifier of the subsumptions in the problem, one
might think that it is then sufficient to check whether any of the produced unifiers also solves
the dissubsumptions. This would not be complete, however, since the goal-oriented algorithm
for unification does not produce all local unifiers. For this reason, we have additional rules
for solving the dissubsumptions. Both rule sets contain (deterministic) eager rules that are
applied with the highest priority, and nondeterministic rules that are only applied if no eager
rule is applicable. The goal of the eager rules is to enable the algorithm to detect obvious
contradictions as early as possible in order to reduce the number of nondeterministic choices
it has to make.

Let now Γ0 be the flat disunification problem for which we want to decide local solvability,
and let the sets At, Var, and Atnv be defined as in Section 3. We assume without loss of
generality that the dissubsumptions in Γ0 have only a single atom on the right-hand side. If
this is not the case, it can easily be achieved by exhaustive application of the nondeterministic
rule Right Decomposition (see Figure 1) without affecting the complexity of the overall
procedure.

Starting with Γ0, the algorithm maintains a current disunification problem Γ and a current
acyclic assignment S, which initially assigns the empty set to all variables. In addition, for
each subsumption or dissubsumption in Γ, it maintains the information on whether it is solved
or not. Initially, all subsumptions of Γ0 are unsolved, except those with a variable on the
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right-hand side, and all dissubsumptions in Γ0 are unsolved, except those with a variable on
the left-hand side and a non-variable atom on the right-hand side. Subsumptions of the form
C1 u · · · u Cn v? X and dissubsumptions of the form X 6v? D, for a non-variable atom D,
are called initially solved. Intuitively, they only specify constraints on the assignment SX .
More formally, this intuition is captured by the process of expanding Γ w.r.t. the variable X,
which performs the following actions:

every initially solved subsumption s ∈ Γ of the form C1 u · · · u Cn v? X is expanded by
adding the subsumption C1 u · · · u Cn v? E to Γ for every E ∈ SX , and
every initially solved dissubsumption X 6v? D ∈ Γ is expanded by adding E 6v? D to Γ
for every E ∈ SX .

A (non-failing) application of a rule of our algorithm does the following:
it solves exactly one unsolved subsumption or dissubsumption,
it may extend the current assignment S by adding elements of Atnv to some set SX ,
it may introduce new flat subsumptions or dissubsumptions built from elements of At,
it keeps Γ expanded w.r.t. all variables X.

Subsumptions and dissubsumptions are only added by a rule application or by expansion if
they are not already present in Γ. If a new subsumption or dissubsumption is added to Γ, it
is marked as unsolved, unless it is initially solved (because of its form). Solving subsumptions
and dissubsumptions is mostly independent, except for expanding Γ, which can add new
unsolved subsumptions and dissubsumptions at the same time, and may be triggered by
solving a subsumption or a dissubsumption.

The rules dealing with subsumptions are depicted in Figure 3; these three eager and two
nondeterministic rules are essentially the same as the ones in [3], with the only difference that
the background ontology T used there is empty for our purposes. Note that several rules
may be applicable to the same subsumption, and there is no preference between them. Using
Eager Ground Solving, the algorithm can immediately evaluate ground subsumptions via the
polynomial-time algorithm of [8]. If the required subsumption holds, it is marked as solved,
and otherwise Γ cannot be solvable and hence the algorithm fails. Eager Solving detects
when a subsumption trivially holds because the atom D from the right-hand side is already
present on the left-hand side, either directly or via the assignment of a variable. Eager
Extension is applicable in case the left-hand side of a subsumption is essentially equivalent
to a single variable X due to all its atoms being “subsumed by” SX . In this case, there is no
other option but to add the right-hand side atom to SX to solve the subsumption, and to
expand Γ w.r.t. this new assignment. In case none of the eager rules apply to a subsumption,
it can be solved nondeterministically by either extending the assignment of a variable that
occurs on the left-hand side (Extension), or decomposing the subsumption by looking for
matching existential restrictions on both sides (cf. Lemma 1).

The new rules for solving dissubsumptions are listed in Figure 4. These include variants
of the Left Decomposition and Atomic Decomposition rules from the previous section (see
Figure 1). In these two rules, which are eager, instead of removing dissubsumptions we
mark them as solved. Additionally, Γ may have to be expanded if such a rule adds a new
dissubsumption that is initially solved. The new nondeterministic rule Local Extension
follows the same idea as the Solving rule for left-ground dissubsumptions (see Figure 2),
but does not have to introduce new variables and atoms since we are looking only for local
solutions. Note that the left-hand side of s may be a variable, and then s is of the form
Y 6v? X. This dissubsumption is not initially solved, because X is not a non-variable atom.

I Algorithm 11. Let Γ0 be a flat disunification problem. We initialize Γ := Γ0 and SX := ∅
for all variables X ∈ Var. While Γ contains an unsolved subsumption or dissubsumption, do
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Eager Ground Solving:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ, if s is ground.
Action: The rule application fails if s does not hold. Otherwise, s is marked as solved.

Eager Solving:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ, if there is an index i ∈ {1, . . . , n},
such that Ci = D or Ci = X ∈ Var and D ∈ SX .
Action: The application of the rule marks s as solved.

Eager Extension:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ, if there is an index i ∈ {1, . . . , n},
such that Ci = X ∈ Var and {C1, . . . , Cn} \ {X} ⊆ SX .
Action: The application of the rule adds D to SX . If this makes S cyclic, the rule application
fails. Otherwise, Γ is expanded w.r.t. X and s is marked as solved.

Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn v? ∃s.D ∈ Γ, if there is at least one index
i ∈ {1, . . . , n} with Ci = ∃s.C.
Action: The application of the rule chooses such an index i, adds C v? D to Γ, expands Γ
w.r.t. D if D is a variable, and marks s as solved.

Extension:
Condition: This rule applies to s = C1 u · · · u Cn v? D ∈ Γ, if there is at least one index
i ∈ {1, . . . , n} with Ci ∈ Var.
Action: The application of the rule chooses such an index i and adds D to SCi . If this makes S

cyclic, the rule application fails. Otherwise, Γ is expanded w.r.t. Ci and s is marked as solved.

Figure 3 Rules for subsumptions.

the following:
1. Eager rule application: If eager rules are applicable to some unsolved subsumption or

dissubsumption s in Γ, apply an arbitrarily chosen one to s. If the rule application fails,
return “failure”.

2. Nondeterministic rule application: If no eager rule is applicable, let s be an unsolved
subsumption or dissubsumption in Γ. If one of the nondeterministic rules applies to s,
choose one and apply it. If none of these rules apply to s or the rule application fails,
then return “failure”.

Once all (dis)subsumptions in Γ are solved, return the substitution σS that is induced by
the current assignment.

As with Algorithm 8, the choice which (dis)subsumption to consider next and which eager
rule to apply is don’t care nondeterministic, while the choice of which nondeterministic rule
to apply and the choices inside the rules are don’t know nondeterministic. Each of these
latter choices may result in a different solution σS . All proof details for the following results
can be found in [4].

I Lemma 12. Every run of Algorithm 11 terminates in time polynomial in the size of Γ0.

Proof Sketch. We can show that each (dis)subsumption that is added by a rule or by
expansion is either of the form C v? D or C 6v? D, where C,D ∈ At, or of the form
C1 u · · · u Cn v? E, where C1 u · · · u Cn is the left-hand side of a subsumption from
the original problem Γ0 and E ∈ At. Obviously, there are only polynomially many such
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Eager Top Solving:
Condition: This rule applies to s = C 6v? > ∈ Γ.
Action: The rule application fails.

Eager Left Decomposition:
Condition: This rule applies to s = C1 u · · · u Cn 6v? D ∈ Γ if n = 0 or n > 1, and D ∈ Atnv.
Action: The application of the rule marks s as solved and, for each i ∈ {1, . . . , n}, adds Ci 6v? D

to Γ and expands Γ w.r.t. Ci if Ci is a variable.

Eager Atomic Decomposition:
Condition: This rule applies to s = C 6v? D ∈ Γ if C, D ∈ Atnv.
Action: The application of the rule applies the first case that matches s:
a) if C and D are ground and C v D, then the rule application fails;
b) if C and D are ground and C 6v D, then s is marked as solved;
c) if C or D is a concept name, then s is marked as solved;
d) if C = ∃r.C′ and D = ∃s.D′ with r 6= s, then s is marked as solved;
e) if C = ∃r.C′ and D = ∃r.D′, then C′ 6v? D′ is added to Γ, Γ is expanded w.r.t. C′ if C′ is a

variable and D′ is not a variable, and s is marked as solved.

Local Extension:
Condition: This rule applies to s = C 6v? X ∈ Γ if X ∈ Var.
Action: The application of the rule chooses D ∈ Atnv and adds D to SX . If this makes S

cyclic, the rule application fails. Otherwise, the new dissubsumption C 6v? D is added to Γ, Γ is
expanded w.r.t. X, Γ is expanded w.r.t. C if C is a variable, and s is marked as solved.

Figure 4 New rules for dissubsumptions.

(dis)subsumptions. Additionally, each rule application solves at least one (dis)subsumption
and takes at most polynomial time. J

To show soundness of the procedure, assume that a run of the algorithm terminates with
success, i.e. all subsumptions and dissubsumptions are solved. Let Γ̂ be the set of all
subsumptions and dissubsumptions produced by this run, S be the final assignment, and σS
the induced substitution (see Section 3). To show that σS solves Γ̂, and hence also Γ0, we
use induction on the following order on (dis)subsumptions.

I Definition 13. Consider any (dis)subsumption s of the form C1 u · · · u Cn v? Cn+1 or
C1 u · · · u Cn 6v? Cn+1 in Γ̂.

We define m(s) := (m1(s),m2(s)), where
m1(s) := ∅ if s is ground; otherwise, m1(s) := {X1, . . . , Xm}, where {X1, . . . , Xm} is
the multiset of all variables occurring in C1, . . . , Cn, Cn+1.
m2(s) := |s|, where |s| is the size of s, i.e. the number of symbols in s.

The strict partial order � on such pairs is the lexicographic order, where the second
components are compared w.r.t. the usual order on natural numbers, and the first
components are compared w.r.t. the multiset extension of >S [13].
We extend � to Γ̂ by setting s1 � s2 iff m(s1) � m(s2).

Since multiset extensions and lexicographic products of well-founded strict partial orders
are again well-founded [13], � is a well-founded strict partial order on Γ̂. We can then use
the fact that the (dis)subsumptions produced by Algorithm 11 are always smaller w.r.t. this
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order than the (dis)subsumptions they were created from to prove the following lemma by
well-founded induction over �.

I Lemma 14. σS is a local solution of Γ̂, and thus also of its subset Γ0.

To prove completeness, assume that σ is a local solution of Γ0. We can show that σ can guide
the choices of Algorithm 11 to obtain a local solution σ′ of Γ0 such that, for every variable X,
we have σ(X) v σ′(X). The following invariants will be maintained throughout the run of
the algorithm for the current set of (dis)subsumptions Γ and the current assignment S:

I. σ is a solution of Γ. II. For each D ∈ SX , we have that σ(X) v σ(D).

By Lemma 1, chains of the form σ(X1) v σ(∃r1.X2), . . .σ(Xn−1) v σ(∃rn−1.Xn) with
X1 = Xn are impossible, and thus invariant II implies that S is acyclic. Hence, if extending S
during a rule application preserves this invariant, this extension will not cause the algorithm
to fail. In [4] it is shown that

the invariants are maintained by the operation of expanding Γ;
the application of an eager rule never fails and maintains the invariants; and
if s is an unsolved (dis)subsumption of Γ to which no eager rule applies, then there
is a nondeterministic rule that can be successfully applied to s while maintaining the
invariants.

This concludes the proof of correctness of Algorithm 11, which provides a more goal-directed
way to solve local disunification problems than blindly guessing an assignment as described
in Section 4.

I Theorem 15. The flat disunification problem Γ0 has a local solution iff there is a successful
run of Algorithm 11 on Γ0.

6 Encoding local disunification into SAT

The following reduction to SAT is a generalization of the one for unification problems in [9].
We again consider a flat disunification problem Γ and the sets At, Var, and Atnv as in Section 3.
Since we are restricting our considerations to local solutions, we can without loss of generality
assume that the sets Nv, Nc, and NR contain exactly the variables, constants, and role names
occurring in Γ. To further simplify the reduction, we assume in the following that all flat
dissubsumptions in Γ are of the form X 6v? Y for variables X,Y . This is without loss of
generality, which can be shown using a transformation similar to the flattening rules from
Section 4.

The translation into SAT uses the propositional variables [C v D] for all C,D ∈ At. The
SAT problem consists of a set of clauses Cl(Γ) over these variables that express properties
of (dis)subsumption in EL and encode the elements of Γ. The intuition is that a satisfying
valuation of Cl(Γ) induces a local solution σ of Γ such that σ(C) v σ(D) holds whenever
[C v D] is true under the valuation. The solution σ is constructed by first extracting an
acyclic assignment S out of the satisfying valuation and then computing σ := σS . We
additionally introduce the variables [X > Y ] for all X,Y ∈ Nv to ensure that the generated
assignment S is indeed acyclic. This is achieved by adding clauses to Cl(Γ) that express that
>S is a strict partial order, i.e. irreflexive and transitive.

Finally, we use the auxiliary variables pC,X,D for all X ∈ Nv, C ∈ At, and D ∈ Atnv
to express the restrictions imposed by dissubsumptions of the form C 6v? X in clausal
form. More precisely, whenever [C v X] is false for some X ∈ Nv and C ∈ At, then the
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dissubsumption σ(C) 6v σ(X) should hold. By Lemma 2, this means that we need to find an
atom D ∈ Atnv that is a top-level atom of σ(X) and satisfies σ(C) 6v σ(D). This is enforced
by making the auxiliary variable pC,X,D true, which makes [X v D] true and [C v D] false
(see Definition 167).

I Definition 16. The set Cl(Γ) contains the following propositional clauses:
(I) Translation of Γ.

a. For every subsumption C1 u · · · u Cn v? D in Γ with D ∈ Atnv:
→ [C1 v D] ∨ · · · ∨ [Cn v D]

b. For every subsumption C1 u · · · uCn v? X in Γ with X ∈ Nv, and every E ∈ Atnv:
[X v E]→ [C1 v E] ∨ · · · ∨ [Cn v E]

c. For every dissubsumption X 6v? Y in Γ: [X v Y ]→
(IV) Properties of subsumptions between non-variable atoms.

a. For every A ∈ Nc: → [A v A]
b. For every A,B ∈ Nc with A 6= B: [A v B]→
c. For every ∃r.A, ∃s.B ∈ Atnv with r 6= s: [∃r.A v ∃s.B]→
d. For every A ∈ Nc and ∃r.B ∈ Atnv:

[A v ∃r.B]→ and [∃r.B v A]→
e. For every ∃r.A, ∃r.B ∈ Atnv:

[∃r.A v ∃r.B]→ [A v B] and [A v B]→ [∃r.A v ∃r.B]
(VI) Transitivity of subsumption.

For every C1, C2, C3 ∈ At: [C1 v C2] ∧ [C2 v C3]→ [C1 v C3]
(VII) Dissubsumptions of the form C 6v? X with a variable X.

For every C ∈ At, X ∈ Nv:
→ [C v X] ∨

∨
D∈Atnv

pC,X,D,

and additionally for every D ∈ Atnv:
pC,X,D → [X v D] and pC,X,D ∧ [C v D]→

(VIII) Properties of >.
a. For every X ∈ Nv: [X > X]→
b. For every X,Y, Z ∈ Nv: [X > Y ] ∧ [Y > Z]→ [X > Z]
c. For every X,Y ∈ Nv and ∃r.Y ∈ At: [X v ∃r.Y ]→ [X > Y ]

The main difference to the encoding in [9] (apart from the fact that we consider (dis)sub-
sumptions here instead of equivalences) lies in the clauses 7 that ensure the presence of a
non-variable atom D that solves the dissubsumption C 6v? X (cf. Lemma 2). We also need
some additional clauses in 4 to deal with dissubsumptions. It is easy to see that Cl(Γ) can
be constructed in time cubic in the size of Γ (due to the clauses in 6 and 2).

To show soundness of the reduction, let τ be a valuation of the propositional variables
that satisfies Cl(Γ). We define the assignment Sτ as follows:

SτX := {D ∈ Atnv | τ([X v D]) = 1}.

In [4] it is shown that X >Sτ Y implies τ([X > Y ]) = 1 and that this implies irreflexivity
of >Sτ . This in particular shows that Sτ is acyclic. In the following, let στ denote the
substitution σSτ induced by Sτ . In [4] it is shown that στ is a solution of Γ by proving that
for all atoms C,D ∈ At it holds that τ([C v D]) = 1 iff στ (C) v στ (D).

Since στ is obviously local, this suffices to show soundness of the reduction.

I Lemma 17. If Cl(Γ) is solvable, then Γ has a local solution.
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To show completeness, let σ be a local solution of Γ and >σ the resulting partial order on Nv,
defined as follows for all X,Y ∈ Nv:

X >σ Y iff σ(X) v ∃r1. . . .∃rn.σ(Y ) for some r1, . . . , rn ∈ NR with n ≥ 1.

Note that >σ is irreflexive since X >σ X is impossible by Lemma 1, and it is transitive since
v is transitive and closed under applying existential restrictions on both sides. Thus, >σ is
a strict partial order. We define a valuation τσ as follows for all C,D ∈ At, E ∈ Atnv, and
X,Y ∈ Nv:

τσ([C v D]) :=
{

1 if σ(C) v σ(D)
0 otherwise

τσ([X > Y ]) :=
{

1 if X >σ Y

0 otherwise

τσ(pC,X,E) :=
{

1 if σ(X) v σ(E) and σ(C) 6v σ(E)
0 otherwise

In [4] it is proved that τσ satisfies Cl(Γ), which shows completeness of the reduction.

I Lemma 18. If Γ has a local solution, then Cl(Γ) is solvable.

This completes the proof of the correctness of the translation presented in Definition 16,
which provides us with a reduction of local disunification (and thus also of dismatching) to
SAT. This SAT reduction has been implemented in our prototype system UEL,4 which uses
SAT4J5 as external SAT solver. First experiments show that dismatching is indeed helpful
for reducing the number and the size of unifiers. The runtime performance of the solver for
dismatching problems is comparable to the one for pure unification problems.

7 Related and future work

Since Description Logics and Modal Logics are closely related [26], results on unification in
one of these two areas carry over to the other one. In Modal Logics, unification has mostly
been considered for expressive logics with all Boolean operators [19, 20, 25]. An important
open problem in the area is the question whether unification in the basic modal logic K,
which corresponds to the DL ALC, is decidable. It is only known that relatively minor
extensions of K have an undecidable unification problem [27]. Disunification also plays an
important role in Modal Logics since it is basically the same as the admissibility problem for
inference rules [15, 22, 24] (see [4] for details).

Regarding future work, we want to investigate the decidability and complexity of general
disunification in EL, and consider also the case where non-ground solutions are allowed.
From a more practical point of view, we plan to implement also the goal-oriented algorithm
for local disunification, and to evaluate the performance of both presented algorithms on
real-world problems.
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