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Abstract
Foundational models of object-oriented constructs typically model objects as records with a
structural type. However, many object-oriented languages are class-based; statically-typed formal
models of these languages tend to sacrifice the foundational nature of the record-based models,
and in addition cannot express dynamic class loading or creation. In this paper, we explore how
to model statically-typed object-oriented languages that support dynamic class creation using
foundational constructs of type theory. We start with an extensible tag construct motivated by
type theory, and adapt it to support static reasoning about class hierarchy and the tags supported
by each object. The result is a model that better explains the relationship between object-
oriented and functional programming paradigms, suggests a useful enhancement to functional
programming languages, and paves the way for more expressive statically typed object-oriented
languages. In that vein, we describe the design and implementation of the Wyvern language,
which leverages our theory.
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1 Introduction

Many models of statically typed object-oriented (OO) programming encode objects as records,
usually wrapped inside a recursive or existential type [5]. These models elegantly capture
many essential aspects of objects, including object methods, fields, dispatch, and subtyping.
They are also foundational in that they describe core object-oriented constructs in terms
of the fundamental building blocks of type theory, such as functions, records, and recursive
types.

These models have been used to investigate a number of interesting features of OO
languages. For example, dynamically-typed languages often support very flexible ways
of constructing new objects and classes at run time, using ideas like mixins [10]. Typed,
record-based models of object-oriented programming can support these flexible composition
mechanisms with small, natural extensions [27].

Unfortunately, there are also important aspects of common object-oriented programming
languages that are not adequately modeled by record-based object encodings. Many object-
oriented languages are class-based: each object is an instance of a class, and classes are
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related by a subclass (or inheritance) relationship. In statically-typed class-based languages,
subtyping is generally not structural, but instead follows the subclassing relation. Most
class-based languages also provide a way for programmers to test whether an object is an
instance of a class, for example via a cast, which results in an error if the test fails, or an
instanceof operation, which returns a boolean.

Typical models of these languages, such as Featherweight Java [18], assume that each
object is a member of a class, and that a fixed class table exists mapping classes to their
definitions (and thus defining a subclassing relation). Casts or instanceof tests can then be
encoded using class table lookups. Such dynamic instance checks are useful in cases where a
programmer wishes to express the behavior of a sum type in a statically-typed OO language,
as in abstract syntax tree evaluation. Scala makes the relationship between sum-types and
instance checking explicit through its pattern-matching expression, which can pattern match
an object against multiple possible subclasses [8].

The class-based models of object-oriented programming with which we are familiar have
two limitations. The first limitation is the fixed nature of the class table: the models assume
that the entire class table can be computed at compile time, meaning that run-time loading,
generation, or composition of classes is not modeled. These models, therefore, do not capture
the dynamic compositions that are possible in class-based dynamic object-oriented languages
such as Smalltalk. As a result, they are an unsuitable foundation for important areas of
research, such as exploring future statically-typed object-oriented languages that support
more dynamic forms of composition.

The second limitation is that these class-based models are not foundational in nature, in
that they do not explain classes and instance checking in terms of the fundamental constructs
of type theory. The more ad-hoc nature of these models inhibits a full understanding of
the nature of classes and how classes relate to ideas in other paradigms, such as functional
programming. For example, as described above, Scala’s support for case classes that mirror
datatypes in functional programming suggests an analogy between OO class types and
type theory sums, and between instance checking in object-oriented languages and pattern
matching or tag checking in functional languages. In particular, the Standard ML language
provides extensible sums through its exn type. This poses a natural question: could an
exn-like construct, suitably extended, be used to model instanceof checks in object-oriented
languages?

The primary contribution of this paper is exploring a more flexible and foundational
model of class-based object-oriented programming languages. At a more detailed level, the
contributions include:

Section 2 defines a source-level statically-typed object-oriented language that supports
dynamic creation of class hierarchies, including mixin composition, along with a match
construct that generalizes instanceof checks and casts. We also show examples demonstrat-
ing the expressive power of the language, including a technique for enforcing encapsulation,
the memento design pattern, and type-safe dynamic mixin composition.
Section 3 defines a foundational calculus, consisting of a standard core type theory
with the addition of constructs to support hierarchical tag creation, tag matching, and
the extraction of tagged content. We define the static and dynamic semantics of the
foundational language and prove soundness.
In Section 4, the semantics of the source-level language is defined by a translation into the
target language, thus explaining how dynamic, class-based OO languages can be modeled
in terms of type theory. The translation motivates the particular tag manipulation
constructs of the foundational calculus, explaining how constructs such as the exn type in
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176 A Theory of Tagged Objects

e ::= class x {f : τ ,m : τ = e} in e | class x extends x {f : τ ,m : τ = e} in e
| new(x; e) | e.f | e.m | match(e1;x1;x2.e2; e3) | λx:τ.e | e e | let x = e in e
| letrec x = e in e | x

τ ::= class x {f : τ ,m : τ} | class x extends x {f : τ ,m : τ} | τ → τ | x obj

Figure 1 Source Language Syntax.

Standard ML need to be adapted to serve as a foundation for object-oriented programming.
In Section 5, we present the publicly available implementation of our language.

After presenting these contributions, our paper discusses extensions in Section 6 and
additional related work in Section 7. Section 8 concludes with a discussion of the potential
applications of the model.

2 First-Class Classes

We motivate our work with a source language that treats classes as first-class expressions,
putting them in the same syntactic category as objects, functions, and other primitive forms.
This language is designed to be as simple as possible in order to focus on the creation and
usage of classes and objects. Figure 1 shows our source language syntax, which includes
class definition, instantiation with new, method and field definition and selection, a match

construct that generalizes instanceof and casts, the lambda calculus, let, and letrec. We
omit mutable fields, inheriting method bodies, and other constructs in order to focus on
the basic object-oriented mechanisms of classes, dispatch, and instance checks. The omitted
constructs can be added in standard ways [25].

The most central construct of our language is the class definition expression, which defines
the set of fields and methods as usual, and binds the newly defined class to a name x that
can be used in the expression e. This binding is recursive so that methods can refer to the
type of the containing class. We bind a name to the class immediately for this purpose and
so that the type system can use the class’s name to reason about its identity. However, class
creation is dynamic: class definition expressions may occur inside a function or method, and
a new class with a distinct run-time tag is created each time the function is called. The
created class is also first-class: it has type class x {f : τ ,m : τ} and can be passed to a
function or method, or bound to another variable y. A singleton type mechanism [17] could
be added to support strong reasoning about equality of classes, but for simplicity we do not
explore this here.

We illustrate the language with a simple counter class that increments a value when the
inc method is called:

1 class Counter {
2 val:int ,
3 inc:unit ->Counter obj=λ_:unit.new(Counter;this.val +1)
4 } in let oneC = new (Counter; 1)
5 in let twoC = oneC.inc() ...

In the example, val is a field that will be initialized when a Counter is created. inc is a
method; the difference between methods and fields is that a method is given a definition in
the class body (typically using a function, although our semantics does not enforce this),
and the special variable this is in scope within the body of the method.

As mentioned earlier, classes and objects in the source language are immutable for the
sake of simplicity. Therefore, instead of actually updating the val field, the inc method
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simply returns a new object with its val field equal to the receiver object’s val field plus
one. The return type of the inc method is Counter obj, which is the type of objects that are
instances of the Counter class.

A subclass can be created using a variant of the class expression that specifies the
superclass x. We require the use of a variable rather than an expression in the extends clause
to allow static reasoning about the identity of the class being extended. A subclass can define
additional members, or define members that are subtypes of the corresponding members
in the superclass, thus following typical depth and width subtyping rules. The type of a
subclass includes the name of the class it extends.1

To continue the simple counter example, consider a possible subclass that can reset the
counter to zero:

1 class RCounter extends Counter{
2 ...
3 reset:unit ->RCounter obj=λ_:unit.new(RCounter ;0)
4 } in e

The new(x; e) expression takes a variable x representing a class and a list of expressions.
Executing the new expression instantiates an object of class x with the input expressions
as initial values for the fields of the object. Alternative constructors with pre-defined field
values can be created by wrapping new in a function or method.

An important piece of the source language is the match expression. This checks whether
or not the object passed in as the first argument is an instance of the class named in the
second argument. If the instance check passes, then the variable x2 is bound to the object
originally passed in, but x2 is typed according to the class that was checked against, and
expression e2 is executed. Expression e3 is executed in the default case where the match
fails.

The match expression could be expressed equivalently in terms of instanceof, downcasting,
and an if statement:

match(e1;x; y.e2; e3) =
if(e1 instanceof x) then let y = (x)e1 in e2 else e3

Similarly both instanceof and downcasting can be emulated by match:

e instanceof x = match(e;x;_.true; false)
cast(e;x) = match(e;x; y.y; err)

where err indicates an execution error (e.g. throwing an exception) upon a failed cast. The
err construct demonstrates that match is safer than downcasts because a default case must
be given.

Because class creation expressions can be nested in the body of a function or method,
they can be executed more than once – and each time the expression is executed, a different
class (i.e. a class with a different static type and run-time tag) is generated. This means
that match cannot be implemented using a lookup in a static class table. Instead, as the next
section will show, we need a dynamic environment tracking all the classes that have been
created, along with their relationships to one another, in order to define the semantics of
match.

1 Although our system supports subtyping, we omit inheritance (e.g. of code in method bodies) in order
to focus our attention on a simple type-theoretic formalism that captures the essence of tags.
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178 A Theory of Tagged Objects

2.1 Applications of First-Class Classes
There are a number of useful applications of first-class classes (and thus of dynamically
generated hierarchical tags), a few of which we sketch here.
Encapsulation. One of the simplest applications is ensuring that data private to an object
stays private. For example, imagine a map made up of a linked list of entries. We would
like to ensure that no entry is shared by multiple maps. We can do this by generating a
fresh Entry class for each map object. This idiom is similar to uses of generative functors in
languages such as Standard ML [16].2 In our language, it looks like this:

1 let MyMap =
2 class Entry {
3 key:int ,
4 value:int ,
5 next:Entry obj
6 } in
7 class Map extends IMap {
8 head:Entry obj ,
9 put: int ->int ->Map obj = eput,

10 get: int ->int = eget

11 } in Map
12 in ...

Each time the let statement is executed, we generate a new Map class, and each Map class
has a corresponding Entry class used to hold its private data. The type system will not allow
one map to contain entries defined by another map. Because all maps implement the same
IMap interface, however, clients can store and manipulate maps uniformly.
Memento. A similar approach can be used to implement the Memento design pattern
[12], in which an originator object externalizes its state as a separate memento object. The
originator object’s state can later be restored using the memento. We may want to ensure
that mementos created by different objects are not mixed up. To do this, we generate a fresh
MyMemento class for each originator object, ensuring that it is a subclass of the well-known
Memento class. To externalize its state, each originator then creates memento objects using
its own private MyMemento class. When the originator’s state is restored, we check that the
memento used for restoration is of the private class, ensuring that the memento was created
for this object and not some other object. This example differs from the previous one in that
mementos are deliberately exposed to clients, and in that checking for the right class is done
dynamically using match rather than statically using the object type:

1 class Memento {intState:int} in
2 // the code below may be in a loop or function
3 let Originator =
4 class MyMemento extends Memento
5 {intState:int}
6 in
7 class Originator {
8 myState:int
9 saveToMemento: T -> Memento obj =

10 λx:int.new(MyMemnto; this.myState),
11 restoreFromMemento:Memento obj ->Originator =
12 λm:Memento obj.
13 match(m;MyMemnto;
14 x.new(Originator;x.intState );
15 raise RuntimeException)
16 in Originator
17 in ...

2 An alternative would be to use ownership types [7].
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Mixins. Another application area for dynamically created tags is mixin compositions.
According to Bracha and Cook, “A mixin is an abstract subclass; i.e. a subclass definition
that may be applied to different superclasses to create a related family of modified classes.
For example, a mixin might be defined that adds a border to a window class; this mixin
could be applied to any kind of window to create a bordered-window class” [4].

Achieving the full benefits of mixins – and indeed, properly implementing the missing
method bodies below – requires inheritance as well as tagged objects. Prior work on mixins
shows how to obtain expressive code reuse via inheritance [2]. Our work is not intended
to replace this work, but rather complement prior results by adding tagging support in a
setting with first-class classes. In this section, we omit inheritance –which can be added back
through standard encodings – in order to focus on the benefits of these added features.

The library code below illustrates a version of the bordered window example. Class
Window defines a draw method (and perhaps other methods, not shown). We define a
mixin as a function3 that accepts a subclass of Window and extends that class with border
functionality. A similar mixin can make an arbitrary window scrollable.

1 class Window {
2 draw:unit ->unit = /* draw a blank window */
3 }
4
5 let makeBordered =
6 λwc: class WinClass extends Window { ... } .
7 class BorderedWinClass extends wc {
8 draw:unit ->unit = /* draw a bordered window */
9 } in BorderedWinClass

10
11 let makeScrollable =
12 λwc: class WinClass extends Window { ... } .
13 class ScrollableWinClass extends wc {
14 draw:unit ->unit =
15 /* draw scrollbars and scroll contents */
16 } in ScrollableWinClass

Now, in the application code below, we can create a custom application window as a
subclass of Window. We can then make it bordered, conditional on whether the user’s
preferences specify a border. This can be a run-time check, illustrating the dynamic nature
of class composition in this example. We can also mix in the scrollable property, which will
be used when creating large windows. Later, we can define operations such as screen capture
that should behave differently for different kinds of windows, using a match statement.4

1 class AppWindow extends Window { ... }
2
3 let WinCls =
4 if (/* check if user wants a border */)
5 makeBordered(AppWindow)
6 else
7 AppWindow
8
9 let BigWinCls = makeScrollable(winCls) in

10 let smallWin = new WinCls (...) in
11 let bigWin = new BigWinCls (...) in
12 let screenCap = λw:Window .
13 match(w,BigWinCls ,

3 Similar to ML functor [16].
4 We could also have made screenCap() a method of Window, but only if we anticipated it in the library.

If we only think of it when we write the application, it is typically not feasible to add new methods to
the library, and so using match statements in place of dispatch is critical.
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180 A Theory of Tagged Objects

n ::= x | c | fst(n) | unfold(n)

e ::= newtag[τ ] | subtag[τ ](n) | new(n; e) | match(e;n;x.e; e) | extract(e) | λx:τ.e | e e
| {f = e} | e.f | let x = e in e | letrec x = e in e | fold[t.τ ](e) | unfold(e)
| 〈e, e〉 | fst(e) | snd(e) | 〈〉 | n

τ ::= Tag(τ) | tagged n | Πx:τ .τ | {f : τ} | µt.τ | Σx:ττ | > | t

Tag(τ) ::= τ tag | τ tag extends n

Γ ::= ε | Γ, x : τ

Σ ::= ε | Σ, c ∼ τ

∆ ::= ε | ∆, t <: t

Figure 2 Core Language Syntax.

14 bw./* adjust capture for scrolling windows */),
15 /* default screen capture */)
16 in screenCap(bigWin ); /* the match above succeeds */
17 screenCap(smallWin) /* the match above will default */

Discussion: modules and dynamic class loading. The mixin example above is reminiscent
of functors in Standard ML [16]. Functors can also be used to implement a type that builds
on another type, which is bound later when the functor is applied. This suggests that our
theory can be used to model the combination of classes and advanced module systems – and
in fact, our implementation in Wyvern, discussed in Section 5, combines these features. We
believe that our theory might also be useful for exploring the semantics of dynamic class
loading, for similar reasons, but we have not yet investigated this connection.

3 A Hierarchical Tagging Language

We would like to find a way to explain the semantics of the language defined in the previous
section in terms of type theory. Figure 2 defines the syntax of a core language for doing so.
We start with constructs required for traditional object encodings based on recursive records:
the lambda calculus, record creation and projection, ordinary and recursive let bindings, and
iso-recursive types with fold and unfold constructs. Our function types are dependent so that
we can define functions that act like functors, accepting a tag as an argument and producing
a subtag of the argument as a result. We include units and a top type.

We also include dependent sum types, because our translation for the source-level language
will translate a class into a pair containing the class’s tag and a function to construct objects
of that class. Since objects of the class have the class’s tag as part of type, the constructor
function must also; thus the pair has the type of a dependent sum.

These constructs are more than sufficient to encode record-based objects. However, we
need more to allow us to model the classes and match-based instance testing constructs of
the OO source language, while also supporting a type safety property.

As described in the introduction, there is a natural parallel between class types, class
generation and match in our surface language, and extensible sums, tag generation and tag
testing in functional programming languages such as Standard ML. We therefore add mech-
anisms for generating tags, tagging values, testing against tags, and extracting values from
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tagged objects. Our presentation is inspired both by Glew’s work on modeling hierarchical
tags [13], and by the coverage of symbols and dynamic classification in Harper’s book [14].

The most basic way to create a tag is using the expression newtag[τ ] that, when executed,
will generate a new tag (let’s call it by the name n). The new tag can be used to create
a tagged value using the expression new(n; e), which takes the value to which e reduces
and tags it with the tag n. In this expression, e must have the type τ that was associated
with tag n when n was created. The type of the tagged expression is tagged n; thus the
static type system tracks not only the fact that the expression is tagged, but what tag it is
tagged with. In this respect, we model OO type systems that track the class of objects, but
differ from prior work on modeling tags because they did not include the tag as part of the
type [13, 14, 16].

While analogies can be drawn between tag creation and class creation, the type of τ
is not restricted to be a record as in the source language. Rather, any arbitrary type τ is
allowed to be tagged.

Following Glew [13], we provide a construct for extending an already created tag with a
subtag. The construct subtag[τ ](n) creates a new tag as a subtag of n. Note that tags to be
extended in this rule are represented by names n; most prominently, names include variables
x in the source code. Using names supports static reasoning about tag identity, just as in
the source language we required the subclass to be specified as a variable. In addition to
variables, names can be the first element of a dependent pair that is also represented by a
name (we use this in our encoding – in principle we could include the second element as
well), or an unfolding of a name, or they can be tag values c generated at run time. Here c
is like a location in formalisms of references, and similar to locations, it cannot appear in
the source code. We use Σ to associate tag values with types (c ∼ τ); this is analogous to a
store type. Names cannot be arbitrary expressions; this restriction means we do not have to
evaluate expressions in the type system, avoiding the intractability that this entails in the
presence of recursion.

Tag testing is done through the match(e1;n; y.e2; e3) expression, which has the same
structure as the iftagof construct from prior work in type theory [16, 13]. This expression
takes in a tagged expression e1, reduces it to a tagged value, and compares it to the tag n.
Upon a successful match, the tagged value is bound to y, and the expression e2 can use y
as if it were of type tagged n. Like its source level equivalent, match requires there to be a
failure branch, e3, that is evaluated upon an unsuccessful tag test.

To extract an expression from a tag, extract(e) is used. If e is a value tagged with n,
then extract(e) unwraps the tagged value and exposes the internal contents e.

Hierarchical tagging can be used to emulate a makeshift sum type. For example, the sum
type int + >, which would correspond to nullable ints, can be emulated in a local scope
through tags:

let intOption : > tag = newtag[>] in

let none : > tag extends intOption = subtag[>](intOption) in

let some : int tag extends intOption = subtag[int](intOption) in

let z : tagged none = new(none; 〈〉) in

(λx : tagged intOption.

match(x; some; y.extract(y) + 1;−1))(z)

This expression would test none against some, and failing to match, will evaluate to −1.
This example demonstrates how these constructs allow one to create extensible sum types in
a local scope.

ECOOP’15
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∆|Γ `Σ τ <: τ
(ST-Reflexive)

∆|Γ `Σ τ1 <: τ2 ∆|Γ `Σ τ2 <: τ3
∆|Γ `Σ τ1 <: τ3

(ST-Trans)

t <: t′ ∈ ∆
∆|Γ `Σ t <: t′

(ST-Amber-1)
∆, t<:t′ | Γ `Σ τ <: τ ′

∆|Γ `Σ µt.τ <: µt′.τ ′ (ST-Amber-2)

∆|Γ `Σ {fi : τii∈1..n+k} <: {fi : τii∈1..n}
(ST-Record-1)

for each i ∆|Γ `Σ τi <: τ ′
i

∆|Γ `Σ {fi : τii∈1..n} <: {fi : τ ′
i
i∈1..n}

(ST-Record-2)

{lj : ρjj∈1..n} is a permutation of {fi : τii∈1..n}
∆|Γ `Σ {lj : ρjj∈1..n} <: {fi : τii∈1..n}

(ST-Record-3)

∆|Γ `Σ τ3 <: τ1 ∆|Γ, x : τ3 `Σ τ2 <: τ4
∆|Γ `Σ Πx:τ1 .τ2 <: Πx:τ3 .τ4

(ST-App)

Γ `Σ n : τ tag extends n′

∆|Γ `Σ tagged n <: tagged n′ (ST-Tag-1)

∆|Γ `Σ tagged n <: tagged n′

∆|Γ `Σ τ tag extends n <: τ tag extends n′ (ST-Tag-2)

∆|Γ `Σ τ tag extends n <: τ tag
(ST-Tag-3)

Figure 3 Core Language Subtyping Rules.

3.1 Subtyping

In our source language, subclasses define subtypes, and so our core language needs to define
subtyping as well. The subtyping judgment is of the form ∆|Γ `Σ τ <: τ . The extra context
∆ for the subtyping judgment stores subtyping relations between type variables and is used
in the Amber Rule (ST-Amber-1 and ST-Amber-2) for subtyping of recursive types [6].

Most of the subtyping rules in Figure 3 are standard: subtyping is reflexive and transitive.
Recursive types follow the Amber Rule, while records support width and depth subtyping and
allow permutation. Finally, we use the standard contravariant rule for dependent function
types.

Subtyping between tagged types is nominal, and follows the declared subtagging relation-
ship as expected: that is, tagged n is a subtype of tagged n′ if the type of n reveals that it
is a direct subtag of n′. We get transitivity of subtyping on tagged types from the general
subtype transitivity rule.

The most interesting rules define the subtyping relation between the types of first-class
tags themselves (as opposed to tagged types). If we have a function that accepts a first-class
tag parameter of type τ tag extends n′, what tags do we want it to accept? Intuitively,
it should be acceptable to pass an actual argument of type τ tag extends n, where n is
a subtag of n′; this loses a bit of information, but does not create any unsafe situations.
Furthermore, if the function accepts a parameter of type τ tag (i.e. a tag with no known
supertag) it should be fine to pass it an actual argument that does have a supertag, because
none of the operations in our core language depend on a tag having no supertag.
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On the other hand, it would be unsound to allow the type being wrapped by the tag
to vary. This is because tags are like references: values flow into a tagged value when it is
created, and they flow out when the extract operation is used, so the types of first-class
tags cannot be either covariant or contravariant in the type being wrapped.

We can now see how to express the essence of the mixin example shown earlier can be
expressed using the core language:

let base : int tag = newtag[int] in

let mixin : Πc:int tag.int tag extends c = λc : int tag . subtag[int](c) in

let sub : Πc:int tag.int tag extends c = λc : int tag . subtag[int](c) in

let c : int tag extends base = if (cond) sub(mixin(base)) else sub(base) in

let x : tagged c = new(c; 5) in

. . .

Here we have a tag base and two functions that create subtags of it, one of which is
intended to be used as a mixin. Based on some dynamic condition cond, the program will
create the tag c to either be a direct subtag of base or a transitive one. Because of the
subtyping rules between tags, we can pass either base or mixin(base) to sub safely. Of course,
the mixin above adds neither functionality nor state to the object, but the point of the
example is getting the tags and the typing right; adding a standard encoding of inheritance
will allow the mixin functionality to work.

3.2 Typing
The typing judgment for the core language is of the form:

Γ `Σ e : τ

This judgment uses two different contexts. Γ is the standard type context, while Σ is
introduced for technical reasons: it is like a store type, but rather than track the types of
references, it tracks the types of generated tag values at run time, facilitating the proof of
type safety (see the supplementary material [20]) in the same way that store types do in
formalizations of imperative languages.

The typing rules for our core language are mostly standard; Figure 4 shows the rules
for the constructs we introduced, as well as a couple of others that are more involved. The
remaining rules are the standard ones for the lambda calculus, and so are omitted here. Our
function application rule is the standard one, except that since we have a dependent function
type, we must substitute the actual argument for the formal parameter in the result type.
Since names, but not arbitrary expressions, can appear in types, applying the substitution
to the result type is only defined when the argument e2 is a name, or else when the variable
x being substituted for is not free in the type τ ′ (note that if substitution is not defined then
the App rule may not be applied).

Our rules include a subsumption rule that can be applied at any point, and a rule that
looks up the type of a tag value c in the tag store type Σ (see the dynamic semantics, below,
for how tag values are generated). Defining a new tag for τ values yields the obvious type
τ tag. The rule for creating subtags is similar, but the premises must check that the name n
given as a supertag is actually a tag, and that the type τ ′ being tagged is a subtype of the
type τ that is tagged by the supertag. The new expression is well-typed as tagged by n if n
is a tag and the expression used is a subtype of the type associated with the n tag.
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Γ `Σ e1 : Πx:τ .τ
′ Γ `Σ e2 : τ

Γ `Σ e1e2 : [e2/x]τ ′ (App)
Γ `Σ e : τ ε|Γ `Σ τ <: τ ′

Γ `Σ e : τ ′ (Sub)

Σ(c) = τ

Γ `Σ c : τ
(CVar)

Γ `Σ newtag[τ ] : τ tag
(Cls-I)

Γ `Σ n : Tag(τ) ε|Γ `Σ τ ′ <: τ
Γ `Σ subtag[τ ′](n) : τ ′ tag extends n

(CCls-I)

Γ `Σ n : Tag(τ) Γ `Σ e : τ
Γ `Σ new(n; e) : tagged n

(Tag-I)

Γ `Σ e1 : tagged n′ Γ `Σ tagged n′ l tagged n
Γ, x : tagged n `Σ e2 : τ Γ `Σ e3 : τ

Γ `Σ match(e1;n;x.e2; e3) : τ
(Match)

Γ `Σ e : tagged n Γ `Σ n : Tag(τ)
Γ `Σ extract(e) : τ

(Extract)

Γ `Σ e1 : τ1 Γ `Σ e2 : [e1/x]τ2
Γ `Σ 〈e1, e2〉 : Σx:τ1τ2

(Σ-I)
Γ `Σ e : Σx:τ1τ2

Γ `Σ fst(e) : τ1
(Σ-E1)

Γ `Σ e : Σx:τ1τ2

Γ `Σ snd(e) : [fst(e)/x]τ2
(Σ-E2)

Definition: Γ `Σ τ1 l τ2 = ∃τp . ε|Γ `Σ τ1 <: τp and ε|Γ `Σ τ2 <: τp.

Figure 4 Core Language Static Semantics.

One of the more interesting checks comes in the Match typing rule. Here, the tagged
expression e1 should be comparable to the tag n. If e1 is tagged with n′, then n′ should be in
the same branch of the tag hierarchy as n. This prevents pointless attempts to cast a tagged
value to something of an entirely different tag “tree”. Formally, this means that tagged n
and tagged n′ should have a common supertag in the hierarchy: there exists some n′′ such
that tagged n <: tagged n′′ and tagged n′ <: tagged n′′. We define the l notation at the
bottom of Figure 4 that specifies the need to go “up and down” the tag hierarchy.

Extracting a value from a tagged expression only requires that e is of type tagged n in
extract(e). If e is tagged with n, then there is no harm in unwrapping e and typing it with
the type that n tags.

As mentioned before, dependent sums are in the core language. The translation from the
source to core language–shown in the next section–heavily uses dependent sums to convert
classes, essentially because the type system must associate the tag generated for a class with
the result type of the class constructor, which is also generated for that same class. We use
the type abbreviation τ1 × τ2 as a special case of the dependent sum Σx:τ1 .τ2, where τ2 does
not use x. Furthermore, we can use the type abbreviation τ1 → τ2 as a special case of the
dependent function Πx:τ1 .τ2, where τ2 does not depend on x.

As in typical dependent type systems, the type tagged B is only well formed if B is in
the context Γ. This leads to the avoidance problem [15] common in module systems, and
requires the type system to use the subsumption rule when a variable goes of scope. For
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S ::= ε | S, c p p ::= ε | c p
c ∈ c p

c ∈ p c 6= c′

c ∈ c′  p

Notation: S, x = S, x ε

Figure 5 Hierarchical Store Definition and Rules.

example, consider the following:

let A : int tag = newtag[int] in

let x : tagged A =
let B : int tag extends A = subtag[int](A) in

let f : ΠC:int tag.tagged C = λC:int tag . new(C; 1) in

let y : tagged B = f(B)
in y

. . .

Here f is a dependent function type, so when we invoke f(B) we know that the result (bound
to y) has type tagged B. On the other hand, if we then bind y to x in a scope where B is
not visible (e.g. the second line of code above), we have to treat x as having the supertype
tagged A because we must avoid mentioning B in the type.

3.3 Dynamics
The dynamics of the core language utilizes a hierarchical store (Figure 5) that represents
all tags that have been generated in the execution of the program so far. Using a store to
dynamically track tags is necessary because if a tag is created by a function, the function
may be called an arbitrary number of times and thus generate an arbitrary number of tags.
In the hierarchical store, a hierarchy is represented by a set of paths, each starting from a
tag c and pointing to a (possibly empty) sub-path containing that tag’s supertags, written
as c p. The empty path is ε and the end of a path c ε is shortened to c for notational
clarity.

Operational semantics in the core language are expressed by small-step rules and value
judgments. Value judgments are of the form

S | e val

which states that e is a value in the operational semantics under the context of the hierarchical
runtime store S. The transition relations are of the form

S | e 7→ S′ | e′

which states that e transitions to e′ while potentially extending the store S to some S′. In
the case the store is not modified, S = S′.

The expressions newtag and subtag create global tags into the hierarchical store. Top-level
tags, which are of the form c, are created through evaluation of newtag. Note that newtag

itself is not a value, but instead will evaluate to the fresh tag c.
This expresses the dynamic nature of tag creation in the core language. While tags

were represented by local variables in the statics and syntax, the operational semantics
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S | e val

S | new(n; e) val
(New-V)

S | λx : τ.e val
(Lam-V)

c ∈ S
S | c val

(C-V)
for each i S | ei val

S | {fi = ei} val
(Rec-V)

S | e1 val S | e2 val

S | 〈e1, e2〉 val
(Prod-V)

S | 〈〉 val
(Unit-V)

Figure 6 Core Language Value Judgments.

generate fresh global tags at runtime and store them in a hierarchy separate from the type
hierarchy. Nonetheless, there is a direct relationship between the hierarchy created during
static checking and the hierarchy created at runtime. Any tag n that extends an n′ in the
static tag hierarchy should have a corresponding c that contains c′ (corresponding to n′) in
its path in the runtime hierarchical store.

Therefore subtag also creates a global tag c′ and stores it into the hierarchical store,
keeping track of the transitive tag path c′  (c p) that goes from c′ to its parent tag c
and on to the root of the hierarchy via the (possibly empty) path p. This leads to the store
having the shape of an inverted tree, where each node points to its parent in the store. To
check if a tag c is a subtag of another tag c′, the dynamics will just follow the path from c

back to the root, searching for c′ along the way. The dynamic semantics express this search
in the rules for c ∈ p.

The match(e1; c′; y.e2; e3) expression traverses the hierarchy to check if a tag is a valid
subtag of the provided tag. Given a tagged value e1 = new(c; e), the dynamics of match
check if c′ is a supertag of c by traversing the path c p and searching for c′. This process
is expressed by the relationship c′ ∈ c p defined in Figure 5. A search fails when the path
being searched is empty i.e. when p = ε. Upon a successful search, e is substituted for y in
e2. A failed search leads to e3 instead.

Evaluating extract is straightforward. The dynamics do not check whether or not the tag
given to extract is the same tag in side the new expression. Rather, evaluation simply strips
off the tag from new(c; e), leaving the untagged expression e. The typing rule for extract,
together with the constraint that subtags must wrap a subtype of the type their supertags
wrap, ensures that the extracted value is a subtype of the expected type.

The value judgments are formalized in Figure 6. Note that the dynamics of the core
language use a call-by-value evaluation strategy. Consider the following partial expression:

let x = newtag[int] in e

As the newtag is evaluated eagerly, only one tag is generated in the global store, since the
expression first steps to

let x = c in e

where c is a fresh tag in the global hierarchical store. If instead a call-by-name strategy was
adopted, then the expression would step to

[newtag[int]/x]e
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c 6∈ S
S | newtag[τ ] 7→ S, c | c

(7→ Cls)

c′ 6∈ S
S, c p | subtag[τ ](c) 7→ S, c′  (c p), c p | c′ (7→ CCls)

S | e 7→ S′ | e′

S | new(n; e) 7→ S′ | new(n; e′)
( 7→ New)

S | e 7→ S′ | e′

S | match(e; c; y.e2; e3) 7→ S′ | match(e′; c; y.e2; e3)
(7→Match)

S, c p | e val c′ ∈ c p

S, c p | match(new(c; e); c′; y.e2; e3) 7→ S, c p | [new(c; e)/y]e2
( 7→MatchSuc)

S, c p | e val c′ 6∈ c p

S, c p | match(new(c; e); c′; y.e2; e3) 7→ S, c p | e3
( 7→MatchFail)

S | e 7→ S′ | e′

S | extract(e) 7→ S′ | extract(e′)
(7→ Untag1)

S | e val

S | extract(new(_; e)) 7→ S | e
(7→ Untag2)

Figure 7 Core Language Dynamic Semantics.

which would create a tag for every binding site of x in e – and the tags used to tag values
would be different from the tags used as matching targets, causing all matches to fail! Thus
the choice of call-by-value is essential.

Evaluation semantics for expressions related to hierarchical tagging can be found in
Figure 7. Congruence rules for records, tuples, and let-bindings have been omitted for the
sake of brevity.

3.4 Type Soundness
Stated here are the basic type safety theorems for the core language.

Preservation. If Γ `Σ e : τ , and S | e 7→ S′ | e′, then ∃Σ′ ⊇ Σ such that Γ `Σ′ e′ : τ .
Progress. If ε `Σ e : τ and Σ ` S, then either S | e val or S | e 7→ S′ | e′.

The proofs are sketched in the supplementary material [20].

4 Source Language Translation

We would like to define the semantics of our source language. One option is to do so directly,
via typing rules and an operational semantics. However, the source language includes a lot of
inessential complexity, mainly having to do with the built-in features of classes and methods,
all of which are well understood. A source-level semantics would therefore include a fair
amount of complexity, but it would be complexity that is not very interesting. Furthermore,
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we cannot build directly on previous formal systems, because we are not aware of prior work
that includes first-class classes and tag tests in a statically typed setting.

For these reasons–and also considering space constraints–we follow Harper and Stone [16]
in defining the semantics of the source language via a translation in to the core language
defined in section 3. Our translation has two judgments. Type translation is of the form:

Γ ` τ ⇒ τ †

where τ is a type in the source language and τ † is a type in the core language. Expression
translation is of the form

Γ ` e⇒ e† : τ †

where e is an expression in the source language and e† along with τ † are respectively an
expression and its type in the core language. The translation is primarily concerned with
converting classes and objects to the core language that does not have such expressions.

Our translation is based on Bruce et al.’s encoding [5]. In this approach, an object is
encoded as a record through the use of recursive types. This encoding is commonly used
when translating expressions in an object calculus into a typed lambda calculus. However,
the encoding in Bruce et al. leaves out the ability to perform instance checks on an object at
run time, as a naive recursive record translation discards the relation between the object and
the class it instantiates. If there is no tag involved, then it is impossible to create an object
and use match to check if it is an instance of a class.

Our solution to the problem is to wrap the encoded object in a tagged n, where n is a tag
representing a class in the source language. Then match statements in the source language
can be translated directly into matches against the corresponding tag in the core language.
On the other hand, to invoke a method or access a field, our translation will need to first use
extract to get a record from the tagged value, then select the appropriate method or field
and invoke or read it.

The translation of classes is more complicated. A class must encapsulate both the tag that
tags its instances, and a constructor that is used to create instances. We therefore translate
classes into a pair consisting of a tag and a constructor function that takes initial values for
the fields and generates a tagged value. Because the type of the constructor depends on the
value of the tag, we do not use an ordinary pair but rather a dependent sum type. Finally,
methods and fields within the class can refer to the class itself, so we wrap the pair in a
recursive type.

We can now understand the type translation rules in Figure 8. An object type is
translated by looking up the type of the class, recursively translating the class type into
a recursive dependent pair type representing the class, and then generating a core type
tagged fst(unfold(x)), a value tagged with the first element of the unfolded recursive pair.
The rule for translating function types is simple: it just recursively translates the types of
the function argument and result.

The translation for class types begins in the premises by recursively translating the field
and method types. When doing so, the type x being defined must be in scope, because the
methods and fields might use that type in their definitions (e.g. when defining a binary
method or a recursive data structure). We generate a dependent pair, naming the first
element of the pair xtag so we can use it in the second element. The first element is a tag
that extends the tag of x′ – which will be fst(x′) in the translation – if a parent class x′ was
specified. Note that we use [] for optional syntax in the rule – all brackets must be present
or absent when the rule is instantiated. We abbreviate the class body as I(x) as the class
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Let I(x) be the type interface a given class defines, i.e. I(x) = {f : τf ,m : τm}
for class x I(x) in e, and similarly for subclasses. Then let I(τ ′) =
{f : [τ ′/x]τf ,m : [τ ′/x]τm} to represent changing all instances of x in the class inter-
face. We abbreviate I†(x) = {f : τ †

f ,m : τ †
m}.

Type Translation Γ ` τ ⇒ τ †

Γ(x) = τ Γ ` τ ⇒ µt.Σxtag:...(τ
†
f → tagged xtag)

Γ ` x obj⇒ tagged fst(unfold(x))

Γ ` τ1 ⇒ τ †
1 Γ ` τ2 ⇒ τ †

2

Γ ` τ1 → τ2 ⇒ τ †
1 → τ †

2

∀fi : τfi Γ, x : class x I(x)[extends x′] ` τfi ⇒ τ †
fi

∀mi : τmi Γ, x : class x I(x)[extends x′] ` τmi ⇒ τ †
mi

Γ ` class x I(x)[extends x′]⇒
µt.Σxtag:(I†

τ (t) tag [extends fst(unfold(x′))])(τ
†
f → tagged xtag)

Figure 8 Source to Core Type Translation.

name x is recursively bound in the body; the notation I†(x) defined at the top of the figure
simply applies the type translation recursively to the elements of the class body. The class
body then becomes a record type.

The second element of the dependent pair represents the constructor, which takes as
arguments the types of the class’s fields, and returns the tagged type. We wrap the entire
pair in a recursive type so that the class type is properly bound in the class body.

We turn now to the expression translation rules in Figures 9 and 10. For the sake of
brevity, we omit the translation rules for lambdas, function application, and let-bindings;
these rules simply translate the component types and expressions recursively. The first
rule translates the new expression, first by translating the subexpressions, looking up the
translated type of the class being instantiated, and invoking the second member of the
unfolded pair representing the class (i.e. the constructor function) with the translated
arguments. The result is tagged with the class’s tag.

The second rule is for method calls. It translates the receiver. Because the receiver
must have been an object type in the source language, we know its type will be of the form
tagged fst(unfold(x)); looking up the type of x in the context, we find the underlying
record type I†

τ (τ †), and select the type of the method m. The rule for field reads on the top
right is analogous. The rule for match, second from the top on the right, translates all the
component parts and creates a core-level match statement that extracts the tag from the
first component of the unfolded class value.

Finally, the two rules at the bottom translate class expressions. The result of translation
is a recursive value, which we implement with a letrec and a fold. We construct the pair
with a new tag holding the translated record type, and a constructor function that uses
another letrec to bind this to a tagged value that wraps the record itself. The variant on
the right is identical to that on the left, except that a subtag is created.
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Let I(x) be the type interface a given class defines, i.e. I(x) = {f : τf ,m : τm}
for class x I(x) in e, and similarly for subclasses. Then let I(τ ′) =
{f : [τ ′/x]τf ,m : [τ ′/x]τm} to represent changing all instances of x in the class inter-
face. We abbreviate I†(x) = {f : τ †

f ,m : τ †
m}. Finally, I(τ)[f ] yields the type associated with

field f in the interface I(τ).

Expression Translation Γ ` e⇒ e† : τ †

∀ei ∈ e Γ ` ei ⇒ e†
i : τ †

i Γ(x) = τ Γ ` τ ⇒ µt.Σ . . .

Γ ` new(x; e)⇒ (snd(unfold(x)))(e†) : tagged fst(unfold(x))

Γ ` e⇒ e† : tagged fst(unfold(x)) Γ(x) = τ

Γ ` τ ⇒ τ † τ † = µt.Σxtag:(I†
τ (t) tag ...) . . .

Γ ` e.m⇒ extract(e†).m : I†
τ (τ †)[m]

∀mi : τmi = emi Γ, x : class x I(x) ` emi ⇒ e†
mi : τ †

mi

Γ ` class x I(x)⇒ τ †
x τ †

x = µt.Σxtag:(I†
τ (t) tag) . . .

Γ, x : class x I(x) ` e⇒ e† : τ †

Γ ` class x {f : τf ,m : τm = em} in e⇒

letrec x = fold[τ †
x]( 〈newtag[I†

τ (t)], λy : τ †
f .

letrec this = let o = {f = y,m = e†
m} in new(fst(unfold(x)); o)

in this〉) in e† : τ †

Figure 9 Source Language to Core Language Expression Translation (Part 1 of 2).

Properties. Note that the translation given above completely defines the semantics for the
source language, following the style of semantics given by Harper and Stone for Standard
ML [16]. For example, typechecking a source program succeeds exactly if the translation
rules apply and the result of translation is well-typed in the target language. This means
that there is no separate type safety theorem to prove for the source language; the source
language is type safe because it is defined by translation into a type safe target language.

Discussion. Our translation motivates an interesting feature of our core language: the
separation of extract from match. A more obvious choice would have been to combine
these, providing a match(e;n;x.e; e) statement that binds x to the extracted value when the
match succeeds. This choice works well for non-hierarchical tags, and indeed is the construct
used in conventional sum types as well as ML’s exn type and Harper’s classified types [14].
It does not work for hierarchical tags, however. To see why, imagine we have a three-level
hierarchy, with C a subtag of B and B a subtag of A. We can create a tagged C and treat
it, by subsumption, as a tagged A. If we match against B, we do not want to immediately
extract the contents, because we want to not forget that it is really a C in case we try to
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Γ ` e⇒ e† : tagged fst(unfold(x)) Γ(x) = τ

Γ ` τ ⇒ τ † τ † = µt.Σxtag:(I†
τ (t) tag ...) . . .

Γ ` e.f ⇒ extract(e†).f : I†
τ (τ †)[f ]

Γ ` e1 ⇒ e†
1 : τ †

1 Γ ` e3 ⇒ e†
3 : τ † Γ, y : x obj ` e2 ⇒ e†

2 : τ †

Γ ` match(e1;x; y.e2; e3)⇒

match(e†
1; fst(unfold(x)); z.[z/y]e†

2; e†
3) : τ †

∀mi : τmi = emi Γ, x : class x I(x) extends x′ ` emi ⇒ e†
mi : τ †

mi

Γ ` class x I(x) extends x′ ⇒ τ †
x

τ †
x = µt.Σxtag:(I†

τ (t) tag ...) . . .

Γ, x : class x I(x) extends x′ ` e⇒ e† : τ †

Γ ` class x {f : τf ,m : τm = em} extends x′ in e⇒

letrec x = fold[τ †
x]( 〈subtag[I†

τ (t)](fst(unfold(x′))), λy : τ †
f .

letrec this = let o = {f = y,m = e†
m} in new(fst(unfold(x)); o)

in this〉) in e† : τ †

Figure 10 Source Language to Core Language Expression Translation (Part 2 of 2).

match it further later on. Implementing hierarchical tags as nested tagging also fails, because
then tagged C is not a subtype of tagged A.

This insight was not obvious to us when we began; our first, failed, translation attempted
to use a single construct combining extract and match. We believe it will be useful both to
theorists who will further study the type-theoretic foundations of objects, and to language
designers who wish to provide primitives sufficient to encode rich object systems.

5 Implementation

We implemented the core functionality of tags as a contribution to the open source Wyvern
programming language [24] developed at Carnegie Mellon University (CMU) in the USA and
Victoria University of Wellington in New Zealand, although the implementation of certain
supporting features such as dependent function types are not yet complete. The Wyvern
interpreter’s open source implementation is available 5 and this paper is accompanied by an
artifact that was accepted and archived. The syntax of Wyvern’s tag support differs slightly
from the source-level language presented in Section 2 to better harmonize with the other
features of Wyvern, but the underlying concepts remain the same and the implementation is
informed by the theory presented here.

5 https://github.com/wyvernlang (our contribution is in the TaggedTypes branch)
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1 tagged type Window
2 def draw (): Str
3
4 type WindowMod
5 tagged class Win [case of Window]
6 class def make (): Win = new
7 def draw (): Str = ""
8
9 val basicWindow:WindowMod = new

10 tagged class Win [case of Window]
11 class def make (): Win = new
12 def draw (): Str = "blank␣window"
13
14 def makeBordered(wm: WindowMod ): WindowMod = new
15 tagged class Win [case of wm.Win]
16 class def make (): Win = new
17 def draw (): Str = "bordered␣window"
18
19 def makeScrollable(wm: WindowMod ): WindowMod = new
20 tagged class Win [case of wm.Win]
21 class def make (): Win = new
22 def draw (): Str = "scrollable␣window"
23
24 def userWantsBorder (): Bool = true
25
26 val winMod:WindowMod =
27 if (userWantsBorder ())
28 then
29 makeBordered(basicWindow)
30 else
31 basicWindow
32
33 val bigWinMod:WindowMod = makeScrollable(winMod)
34 val smallWin = winMod.Win.make()
35 val bigWin = bigWinMod.Win.make()
36
37 def screenCap(w:Window ):Str
38 match(w):
39 bigWinMod.Win => "big"
40 default => "small"
41
42 val result = screenCap(bigWin)
43
44 result // result == "big"

Figure 11 Wyvern Example with Tagged Types.

Bordered Window Example. To understand our implementation of tags in Wyvern, consider
the Wyvern version of the bordered window example (Section 2.1), shown in Figure 11. The
code is one of the unit tests, and typechecks and executes correctly in the current Wyvern
implementation.

Before we implemented tags, Wyvern supported type and class declarations. In our tags
extension, both of them can be declared as tagged. If the type or class declaration is nested
within a function – e.g, the tagged classes declared in the makeBordered and makeScrollable –
then a fresh tag is created every time the function is executed, as in the semantics of the
source and core languages we defined.

Wyvern does not have a way of specifying a class type directly, but we can specify the
type of an object that has a class nested within it – that object plays the role of a module.
For example, WindowMod is the type of a module that defines a Win class that (transitively)
extends Window. The Wyvern syntax for specifying a sub-tagging relationship is case of,
which is analogous to extends in Java.
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Here is how makeBordered defines a mixin: it accepts a WindowMod module as an argument
and produces another WindowMod module, where the class nested in the result has a subtag of
the class nested in the argument. The makeScrollable function is similar. The winMod module
decides whether to apply makeBordered dynamically based on the result of userWantsBorder,
demonstrating Wyvern’s support for dynamic composition. In this test case, userWantsBorder
always returns true, but Wyvern’s interpreter doesn’t know that until it executes the function.

The screenCap function shows how even if we do not statically know the type of w, we can
dynamically match against a tagged class defined in any module, such as bigWinMod. When
calling screenCap with bigWin as argument, the match succeeds.

Implementation. Wyvern is currently implemented in an interpreter; when run on a piece
of source code, the source is parsed, typechecked, and then interpreted. The operation
of the typechecker and interpreter roughly follows the semantics outlined in this paper,
appropriately adapted to the more practical design of the Wyvern language. For example,
each time we create a new object which contains a nested tagged type, we create a new
object in the interpreter representing a fresh tag, and we associate it with the nested type.
Objects created of that type are then associated with that tag, and the tag can be checked
when match statements are executed.

The design of Wyvern includes not only extensible tags as described in this paper, but
also closed tagged unions. A tagged type can be declared with the [comprises T1, T2, ...Tn]

modifier, which specifies that the type being declared has only the subtags listed in the
comprises clause. The listed types must declare themselves as a case-of of the parent tag,
and the typechecker ensures that no other types are declared to be a case of that parent tag.
This allows tagged types to simulate not only objects, but also algebraic datatypes.

6 Modeling Multiple Inheritance

So far, we have developed a foundational type theory that can explain the common constructs
of single-inheritance object-oriented languages. OO languages with multiple inheritance,
however, cannot be modeled with our calculus so far. A key barrier is subtyping: we want
the type tagged T to be a subtype of the type tagged Ti for each supertag Ti of T , but
this cannot be achieved in our current system. This is because in the system presented so
far, each tag can have only one parent, and each object can have only one (outermost) tag.
Multiple tagging (e.g. by m and n) can be achieved by nesting tags (e.g. a type tagged n,
where n’s inner type is tagged m), but this does not provide the desired subtyping properties
(in this case, tagged n is not a subtype of tagged m). The issue is that a tagged object is
not identical to its contents. One could imagine trying to make a tagged object semantically
identical to its contents, but this seemed both awkward to us and inconsistent with prior
type-theoretic models of tags (e.g. in Glew’s work and standard ML [13, 14, 16]) and we did
not pursue it.

While the restriction to single inheritance is useful to keep the system simple in the main
presentation above, it can easily be relaxed. Figure 12 shows the changes to the syntax
and static semantics necessary to support OO languages with multiple inheritance. We
allow a subtag to extend multiple previously-defined tags; the type being tagged must be
a subtype of all of the types tagged by its supertags. When creating an object, it can be
tagged with multiple tags as well, and the initial value provided must likewise have a type
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e ::= newtag[τ ] | subtag[τ ](n) | new(N ; e) | match(e;N ;x.e; e) | extract(n; e) | . . .

τ ::= Tag(τ) | tagged N | . . .

Tag(τ) ::= τ tag | τ tag extends n

Where N = {n}.

∀n ∈ N Γ `Σ n : Tag(τ) Γ `Σ e : τ
Γ `Σ new(N ; e) : tagged N

(MTag)

Γ `Σ e1 : tagged N ′

Γ `Σ tagged N ⊆ tagged N ′ Γ, x : tagged N `Σ e2 : τ Γ `Σ e3 : τ
Γ `Σ match(e1;N ;x.e2; e3) : τ

(MMatch)

Γ `Σ e : tagged N n ∈ N Γ `Σ n : Tag(τ)
Γ `Σ extract(n; e) : τ

(MExtract)

Where Γ `Σ tagged N ⊆ tagged N ′ iff ∀n ∈ N.∃n′ ∈ N ′.Γ `Σ tagged n l tagged n′

Figure 12 Static Semantics for Multiple Tags.

that matches (perhaps via subtyping) the types expected by each tag.6 Finally, match can
compare against a set of tags. We leave extract to get the contents for one tag, as we
would otherwise need to compute an intersection type – something that is feasible but would
unnecessarily complicate our presentation. The extensions to the subtyping judgments, value
judgments, and dynamic semantics are straightforward; the latter two figures are left to the
supplementary material [20] for space reasons.

7 Related Work

First-class classes have been used in Racket along with mixin support; [9] describes the
dynamically-typed design, which supports an implementation? operation that provides instance
(or tag) checking. The topic of first-class classes with static typing has been explored by
Takikawa, et al. [27]. They design a gradual typing system to support statically-typed and
dynamically-typed portions of their language. They also demonstrate the ability to use
mixins via row polymorphism for classes. However, the use of row polymorphism gives their
type system a structural flavor; it does not express the concept of an object that is associated
with a particular tag.

Reppy and Riecke extend Standard ML with objects and generalize pattern matching to
typecase [26]. The extension, called Object ML, adds objects, subtyping, and heterogeneous
collections to SML. The design of objects in OML is motivated by recursive types, but opts
to keep objects as second-class declarations. Furthermore, they also use SML structs to

6 We debated between supporting multiple inheritance with tags that have multiple parents vs. objects
that have multiple tags. We chose the multiply-tagged object solution as it seemed cleaner and easier to
formalize; for example, we can leave the formalization of the tag hierarchy unchanged. Furthermore,
the multiply-tagged object design matches the intuition that typical uses of multiple inheritance can
be viewed a combination of several dimensions of reuse, each of which can be described in a single
inheritance hierarchy [22]. Nevertheless, both choices are possible.
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encode classes in OML. As such, their tags are second-class, while our source language opts
to use first-class classes and thus translates to first-class tags. Other work on extensible
datatypes in functional languages also incorporates second-class tags, thus differing from our
results in similar ways [3, 23].

Abadi, et al introduced a means of encoding dynamic types in a statically-typed language
through the use of (non-hierarchical) tagging and typecasing [1]. Vytiniotis, et al. explores
open and closed type casing through their λL language [28]. They were primarily concerned
with open and closed datatypes and those two different forms of ad-hoc polymorphism. They
analyze sets of tags in order to statically check whether or not a given typecase type checks.
They do not provide typecasing with subtyping or any form of hierarchical typing.

Our core language is similar to Glew’s source language, which was used to motivate a
more general use of hierarchical store for modeling type dispatch [13]. However, Glew’s
language does not use the static type system to keep track of relationships between tags,
opting instead to rely on the operational semantics to uphold the theorems of type safety. In
Glew’s system, for example, the static type of an object is simply tagged; it does not track
the object’s class (or even a superclass), which is a basic capability of OO type systems that
we wish to model.

Others have explored tag-like constructs in the context of object-oriented languages.
The Unity language defined a brand construct that provided nominal types in an otherwise
structurally-typed language; at run time, brands are associated with tags that are then used
for dispatch [21]. Brands in unity are second-class. Concurrent with our work, Jones et
al. defined a first-class brand system for Grace [19]. Their focus is on a primitive brand
construct that adds nominality to an otherwise structurally-typed system; reflection is used
to test brand membership. In contrast, our focus is on the type theory of tags, and thus our
work differs in providing primitive operations taken from type theory, including an explicit
match operation, and statically tracking the sub-tagging hierarchy.

8 Conclusion

The previous sections of this paper explored a foundational account of class-based object-
oriented languages: one that supports dynamic class creation and composition out of mixins,
and explains classes in terms of a novel primitive hierarchical tag construct inspired by the type
theory of extensible sums. We hope that this account contributes to a better understanding
of the relationship between the constructs of typical object-oriented programming languages
and the fundamental elements of type theory. Our account highlights that the most simple
tag constructs are insufficient to model objects in a type-preserving way, yet shows that
small extensions to support static reasoning about tag hierarchy, to provide an appropriate
match construct, and to statically track the tag associated with each object, are sufficient for
modeling objects. We discovered an interesting subtlety, discussed at the end of section 4, in
the need to separate match from extract, and in section 6 we discussed how our approach
naturally generalizes to support objects with multiple tags and tags with multiple supertags.
These results suggest that functional programming languages, such as Standard ML, that
already provide an extensible tag mechanism [16] could gain expressiveness by adopting
the enhanced constructs in our theory, perhaps in conjunction with mechanisms such as
refinement types [11].

We expect the theory presented here to contribute to the design of Wyvern [24], a language
that already supports dynamic class creation and composition, but may benefit from support
for multiple tags as well. The flexibility of the theory suggests that it may enable statically
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typed, nominal OO languages to express many useful design idioms that, at present, are
limited to dynamically-typed or structurally-typed languages.
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