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Abstract
Modern software development and run-time environments, such as Java and the Microsoft .NET
Common Language Runtime (CLR), have adopted a declarative form of access control. Permis-
sions are granted to code providers, and during execution, the platform verifies compatibility
between the permissions required by a security-sensitive operation and those granted to the ex-
ecuting code. While convenient, configuring the access-control policy of a program is not easy. If
a code component is not granted sufficient permissions, authorization failures may occur. Thus,
security administrators tend to define overly permissive policies, which violate the Principle of
Least Privilege (PLP).

A considerable body of research has been devoted to building program-analysis tools for
computing the optimal policy for a program. However, Java and the CLR also allow executing
code under the authority of a subject (user or service), and no program-analysis solution has
addressed the challenges of determining the policy of a program in the presence of subjects.

This paper introduces Subject Access Rights Analysis (SARA), a novel analysis algorithm for
statically computing the permissions required by subjects at run time. We have applied SARA to
348 libraries in IBM WebSphere Application Server – a commercial enterprise application server
written in Java that consists of >2 million lines of code and is required to support the Java
permission- and subject-based security model. SARA detected 263 PLP violations, 219 cases of
policies with missing permissions, and 29 bugs that led code to be unnecessarily executed under
the authority of a subject. SARA corrected all these vulnerabilities automatically, and addition-
ally synthesized fresh policies for all the libraries, with a false-positive rate of 5% and an average
running time of 103 seconds per library. SARA also implements mechanisms for mitigating the
risk of false negatives due to reflection and native code; according to a thorough result evaluation
based on testing, no false negative was detected. SARA enabled IBM WebSphere Application
Server to receive the Common Criteria for Information Technology Security Evaluation Assurance
Level 4 certification.
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1 Introduction

Modern software development and run-time environments, such as Java and the Microsoft
.NET CLR, have adopted a form of declarative access control. Developers do not have to
encode access-control-policy definition and enforcement capabilities inside their applications
on a case-by-case basis because these capabilities are integrated within the underlying
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platforms. Given the highly distributed nature of today’s applications, and the fact that code
can be dynamically loaded, it is essential to restrict resource access based on code providers.
At run time, when a security-sensitive resource is about to be accessed, the access-control
enforcement mechanism verifies that all the code responsible for that resource access is
sufficiently trusted.

Decoupling access-control definition and enforcement from the application code promotes
code portability and reusability, and minimizes the risk of security holes. Nevertheless,
configuring the access-control policy of an application can be complicated. A security
administrator must be informed of all the security-sensitive operations that an application
may attempt to perform at run time and grant the program components all the permissions
necessary to complete those operations. If some of the necessary permissions are not
granted, run-time authorization failures will occur. On the other hand, granting unnecessary
permissions would constitute a violation of a fundamental security rule, known as the Principle
of Least Privilege (PLP) [33]. Therefore, it is essential that exactly the permissions necessary
for the program to execute without authorization failures be granted.

1.1 Existing Approaches
For these complications, researchers have studied extensively how program analysis can
be used to automatically infer an optimal access-control policy: one that is neither too
restrictive nor too permissive. Numerous approaches have been proposed to address this
problem in Java and CLR [31, 21, 7, 6, 36, 12, 29, 8, 38, 10, 37, 11, 13, 23]. More recently,
permission analysis has been extended to Android [14, 4]. Hybrid techniques have also been
attempted. For example, in order to better disambiguate the resources guarded by the
various permissions and the mode in which those resources are accessed, static permission
analysis has been integrated with string analysis [16], and in order to mitigate the false
positives arising during static analysis and the false negatives typical of dynamic analysis,
a hybrid static/dynamic approach has been studied [9]. Solutions have also been proposed
that simultaneously integrate access-control and information-flow enforcement [5, 1, 15, 30].

What is critically missing from all existing approaches is treatment of subjects. These are
users or services that map to one or more identities, called principals, each of which can be
granted permissions. The concept of subject exists in Java and the CLR. Henceforth, we focus
our discussion on Java for space and readability. In Java, the security component responsible
for subject-based access control is the Java Authentication and Authorization Service (JAAS)
[24]. Developers can invoke specific JAAS APIs to cause parts of a program to be executed
under the authority of a subject. However, it is burdensome to determine manually the
access-control policy of a program in the presence of subject-executed code. This amounts
to resolving the principals associated with each subject, the permissions granted to each
subject as a result of such associations, and the portions of the program executed under the
authority of each individual subject.

1.2 This Paper
The work presented in this paper was motivated by the requirement to port IBM WebSphere
Application Server1 to the Java permission- and subject-based security model. While
performing this complex task, we discovered severe access-control violations. Of the 348

1 http://ibm.com/software/products/appserv-was
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libraries comprising the application server, totaling over 2 million lines of code (MLOC), only
102 libraries had an associated policy with subject permissions in place. Those policies, which
had been defined based on manual code inspection and unit testing, exhibited numerous errors.
The remaining 246 policies did not account for subjects at all. Furthermore, developers had
often used the subject APIs incorrectly, thereby introducing bugs in the code that could not
be fixed by simply modifying a security policy.

In this paper, we show how we filled the gap between the need for a subject-sensitive
access-rights analysis and the lack of an automated analysis framework to achieve this. We
have formulated Subject Access Rights Analysis (SARA), the first comprehensive framework
for access-rights analysis, whose purpose is to automatically determine which methods in the
program under analysis are executed under the authority of a given subject at run time.

The input to SARA is the object code of a program. SARA statically builds a specialized
representation of the program in the form of a context-sensitive call graph [32], so as to
capture precisely run-time permission requirements. SARA annotates the call graph with
subject-granted access rights and permission requirements, and uses this information to
determine the subject-granted permissions under which a method will be executed at run
time. This information is used to decide which access rights should be granted to subjects and
code to prevent run-time authorization failures, and which access rights should be revoked
to prevent PLP violations.

When applied to IBM WebSphere Application Server, SARA was able to synthesize
access-control policies for the 105 libraries previously missing a specification. SARA was
also able to detect all the errors we discovered manually in existing policies authored by
seasoned developers and system administrators, and automatically revised the respective
policies to eliminate all the errors. When given as input the 348 libraries of IBM WebSphere
Application Server, SARA detected 263 PLP violations, 219 cases of policies with missing
permissions, and 29 bugs that led code to be unnecessarily executed under the authority of a
subject. SARA corrected all these vulnerabilities automatically, and additionally synthesized
fresh policies for all the libraries, with a false-positive rate of 5% and an average running time
of just over 100 seconds per library. SARA implements several mechanisms for mitigating
the threat of false negatives due to the presence of native code or reflective method calls in
the code under analysis. Based on a thorough evaluation of the results, no false negative was
detected. SARA enabled IBM WebSphere Application Server to receive the Common Criteria
for Information Technology Security Evaluation Assurance Level (CC EAL) 4 certification.2

2 Technical Background

This section describes how the Java and CLR stack-inspection mechanism works, focusing
on Java as a reference.

2.1 Basic Concepts
In order to prevent confused-deputy attacks [20], when access to a restricted resource is
attempted, all code currently on the call stack must be authorized to access that resource. In
Java, the SecurityManager, if active, triggers access-control enforcement by invoking method
checkPermission in class AccessController. This static method takes a Permission object
p as a parameter and performs a stack walk backwards to verify that every caller in the

2 http://commoncriteriaportal.org/
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current thread of execution has been granted the access right represented by p. If that is not
the case, a SecurityException is thrown.

Though programmatic security is possible, access rights are preferably granted declarat-
ively, in a policy database external to the application code. This enhances code portability
and reusability. Access rights are by default denied to all code and subjects. Untrusted code
and subjects will only be allowed to perform basic operations that cannot harm the system.
For a restricted operation to succeed, all the code on the thread’s stack must be explicitly
granted the right to execute that operation.

Access rights are represented as objects of type Permission. Each Permission type must
be a subclass of the Permission abstract class. When a Permission object is constructed,
it can take zero, one, or two String objects as parameters. If present, the first parameter
is called the target of the Permission object and represents the resource being protected;
the second parameter is called the action of the Permission object and represents the mode
of access. The target and action are used to better qualify the resource guarded by the
Permission object. For example, the following line of code can be used to construct a
Permission object representing the right to access the log.txt file in read/write mode:

Permission p = new FilePermission("log.txt", "read,write");

Given a Permission object p, p’s fully-qualified Permission class name along with p’s
target and action, if any, uniquely identify the authorization requirement represented by p.
Therefore, for authorization purposes, a Permission object p can be characterized solely
based on p’s permission identifier, which consists of p’s fully-qualified class name and the
values of the String instances used to instantiate p. In fact, authorizations are granted
to programs and principals by simply listing the corresponding permission identifiers in a
flat-file policy database dubbed the policy file.

The Permission class contains an abstract method, implies, which itself takes a
Permission object as a parameter and returns a boolean value. Every non-abstract
Permission subclass must implement implies. If p and q are two objects of type Permission
such that p.implies(q) returns true, then this means that granting p implicitly grants q
as well. For example, p could be the Permission object constructed above and q could be
the Permission object constructed with the following line of code:

Permission q = new FilePermission("log.txt", "write");

If p is an instance of AllPermission, then p.implies(q) returns true for any Permission
object q.

Access rights may be granted to code based on the code source, which is a combination of
the code base – the network location from which the code is coming – and the certificates of the
entities that digitally signed the code. Access rights are granted to classes. At run time, each
class is loaded by a class loader. When it loads a class, a class loader constructs a protection
domain characterizing the origin of the class being loaded, and associates it with the class
itself. A protection domain, which is represented as an object of type ProtectionDomain,
encapsulates the class’ code source (represented as a CodeSource object) and an object
of type PermissionCollection containing all the Permission objects corresponding to
the access rights granted to that code source. When invoked with an argument p of type
Permission, method checkPermission performs a stack traversal backwards, and verifies
that each of the ProtectionDomains in the current thread of execution contains at least
one Permission that implies p. The set of Permissions effectively granted to a thread
of execution is, therefore, the intersection of the sets of Permissions implied by all the
ProtectionDomains associated with the stack.

ECOOP’15
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2.2 Subjects-based Authorization
Authorization decisions can also be based on the subject executing the code. In Java, a
subject is represented as an object of type Subject. When a subject is authenticated, the
corresponding Subject instance is populated with associated identities called principals,
represented as objects of type Principal. A subject may have multiple associated principals.
For example, if the subject is a person, two of that subject’s principals could be that
person’s name and social security number, depending on which means the person used for
authentication.

Access rights are granted to code and principals, though not directly to subjects. The
set of access rights granted to a subject is the union of the sets of access rights granted
to the subject’s authenticated principals. The Subject class exposes static methods doAs
and doAsPrivileged to perform a restricted operation with the access rights granted to a
subject.

doAs accepts two parameters: The first is a Subject object, and the second is either
a PrivilegedAction or PrivilegedExceptionAction object o. The code in the run
method of argument o is executed with the intersection of the sets of Permissions
granted to the code on the call stack. However, doAs adds the Permissions granted to
the subject’s principals to the stack frames following the call to doAs.
doAsPrivileged is similar to doAs, but accepts an additional third parameter: an
AccessControlContext object. This object encapsulates an array of ProtectionDomain
objects. Just like doAs, doAsPrivileged also adds the Permission objects granted to
the subject’s principals to the subsequent stack frames. However, unlike the case of doAs,
when the checkPermission method is called with a Permission parameter p after a call
to doAsPrivileged, the predecessors of doAsPrivileged are not required to exhibit a
Permission that implies p. Rather, doAsPrivileged demands the ProtectionDomains
that are embedded in the AccessControlContext passed to it as a parameter to exhibit
such a Permission.

A library can execute a security-sensitive operation without propagating the corresponding
permission requirements to its clients. This is done by wrapping that operation into the
run method of a PrivilegedAction or PrivilegedExceptionAction object o, and then by
calling AccessController.doPrivileged with o as a parameter. As a motivation for this,
consider the case of a library that has been designed to open socket connections on behalf of
its clients. For any such socket connection, it is justified to demand that both the library and
the client be granted the relevant SocketPermission. However, if that library additionally
logs to a file the details of the connections that it opens, then it would not be appropriate
to demand the FilePermission of the client. Only the library should be demanded that.
If a malicious client were granted that Permission, then that client could compromise the
integrity of the log file.

We define subject-executed code as unnecessary if it does not lead to any call to
checkPermission, and as redundant if it leads to a call to checkPermission only through
a doPrivileged call. Our objective, accomplished by SARA, is to detect subject-executed
code that is unnecessary or redundant. Not only can such code constitute a PLP violation,
but it can further negatively affect the performance of the program. SARA also detects and
automatically corrects policies that are overly restrictive or overly permissive. An overly
restrictive policy is one that does not grant the application code or the subjects executing it
sufficient rights to meet the security requirements of the application, in which case run-time
authorization failures may occur, causing the application to crash. An overly permissive
policy grants subjects or code unnecessary permissions, which constitutes a PLP violation.
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3 Technical Overview

In this section, we provide a high-level summary of the technical description appearing in the
next two sections. We survey the flow and milestones of the SARA framework and highlight
its main technical novelties.

3.1 Call-graph Representation
The first step of SARA is to model the behavior of the program P in the form of a call graph.
The call-graph representation conveys the global control flow of the program. This is done by
iteratively computing the structure of calls within P starting from the entry-point methods
(i.e., those that are externally invocable). Since some (in reality, most) of the call sites are
virtual, requiring resolution of the receiver to disambiguate the target method(s), call-graph
construction is interleaved with pointer analysis [18]. While other call-graph construction
techniques exist [35], combining pointer analysis into call-graph construction boosts precision
and makes points-to information available to downstream analyses, which we indeed utilize
in SARA.

In the iterative process, call-graph construction resolves call sites into target methods,
and meanwhile, pointer analysis resolves variables, array elements and object fields into
abstractions of run-time objects. Specifically, each object is abstracted as its allocation site,
which ensures finitely many object abstractions. Resolution of call sites may reveal more
allocation sites to be tracked by the pointer analysis. At the same time, disambiguation of
virtual call sites based on the points-to image of the receiver variable may enable resolution
of more call sites. This process is iterated to fixpoint.

3.2 Permission Hierarchy
The next step is to model the partial order between Permission identifiers according to the
implies relation, introduced in Section 2.1. Doing so purely statically is a serious challenge.
implies is typically implemented as a series of nontrivial tests on its Permission argument,
which are hard to track accurately in a static manner. At the same time, preciseness is
crucial when modeling the permission structure, as this is the foundation underlying all the
analysis steps to follow.

Given these considerations, we have adopted a novel strategy in SARA of allocating
Permission instances dynamically and invoking their implies method in a sandboxed
environment. For this, SARA first traverses the call graph to retrieve all the allocation sites
of Permission subclasses. Then, for each allocation site in turn, a string analysis is applied
to resolve constructor arguments into concrete values, as explained in Section 6.2. Assuming
for now that the resolution is successful, SARA can recover the hierarchical relationship
between Permission instances precisely by instantiating the instances and invoking implies
in a sandboxed environment over all instance pairs. Sandboxing is achieved by activating
the SecurityManager, and at the same time depriving the Permission receiver object of
any permission. In this way, implies is prevented from performing any security-sensitive
operation.

For cases where the string analysis fails, in part or in whole, we fall back on a per-permission
specification of conservative argument approximations. As an example, inability to resolve
the file pattern specified as the first argument of FilePermission is resolved conservatively
as "<<ALL_FILES>>", a notation used in Java to symbolize all the possible files in the file
system. In situation where only a substring can be disambiguated, SARA resolves the file
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name partially. For example, if the name of a file guarded by a FilePermission object is
obtained by concatenating String constant "C:/" with the dynamic value of String variable
x, SARA computes the file name as "C:/*", which is more precise than "<<ALL_FILES>>".
Similarly, inability to resolve the second argument, denoting the access mode, is resolved as
"read,write,execute,delete".

For application-specific Permission subclasses, the user of SARA has the option to
extend the specification. If this is not done and the string analysis is unable to resolve a
String value, we conservatively resolve the Permission as AllPermission. We comment,
from our experience, that we rarely encountered failures by the string analysis.

3.3 Access-rights Annotations

Having a model of the program’s calling structure and the relationships between the various
Permission objects, SARA identifies, within the call graph, invocations of the access-rights-
related APIs: namely checkPermission and doPrivileged. At a given call site invoking
checkPermission, SARA retrieves a conservative approximation of the checked Permissions
as the points-to set of the argument.

SARA then statically simulates the run-time stack inspection mechanism by propagating
the requirement to possess the permission(s) arising at checkPermission backwards to all the
transitive callers of checkPermission. As in the concrete semantics, backward propagation
is aborted at doPrivileged callers. At this stage, every call-graph node is mapped to a set
of required Permissions. The naive solution, as formulated by existing approaches, is to
stop the analysis at this point and missing permissions to relevant code to ensure normal
execution. However, this ignores the presence of Subjects, as we next explain.

3.4 Subject-specific Annotations

To account for Subjects, SARA next traverses the call graph in order to identify doAs
and doAsPrivileged calls, wherein the first parameter is of type Subject. Again thanks
to points-to information, that parameter is resolved into one or more abstract Subject
instances. SARA then consults the points-to graph per each of the instances. In particular,
the Subject class has a field principals of type Set that stores all the corresponding
principals of a subject. As discussed in Section 2.1, it is the Principals rather than the
Subject that are granted Permissions, and so SARA uses the points-to graph to compute
(i) the set of Principal object abstractions pointed to by the principals field and (ii) their
respective constructor values via constant propagation. Next, Permissions are extracted
from the policy based on the principal identifiers, consisting of concrete Principal subtypes
and initialization arguments. The respective Permissions of a particular Subject object
flowing into a checkPermission call are the union of all the Permissions granted to its
corresponding Principals, as determined conservatively via the points-to information.

With this information, SARA revisits the annotations computed in the previous step.
The goal is to relax the demand for missing Permissions if these are provided already under
the authority of a Subject. This is done as follows: At a given doAs or doAsPrivileged
invocation point, SARA resolves the potential Subjects via the points-to map. Because
the points-to information is conservative, the Permissions guaranteed to be provided at
that point are the intersection, rather than union, of the Permissions held by the different
Subjects. At this point, the Permissions shared by all Subjects are propagated forward
and unioned with the Permissions that the given call-graph nodes already have.
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This additional analysis step is significant: Naively the code may appear to be missing
Permissions, thereby soliciting the system administrator to grant it undue access rights.
Those can then be abused either by the code itself or by a malicious user. As an illustration,
assume a text editor that requires a special Permission to edit a specific document. The
subject owning that document possesses that Permission. Ignoring the subject, however,
would lead the analysis tool to a recommendation that the code itself should own that
Permission, effectively enabling other users to access the document.

3.5 Error Analysis
The final step is to analyze the artifacts computed by SARA and apply corresponding
corrections or synthesis. The first scenario is detection of missing Permissions under
consideration of Subjects. The solution, similarly to existing approaches, is to grant the
missing Permissions. However, unlike existing approaches, SARA grants the Permissions
by default to the subject rather than to the code. This is the more conservative policy, as
granting Permissions to the code enables the respective operations per all subjects as well
as the code itself. This is, however, configurable if the user wishes to override the default
policy.

The second scenario arises when there is duplicity across the Permissions granted to the
code and subject. That is, the code already possesses a needed Permission, but there is also
a call to doAs or doAsPrivileged to enable that same Permission via the Subject. This
form of redundancy constitutes a PLP violation. For the same rationale explained above, by
default SARA revokes the Permission from the code rather than the subject, though again
this is a configurable choice.

4 Static-analysis Framework

The static-analysis framework presented in this paper uses graph theory to represent the
execution of a program and lattice theory to model the flow of information in the program.
A program is modeled as a call graph and its associated points-to graph. A call graph is a
directed graph G = (N,E), in which nodes correspond to method invocations. Two nodes
n1, n2 ∈ N are connected by an edge (n1, n2) ∈ E iff the analysis conservatively establishes
that the method represented by n1 may invoke the method represented by n2 at run time
[18]. A points-to graph is a directed bipartite graph in which each vertex corresponds to
either a program variable or an object abstraction, and an edge indicates a points-to relation
[3]. Both the call graph and the points-to graph presented in this paper are tailored to
authorization analysis.

4.1 Permission Abstraction
When designing an algorithm that computes data flow over a graph, for Tarski’s theorem to
guarantee convergence to a fixed point in polynomial time, it is important to make sure that
(i) the data-flow functions defined at each node map a lattice into itself, (ii) the lattice is
complete and has finite height, and (iii) the data-flow functions are monotonic with respect
to the lattice’s partial order [17]. Although in Section 3 we intuitively talked about partial
order between Permissions as well as unions and intersections of Permission sets, a more
precise discussion is needed in order to formalize the analysis and guarantee its convergence.
This section defines the lattice used as domain and codomain for the data-flow functions
employed by SARA.

ECOOP’15
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4.1.1 Permission Graph
The relationships induced by the implies methods among the Permission objects associated
with a program under analysis can be modeled using a permission graph H = (P, F ), where
P is a set of Permission objects and F ⊆ P × P is a set of edges of the form p → q,
where p, q ∈ P . Building the permission graph during the analysis requires detecting all the
Permission objects that appear in the program, since each Permission object corresponds
to an element of P . To build F , each p ∈ P must be explicitly instantiated. This operation
is done during the analysis using reflection based on p’s permission identifier. Next, for each
pair (p, q) ∈ P × P , SARA runs p.implies(q) to decide whether p→ q ∈ F or not.

4.1.2 Permission Lattice
The implies method does not necessarily induce a partial order on P . For instance, if
p and q are two different Permission objects with the same permission identifier, then
p → q and q → p. Therefore, H does not have the structure of a lattice, which would
be desirable when performing data-flow analysis. However, H can be transformed into a
lattice as follows. Given p, q ∈ P , let p ∗→ q denote the presence of a path from p to q in H.
Permission objects p, q ∈ P belong to the same Strongly Connected Component (SCC) of
H iff p ∗→ q and q ∗→ p. In this case, p and q are said to be equivalent, denoted by p ≡ q.
Let H≡ = (P≡, F≡) = (PSCC , FSCC) be the Directed Acyclic Graph (DAG) induced by
collapsing each SCC of H into a single node. It is easy to see that H≡ has the structure of a
partially ordered set.

H≡ can be given the structure of a lattice by adding two new elements to P≡: > =
AllPermission, denoting the SCC containing all instances of the AllPermission class (if such
an SCC does not already exist), and ⊥, which denotes absence of authorizations. As we have
already observed, an instance of AllPermission implies any other Permission. Therefore,
∀p ∈ P≡. > → p. Additionally, we impose that ∀p ∈ P. p→ ⊥. Let P≡ be the augmented set
P≡∪{>,⊥}, and let F≡ be the superset of F≡ obtained by adding into F≡ the edges involving
the new elements > and ⊥. It is easy to prove that the graph H≡ = (P≡, F≡) represents
the lattice (P≡,w), where w is the partial-order relation defined on a subset of P≡ × P≡ by
p w q ⇐⇒ p

∗→ q,∀p, q ∈ P≡. This lattice is called the permission lattice. Its top and bottom
elements are > and ⊥, respectively. The meet and join operations u,t : P≡ × P≡ → P≡,
induced by w on P≡, are defined as follows, respectively:
1. p u q = r, where r ∈ P≡ is such that p, q w r ∧ r w x, ∀x ∈ {P≡ : p, q w x}
2. p t q = r, where r ∈ P≡ is such that r w p, q ∧ x w r, ∀x ∈ {P≡ : x w p, q}

4.1.3 Permission-set Lattice
The authorization analysis performed by SARA is modeled as a data-flow problem wherein
sets of access rights (rather than single access-right elements) are propagated through the
call graph. The analysis performs meet and join operations on those sets. Therefore, it is
necessary to lift the meet and join operations defined in Section 4.1.2 over elements of P≡ to
sets of elements. In other words, it is necessary to define a lattice structure over the powerset
P(P≡).

Naturally, P(P≡) has the lattice structure defined by regular set inclusion, ⊇, which
induces set intersection, ∩, and set union, ∪, as meet and join operations. However, the
lattice (P(P≡),∩,∪) would not be appropriate for authorization analysis. For example, let p
and q be two Permission objects instantiated through the two following lines of code:
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Permission p = new FilePermission("C:\\*", "read");
Permission q = new FilePermission("C:\\log.txt", "read,write");

Following Section 4.1.2, let p and q represent their respective SCCs in the permission graph.
SARA forward propagates elements of P(P≡) across the call graph, where the operation
applied to the lattice elements must be meet. If n is a node in the call graph, n1 and n2 are
two predecessors of n, and SARA has established that n1 and n2 will be potentially executed
with access rights represented by sets {p} and {q}, respectively, then the safest assumption
if the (P(P≡),∩,∪) lattice structure were adopted would be that n will be executed with an
empty set of access rights since {p}∩ {q} = ∅. This result is overly conservative. Instead, let
r be any FilePermission object instantiated through a line of code similar to the following:

Permission r = new FilePermission("C:\\log.txt", "read");

Since p u q = r, it is more desirable to conclude that n will be executed with access-right set
{r}. Conversely, computing the permission requirements induced by the stack inspection
mechanism requires backward propagation of P(P≡) elements across the call graph. In
such cases, the operation performed on the lattice elements must be join. If the set union
operation, ∪, were applied to sets {p} and {q}, then the result would be {p, q}. However,
p t q = v, where v is the SCC of any FilePermission object v instantiated through a line
of code similar to the following:

Permission v = new FilePermission("C:\\*", "read,write");

Therefore, it is more desirable to have a join operation on P(P≡) that, once applied to {p}
and {q}, gives v as a result.

A more meaningful lattice structure can be given to P(P≡) based on the lattice structure
of (P≡,w). A set Q ∈ P(P≡) is defined as canonical iff

∀p, q ∈ Q. p 6= q =⇒ (p 6w q) ∧ (q 6w p)

Intuitively, if Q ∈ P(P≡) is canonical, then no element in Q implies any other element in Q
except itself. A canonical reduction function χ : P(P≡)→ P(P≡) can be introduced that maps
any set Q ∈ P(P≡) to its subset χ(Q) ∈ P(P≡) obtained by removing from Q all the elements
that are implied by some other element of Q. Formally, χ(Q) = {q ∈ Q : ∀r ∈ Q. r 6w q}.
The χ function is well defined because for any Q ∈ P(P≡), there exists one and only one
canonical set corresponding to Q [28]. Functions u,t : P(P≡)×P(P≡)→ P(P≡) are defined,
respectively, as follows:
1. ∀Q,R ∈ P(P≡). Q uR = χ({q u r : q ∈ Q, r ∈ R})
2. ∀Q,R ∈ P(P≡). Q tR = χ(Q ∪R)
It is easy to prove that both u and t are commutative, associative and mutually absorptive
functions. Thus, (P(P≡),u,t) is a lattice, called the permission-set lattice, and u and t are
its meet and join operations, respectively. For a given program or library, P is finite. This
implies that the permission-set lattice associated with a program or library is also finite, and
therefore complete. Its top element is the set {AllPermission}. Its bottom element is the
empty set, ∅.

The partial order w induced by u and t on P(P≡) is obtained as follows:

∀Q,R ∈ P(P≡). Q w R⇐⇒ Q uR = R

or, equivalently:
∀Q,R ∈ P(P≡). Q w R⇐⇒ Q tR = Q
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Since the permission-set lattice is finite, its height, H(P(P≡)), is finite too. Specifically,
H(P(P≡)) ∈ O(|P |). Finally, the difference operator, − : P(P≡) × P(P≡) → P(P≡), is
obtained as follows:

∀Q,R ∈ P(P≡). Q−R = χ({q ∈ Q : @r ∈ R, r w q})

4.2 Permission-specific Call Graph
The first step in the analysis is to construct an augmented call graph, which we refer
to as a Permission-specific Call Graph (PCG). SARA’s call-graph and pointer-analysis
implementation is based on the Watson Libraries for Analysis (WALA) static-analysis
framework,3 which allows for analysis of Java bytecode. A PCG is a directed multigraph
G = (N,E), where N is a set of nodes and E is a set of edges.

A node n ∈ N represents a context-sensitive method invocation, and is uniquely identi-
fiable via its calling context, which consists of (i) the concrete target method and (ii) the
receiver and parameter values. n carries the following state: (i) the target method, (ii) object
abstractions representing the receiver and parameters (in SARA, these are the concrete
objects’ allocation sites), and (iii) object abstractions representing the return value of the
method. Therefore, a PCG is context-sensitive [32], because it uniquely distinguishes different
invocations to the same methods by the calling context, with a context-sensitivity policy
similar to Agesen’s Cartesian Product Algorithm (CPA) [2]. With this policy, if a given
method in a program is invoked twice, each time with different parameters according to the
analysis abstraction, the PCG will model these two invocations as two distinct nodes.

An edge e = m
c→ n ∈ E carries a label c denoting the call site through which the method

m at m invokes the method n at n. Hence, G is a multigraph because m can invoke n multiple
times, each time at a different call site. In the remainder of this paper, however, we will omit
the label of an edge e, ad will simply write e = (m,n), unless it is necessary to distinguish
between different calls to n made by m.

The PCG has a unique node, n ∈ N , called the PCG root. It represents external invocation
of the entry points of the program under analysis. A node n ∈ N is constructed iff it has
been statically established that the method represented by n can be invoked during execution
of the program under analysis. This guarantees that PCG nodes are reachable from n. By
inference, the PCG is a connected multi-graph.

We utilize Control-Flow Analysis (CFA) [27] during PCG construction to disambiguate
heap objects according to their allocation sites. In addition to the CPA context sensitivity,
the PCG construction process enforces the following properties:

Path insensitivity [19], because it does not evaluate conditional statements and conser-
vatively assumes that all branches are admissible
Intraprocedural flow sensitivity [32], because it considers the order of execution of the
instructions within each basic block, accounting for local-variable kills [22] and casting of
object references
Interprocedural flow insensitivity [32], because it makes the conservative assumption that
all instance and static fields are subject to modification at any time, which may happen
in the presence of other execution threads
Field sensitivity [32], because an object’s fields are represented distinctly in the solution
(motivated, for example, by the principals field of a Subject)

3 http://wala.sf.net

http://wala.sf.net
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grant
Principal javax.security.auth.x500.X500Principal

"CN=John Doe, OU=Res, O=Org, C=US"
Principal javax.security.auth.kerberos.KerberosPrincipal "jd@us.res.org" {

permission java.util.PropertyPermission "user.home", "read";
permission java.io.FilePermission "log.txt", "read";
permission java.security.SecurityPermission "getPolicy";

};

Figure 1 Granting Access Rights to Principals.

Among all the design choices listed above, the most important one is the CPA context
sensitivity: While naively the call graph would represent each method as a single node, it is
possible to impose several different representations of the same method inside a call graph
per different contexts governing the execution of the method. SARA distinguishes between
invocations of a method based on parameter values (including the receiver). The reason
behind this choice is that access-rights-related information is largely encoded as parameter
values.

For example, the String values flowing into a call to the FilePermission constructor
determine which file(s) are guarded by the FilePermission object being constructed and
what access modes are allowed. Therefore, in order to statically distinguish FilePermission
objects protecting different files, it is necessary to disambiguate calls to the FilePermission
constructor made with different arguments.

Similarly, the Permission parameter passed to the checkPermission method determines
what access right will be demanded of all the callers on the stack or the subject associated with
the current thread. Thus, from a security perspective, CPA context sensitivity is crucial since
an authorization analysis needs to distinguish between different calls to checkPermission
based on the Permission argument passed to it. Failure to do so would result in all the
checkPermission calls in the program being represented as a single PCG node, which in
turn would lead to conservatively joining together all the Permission requirements identified
in the program.

5 The SARA Algorithm

This section describes the various steps of the SARA algorithm.

5.1 Permission-set Lattice Construction
According to the JAAS architecture, at run time, an authenticated Subject is granted the
Permissions of the Principals encapsulated into it. Permissions in Java 2 are granted to
a Principal based on two pieces of information:
1. The Principal’s fully qualified class name
2. The Principal’s name, which is the String value returned by the getName method of

the Principal object
It is possible to include more than one Principal field in a grant statement, as in the policy
file snippet of Figure 1. If a grant entry contains more than one Principal field, then the
Permissions in the grant statement are awarded to the Subject associated with the current
AccessControlContext only if that Subject contains all those specified Principals.
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Let D be the security policy database associated with the program under analysis, and
let |D| indicate the number of grant statements in D. The first step of the SARA algorithm
is to scan D, retrieve from it the permission identifiers that are mapped to each Principal
class and name pair, and use reflection to instantiate the Permission objects corresponding
to those permission identifiers. Such Permission objects form the set P , which can be used
to construct the permission graph H = (P, F ) and permission lattice (P≡,w), representing
the access rights granted to the Subjects of a program based on their Principals and the
policy specified in D.

It should be observed that it is not necessary to preconstruct the permission-set lattice
(P(P≡),u,t); subsets of the permission lattice will be met at each node n ∈ N every time
an edge e ∈ E of the form e = (m,n) : m,n ∈ N is traversed during the fixed-point iteration
described in Section 5.3. As will be explained in Section 5.3, in the worst case, the meet
operation will have to be applied H(P(P≡)) times for each edge of the graph.

5.2 SARA Initialization
Let D be the subset of N consisting of all the nodes representing calls to doAs and
doAsPrivileged. The first initialization step consists of computing D by simply iterating
over N .

Both doAs and doAsPrivileged take a Subject object as one of the parameters. Let
n be any element of D. SARA identifies the set ψD(n) = {s1, s2, . . . , sj} ⊆ S of all the
possible Subject allocation sites that may have flowed to the formal Subject argument of
the method call represented by n, where S is the union of all the doAs and doAsPrivileged
Subject parameter sets in G. This defines a function ψD : D → P(S) that maps nodes of D
to subsets of S.

An authenticated Subject is granted all the Permissions of its associated Principals.
Therefore, for each Subject allocation site s ∈ S, SARA identifies the set ψS(s) =
{u1, u2, . . . , ui} of U containing all the Principal allocation sites representing the equi-
valence classes of the Principal objects encapsulated in s in the analysis model, where U
indicates the set of all the Principal allocation sites pointed to by the elements of S in
the points-to graph associated with the PCG. Computing ψS(s) requires identifying all the
Principal instance keys in N pointed to by the principals Set field in s.

As discussed in Section 5.1, given a Principal object u encapsulated in an authenticated
Subject s, two pieces of information about u are important when s needs to be authorized
to access a restricted resource: the fully qualified class name of u and the name of u. These
two pieces of information can be obtained statically.

The fully qualified class name of u is easy to retrieve in the analysis model since that
information is stored into the allocation-site representation of u created by SARA. Let C
indicate the set of all the fully qualified class names of the Principal allocation sites in U .
Then function υC : U → C maps each Principal allocation site to its fully qualified class
name.

All the non-abstract classes inheriting from the Principal interface must implement
instance method getName. At run time, for each Principal object u encapsulated in an
authenticated Subject s, the Java authorization system invokes getName on u every time
doAs or doAsPrivileged is called with s as the Subject parameter. This is to determine the
Permissions granted to u by D, which are added to the ProtectionDomains of the methods
following doAs or doAsPrivileged on the stack. As a result, for any u ∈ U , N contains at
least one node representing the invocation of getName on u. It is possible that N contains
more than one such node if u is found in different getName receiver sets in the PCG. Let
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grant Principal c1 "t1" . . . Principal ch "th" {
permission p1; . . . permission pk;

};

Figure 2 Generic Principal-based grant Statement.

1: for l := 1 to h do
2: if ψs,g(cl) = ∅ then
3: return ∅
4: for l := 1 to h do
5: boolean found := false
6: for each x ∈ ψs,g(cl) do
7: if tl ∈ υT (urx) then
8: found := true
9: break
10: if found = false then
11: return ∅
12: return {p1} t {p2} t . . . t {pk}

Figure 3 Algorithm to Compute Σ|S×D(sr, g).

T be the set of all the String constants that have flowed to the return values of all the
Principal getName PCG nodes. For any u ∈ U , the set υT (u) of all the elements of T that
could have flowed to the return values of all the getName PCG nodes having u in the receiver
set is identified.

Let g be any grant statement in D, similar to those shown in Figure 1. In general, g will be
of a form similar to the one in Figure 2, which asserts that a Subject s is granted Permissions
p1, p2, . . . , pk ∈ P if s encapsulates at least h Principal objects with fully qualified class
names c1, c2, . . . , ch ∈ C and names t1, t2, . . . , th ∈ T , respectively, where the number of
such Principal objects may be less than h if ∃l1, l2 ∈ {1, 2, . . . , h} : (cl1 , tl1) = (cl2 , tl2).

Let n ∈ D be the node examined above, with ψD(n) = {s1, s2, . . . , sj} ∈ P(S). For
r ∈ {1, 2, . . . , j}, ψS can be applied to sr, and the result will be of the form ψS(sr) =
{ur1, ur2, . . . , urir

} ∈ P(U). This allows computing Σ(n), the subset of P≡ representing the
subject-granted access rights under which the doAs or doAsPrivileged method represented
by n, in the context specified by n, will be executed at run time. First of all, to detect
whether or not the access rights granted by g apply to n, it is sufficient to proceed as follows.
Let ψs,g : {c1, c2, . . . , ch} → P({1, 2, . . . , ir}) be defined by:

ψs,g(cl) = {x ∈ {1, 2, . . . , ir} : υC(urx) = cl},∀l ∈ {1, 2, . . . , h}

Computing ψs,g can be accomplished with one iteration over the elements of ψS(sr). It should
be observed also that ψs,g partitions the set of indices {1, 2, . . . , ir} in equivalence classes.
Specifically, two indices x, y ∈ {1, 2, . . . , ir} are in the same equivalence class if and only if
either ∃l ∈ {1, 2, . . . , h} : υC(urx) = υC(ury) = cl or υC(urx), υC(ury) /∈ {c1, c2, . . . , ch}.

Furthermore, let Σ|S×D : S×D → P(P≡) be the function mapping a pair (s, g) ∈ S×D to
the subset of P≡ representing the access rights granted by g to the Principals encapsulated in
s. For any given r ∈ {1, 2, . . . , j}, Σ|S×D(sr, g) can be computed using the algorithm in Figure
3, where, in the notation introduced in Section 4.1.2, p1, p2, . . . , pk represent the permission
lattice elements corresponding to the Permission objects p1, p2, . . . , pk, respectively.

Lines 1–3 of the algorithm presented in Figure 3 simply verify that for each Principal
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class name cl specified in g, there is at least one Principal encapsulated in sr whose class
has that name. If this is not the case, then none of the Permissions listed in g can be
applied to s, and Σ|S×D(sr, g) = ∅.

Lines 4–11 are used to verify that for every Principal class name cl specified in g, there
exists at least one Principal, among those encapsulated in sr, with name tl and class name
cl. If this is not the case, then, once again, none of the Permissions listed in g can be
applied to s, and Σ|S×D(sr, g) = ∅. The presence of the return statements in Lines 3 and
11 guarantees that Line 12 is executed iff sr encapsulates at least h Principal objects with
fully qualified class names c1, c2, . . . , ch ∈ C and names t1, t2, . . . , th ∈ T , respectively, in
which case sr is granted all the Permissions listed in g, as desired.

If multiple grant statements in D apply to sr, the permission-set lattice elements from
all those grant statements must be joined, and the resulting permission-set lattice element,
Σ|S(sr), represents the access rights granted to sr, as follows:

Σ|S(sr) =
⊔

g∈D
Σ|S×D(sr, g)

This defines function Σ|S : S → P(P≡). SARA cannot statically determine which Subject
allocation site in the parameter set ψD(n) = {s1, s2, . . . , sj} will be passed as a parameter
to the doAs or doAsPrivileged method represented by n at run time. Therefore, when
computing the subject-granted access rights under which the method call represented by n is
executed, the safest albeit most conservative assumption is to apply the meet operation to all
the permission-set lattice elements associated with the Subject allocation sites s1, s2, . . . , sj

as Σ(n) = uj
r=1 Σ(sr).

5.3 Fixed-point Iteration
When doAs or doAsPrivileged is invoked with a Subject parameter s, the Permissions
granted to the Principals associated with s are added to the stack frame corresponding
to doAs or doAsPrivileged, and to those corresponding to all the downstream calls. A
static model of this aspect requires propagating Σ|S(s) to all the descendants of the doAs or
doAsPrivileged node in the PCG.

For any node n ∈ N , let GenS(n) and KillS(n) indicate the subsets of P≡ whose elements
correspond to the subject-granted access rights generated and killed, respectively, by node n.
If n ∈ D, then GenS(n) = Σ(n), otherwise GenS(n) = ∅. To compute KillS(n), it should be
noted that:
1. It is possible to call doAs multiple times within a thread, but only one Subject may be

active at a time. If doAs is called with Subject parameter s, and later in the same thread
there is another call to doAs with Subject parameter t, any subsequent authorization
check will be performed with the authorizations granted to t, not those granted to s.
The effect of the second call to doAs is to overwrite the authorizations granted to s until
the second doAs call completes and returns to its caller. Similar considerations apply to
doAsPrivileged.

2. In the absence of Subjects associated with a thread, a call to doPrivileged causes
checkPermission to stop the stack walk at the stack frame corresponding to the method
that called doPrivileged. The same principle applies when a Subject is present. If a
doPrivileged call is made after invoking doAs or doAsPrivileged with Subject para-
meter s, s is not visible when an authorization check is performed by a checkPermission
call. The effect of calling doPrivileged is to overwrite the authorizations granted to s.



P. Centonze, M. Pistoia, and O. Tripp 237

Therefore, for any doAs, doAsPrivileged, or doPrivileged node n ∈ N , KillS(n) is the
universe P≡. For all other nodes n ∈ N , KillS(n) = ∅. This defines the two functions
GenA,KillA : N → P(P≡).

SARA’s data-flow equation system, for each node n ∈ N , is defined as follows:
OutS(n) = GenS(n) t (InS(n)−KillS(n)) (1)
InS(n) = u

m∈Γ−(n)
OutS(m) (2)

where OutS(n) and InS(n) are the subsets of P≡ corresponding to the subject-granted
access rights propagated from and reaching n, respectively, and Γ− : N → P(N) is the
function that maps each node in the PCG to the set of its predecessors. The recursive
computation of functions InS,OutS : N → P(P≡) performed by resolving System (1,2)
converges to a fixed point with a worst-case complexity of O(|E| · H(P(P≡))) [17]. In
particular, convergence of System (1,2) is guaranteed by the fact that ∀n ∈ N , the data-
flow function βn : P(P≡)→ P(P≡) that transforms InS(n) into OutS(n) (i) is defined on a
complete lattice, (P(P≡),u,t), with finite height; and (ii) is monotonic with respect to the
lattice’s partial order, w. The worst-case complexity is O(|E| · H(P(P≡))) because each edge
of the PCG will need to be traversed H(P(P≡)) times in the worst-case scenario. Given that
H(P(P≡)) ∈ O(|P |), the worst-case complexity can be expressed as O(|E||P |).

The fact that the forward propagation of permission-set lattice elements is initialized
only with the nodes in D significantly reduces the time complexity in typical cases, since
large portions of the PCG are likely not to contain any doAs or doAsPrivileged call and
will never be affected by the fixed-point iteration generated by System (1,2).

5.4 PCG Annotation
When the data-flow algorithm just described terminates, each node n ∈ N can be labelled
with the subset Σ(n) of P≡ defined by Σ(n) = OutS(n), which overapproximates the subject-
granted access rights under which the method represented by n, in the calling context
specified by n, will be executed at run time. Figure 4 shows a PCG annotated with the
values of function Σ. The PCG contains three calls to doAs, one to doPrivileged, and three
to checkPermission. The three calls to doAs take parameter pairs (s, a), (t, b), and (s, c),
respectively, where s and t are Subject instances, and a, b, and c are PrivilegedAction
instances. The three calls to checkPermission take arguments p, q, and r respectively, all
of type Permission. The PCG annotation shows how the call to doPrivileged eliminates
from the AccessControlContext the access rights granted to s.

It may be desirable to compute the subject-granted access rights under which a method
can be executed assuming all the calling contexts that are realizable in the program under
analysis. A function µS : M → P(P≡) can be defined that maps each method n reachable
from an entry point of the program to the subset of P≡ representing the subject-granted access
rights under which n can be executed. Specifically, µS(n) is defined as µS(n) = uk

i=1 Σ(ni),
where {n1, n2, . . . , nk} = ν(n). The safest though most conservative approach is to compute
the meet of the subsets Σ(n1),Σ(n2), . . . ,Σ(nk) of P≡, rather than their join. The reason is
that, during the analysis, it is not known which calling context, among those of n1, n2, . . . , nk,
n will be invoked with. As a result, it is not known which Subject will execute n.

5.5 Detection of PLP Violations
Unnecessary or redundant doAs and doAsPrivileged calls, as defined in Section 2.2, may
lead to PLP violations and performance bottlenecks. As such, they should be removed.
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check

Permission(p )

check

Permission(q )

check

Permission(r )

{p}{p}

doAs(s,a)

doAs(t,b)

{p}{p}

{p}{p}

{p}{p}

{p,r}{p,r} {p}{p}

{p}{p}

doPrivileged

Subject-granted Permission-set
(assuming that s is granted p,

and t is granted p and r)

doAs(s,c)

SS

Figure 4 An Annotated PCG after SARA Completes.

SARA allows for detecting and flagging all such calls. To achieve this goal, SARA performs a
basic access-rights analysis to detect the sets of permissions that each single method call will
require at run time [9]. Any doAs or doAsPrivileged node that is mapped to ∅ represents
a PLP violation.

6 Domain-specific Characteristics

This section describes the domain-specific characteristics implemented in the construction of
a PCG in order to faithfully represent the subject-based permission model.

6.1 Modeling of Security-related Native Methods
Since SARA only analyzes Java bytecode, all native methods – those implemented in languages
other than Java – would be incorrectly represented in the PCG as leaves, or nodes with no
successors. However, many security analyses would not be sound without a model for those
native methods that perform security-sensitive operations. Thus, the PCG is augmented
with automatically constructed control- and data-flow-equivalent synthetic models [39] for a
total of 162 native methods that are relevant to security analyses, such as:

Thread.start, which executes a call to Thread.run
The four forms of AccessController.doPrivileged
AccessController.getStackAccessControlContext, which instantiates an object of
type AccessControlContext, containing the ProtectionDomains of the classes whose
methods are currently on the call stack

6.2 String Analysis
SARA is integrated with Path and Index-sensitive String Analysis (PISA) [34]. PISA can
compute an over-approximation of the set of values that a variable of type String can take
at run time. PISA is thus able to compute the set of String values that can flow to the
target and action parameters of a Permission object. Without a string analysis capable
of tracking String values and modeling operations on String objects, SARA would be
unable to compute the target of the Permission object p in the following code snippet, and
would conservatively have to overapproximate it as "<<ALL_FILES>>", as explained in
Section 3.2:
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t.start()

Node s

t.run()

Node r

pp

pp

pp

ppThread.<init>()

Node c

pppp

AccessController .

checkPermission(p )
pp

pp

pp Permission p

is required

Permission p

is not required

Edge e

Edge f

Static Representation of the

Parent Thread’s Call Stack
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Figure 5 Domain-Specific PCG to Model Multi-threading.

String dir = "C:";
String file = "log.txt";
Permission p = new FilePermission(dir + File.separator + file, "read");

6.3 Modeling Multi-Threaded Code

In Java, to prevent confused-deputy attacks [20]. when access to a restricted resource is
attempted from within a child thread, all the code in the child thread and all its ancestor
threads must be granted the right to access that resource.

This behavior can be modelled by identifying all the run() nodes in the PCG G = (N,E)
whose receiver is a Thread object. For each such node r, with receiver t, the node c
representing the invocation of the Thread constructor that instantiated t in the parent
thread is identified, and a new edge e = (c, r) is added to E. At the same time, edge
f = (s, r), where s represents the invocation of start() on t, is removed from E, as shown
in Figure 5.

6.4 Extra Context for Permission Objects

The Permission parameter passed to AccessController.checkPermission is frequently
instantiated by the SecurityManager. For example, when it is invoked by a library routine,
the SecurityManager’s checkWrite method instantiates a FilePermission object and
passes it to the SecurityManager’s checkPermission method, which finally passes it
to the checkPermission method in the AccessController class. One problem is that
different FilePermission objects instantiated through calls to checkWrite in different
parts of the program will all share the same type and allocation site. Therefore, SARA
would represent them as if they were the same object. As a result, different calls to
AccessController.checkPermission would appear in the PCG as one node, yielding overly
conservative results, as shown in Figure 6. Other SecurityManager access-control methods,
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Figure 6 Conservativeness Introduced by the SecurityManager.
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Figure 7 Extra Context for Permission Objects to Reduce Conservativeness.

such as checkRead and checkConnect, exhibit the same problem when represented in the
PCG.

The solution is to distinguish Permission objects allocated in the SecurityManager
access-control methods based not only on their types and allocation sites, but also on the
nodes that contain those allocation sites. Therefore, if m,n ∈ N are, for example, two
checkWrite nodes in the PCG such that the parameters to the method calls they represent
are the Strings file1 and file2, respectively, the FilePermission allocated in m will
be distinguished from the one allocated in n – even though both share the same type
and allocation site – because m 6= n. Different AccessController.checkPermission calls
resulting from checkWrite calls with different parameters will not appear in the PCG as
one node. This allows a more precise propagation of permission-set lattice elements along
different PCG paths, as shown in Figure 7.

To avoid building an unnecessarily large PCG, this specialization, which distinguishes
Permission objects based on allocation sites with an additional level of calling-context sens-
itivity, is selectively applied only to Permission objects allocated in the SecurityManager.

6.5 Modeling doAsPrivileged Method Calls
In Java, the AccessControlContext passed to doAsPrivileged is obtained through a call to
getContext. This method obtains the AccessControlContext associated with the current
thread stack by calling getStackAccessControlContext. In order to faithfully propagate
permission requirements along PCG paths containing a doAsPrivileged node d, it is sufficient
to do the following:
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Figure 8 Modeling doAsPrivileged Method Calls.

1. Identify the AccessControlContext allocation sites a1, a2, . . . , ak that may flow to the
AccessControlContext parameter of the doAsPrivileged call represented by d

2. Locate the getStackAccessControlContext PCG nodes g1, g2, . . . , gk ∈ N allocating
a1, a2, . . . , ak, respectively

3. Remove d’s preexisting predecessor edges from E

4. Add edges e1 = (g1, d), e2 = (g2, d), . . . , ek = (gk, d) to E
We observe that all the AccessControlContext instances obtained by calling getContext
share the same allocation site, a, in method getStackAccessControlContext. Thus, in the
analysis model, a1 = a2 = . . . = ak = a. Let d1, d2 be two PCG nodes representing calls to
doAsPrivileged, and let e1 = (g, d1), e2 = (g, d2) be two edges added to the PCG to model
the propagation of permission requirements along the PCG paths. Since e1, e2 share the
same tail node, g, when elements of (P(P≡),u,t) are propagated to g from d1 and d2, they
are conservatively joined, yielding imprecise results. The solution consists of the following:
1. Adding one level of calling-context sensitivity to all the PCG nodes representing calls to

getStackAccessControlContext and getContext
2. Distinguishing different AccessControlContext objects allocated through calls to method

getStackAccessControlContext based not only on their allocation sites, but also on
the nodes containing those allocation sites

Now, the PCG contains two getStackAccessControlContext nodes, g1 and g2, and two
getContext nodes. Furthermore, SARA distinguishes between AccessControlContext
objects a1 and a2, allocated in g1 and g2, respectively, as shown in Figure 8.

7 Evaluation

In this section, we describe an extensive experimental study.

7.1 Scope and Methodology
Subject-executed code is typically embedded in the business logic of enterprise application
servers. This is because they service Web users, and at the same time they execute sensitive
code and have access to critical organizational resources.
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Therefore, our evaluation consisted of performing access-rights analysis of IBM WebSphere
Application Server toward certifying it according to the CC EAL 4 standard. The application
server contains over 2 MLOC, partitioned into 348 library components, which serve as our
benchmarks. In order to pass the CC EAL 4 certification, it was necessary to correctly define
access-control policies for each of these 348 libraries. For this to happen, each of the libraries
was analyzed in isolation. As for the client code used for the analysis of each library, we
utilized an existing testing harness in the form of a thorough unit-test suite, written by the
application-server developers, which created a comprehensive client environment.

7.2 Experimental Results
Table 1 presents general information about the 348 benchmark libraries:

105 of the libraries were not originally associated with any policy at all (0 permissions
granted to code and 0 to subjects).
141 had an associated access-control policy that only accounted for permissions granted
to code (1,021), and ignored the permissions to be granted to subjects executing the code
(0).
The remaining 102 libraries had policies that accounted for both code (743) and subject
permissions (132). For those 102 components, the subject-related permissions had been
defined by developers based solely on manual code inspection and unit testing.

SARA achieved the following results:

Table 1 General Information about the Application Server Benchmarks.

Annotations None Code Code & Subjects Total
Library Count 105 141 102 348
doAs Calls 325 531 301 1,157
doAsPriviledged Calls 72 81 79 232
Original Code Permisssions 0 1,021 743 1,764
Original Subject Permissions 0 0 132 132
Permissions via SARA 143 191 151 485

For the first 105 components, which required access-control policies for both the code
and the subjects executing it, SARA computed 143 subject permissions.
For the second set, of 141 components, SARA determined 191 subject permissions. Note
that these permissions are subsequently subtracted from the sets of permissions granted
to the code in order to prevent PLP violations.
For the third and final category, SARA verified the policies that were constructed manually,
and modified the permissions granted to the code in certain places in order to prevent
permissions from being granted to both subject and code.

Table 1 also reports the number of doAs and doAsPrivileged calls. In total, there were
1,157 doAs and 232 doAsPrivileged calls, confirming that subject-executed code cannot be
ignored when defining the access-control policy for an enterprise application server.

Table 2 highlights the specific violations detected by SARA on the 348 benchmarks:
SARA detected 263 PLP violations, occurring when the same rights were granted to
both code and subjects. This type of violation is only applicable to the third category of
libraries – those that came with a developer-defined access-control policy accounting for
both code and subjects. For the other two categories, no policy had been defined for the
subjects executing the code, and so the number of PLP violations for those libaries was 0.
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Table 2 Access-control Violations Detected by SARA.

Annotations None Code Code & Subjects Total
PLP Violations 0 0 263 263
Insufficient Policies 105 72 42 219
Unnecessary Calls 5 2 7 14
Redundant Calls 7 3 5 15

SARA also detected 219 violations due to insufficient policies. This means that the policies
coming with the library do not grant enough permissions to the subjects executing the
code. It is interesting to note that the set of permissions that SARA computed for
the subjects executing the code in the third library category was neither a superset
nor a subset of the permissions originally computed by the developers. In some cases,
permissions had been redundantly granted to both code and subjects, and so those
permissions had to be removed. In other cases, the permissions were not listed at all,
which would have caused authorization failures at run time (as confirmed during testing),
and those permissions had to be added.

From a precision and performance point of view, we observe the following:
The results produced by SARA were validated by dozens of developers, who confirmed
them via a large set of dynamic test cases. None of the issues that were dynamically
found was missed by SARA. False negatives may arise from not modeling native code
and reflective calls, but SARA is equipped with (i) automatically generated analyzable
synthetic artifacts for all the security-related methods in the application server and the
underlying Java Runtime, and (ii) a mechanism for reflection resolution based on type cast
information [26]. These two components significantly mitigate the risk of false negatives.
SARA exhibited a high signal-to-noise ratio with 5% of the total number of reported
violations being false positives.
SARA was able to scale to, and analyze successfully, the entire application server, taking
on average 103.45 seconds per library.

7.3 Discussion
Overall, SARA was able to detect a total of 511 access-rights flaws across the set of 348
benchmarks with an average scanning time of 103 seconds. We attribute SARA’s ability
to analyze each benchmark in under 2 minutes on average to its relatively inexpensive
context-sensitivity policy. We could not compare SARA against other tools, unfortunately,
as existing static-analysis algorithms can only identify the permissions required by a given
component, but not those required by the subjects that will execute the code [23].

According to a thorough evaluation, which included a large set of dynamic test cases,
SARA exhibited 0 false negatives. Having 0 false negatives was an important requirement for
SARA because in access-rights analysis, a false negative corresponds to a missing permission,
which at run time can cause unexpected authorization failures. Although we cannot claim
that SARA is sound, our efforts to reduce false negatives by synthetically modeling native
methods and disambiguating reflective calls through type cast information allow us to say
that SARA is a soundy analysis [25].

SARA’s false-positive rate was only 5%. This was established via careful scrutinization
of the results, one by one, by the team developing the application server. A false positive

ECOOP’15



244 Access-rights Analysis in the Presence of Subjects

corresponds to an unnecessary permission, which constitutes a PLP violation, and so it was
pertinent to identify all false positives before deploying the server.

PLP violations and vulnerabilities due to insufficient policies were corrected by simply
modifying the policy files associated with the libraries. However, the only way to correct
the remaining two vulnerabilities detected by SARA – unnecessary and redundant doAs and
doAsPrivileged calls – was to change the source code of those libraries and remove such calls,
which constitute both a PLP violation and a performance bottleneck. Our experience when
communicating these vulnerabilities to the developers was that the interactions between the
doAs, doAsPrivileged, doPrivileged and checkPermission APIs are very complicated
and hard to explain to non-security experts, which is what caused these vulnerabilities to
be present in the code in the first place. Having a tool for automatic detection of such
unnecessary or redundant calls proved to be a crucial instrument to improve the quality of
the code and teach developers how to use these APIs correctly in future code.

Based on these results, SARA proved to be accurate and useful. In our evaluation, it
detected a large number of flaws, and scaled to all the libraries comprising the application
server (2 MLOC in total), with an average analysis time of 103 seconds per library.

8 Related Work

There is no work on static analysis of subject-based authorization, particularly with regard
to subject-granted rights analysis. Most of the work in the area of program analysis for
access control has focused on computing permission requirements based on stack inspection,
eliminating or minimizing redundant authorization tests, and defining alternatives to the
current approach.

Pottier et al. [31] extend and formalize Wallach’s security passing style [38] via type
theory using a λ-calculus, called λsec. However, their work focuses only on basic authorization
issues and is unable to perform incomplete-program analyses [32].

Jensen et al. [21] focus on proving that code is secure with respect to a global security
policy. Their model uses operational semantics to prove the properties, via a two-level
temporal logic, and shows how to detect redundant authorization tests. They assume all
of the code is available for analysis, and that a call graph can be constructed for the code,
though they do not do so themselves. Bartoletti et al. [6] are interested in optimizing
performance of run-time authorization tests by eliminating redundant tests and relocating
others as needed. Similarly, Banerjee and Naumann [5] apply denotational semantics to
show the equivalence of “eager” and “lazy” semantics for stack inspection, provide a static
analysis of safety (the absence of security errors), and identify transformations that can
remove unnecessary authorization tests. These analyses are limited to a single thread and
require the whole program.

Felten et al. have studied a number of security problems related to mobile code [36,
12, 38, 10, 37, 11]. In particular, they present a formalization of stack introspection. An
authorization optimization technique, called security passing style, encodes the security
state of an application while the application is executing [38]. The goal is to optimize
authorization performance. Rather than analyzing security policies as embodied by existing
code, Erlingsson and Schneider [13] describe a system that inlines reference monitors into
the code to enforce specific security policies. The objective is to define a security policy
and then inject authorization points into the code. This approach can reduce or eliminate
redundant authorization tests. Conversely, this paper examines the authorization issue from
the perspective of an existing system containing authorization test points.
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Koved et al. [23] describe an algorithm and an actual implementation for correctly
identifying the authorizations needed by a Java program, but do not deal with subject-
executed code.

9 Conclusion and Future Work

In this paper, we have investigated the problem of performing comprehensive access-rights
analysis. Such an analysis must account for subjects, which none of the existing permission
analyses supports. We have validated the significance of this dimension experimentally via
SARA, the first static permission analysis featuring subject sensitivity and policy correc-
tion/synthesis. The SARA algorithm features novel mechanisms to (i) represent the program,
(ii) recover the permission hierarchy, and (iii) associate Subjects with Permissions. In the
future we plan to enable SARA as an IDE tool. This requires real-time performance and
incremental analysis capabilities, which we are currently developing.
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