
Dependent Types for Nominal Terms with Atom
Substitutions
Elliot Fairweather1, Maribel Fernández1, Nora Szasz2, and
Alvaro Tasistro2

1 King’s College London, UK
2 Universidad ORT Uruguay, Uruguay

Abstract
Nominal terms are an extended first-order language for specifying and verifying properties of
syntax with binding. Founded upon the semantics of nominal sets, the success of nominal terms
with regard to systems of equational reasoning is already well established. This work first extends
the untyped language of nominal terms with a notion of non-capturing atom substitution for
object-level names and then proposes a dependent type system for this extended language. Both
these contributions are intended to serve as a prelude to a future nominal logical framework based
upon nominal equational reasoning and thus an extended example is given to demonstrate that
this system is capable of encoding various other formal systems of interest.

1998 ACM Subject Classification F.4.1 Mathematical Logic, lambda calculus and related sys-
tems, D.3.3 Language Constructs and Features, data types and structures, frameworks

Keywords and phrases α-equivalence, nominal term, substitution, dependent type

Digital Object Identifier 10.4230/LIPIcs.TLCA.2015.180

1 Introduction

There exist many formal systems described by a syntax that makes use of name binding
constructs. Nominal terms [35, 15, 14], are, by now, a well-established approach to the
specification and verification of properties of such languages and systems. Based upon
the name abstraction semantics of nominal sets [23], nominal terms use the properties of
permutations of object-level names or ‘atoms’ to provide an explicit formalisation for both
the use of side conditions on names and for the axiomatisation of alpha-equivalence between
object-level terms. Following the development of efficient algorithms for matching [4] and
unification [5, 25], nominal terms have been applied in rewriting [15, 16, 12] and unoriented
equational reasoning [22, 10].

In these works, the capture-avoiding substitution used in many systems of interest has,
thus far, needed to be encoded by explicit rewrite rules or axioms for the syntax in question.
The first contribution of the present work addresses this issue by extending the language
of nominal terms with a notion of capture-avoiding atom substitution at the object-level.
Definitions of freshness, alpha-equivalence and matching together with informal proofs of
decidability are provided for the new syntax.

The second contribution of this paper is the definition of a proposed dependent type
system for the extended language. The language of the type system presented in this paper
is user-defined; users define an interdependent signature of type- and term-constructors of
interest and give their type declarations. It is the responsibility of the user to maintain the
adequacy of their encoding and thus to declare types in accordance with the system to be

© Elliot Fairweather, Maribel Fernández, Nora Szasz, and Alvaro Tasistro;
licensed under Creative Commons License CC-BY

13th International Conference on Typed Lambda Calculi and Applications (TLCA’15).
Editor: Thorsten Altenkirch; pp. 180–195

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.180
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E. Fairweather, M. Fernández, N. Szasz, and A. Tasistro 181

formalised. In keeping with earlier work on nominal equational reasoning and in contrast with
previous work on nominal type theories [8, 9, 32], the system given here remains ‘lambda-free’.

Both these contributions are presented as foundations for the future development of
a logical framework based upon nominal equational reasoning. A logical framework is a
formal system that provides the facility to define a number of other formal systems, such as
programming languages, mathematical structures and logics, by abstraction of their common
features [24, 2, 27, 30, 29]. Many logical frameworks are developed as a type system; the
minimum expressive power desirable of such a type system is that types be allowed to depend
upon terms.

The type system presented here is one of such expressive power and to demonstrate this
an extended example is given in the form of a specification for first-order logic for which
adequacy is proven. Equality axioms are not yet considered in this prototype ‘framework’ but
in the future it is expected that the system be expanded to include a user-defined nominal
equational theory, specified as a set of equality axioms or rewriting rules in the style of
[20, 15, 16].

2 Syntax

Consider countably infinite, pairwise disjoint sets of atoms, a, b, c, . . . ∈ A, variables,
X,Y, Z, . . . ∈ X, term-formers, f, g, . . . ∈ F, and type-formers, C, C′, . . . ∈ C. The syntax
of permutations, π, atom substitutions, ϑ, pseudo-terms, s, t, and pseudo-types,
σ, τ , is defined by mutual induction and generated by the grammar in Definition 1.

I Definition 1 (Syntax).

π ::= id | π ∗ (a b) s, t ::= a | [a : σ] t | f t | (t1, . . . , tn) | ϑ
∣∣π ·X

ϑ ::= id | [a 7→ t] ∗ ϑ σ, τ ::= [a : σ] τ | C t | (τ1 × . . .× τn)

A permutation is a bijection on the set of atoms, A, represented as a list of swappings,
such that π(a) 6= a for finitely many atoms, a ∈ A. π(a) is easily computed using swappings
(we omit the inductive definition). An atom substitution is a mapping from atoms to
pseudo-terms, equal to the identity mapping but for finitely many arguments. This mapping
is represented as a list of pairs, ϑ, of the form, [ai 7→ ti] such that the atoms, ai, are
pairwise distinct. This list is interpreted as a set of simultaneous bindings and not as a
sequence, and thus the value of an atom substitution is determined directly from the syntactic
representation. The final id and ‘list cons’ operators in the syntax for both permutations and
atom substitutions are commonly omitted. Atom substitutions act upon pseudo-terms and
pseudo-types by instantiating atoms and are ‘capture-avoiding’. Atom substitutions suspend
upon variables and are applied after a suspended permutation.

The constructions for pseudo-terms are called respectively atom terms, abstractions,
function applications, tuples (where n ≥ 0) and moderated variables and those
for pseudo-types, abstraction types, constructed types and product types (n ≥ 0).
Abbreviate f () as f, and C () as C. Let M,N, . . . range over elements of the union of the set
of pseudo-terms and set of pseudo-types. There is only one kind of well-formed types: type.

TLCA’15

182 Dependent Types for Nominal Terms with Atom Substitutions

I Definition 2 (Permutation Action).

π · id, id π · ([a 7→ t] ∗ ϑ), [π(a) 7→ π · t] ∗ (π · ϑ)

π · a,π(a) π · (ϑ
∣∣π′ ·X),π · ϑ

∣∣(π @ π′) ·X
π · [a : σ] t, [π(a) : π · σ] (π · t) π · [a : σ] τ , [π · a : π · σ] (π · τ)

π · f t, f (π · t) π · C t, C (π · t)
π · (t1, . . . , tn), (π · t1, . . . , π · tn) π · (τ1 × . . .× τn), (π · τ1 × . . .× π · τn)

Call a # M a freshness constraint. Let ∆, ∇, range over sets of freshness constraints
of the form a # X; call such sets freshness contexts. Write ∆ ` a # M when a derivation
exists using the rules given in Definition 3 below; in rule (atm)# we assume a 6= b.

I Definition 3 (Freshness Relation).

(atm)#

∆ ` a # b

img#(∆, a, ϑ
∣∣π ·X) a ∈ dom(ϑ)

(var : aa)#

∆ ` a # ϑ
∣∣π ·X

img#(∆, a, ϑ
∣∣π ·X) a 6∈ dom(ϑ) π-1(a) # X ∈ ∆

(var : ab)#

∆ ` a # ϑ
∣∣π ·X

∆ ` a # τ
(abs : aa)#

∆ ` a # [a : τ] s
∆ ` a # s ∆ ` a # τ

(abs : ab)#

∆ ` a # [b : τ] s
∆ ` a # s1 . . . ∆ ` a # sn

(tpl)#

∆ ` a # (s1, . . . , sn)
∆ ` a # s

(app)#

∆ ` a # f s

∆ ` a # σ
(abt : aa)#

∆ ` a # [a : σ] τ
∆ ` a # τ ∆ ` a # σ

(abt : ab)#

∆ ` a # [b : σ] τ
∆ ` a # τ1 . . . ∆ ` a # τn

(prd)#

∆ ` a # (τ1 × . . .× τn)
∆ ` a # t

(cns)#

∆ ` a # C t

The main differences with respect to the freshness relation for nominal terms are the
introduction of new rules for types, (abt : aa)#, (abt : ab)#, (prd)# and (cns)#, and the rules
for moderated variables, (var : aa)# and (var : ab)#, which take into account suspended
atom substitutions as well as suspended permutations. The notation, img#(∆, a, ϑ

∣∣π ·X),
in these rules, defines the conditions necessary for freshness with regard to the suspended
atom substitution and is an abbreviation of the following finite set of hypotheses.{(

∆ ` a # ϑ(π(b))
)
∨
(
b # X ∈ ∆

)
| b ∈ A, π(b) ∈ dom(ϑ)

}
This ensures that the substitution will not introduce the atom a when it is applied to an

instance of X. However this disjunction of conditions results in the possibility of multiple
derivations ∆i ` a # t for a given freshness constraint a # t. If one considers the suspended
atom substitution, ϑ, to be id, the conditions upon ϑ are satisfied vacuously and the two
rules clearly reduce to that for nominal terms.

CallM ≈α N an alpha-equality constraint and write ∆ `M ≈α N when a derivation
exists using the rules given in Definition 4 below. Note that because alpha-equivalence is
defined using freshness, again multiple possible derivations may exist for a given constraint.

E. Fairweather, M. Fernández, N. Szasz, and A. Tasistro 183

I Definition 4 (Alpha-equivalence Relation).

(atm)α
∆ ` a ≈α a

∀a ∈ ds(ϑ1
∣∣π1, ϑ2

∣∣π2). a # X ∈ ∆
(var)α

∆ ` ϑ1
∣∣π1 ·X ≈α ϑ2

∣∣π2 ·X
∆ ` s1 ≈α t1 . . . ∆ ` sn ≈α tn

(tpl)α
∆ ` (s1, . . . , sn) ≈α (t1, . . . , tn)

∆ ` σ ≈α τ ∆ ` s ≈α t
(abs : aa)α

∆ ` [a : σ] s ≈α [a : τ] t
∆ ` s ≈α t

(app)α
∆ ` f s ≈α f t

∆ ` σ ≈α τ ∆ ` a # t ∆ ` s ≈α (a b) · t
(abs : ab)α

∆ ` [a : σ] s ≈α [b : τ] t

∆ ` σ1 ≈α τ1 . . . ∆ ` σn ≈α τn
(prd)α

∆ ` (σ1 × . . .× σn) ≈α (τ1 × . . .× τn)
∆ ` σ1 ≈α τ1 ∆ ` σ2 ≈α τ2

(abt : aa)α
∆ ` [a : σ1]σ2 ≈α [a : τ1] τ2

∆ ` s ≈α t
(cns)α

∆ ` C s ≈α C t

∆ ` σ1 ≈α τ1 ∆ ` a # τ2 ∆ ` σ2 ≈α (a b) · τ2
(abt : ab)α

∆ ` [a : σ1]σ2 ≈α [b : τ1] τ2

This presentation of alpha-equivalence is defined by induction on the size of the pair,
(M, N), and is both syntax-directed and decidable when considered as a recursive predicate.
It is a generalisation of the notion of alpha-equivalence on nominal terms.

The only case that is not straightforward is again that of a moderated variable, (var)α.
Here it is important to remember that both permutations and atom substitutions are finite
mappings and that the image of a suspended atom substitution is given as a sub-term of
the syntax of the moderated variable. Thus, the disagreement set of two suspensions, ϑ1

∣∣π1
and ϑ2

∣∣π2, written ds(ϑ1
∣∣π1, ϑ2

∣∣π2), is also finite and may be defined as {a | ϑ1(π1(a)) 6≈α
ϑ2(π2(a)), a ∈ A}, which although recursive, is of decreasing size. The reflexivity, symmetry
and transitivity of the alpha-equivalence relation have been proved by adapting the proofs
given in [15], themselves simplified from those in [35].

The action of an atom substitution, ϑ, upon a pseudo-term or pseudo-type, M , written,
M ϑ, is defined by induction in the presence of a freshness context, ∆, in Definition 5. For the
sake of clarity of presentation this freshness context is not explicitly written throughout the
definition. Let ϑ−a denote the atom substitution ϑ restricted to the domain, dom(ϑ) \ {a}.
The composition of two atom substitutions, written ϑ1◦ϑ2, is defined as the atom substitution
equivalent to applying ϑ1 followed by ϑ2. The syntactic construction of such a composition
built from two substitutions represented as sets of bindings can be defined by adapting the
algorithm described in [3, 2.1]. Note that this operation itself uses the action of an atom
substitution upon pseudo-term and so must be defined simultaneously with Definition 5 and
is also parameterised by the freshness context, ∆.

I Definition 5 (Action of Atom Substitution).

(ϑ′
∣∣π ·X)ϑ , (ϑ′ ◦ ϑ)

∣∣π ·X aϑ , ϑ(a); a ∈ dom(ϑ) aϑ , a; a 6∈ dom(ϑ)
([a : σ] s)ϑ , [c : σ ϑ] ((a c) · s)ϑ−c; ∆ ` c # s, c # img(ϑ)

(f s)ϑ , f (s ϑ) (t1, . . . , tn)ϑ , (t1 ϑ, . . . , tn ϑ)

([a : σ] τ)ϑ , [c : σ ϑ] ((a c) · τ)ϑ−c; ∆ ` c # τ, c # img(ϑ)
(C s)ϑ , C (s ϑ) (τ1 × . . .× τn)ϑ , (τ1 ϑ× . . .× τn ϑ)

The capture-avoidance of unabstracted atoms is ensured by the fact that when an
atom substitution acts upon an abstraction or abstraction type, a suitable alpha-equivalent
representative is first chosen with respect to the freshness context, ∆. In practice, this

TLCA’15

184 Dependent Types for Nominal Terms with Atom Substitutions

presentation will result in the creation of freshness constraints for atoms, newly-generated
with respect to the system as a whole, and is similar to the approach taken in [16]. A
suitable ‘even fresher’ atom always exists, and it is one’s right to add constraints for that
atom to the freshness context, a fact which is taken advantage of below in Definition 9.
Any implementation of this definition as a recursive function must accommodate a suitable
mechanism for the generation of such names; this is most easily achieved by the threading of
global state throughout the function or by the use of a global choice function that returns
the next available name. Atom substitutions work uniformly on alpha-equivalence classes of
pseudo-terms and pseudo-types.

IDefinition 6 (Variable Substitutions). A variable substitution is a mapping from variables
to pseudo-terms, equal to the identity mapping but for finitely many arguments, and written
as a set of bindings [X1 7→ s1] . . . [Xn 7→ sn], such that the variables, X1, . . . , Xn, are
pairwise distinct.

The action of variable substitutions upon atom substitutions, pseudo-terms and pseudo-
types is given in Definition 7. A variable substitution, θ, acts upon an atom substitution, ϑ,
by instantiating the variables occurring in the pseudo-terms of the image of ϑ, and is written
ϑ θ. Note that the instantiation of a variable requires the application of an atom substitution
to a pseudo-term and thus the action of variable substitutions is also parameterised by a
freshness context, which again is left implicit in the definition below.

I Definition 7 (Variable Substitution Action).

id θ , id ([a 7→ t] ∗ ϑ) θ , [a 7→ t θ] ∗ (ϑ θ)

a θ , a

(ϑ
∣∣π ·X) θ , (π · θ(X)) (ϑ θ); X ∈ dom(θ) (ϑ

∣∣π ·X) θ , (ϑ θ)
∣∣π ·X; X 6∈ dom(θ)

([a : σ] t) θ , [a : σ θ] (t θ) (f t) θ , f (t θ) (t1, . . . , tn) θ , (t1 θ, . . . , tn θ)

([a : σ] τ) θ , [a : σ θ] (τ θ) (C t) θ , C (t θ) (τ1 × . . .× τn) θ , (τ1 θ × . . .× τn θ)

The type system introduced in Section 3 requires a formalisation of matching to check
that term-formers and type-formers are used in a way that is consistent with their respective
type declarations. The concepts of constraint problems and matching are now therefore
extended to nominal terms with atom substitutions.

Let C range over freshness and alpha-equality constraints; a constraint problem, C,
is an arbitrary set of such constraints. Extend the above notations for the derivability of
constraints element-wise to constraint problems; thus, write ∆ ` {C1, . . . , Cn} for ∆ ` C1,
. . . , ∆ ` Cn. Substitution action extends naturally to constraints and constraint problems.

I Definition 8 (Matching Problem). Given a constraint problem, C,
{
. . . , aj # Qj , . . . ,Mi ≈α

Ni, . . .
}
, a corresponding matching problem is defined if (

⋃
i vars(Mi))∩(

⋃
i vars(Ni)) = ∅

and is written
{
. . . , aj # Qj , . . . , Mi

?≈α Ni, . . .
}
.

A solution to such a problem, if one exists, is a pair, (∆, θ), of a freshness context, ∆,
and a variable substitution, θ, such that dom(θ) ⊆

⋃
vars(Mi) and ∆ ` C θ.

Informally, this says that a matching problem is a constraint problem in which one adds
the restriction that the variables in the left-hand sides of alpha-equality constraints are
disjoint from the variables in the right-hand sides and that only variables in the left-hand

E. Fairweather, M. Fernández, N. Szasz, and A. Tasistro 185

sides of equality constraints may be instantiated. There may be several ∆i such that ∆i ` C θ.
As in the case of nominal terms, one can define an ordering between solutions (∆i, θ) and
define a most general solution as a least element in the ordering. However, unlike nominal
matching, here there is no unique most general solution.

The situation is similar for logical frameworks based on the lambda calculus. The solution
there is to restrict the form of matching problems. Inspired by LF, [30], the type system in
Section 3 is designed so that one only needs to match against a pattern term, t, such that for
any variable, X ∈ vars(t), then id

∣∣π ·X is a sub-term of t. Thus, the value of X is uniquely
determined. Note that a solution may only instantiate variables in the pattern and so if an
atom substitution occurs in the matched term then it can be treated as a constant sub-term.
Using this assumption, if a matching problem has a solution, there is a unique most general
one. The algorithm to compute it is similar to that used to check alpha-equivalence, except
that when a variable sub-term, ϑ

∣∣π ·X, of the pattern is being matched against, if ϑ is not id
then that constraint is postponed until after the constraint for the occurrence of the id

∣∣π ·X
sub-term in the pattern has been solved and a unique variable substitution generated.

In addition, it is also important to note that due to the action of atom substitutions
suspended upon variables, the freshness context of a solution may contain constraints for
atoms, a 6∈ atms(C).

I Definition 9 (Pattern Matching Problem). A pattern matching problem, consists of
two pseudo-terms-in-context or two pseudo-types-in-context, ∇ ` M and ∆ ` N , to be
matched, where vars(∇ `M) ∩ vars(∆ ` N) = ∅ and is written (∇ `M) ?≈α (∆ ` N).

A solution to such a problem, if one exists, is a variable substitution, θ, such that (∇′, θ)
is a solution to the matching problem ∇∪ {M ?≈α N} and there exists a freshness context
∆# (of which each constraint, a # X, is such that a 6∈ atms(M) ∪ atms(N) ∪ atms(∇)), such
that ∆ ∪∆# ` ∇′.

A newly-freshened variant of a term, t, is a term, written t N, in which all the atoms
and variables have been replaced by newly generated atoms and variables with respect to
those occurring in t (and maybe other elements of syntax, always specified.)

Closed terms were introduced in [15] and shown there to be decidable by an algorithm
using newly-freshened variants and nominal matching. Intuitively, a closed term has no
unabstracted atoms and all occurrences of a variable must appear under the same abstracted
atoms. Here, closedness can be checked in a similar way using the matching algorithm
mentioned above.

3 Type System

This section starts by introducing the syntax of environments, declarations and judgements
used in this type system. The validity of environments (Definition 11), validity of sets of
declarations (Definition 10), and derivability of typing judgements (Definition 13), are then
defined by mutual induction.

A type association is a pair of a variable, X, and a type, σ, written (X : σ) or an
atom and a type, written (a : σ). A pseudo-environment, Γ, is an ordered list of type
associations. A pseudo-environment may contain at most one type association for each
variable and atom. Here, let Γ on (a : τ), denote the result of appending (a : τ) to the end of
the list that represents the pseudo-environment, Γ (similarly for a variable association) and
let this notation be extended element-wise to lists of associations. The association available
for a given atom, a, in Γ is denoted by Γa. If there is no type association for a in Γ then Γa is

TLCA’15

186 Dependent Types for Nominal Terms with Atom Substitutions

undefined, written ⊥ (similarly for a variable.) The domain of Γ, denoted dom(Γ), and image
of Γ, denoted img(Γ), are defined as usual: dom(Γ) = {a ∈ A | Γa 6= ⊥}∪ {X ∈ X | ΓX 6= ⊥}
and img(Γ) = {τ | ∃a,Γa = τ} ∪ {τ | ∃X,ΓX = τ}. It is important to note that type
associations for variables are never appended by the typing rules, however the rules for
abstractions and abstraction types do append type associations for atoms.

A pseudo-declaration, Γ ∆ ` f t : 〈σ ↪→ τ〉 or Γ ∆ ` C t : 〈σ ↪→ type〉, states
the type associations and freshness constraints that a term must satisfy in order that an
application or constructed type built from that term be well-formed. Thus, informally, this
says that if under the type associations in Γ, and the freshness constraints in ∆, t has type σ
then f t has type τ , or similarly that C t is of the kind type. In practice, users need not give
complete declarations; it is sufficient to write Γ ∆ ` f t : τ or Γ ∆ ` C t : type and the
system will infer the complete declaration by computing the type of t.

Pseudo-declarations are given for a term-former or type-former together with an argument
term in order to allow the use of atoms of that argument in the type of the application or
constructed type; for example, see the declarations for alli and alle in Section 5.

A pseudo-judgement, Γ Σ ∆ ` t : τ or Γ Σ ∆ ` τ : type, specifies that under a given
environment, set of declarations and freshness context, either a term has a particular type or
a type is well-formed.

A valid set of declarations, Σ, written validD(Σ), is defined inductively as follows.

I Definition 10 (Valid Set of Declarations).

The empty set of declarations, ∅, is valid; validD(∅).
If validD(Σ), Γ ∆ ` f t : 〈σ ↪→ τ〉 is a valid declaration under the following conditions.

Γ Σ ∆ ` t : σ, where vars(σ) ⊆ vars(t) ∪ vars(τ)
Γ Σ ∆ ` τ : type, where τ is not an abstraction type
∆ ` {t, σ, τ} is closed
for any variable, X ∈ vars(t) ∪ vars(τ), then the sub-term, id

∣∣π ·X, occurs in either t
or τ .

Then, provided that there is no declaration in Σ for the term-former, f, it holds that
validD(Σ ∪ {Γ ∆ ` f t : 〈σ ↪→ τ〉}).
If validD(Σ), then Γ ∆ ` C t : 〈σ ↪→ type〉 is a valid declaration under the following
conditions.

Γ Σ ∆ ` t : σ, where vars(σ) ⊆ vars(t)
∆ ` {t, σ} is closed
for any variable, X ∈ vars(t) then the sub-term, id

∣∣π ·X, occurs in t
Then, provided that there is no declaration in Σ for the type-former, C, validD(Σ ∪ {Γ
∆ ` C t : 〈σ ↪→ type〉}).

Assuming a freshness context, ∆, and a valid set of declarations, Σ, a valid environment,
written validE(Γ, Σ, ∆), is defined as follows.

I Definition 11 (Valid Environments).
The empty list of type associations, −, is a valid environment; validE(−, Σ, ∆).
If validE(Γ, Σ, ∆), then validE(Γ on (a : τ), Σ, ∆∪∆′), for any ∆′ that does not mention
atoms in dom(Γ), provided that a 6∈ dom(Γ), Γ Σ ∆ ` τ : type.
If validE(Γ, Σ, ∆), then validE(Γ on (X : τ), Σ, ∆∪∆′), for any ∆′ that does not mention
atoms in dom(Γ), provided that X 6∈ dom(Γ), for any atom, a, such that ∆ ` a # X then
∆ ` a # τ, a # img(Γ), and Γ Σ ∆ ` τ : type.

E. Fairweather, M. Fernández, N. Szasz, and A. Tasistro 187

Informally, the final condition upon variable associations says that in a valid environment,
if an atom cannot occur unabstracted in an instance of a variable, X, then it cannot occur
unabstracted in the typing of that variable either.

Typing judgements are derived inductively using the rules given in Definition 13. The
declarations provided by the user are required in the rules for term-formers, (app)τ , and
type-formers, (cns)τ . Declarations are matched to pseudo-terms and pseudo-types using
pattern matching and therefore each time an application or constructed type is typed a
newly-freshened variant of the declaration for that term-former or type-former is generated;
we write Θ ∇ ` f s : 〈σ ↪→ ρ〉 ∈ Σ N(similarly for a constructed type) to emphasise the fact
that such a newly-freshened variant of a declaration is being used. In the rule for a variable,
(var)τ , a predicate, typV is used.

I Definition 12. Let Γ |X , for X ∈ dom(Γ), be the list of associations in Γ up to but not
including the pair (X : τ). Write typV(Γ, Σ, ∆, ϑ

∣∣π, X) if the following conditions hold.
for any atom a ∈ dom(Γ |X), either ∆ ` a # X or Γ Σ ∆ ` ϑ(π(a)) : (π · Γa)ϑ
for any variable Y ∈ dom(Γ |X), Γ Σ ∆ ` ϑ

∣∣π · Y : (π · ΓY)ϑ
Γ Σ ∆ ` (π · ΓX)ϑ : type

This definition indicates that for any atom, a, that can occur unabstracted in an instance
of the variable, X, then ϑ(π(a)) must be typeable with a type compatible with the type of a.
Similarly, variables that may be used in the typing of X (i.e., that occur in Γ before X) also
have a type compatible with ϑ

∣∣π.
In the rule (abs)τ , the atom b is not in the set of atoms occurring in the judgement, Γ Σ

∆ ` [a : σ] t : [a : σ] τ and the freshness context, ∆#, is such that ∆# ` b # t, b # σ, b # τ .
Similarly in (abt)τ , b is not in the set of atoms occurring in Γ Σ ∆ ` [a : σ] τ : type and ∆#,
is such that ∆# ` b # σ, b # τ .

In the rule (app)τ , sol(θ) means that the variable substitution, θ, is a most general solution
to the pattern matching problem (∇ ` (C s × ρ)) ?≈α (∆ ∪∆# ` (C t × τ)), where ∆# is
a freshness context such that atms(s) ∪ atms(ρ) # vars(t) ∪ vars(τ) and C, is an arbitrary
type-constructor used so that the argument term and application type may both be included
within the same pattern matching problem. Similarly in (cns)τ , θ is a most general solution
to (∇ ` s) ?≈α (∆ ∪∆# ` t) where ∆# is atms(s) # vars(t).

I Definition 13 (Typing rules).

validE(Γ, Σ, ∆) (π · ΓX)ϑ = τ typV(Γ, Σ, ∆, ϑ
∣∣π, X)

(var)τ
Γ Σ ∆ ` ϑ

∣∣π ·X : τ
validE(Γ, Σ, ∆) Γa = τ

(atm)τ
Γ Σ ∆ ` a : τ

Γ on (b : σ) Σ ∆ ∪∆# ` (a b) · t : (a b) · τ
(abs)τ

Γ Σ ∆ ` [a : σ] t : [a : σ] τ
validE(Γ, Σ, ∆)

(tpl : 0)τ
Γ Σ ∆ ` () : ()

Γ Σ ∆ ` t1 : τ1 . . . Γ Σ ∆ ` tn : τn
(tpl : n)τ

Γ Σ ∆ ` (t1, . . . , tn) : (τ1 × . . .× τn)
Γ Σ ∆ ` t : σ θ Γ Σ ∆ ` τ : type

(app)τ
(
Θ ∇ ` f s : 〈σ ↪→ ρ〉 ∈ Σ N, sol(θ)

)
Γ Σ ∆ ` f t : τ

Γ on (b : σ) Σ ∆ ∪∆# ` (a b) · τ : type
(abt)τ

Γ Σ ∆ ` [a : σ] τ : type
validE(Γ, Σ, ∆)

(prd : 0)τ
Γ Σ ∆ ` () : type

Γ Σ ∆ ` τ1 : type . . . Γ Σ ∆ ` τn : type
(prd : n)τ

Γ Σ ∆ ` (τ1 × . . .× τn) : type

TLCA’15

188 Dependent Types for Nominal Terms with Atom Substitutions

Γ Σ ∆ ` t : σ θ
(cns)τ

(
Θ ∇ ` C s : 〈σ ↪→ type〉 ∈ Σ N, sol(θ)

)
Γ Σ ∆ ` C t : type

Γ Σ ∆ ` t : τ ∆ ` σ ≈α τ
(α)τ

Γ Σ ∆ ` t : σ

Note that in the rules, (atm)τ , (var)τ , (tpl : 0)τ and (prd : 0)τ , the validity of the
environment is needed as a premise because the environment, Γ, is not assumed to be valid
and also, that in the rule, (var)τ , the suspension, ϑ

∣∣π, must be applied to the type, ΓX .

4 Meta-theory

The type system presented works uniformly on α-equivalence classes of terms and types (see
Theorem 18 below.) In order to prove this property, some standard properties (weakening,
strengthening and validity of typing environments) are first stated. The section is concluded
with the substitution theorems.

I Theorem 14 (Type Strengthening). 1. If Γ Σ ∆∪∆′ ` t : τ (resp. Γ Σ ∆∪∆′ ` τ : type)
and ∆′ mentions atoms that are not in dom(Γ) then Γ Σ ∆ ` t : τ (resp. Γ Σ ∆ `
τ : type).

2. If Γ on (a1 : σ1) . . . (an : σn) Σ ∆ ` t : τ (resp. Γ on (a1 : σ1) . . . (an : σn) Σ ∆ ` τ : type)
and ∆ ` ai # t, τ (1 ≤ i ≤ n) then Γ Σ ∆ ` t : τ (resp. Γ Σ ∆ ` τ : type).

Proof. Both parts are proved by induction on the type derivation. J

I Theorem 15 (Type Weakening).
1. If Γ Σ ∆ ` t : τ (resp. Γ Σ ∆ ` τ : type), then Γ′ Σ ∆′ ` t : τ (resp. Γ′ Σ ∆′ `

τ : type), for any Γ′, ∆′ such that Γ′ = Γ on Γ1, ∆′ ⊇ ∆ and validE(Γ′, Σ, ∆′).
2. If Γ on (a1 : σ1) on (a2 : σ2) on Γ′ Σ ∆ ` t : τ (resp. Γ on (a1 : σ1) on (a2 : σ2) on Γ′ Σ

∆ ` τ : type), then Γ on (a2 : σ2) on (a1 : σ1) on Γ′ Σ ∆ ` t : τ (resp. Γ on (a2 : σ2) on
(a1 : σ1) on Γ′ Σ ∆ ` τ : type provided ∆ ` a1 # σ2.

Proof. By simultaneous induction on the type derivation. J

I Theorem 16 (Validity of Typing Environments). For any given validD(Σ):
If Γ Σ ∆ ` t : τ then validE(Γ, Σ, ∆) and Γ Σ ∆ ` τ : type.
If Γ Σ ∆ ` τ : type then validE(Γ, Σ, ∆).

Proof. Both parts are proved by induction on the type derivation, using weakening (in the
case where the last rule used was (atm)τ) and strengthening in the cases where the last rule
used is an abstraction rule (for types or terms). J

I Lemma 17. If ∆ ` ds(ϑ1
∣∣π1, ϑ2

∣∣π2) # X then ∆ ` ds(ϑ1
∣∣π1, ϑ2

∣∣π2) # ΓX .
For any M (pseudo-term or pseudo-type), if ∆ ` ds(ϑ1

∣∣π1, ϑ2
∣∣π2) # M , then ∆ `

(π1 ·M)ϑ1 ≈α (π2 ·M)ϑ2.

Proof. The first part is a consequence of the definition of valid environment. The second
part is proved by induction on the definition of ≈α. J

I Theorem 18 (Unicity of Types). If Γ Σ ∆ ` t : τ1 and Γ Σ ∆ ` t′ : τ2, where ∆ ` t ≈α t′,
then ∆ ` τ1 ≈α τ2.

Proof. 1. If Γ Σ ∆ ` t : τ1 and Γ Σ ∆ ` t : τ2, then ∆ ` τ1 ≈α τ2.

E. Fairweather, M. Fernández, N. Szasz, and A. Tasistro 189

2. If Γ Σ ∆ ` t : τ , ∆ ` t ≈α t′, ∆ ` Γ ≈α Γ′ then Γ′ Σ ∆ ` t′ : τ , where ∆ ` Γ ≈α Γ′
indicates that for each mapping (a : σ) (resp. (X : σ)) in Γ, Γ′ contains a mapping (a : σ′)
(resp. (X : σ′)) such that ∆ ` σ ≈α σ′. Similarly for types: if Γ Σ ∆ ` τ : type,
∆ ` τ ≈α τ ′, ∆ ` Γ ≈α Γ′ then Γ′ Σ ∆ ` τ ′ : type.
The first part is proved by induction on the type derivation for Γ Σ ∆ ` t : τ1. The

only case that is not straightforward is the case in which the derivation concludes using
the rule (app)τ . In this case, the unicity of the type is a consequence of the fact that
declarations do not overlap (that is, there is a unique declaration that matches the term
considered) and matching problems have unique most general solutions under the assumptions
for declarations.

The second part is proved by induction on the type derivation. In the case of a variable,
Lemma 17 is needed to derive typV(Γ′, Σ, ∆, ϑ′

∣∣π′, X). J

I Theorem 19 (Preservation of Types by Atom Substitution). If Γ Σ ∆ ` t : τ (resp.
Γ Σ ∆ ` τ : type) and π, ϑ, Γ′, ∆′ are such that:
∀X ∈ dom(Γ), Γ′ Σ ∆′ ` ϑ

∣∣π ·X : (π · ΓX)ϑ
∀a ∈ dom(Γ), either ∆ ` a # t or Γ′ Σ ∆′ ` ϑ(π(a)) : (π · Γa)ϑ

then Γ′ Σ ∆′ ` (π · t)ϑ : (π · τ)ϑ (resp. Γ′ Σ ∆′ ` (π · τ)ϑ : type)

Proof. By induction on the type derivation. In the case where the last rule applied is (app)τ
or (cns)τ , one relies on the fact that declarations are closed (that is, there are no unabstracted
atoms.) The cases of abstraction rules (for terms or types) follow by induction, since atom
substitutions are capture-avoiding. J

I Theorem 20 (Preservation of Types by Variable Substitution). If Γ Σ ∆ ` t : τ (resp.
Γ Σ ∆ ` τ : type) and θ is a variable substitution such that:
∀X ∈ dom(Γ), Γ′ Σ ∆′ ` θ(X) : ΓX θ and ∆′ ` ∆ θ

∀a ∈ dom(Γ), either ∆ ` a # t or Γ′ Σ ∆′ ` a : Γa θ
then Γ′ Σ ∆′ ` t θ : τ θ (resp. Γ′ Σ ∆′ ` τ θ : type)

Proof. By induction on the type derivation. In the case where the term is of the form θ
∣∣π ·X

and the last rule applied is (var)τ Theorem 19 for atom substitutions is used. J

5 Extended Example

First-order logic is a proto-typical system with binding. We consider the language of Arith-
metic, and start the specification by defining type-formers for natural numbers, propositions
and proofs, and term-formers to build numbers, 0 (zero) and s (successor) and propositions,
bot (⊥), imp (⇒) and all (∀).

− ∅ ` N : type
− ∅ ` Prop : type

P : Prop ∅ ` ProofP : type

− ∅ ` 0 : N

X : N ∅ ` sX : N

− ∅ ` bot : Prop

P1 : Prop, P2 : Prop ∅ ` imp (P1, P2) : Prop

P : Prop ∅ ` all [x : N]P : Prop

TLCA’15

190 Dependent Types for Nominal Terms with Atom Substitutions

Now, define declarations for the predicates used to build proofs; the introduction and
elimination of imp and all, impi, impe, alli and alle and the elimination of bot, bote.

P1 : Prop, P2 : Prop, Q : ProofP2

 x # P1, x # P2 ` impi [x : ProofP1]Q : Proof imp (P1, P2)

P1 : Prop, P2 : Prop, Q : Proof imp (P1, P2), Q1 : ProofP1

 ∅ ` impe (Q, Q1) : ProofP2

P : Prop, Q : Proof bot
 ∅ ` bote (P, Q) : ProofP

P : Prop, Q : [x : N] ProofP

 ∅ ` alli Q : Proof all [x : N]P

P : Prop, Q : Proof all [x : N]P, N : N

 x # N ` alle (Q, N) : Proof [x 7→ N] · P

Note that in the declaration for bote one must use variables, P andQ, as arguments because
of the restriction that all variables in the type of bote should occur in its arguments or in its
types. Notice also that in the declaration for alli above, the variable, Q, of type [x : N] ProofP ,
is used, in other words, n is not unabstracted, as expected. The full declaration, which can be
inferred is P : Prop, Q : [x : N] ProofP ∅ ` alli Q : 〈[x : N] ProofP ↪→ Proof all ([x : N]P)〉.
When this declaration is used to type terms built with alli, pattern matching is used to obtain
the values of P and Q.

An induction principle over the natural numbers could be defined as follows.

P : Prop, Q0 : Proof [x 7→ 0] · P, Q1 : [n : N] [p : Proof [x 7→ n] · P] Proof [x 7→ sn] · P
 n # P ` ind (Q0, Q1) : Proof all [x : N]P

An encoding of a system in a logical framework is adequate if it faithfully reflects the
properties of the encoded system. For instance, in the case of an encoding of first-order logic,
one needs to show that the terms used in the dependent type system represent first-order
terms, that formulae and proofs correspond to their standardly acknowledged notions, and
that only provable propositions have a proof in the system. The goal is to prove that there
is a bijection between proofs in first-order logic and the corresponding terms in this system.
A formal specification of first-order logic terms, formulae and proofs is given and then it is
shown that these are encoded by terms of the correct type and that encoded terms represent
only well-formed terms, formulae and proofs. The theorems and proofs presented here follow
closely those given in [24] to prove the adequacy of LF but are much simpler due to the fact
that here lambda calculus β-reduction is not involved and therefore all terms are of canonical
form.

The following grammars define the syntax of the sets of terms (Trm) and formulae (Frm)
of first-order logic.

I Definition 21 (First-order Logic Terms and Formulae).

T, T′ ::= 0 | s(T) | x F, F′ ::= ⊥ | F→ F′ | ∀x.F

Let fvars(T) and fvars(F) denote respectively the set of free variables in the term, T, and
the formula, F. Extend this notation element-wise to sets of formulae.

E. Fairweather, M. Fernández, N. Szasz, and A. Tasistro 191

A translation function JTK is defined by induction on T, from Trm to terms in the system
using the term-formers, 0 and s, for which, see Section 5. Note that the free variables of T
are encoded as unabstracted atoms in JTK. A corresponding translation function is defined
over the elements of Frm.

J0K = 0 J⊥K = bot
Js(T)K = s JTK JF1 → F2K = imp (JF1K, JF2K)
JxK = x J∀x.FK = all [x : N] JFK

Using the declarations given above, it can now be proved both that translated terms
and formulae are typeable terms of the system and that typeable encoded terms correspond
exactly to well-formed first-order logic terms and formulae.

I Theorem 22. For any term, T ∈ Trm, such that fvars(T) = x1, . . . , xn and freshness
context, ∆, if x1 : N, . . . , xn : N Σ ∆ ` JTK : N.

Similarly for any F ∈ Frm, such that fvars(F) = x1, . . . , xn, and freshness context, ∆,
x1 : N, . . . , xn : N Σ ∆ ` JFK : Prop,

Proof. By structural induction on the syntax of elements of Trm and Frm. J

I Theorem 23. If Γ Σ ∆ ` t : N is a derivable typing judgement and the environment, Γ,
contains only type associations for unabstracted atoms of the form (a : N), then t ≡ JTK for
some term T ∈ Trm.

Similarly, if Γ Σ ∆ ` t : Prop is a derivable typing judgement and the environment, Γ,
contains only type associations for unabstracted atoms of the form (a : N), then t ≡ JFK for
some formula F ∈ Frm.

Proof. By induction on typing judgement derivations. The only applicable cases are when
the first step of the derivation is by one of the rules, (atm), (app) or (α). J

In order to show the adequacy of the encoding of proofs of first-order formulae, first, a
natural deduction presentation is given for first-order logic, inspired by the one used in [24]
to prove the adequacy of the encoding in LF.

Let judgements have the form E `V P : F, indicating that there is a proof P of the formula
F, using the list of hypotheses, E , and the set of free variables, V , where (fvars(E) ⊆ V). The
introduction rules for implication and universal quantification are shown below.

E , (vF1 : F1) `V P : F2

E `V→i (P \ vF1) : F1 → F2

E `V∪{x} P : F
E `V ∀i(x.P) : ∀x.F

Here, vF1 is the variable name of a proof of F1, the notation (P \ vF1) denotes the proof
P where vF1 is discharged, and in the rule for ∀i, the condition fvars(E) ⊆ V on judgements
implies that x is not used in E .

A natural deduction judgement, J, of the form E `V P : F is translated to a typing
judgement of the system, JJK, as follows.

JE `V P : FK = JVK on JEK Σ JPK∆
vars(JJK) ` JPK : Proof JFK

Here, if V is {x1, . . . , xn} then JVK = x1 : N, . . . , xn : N and JEK contains vFi : Proof JFiK
for each (vFi

: Fi) in Γ. The translation function from proofs to terms, JPK, is defined
inductively; two cases are given.

J∀i(x.P)K = alli [x : N] JPK J→i (P \ vF1)K = impi [vF1 : Proof JF1K] JPK

TLCA’15

192 Dependent Types for Nominal Terms with Atom Substitutions

A second translation function from a proof, P, to a freshness context, parameterised by a
set of variables, X , and written JPK∆

X is also required; again two cases are given.

J∀i(x.P)K∆
X = JP K∆

X J→i (P \ vF1)K∆
X = {vF1 # X | X ∈ X} ∪ JP K∆

X

One can now prove the following property relating natural deduction proofs in first-order
logic and their encoding in the system presented here.

I Theorem 24. If E `V P : F is a derivable judgement, J, of natural deduction then
JVK on JEK Σ JPK∆

vars(JJK) ` JPK : Proof JFK is a derivable typing judgement.

Proof. By induction on the syntax of the proof, P. In the case where P is of the form
→i (P′ \ vF1) of these, the use of the rule (α) follows from the fact that JPK∆

vars(JJK) ` vF1 #
JF1K, vF1 # JF2K. J

Finally, in order to complete the adequacy proof, it is shown that only provable first-order
formulae are encoded by terms of type Proof t.

I Theorem 25. If Γ Σ ∆ ` s : Proof t where the environment, Γ, contains only type
associations for atoms either of the form (a : N) or (vF1 : Proof ti) where ti ≡ JFiK is an
encoding of some formula Fi, then s ≡ JPK where P is a proof by natural deduction of some
formula F such that t ≡ JFK.

Proof. By induction on typing judgement derivations. In the derivation for impi, ∆ ` vF1 #
t1, vF1 # t2, vF1 # impi [vF1 : Proof t1] s′ and so vF1 cannot be a free variable of P or F. J

6 Related Work

Nominal sets have been used to give semantics to systems based on nominal abstract
syntax (see, for instance, [31, 18, 7, 11]) and proof theories for nominal logic have also been
considered [19, 6]). Atom substitutions and their properties have been defined as systems
of equational rules in [17, 21, 15]. Nominal equational theories have been investigated
in [22, 10, 15] amongst others, and type systems for nominal terms and equational theories,
using rank-1 polymorphic types, are defined in [14, 13, 12]. However, although proofs play an
important role in all of these works, none of these systems deal explicitly with proof terms,
and do not yield directly a nominal type theory. Nominal type theory has been investigated
by Schöpp and Stark [34], using categorical models of nominal logic. The nominal dependent
type theories developed following this approach are very expressive, but it is not clear whether
their computational properties make them suitable for use in a logical framework. Nominal
type theory as a basis for logical frameworks has been investigated by Cheney [8, 9], as
extensions of a typed λ-calculus with names, name-abstraction and concretion operators,
and name-abstraction types. A system combining λ-calculus and nominal features is also
investigated by Pitts [32] to define a nominal version of Gödel’s System T. A key difficulty
encountered when following the approach of combining λ-calculus and nominal syntax is
the interaction between name abstraction and functional abstraction (see [8] for a detailed
discussion.) Westbrook [36] extends the Calculus of Inductive Constructions with a name-
abstraction construct in the style of [8].

One of the best known examples of logical frameworks is LF [24], based on a typed
λ-calculus with dependent types. The system presented here has similar expressive power,
however there is no primitive notion of functional abstraction, instead there are term- and
type- constructors in the user-defined signature. Other differences with LF include the

E. Fairweather, M. Fernández, N. Szasz, and A. Tasistro 193

distinction between atoms (which can be abstracted or unabstracted), variables (which
cannot be abstracted but can be instantiated, with non-capture-avoiding substitutions), and
the use of name swappings (or more generally, permutations), to axiomatise α-equivalence.

Compared with previous approaches to the definition of λ-free logical frameworks [26,
1, 33], abstraction is a first-class ingredient in the syntax presented here and can be used
in arguments for term- or type-constructors (as in [26, 1, 33]), or on its own (unlike [26, 1])
although user-defined constructors of abstraction type are not allowed. Also, as in [26, 1, 33],
instantiation is a primitive notion in the system; it is used instead of the application operation
used in λ-calculus based logical frameworks. However the approach here does not rely on
explicit lists of arities and η-long normal forms as in [26, 1]. The triggering of suspended atom
substitutions by instantiating variables is similar to the hereditary substitution mechanism
of DMBEL [33].

There may exist similarities between the work here and that of ‘contextual modal type
theory’ [28], and the dependent type system of this paper may benefit from a study of the
handling of type environments and substitutions therein.

7 Conclusions and Future Work

This paper has presented a dependent type system for nominal terms with atom substitutions.
A definition of matching over this syntax have been given together with an algorithm for
solving such problems. This algorithm has been implemented but the complexity of problems
has not been analysed; this is left for future work. A set of axioms and rules was then
defined for determining the typeability of pseudo-terms and pseudo-types in this system in
the presence of user-defined declarations for term-formers and type-formers. An extended
example for first-order logic was presented and its adequacy proven. The type system itself
has not been implemented. In its present form, the inclusion of the rule (α)τ means that
the inference of derivations is not completely syntax-directed. This property, that derivable
typing judgements hold for alpha-equivalent classes of types, may be derivable and if so
should help in the development of a type inference algorithm for the system. Further benefits
may also be gained from the inclusion of some of the more sophisticated ideas used for other
type systems considered in [12]. Although we have not included computation rules in our
language, dynamic features, such as reduction in the λ-calculus, or proof normalisation for a
logic, may be represented using relations between terms. However, a more direct definition
using equality axioms, such as in [26], would be easier to use. An extension of the logical
framework to include a user-defined nominal equational theory, specified as a set of equality
axioms or rewriting rules, also remains as future work.

References

1 Robin Adams. Lambda-free logical frameworks. CoRR, abs/0804.1879, 2008.
2 Stuart F. Allen, Robert L. Constable, Richard Eaton, Christoph Kreitz, and Lori Lorigo.

The Nuprl open logical environment. In Automated Deduction – CADE-17, 2000.
3 Franz Baader and Wayne Snyder. Unification theory. In Handbook of Automated Reasoning.

Elsevier, 2001.
4 Christophe Calvès and Maribel Fernández. Matching and alpha-equivalence check for nom-

inal terms. Journal of Computer System Sciences, 76, 2010.
5 Christophe Calvès and Maribel Fernández. The first-order nominal link. In Logic-Based

Program Synthesis and Transformation – 20th International Symposium, LOPSTR 2010,

TLCA’15

194 Dependent Types for Nominal Terms with Atom Substitutions

Hagenberg, Austria, July 23-25, 2010, Revised Selected Papers, volume 6564 of Lecture
Notes in Computer Science, pages 234–248. Springer, 2011.

6 James Cheney. A simpler proof theory for nominal logic. In FoSSaCS, 2005.
7 James Cheney. Completeness and Herbrand theorems for nominal logic. Journal of Symbolic

Logic, 71, 2006.
8 James Cheney. A simple nominal type theory. Electronic Notes in Theoretical Computer

Science, 228, 2009.
9 James Cheney. A dependent nominal type theory. Logical Methods in Computer Science,

8, 2012.
10 Ranald A. Clouston. Equational Logic for Names and Binding. PhD thesis, University of

Cambridge, 2010.
11 Roy L. Crole and Frank Nebel. Nominal lambda calculus: An internal language for fm-

cartesian closed categories. Electr. Notes Theor. Comput. Sci., 298:93–117, 2013.
12 Elliot Fairweather. Type Systems for Nominal Terms. PhD thesis, King’s College London,

2014.
13 Elliot Fairweather, Maribel Fernández, and Murdoch J. Gabbay. Principal types for nom-

inal theories. In Proceedings of the 18th International Symposium on Fundamentals of
Computation Theory (FCT 2011), 2011.

14 Maribel Fernández and Murdoch J. Gabbay. Curry-style types for nominal terms. In Types
for Proofs and Programs (TYPES’06). Springer, 2007.

15 Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting. Information and Compu-
tation, 205, 2007.

16 Maribel Fernández and Murdoch J. Gabbay. Closed nominal rewriting and efficiently com-
putable nominal algebra equality. In Proceedings of the 5th International Workshop on
Logical Frameworks and Meta-Languages (LFMTP 2010), 2010.

17 Murdoch J. Gabbay. A study of substitution, using nominal techniques and Fraenkel-
Mostowski sets. Theoretical Computer Science, 410, 2009.

18 Murdoch J. Gabbay. Two-level nominal sets and semantic nominal terms: an extension
of nominal set theory for handling meta-variables. Mathematical Structures in Computer
Science, 21, 2011.

19 Murdoch J. Gabbay and James Cheney. A sequent calculus for nominal logic. In Proceedings
of the 19th IEEE Symposium on Logic in Computer Science (LICS 2004), 2004.

20 Murdoch J. Gabbay and Aad Mathijssen. Nominal algebra. In 18th Nordic Workshop on
Programming Theory, 2006.

21 Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding substitution as a nominal
algebra. Formal Aspects of Computing, 20, 2008.

22 Murdoch J. Gabbay and Aad Mathijssen. Nominal universal algebra: Equational logic with
names and binding. Journal of Logic and Computation, 19, 2009.

23 Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving
binders. In Proceedings of the 14th Annual Symposium on Logic in Computer Science (LICS
1999), pages 214–224. IEEE Computer Society Press, July 1999.

24 Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. In
Proceedings of the 2nd IEEE Symposium on Logic in Computer Science (LICS 1987). IEEE
Computer Society Press, 1987.

25 Jordi Levy and Mateu Villaret. An efficient nominal unification algorithm. In Proceedings
of the 21st International Conference on Rewriting Techniques and Applications (RTA 2010),
2010.

26 Zhaohui Luo. PAL+: a lambda-free logical framework. Journal of Functional Programming,
13, 2003.

E. Fairweather, M. Fernández, N. Szasz, and A. Tasistro 195

27 Lena Magnusson and Bengt Nordström. The ALF proof editor and its proof engine. In
Types for Proofs and Programs, (TYPES’93), 1994.

28 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic, 9, 2008.

29 Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf’s Type
Theory. Oxford University Press, 1990.

30 Frank Pfenning and Carsten Schürmann. System description: Twelf – a meta-logical frame-
work for deductive systems. In Automated Deduction – CADE-16, 1999.

31 Andrew M. Pitts. Nominal logic: A first order theory of names and binding. In Proceedings
of the 4th International Symposium on Theoretical Aspects of Computer Software (STACS
2001), 2001.

32 Andrew M. Pitts. Nominal system T. In Proceedings of the 37th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL 2010), 2010.

33 Gordon Plotkin. An algebraic framework for logics and type theories, 2006. Talk given at
LFMTP’06.

34 Ulrich Schöpp and Ian Stark. A Dependent Type Theory with Names and Binding. In
CSL, 2004.

35 Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unification. Theor-
etical Computer Science, 323, 2004.

36 Edwin Westbrook. Higher-order Encodings with Constructors. PhD thesis, Washington
University in St. Louis, 2008.

TLCA’15

	Introduction
	Syntax
	Type System
	Meta-theory
	Extended Example
	Related Work
	Conclusions and Future Work

