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Abstract
For λ-terms constructed freely from a type signature in a type theory such as LF, there is a simple
inductive subordination relation that is used to control type-formation. There is a related – but
not precisely complementary – notion of independence that asserts that the inhabitants of the
function space τ1 → τ2 depend vacuously on their arguments. Independence has many practical
reasoning applications in logical frameworks, such as pruning variable dependencies or transport-
ing theorems and proofs between type signatures. However, independence is usually not given a
formal interpretation. Instead, it is generally implemented in an ad hoc and uncertified fashion.
We propose a formal definition of independence and give a proof-theoretic characterization of it
by: (1) representing the inference rules of a given type theory and a closed type signature as
a theory of intuitionistic predicate logic, (2) showing that typing derivations in this signature
are adequately represented by a focused sequent calculus for this logic, and (3) defining indepen-
dence in terms of strengthening for intuitionistic sequents. This scheme is then formalized in a
meta-logic, called G, that can represent the sequent calculus as an inductive definition, so the
relevant strengthening lemmas can be given explicit inductive proofs. We present an algorithm
for automatically deriving the strengthening lemmas and their proofs in G.
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1 Introduction

In logical frameworks such as LF [6] or G [4] that are designed to reason about typed λ-terms
qua data, one notion that appears again and again is dependency: when can the structure
of one group of λ-terms depend essentially on that of another group of λ-terms? The
most widely studied general notion of dependency is subordination [15, 17, 7], which is best
explained using an example. Consider λ-terms built out of the following type signature of
constants, where nat and bt respectively denote natural numbers and binary trees with
natural numbers in the leaves.

z : nat. s : nat→ nat. leaf : nat→ bt. node : bt→ bt→ bt.

From this signature, it is immediately evident that a closed β-normal term of type bt can
– indeed, must – contain a subterm of type nat, so we say that nat is subordinate to bt. The
subordination relation ≤ on types can be derived from a type signature as follows (adapting
[7, Definition 2.14]). For any type τ , write H(τ) for its head, which is the basic type that
occurs rightmost in the chain of→s (or dependent products in the case of dependent types) in
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τ . Then, for every type τ1 → · · · → τn → a (here, a is the head) that occurs anywhere in the
signature, set H(τi) ≤ a for every i ∈ 1..n. Finally, define τ1 ≤ τ2 generally as H(τ1) ≤ H(τ2)
and close ≤ under reflexivity and transitivity.

With this definition, and the above signature, we have that nat ≤ bt but bt � nat. This
notion of subordination, when strictly enforced such as in canonical LF [17, 7], enables a
kind of modularity of reasoning: inductive theorems about the λ-terms of a given type can
be proved in the smallest relevant signature and imported into larger signatures that do not
contain subordinate types. For instance, meta-theorems about nats, proved in a context
of nat assumptions, can be transported to contexts of bt assumptions since bt � nat. It
is indeed this complement of subordination that is most useful in reasoning: intuitively,
bt � nat means that the inhabitants of bt → nat are functions whose arguments cannot
occur in their bodies in the β-normal form. This negative reading of subordination can
be used to prune dependencies during unification, which may bring an unsolvable higher-
order problem into a solvable pattern problem [9], or to prevent raising a variable over
non-subordinate arguments, producing more concise proofs [3].

However, this pleasingly simple notion of subordination has a somewhat obscure formal
interpretation: the definition is independent of the typing rules and it is unclear how they
are related. We set out to formalize such a relation in terms of an inductive characterization
of the (β-normal) inhabitants of types, and in the process we discovered a curious aspect of
the above definition of subordination that manifests for higher-order constructors. Take, for
instance, the alternative type (nat→ bt)→ bt for leaf. Nothing changes as far as the ≤
relation is concerned: nat→ bt still occurs in the signature, so nat ≤ bt is still true.1 Yet,
if we look at all β-normal terms of type bt now, there can be no subterms of type nat since
there does not exist a constructor for injecting them into terms of type bt in the base case.
The definition of ≤ above clearly over-approximates possible dependencies, for reasons that
are not at all obvious, so its complement is too conservative.

In this paper we propose an alternative view of dependency that is not based on the
subordination relation. We directly characterize when one type is independent of another
with a proof-theoretic view of independence: for every claimed independence, we establish,
by means of an induction over all typing derivations based on a given signature, that indeed
a certain dependency is not strict. This view has several benefits:

First, our notion of independence is larger than non-subordination, which means that it
can be used for more aggressive pruning of dependencies.
More important is that we have strong confidence in the correctness of our definition
of independence, since it is now a derived property of the type system. Indeed, we
propose an algorithm that extracts formal inductive proofs of independence that can be
verified without needing a built-in notion of subordination or independence. This changes
independence from a trusted framework-level procedure to a certifying procedure.
Finally, we use only standard and simple proof-theoretic machinery in our definition. We
require neither rich type systems nor sophisticated meta-theoretic tools.

Our view of independence has the following outline, which is also the outline of the paper.

1. We start (Section 2) by defining independence as a property of a given type theory.
2. We then (Section 3) describe a specification language built around the logic of higher-order

hereditary Harrop formulas (HH) [10]. This is a fragment of first-order intuitionistic logic

1 In canonical LF [7, Definition 2.14], well-formedness of signatures requires subordination of argument
types of all dependent products.
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with a particularly simple focused proof system [16]. It can also be seen as the minimal
logical core of every logical framework.

3. We then (Section 4) use the language to give an adequate encoding of the inference system
that underlies a given type system. To keep the presentation simple, we have chosen to
use the simply typed λ-calculus, but the technique generalizes at least to LF [13, 14]. In
terms of this encoding, we characterize independence as a particular kind of strengthening.

4. We then (Section 5) take the focused HH sequent calculus as an object logic in the
reasoning logic G that adds the remaining crucial ingredients: a closed world reading,
induction, βη-equality of λ-terms, and generic reasoning. This is the two-level logic
approach [5] that underlies the Abella theorem prover [18].

5. Lastly (Section 6) we show how strengthening for typing derivations is formalized in G,
and give an algorithm for automatically deriving these lemmas from a given signature.
We show an application of the formalization to pruning unnecessary dependence between
variables in G.

The Abella development of examples in this paper is available at:

http://abella-prover.org/independence.

2 Independence in Type Theory

Intuitively, in a given type theory, τ2 is independent of τ1 if and only if the type τ1 → τ2
is only inhabited by abstractions whose bodies in the β-normal form do not contain the
arguments. We can write this as a property on typing derivations:

I Definition 1 (Independence). Let Γ` t : τ be the typing judgment in the given type theory.
The type τ2 is independent of τ1 in Γ if whenever Γ, x:τ1` t : τ2 holds for some t, the β-normal
form of t does not contain x, i.e., Γ ` t : τ2 holds. J

A straightforward way to prove such a property is to perform inductive reasoning on the
first typing derivation. For this, we need to know not only what are the possible ways to
prove a typing judgment, but also that they are the only ways. This is the closed-world
assumption that underlies reasoning about a fixed type signature. However, even with this
assumption, the inductive proofs for independence can be hard to establish: since the target
type τ2 is fixed, the inductive hypothesis will not be applicable to new types encountered
during the induction. To see this, suppose we are working with the simply-typed λ-calculus
(STLC). Typing rules for STLC derive judgments of the form Γ ` t : τ where Γ is a context
that assigns unique types to distinct variables, t is a λ-term and τ is its type. The typing
rules are standard:

x:τ ∈ Γ
Γ ` x : τ t-bas

Γ ` t1 : τ1 → τ Γ ` t2 : τ1

Γ ` t1 t2 : τ
t-app

Γ, x:τ1 ` t : τ (x 6∈ Γ)
Γ ` λx:τ1. t : τ1 → τ

t-abs

A direct induction on Γ ` t : τ using the typing rules produces three cases. The case when
t is an application results in two premises where the premise for the argument has a new
target type τ1 (as shown in t-app). Since τ1 can be any arbitrary type that is not necessarily
related to τ , it is not possible to appeal to the inductive hypothesis.

The key observation is that the signature must be fixed for the dependence between types
to be fully characterized. We propose an approach to formalize independence by (1) giving an
encoding of a given type theory and a closed signature in a specification logic which finitely
characterizes the dependence between types, (2) proving that the encoding is faithful to the

http://abella-prover.org/independence
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Σ, x̄:τ̄ ; Γ, F1, . . . , Fn `A
Σ; Γ `Πx̄:τ̄ . F1 ⇒ · · · ⇒ Fn ⇒ A

reduce
(F ∈ Γ) Σ; Γ, [F ] `A

Σ; Γ `A focus

Σ ` θ : τ̄ A′[θ] = A
{

Σ; Γ ` Fi[θ]
}
for i ∈ 1..n

Σ; Γ, [Πx1:τ1, . . . , xn:τn. F1 ⇒ . . .⇒ Fn ⇒ A′] `A backchain

Figure 1 Inference rules for HH. For reduce, we assume that x̄ /∈ Σ. In the backchain rule, θ
stands for a substitution [t1/x1, . . . , tn/xn]; we write Σ ` θ : τ̄ to mean Σ ` ti : τi for each i ∈ 1..n.

original type theory and signature, and (3) formally stating and proving the independence as
lemmas in a reasoning logic that gives an inductive reading of the encoding. The first two
tasks are covered by Section 3 and 4. The last task is the topic of Section 5 and 6. We use
STLC as the example throughout the paper; extending to other type theories such as LF is
left for future work.

3 The Specification Language

Let us begin with a sketch of a specification language for encoding rule-based systems. This
language will be used to encode type theories in later sections.

3.1 The HH Proof System
The logic of higher-order hereditary Harrop formulas (HH) is an intuitionistic and predicative
fragment of Church’s simple theory of types. Expressions in HH are simply typed λ-terms.
Types are freely formed from built-in or user-defined atomic types containing at least the
built-in type o (of formulas) and the arrow type constructor → (right-associative). The head
type of τ is the atomic type that occurs rightmost in a chain of →s. Terms are constructed
from a signature (written Σ); we write Σ ` t : τ if a λ-term t has type τ in Σ with the
usual rules. Logic is built into HH by means of logical constants including ⇒ : o→ o→ o
(written infix and right-associative) for implications and Πτ : (τ → o) → o for universal
quantification over values of a type τ that does not contain o. Predicates are constants in
the signature with head type o. For readability, we will often write t1 ⇐ t2 for t2 ⇒ t1, and
abbreviate Πτ (λx:τ. t) as Πx:τ. t and Πx1:τ1 . . .Πxn:τn. t as Πx̄:τ̄ . t where x̄ = x1, . . . , xn
and τ̄ = τ1, . . . , τn. We also omit type subscripts when they are obvious from context.

An atomic formula (written A) is a term of type o that head-normalizes to a term that is
not an application of one of the logical constants ⇒ or Πτ . Every HH formula is equivalent
to a normalized formula (written F ) of the form Πx̄:τ̄ . F1 ⇒ · · · ⇒ Fn ⇒ A. In the rest of
this paper we will assume that all formulas are normalized unless explicitly excepted. Given
a normalized formula F = Πx̄:τ̄ . F1 ⇒ · · · ⇒ Fn ⇒ A, we write: H(F ), the head of F , for
A; L(F ), the body of F , for the multiset {F1, . . . , Fn}; and B(F ), the binders of F , for the
typing context x̄:τ̄ .

The inference system for HH is a negatively polarized focused sequent calculus, also known
as a uniform proof system, that contains two kinds of sequents: the goal reduction sequent
Σ; Γ ` F and the backchaining sequent Σ; Γ, [F ] `A with F under focus. In either case, Γ is
a multiset of formulas called program clauses and the right hand side formula of ` is called
the goal formula. Figure 1 contains the inference rules.

An HH proof usually starts (reading conclusion upwards) with a goal-reduction sequent
Σ; Γ ` F . If F is not atomic, then the reduce rule is applied to make it atomic; this rule
extends the signature with B(F ) and the context with L(F ). Then the focus rule is applied
which selects a formula from the context Γ. This formula is then decomposed in the backchain
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rule that produces fresh goal reduction sequents for (instances of the) body, assuming that
the instantiated head of the focused formula matches the atomic goal formula. This process
repeats unless the focused formula has no antecedents.

The three rules of HH can be combined together into one synthetic rule for goal reduction
sequents that have an atomic goal formula.

F ∈ Γ Σ ` θ : τ̄ H(F )[θ] = A
{

Σ,B(G[θ]); Γ,L(G[θ]) ` H(G[θ])
}
for G ∈ L(F )

Σ; Γ `A bcred

Every premise of this rule is a goal reduction sequent with an atomic goal formula. In the
rest of this paper we will limit our attention to this fragment of HH.

3.2 Encoding Rule-based Systems in HH

Because the expressions of HH are λ-terms, we can use the λ-tree approach to syntax (λTS),
sometimes known as higher-order abstract syntax (HOAS), to represent the rules of deductive
systems involving binding using the binding structure of λ-terms. Binding in object-language
syntax is represented explicitly by meta-language λ-abstraction, and recursion over such
structures is realized by introducing fresh new constants using universal goals and recording
auxiliary properties for such constants via hypothetical goals. This kind of encoding is concise
and, as we shall see in later sections, has logical properties that we can use in reasoning.

We present the encoding of typing rules for STLC as described in Section 2 as a concrete
example of specifying in HH. Two basic types, ty and tm, are used for classifying types and
terms in STLC. We then use the following signature defining the type and term constructors:

b : ty. arr : ty→ ty→ ty. app : tm→ tm→ tm. abs : ty→ (tm→ tm)→ tm.

The type of the abs uses λTS to encode binding. To illustrate, (λy:b→ b. λx:b. y x) is encoded
as abs (arr b b) (λy. abs b (λx. app y x)).

We define a predicate of : tm→ ty→ o to encode the typing judgments in STLC, with the
context implicitly represented by the context of HH sequents. The typing rules are encoded
by the following program clauses (where the outermost universal quantifiers are omitted):

of (app M1 M2) T ⇐ of M1 (arr T1 T )⇐ of M2 T1

of (abs T1 R) (arr T1 T )⇐ (Πx. of (R x) T ⇐ of x T1)

Here, we are following the usual logic programming convention of writing universally quantified
variables using upper-case identifiers.

To see that these clauses accurately represent the typing rules of STLC, consider deriving
a HH sequent Σ; Γ`of M T , where Γ contains the clauses above and the possible assignments
of types to variables introduced by the second clause corresponding to the abstraction rule
t-abs. The only way to proceed is by focusing and backchaining on one of the clauses.
Backchaining on the first clause unifies the goal with the head formula and produces two
premises that corresponds to the premises of t-app. Backchaining on the second clause
followed by goal reduction results in Σ, x : tm; Γ, of x T1 ` of (R x) T . Note that x is a fresh
variable introduced by reducing the universal goal and of x T1 is the typing assignment of x
from reducing the hypothetical goal, which exactly captures the side condition of t-abs that
x must be fresh for Γ. The rule t-bas is modeled by backchaining on assumptions in Γ that
assigns types to variables introduced by t-abs.
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t̂y b. t̂y (arr T1 T2)⇐ t̂y T1 ⇐ t̂y T2. t̂m (app M1 M2)⇐ t̂m M1 ⇐ t̂m M2.

t̂m (abs T R)⇐ (Πx:tm. t̂m (R x)⇐ t̂m x)⇐ t̂y T.

Figure 2 An example encoding of an STLC signature into HH clauses

4 Independence via Strengthening

This section presents an encoding of STLC in HH that finitely captures the dependence
between types in a closed signature. Then the independence property can be stated as
strengthening lemmas and proved by induction.

4.1 An Adequate Encoding of STLC
The encoding is based on the types-as-predicates principle: every type is interpreted as
a predicate that is true of its inhabitants. The atomic types and constants of STLC are
imported directly into the HH signature. For every atomic type b, we define a predicate
b̂ : b→ o. We then define a mapping J−K from STLC types τ to a function τ → o as follows:

JbK = λt. b̂ t if b is an atomic type. Jτ1 → τ2K = λt.Πx:τ1. Jτ1K x⇒ Jτ2K (t x)

The mapping J−K is extended to typing contexts: for Γ = x1:τ1, . . . , xn:τn, we write JΓK for
the multiset of HH formulas {Jτ1K x1, . . . , JτnK xn}. A typing judgment Γ ` t : τ is encoded
as an HH sequent Γ; JΓK ` JτK t.

As an example, consider the signature with STLC as an object language as described
in Section 3.2 (not to be confused with STLC we are encoding). We have two predicates
t̂m : tm→ o and t̂y : ty→ o. Let Γ be the STLC signature containing b, arr, app and abs.
It is translated into JΓK containing the program clauses in Figure 2 (in normalized form and
with outermost quantifiers elided): The typing judgment Γ, y : tm→ tm ` abs b y : tm which
is provable in STLC is encoded as Γ, y:tm→ tm; JΓK, (Πx:tm. t̂m x⇒ t̂m (y x)) ` t̂m (abs b y)
which is also provable in HH.

This encoding generalizes to richer type systems than STLC. An encoding of LF into HH
was presented in [2, 13, 14], which is essentially a superset of the encoding we are doing. The
soundness and completeness of the STLC encoding follows easily from the results in [13].

I Theorem 2. Let Γ be a well-formed context and τ be a type in STLC. If Γ ` t : τ has
a derivation for a βη-normal term t, then there is a derivation of Γ; JΓK ` JτK t in HH.
Conversely, if Γ; JΓK ` JτK t for any term t that is well-typed in HH, then Γ ` t′ : τ where t′ is
the canonical (β-normal η-long) form of t.

Proof. This theorem is a special case of [13, Theorem 1]. The proof is almost the same. J

4.2 Independence as Strengthening Lemmas
By Definition 1 and Theorem 2, τ2 is independent from τ1 in Γ iff the following strengthening
lemma is true: if Γ, x:τ1; JΓK, Jτ1K x ` Jτ2K t holds for some t, then the β-normal form of t
does not contain x and Γ; JΓK ` Jτ2K t holds. Because the typing information in formulas
generated by J−K is statically determined by predicates and the translated program is finite,
it is possible to determine the dependence between types finitely. Thus, the independence
argument can be proved by induction.

Using the previous encoding example, let’s see how to prove that ty is independent of tm
in Γ which is the signature with STLC in Section 3.2. We need to show that Γ, x:tm ` t : ty
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338 A Proof-theoretic Characterization of Independence in Type Theory

implies Γ ` t : ty, which by Theorem 2 is equivalent to Γ, x:tm; JΓK, t̂m x ` t̂y t implying
Γ; JΓK ` t̂y t. The proof proceeds by induction on the first assumption. Apparently, t̂y t

can only be proved by backchaining on clauses whose heads start with t̂y. The case when
t̂y t is proved by backchaining on t̂y b is immediate. For the case when t = arr t1 t2,
backchaining produces two premises Γ, x:tm; JΓK, t̂m x ` t̂y ti (i ∈ {1, 2}). Applying the
inductive hypothesis we get Γ; JΓK ` t̂y ti, from which the conclusion Γ; JΓK ` t̂y (arr t1 t2)
follows easily.

5 The Two-Level Logic Approach

5.1 The Reasoning Logic GGG
When a relation is described as an inductive inference system, the rules are usually understood
as fully characterizing the relation. When interpreting the relation as a computation, we
can just give the inference rules a positive interpretation. However, when reasoning about
the properties of the inference system, the inductive definition must be seen in a negative
interpretation, i.e., as a prescription of the only possible ways to establish the encoded
property. Concretely, given the rules for typing λ-terms in STLC, we not only want to identify
types with typable terms, but also to argue that a term such as λx. x x does not have a type.
We sketch the logic G that supports this complete reading of rule-based specifications by
means of fixed-point definitions [4].

To keep things simple, G uses the same term language as HH and is also based on Church’s
simple theory of types. At the type level, the only difference is that G formulas have type
prop instead of o. The non-atomic formulas of G include formulas of ordinary first-order
intuitionistic logic, built using the constants >,⊥ : prop, ∧,∨,⊃: prop → prop → prop
(written infix), and ∀τ ,∃τ : (τ → prop) → prop for types τ that do not contain prop. To
this, G adds intensional equality at all types, =τ : τ → τ → prop, which is interpreted as
βη-convertibility. Like with HH earlier, we will drop the explicit types for these constants and
write quantifiers using more familiar notation. The proof system of G is a sequent calculus
with the standard derivation rules for logical constants [5], which we will not repeat here.

The next crucial ingredient in G is a mechanism for defining predicates by means of
fixed-point definitions. Such a definition is characterized by a collection of definitional clauses
each of which has form ∀x̄.A , B where A is an atomic formula all of whose free variables
are bound by x̄ and B is a formula whose free variables must occur in A. A is called the
head of such a clause and B is called its body. (For a fixed-point definition to be well-formed,
it must satisfy certain stratification conditions [8] that we do not elaborate on here.) To
illustrate definitions, let olist be a new basic type for lists of HH formulas, built from the
type signature nil : olist and (::) : o→ olist→ olist. Then, list membership (member)
and list concatenation (append) may be specified in G using the following definitional clauses:

member X (X :: L) , >. member X (Y :: L) , member X L.

append nil L L , >. append (X :: L1) L2 (X :: L3) , append L1 L2 L3.

As before, we use the convention of indicating universally closed variables with upper-case
identifiers. Read positively, these clauses can be used in the standard backchaining style to
derive atomic formulas: the goal must match with the head of a clause and the backchaining
step reduces the goal to deriving the instances of corresponding body. Read negatively, they
are used to do case analysis on an assumption: if an atomic formula holds, then it must be
the case that it unifies with the head of some clause defining it and the body of the clause is
derivable. It therefore suffices to show that the conclusion follows from each such possibility.
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Fixed-point definitions can also be interpreted inductively or coinductively, leading to
corresponding reasoning principles. We use an annotated style of reasoning to illustrate how
induction works in G. Its interpretation into the proof theory of G is described in [3]. When
proving a formula (∀x̄. D1 ⊃ · · · ⊃ A ⊃ · · · ⊃ Dn ⊃ G) by induction on the atom A, the proof
reduces to proving G with the inductive hypothesis (∀x̄. D1 ⊃ · · · ⊃ A∗ ⊃ · · · ⊃ Dn ⊃ G)
and assumptions D1, . . . , A

@, . . . , Dn. Here, A∗ and A@ are simply annotated versions of A
standing for strictly smaller and equal sized measures respectively. When A@ is unfolded by
using a definitional clause, the predicates in the body of the corresponding clause are given
the ∗ annotation. Thus, the inductive hypothesis can only be used on A∗ that results from
unfolding A@ at least once.

The negative reading of fixed-point definitions in G requires some care. In the negative
view, universally quantified variables are interpreted extensionally, i.e., as standing for all their
possible instances. To illustrate, if nat were defined by nat z , > and nat (s X) , nat X,
then one can derive ∀x. nat x ⊃ G by case-analysis of the assumption nat x, which amounts
to proving [z/x]G and ∀y. nat y ⊃ [s y/x]G. This extensional view of universal variables
is not appropriate when reasoning about binding structures viewed as syntax, where the
syntactic variables are not stand-ins for all terms but rather for names. To see this clearly,
consider the formula ∀w. (λx.w) = (λx. x) ⊃ ⊥. If equality of λ-terms were interpreted
extensionally with ∀, we would be left with ∀w. (∀x.w = x) ⊃ ⊥ which is not provable. Yet,
the λ-terms (λx.w) and (λx. x) denote the constant and identity functions, respectively, and
are therefore intensionally different – neither is βη-convertible to the other.

To achieve this intensional view, we come to the final ingredient of G: generic reasoning.
Every type of G is endowed with an infinite number of nominal constants, and there is
a quantifier ∇τ : (τ → prop) → prop (for τ not containing prop) to abstract over such
constants. The critical features of nominal constants are: (1) they are not βη-convertible, so
∇x.∇y. x = y ⊃ ⊥ is derivable; and (2) formulas on the left and right of a G sequent interact
up to equivariance, which allows the nominal constants in one formula to be systematically
permuted to match those of the other. This latter property allows the ∇ quantifier to permute
with all other connectives, including disjunction. The rules for introducing ∇ quantified
formulas both as assumption and conclusion are similar: a formula ∇x.A is reduced to [c/x]A
where c is a nominal constant that is not already present in A.

The general form of a G definitional clause therefore allows the ∇ quantifier in heads:
∀x̄. (∇z̄. A) , B. An instance of the clause must have z̄ replaced by distinct nominal
constants that are not already present in the formula. Since x̄ is quantified outside of z̄, their
instantiations cannot contain z̄, which is used to encode structural properties of terms in the
definitions. For example, (∇x. name x) , > defines name such that name X holds only if X
is a nominal constant. Another example is ∀T. (∇x. fresh x T ) , > which defines fresh
such that fresh X T holds only if X is a nominal constant that does not occur in T .

5.2 An Encoding of HH in G
The HH proof system can be encoded as a fixed-point definition in G. The logical constants,
signatures, and terms are imported into G transparently from HH – this is possible since G
and HH use the same simple type system. The sequents of HH are then encoded in G using
the predicates seq : olist→ o→ prop and bch : olist→ o→ o→ prop. The encodings
and their abbreviated notations are as follows:

HH G notation
Σ; Γ ` F seq Γ F {Γ ` F}
Σ; Γ, [F ] `A bch Γ F A {Γ, [F ] `A}

TLCA’15



340 A Proof-theoretic Characterization of Independence in Type Theory

seq L (F ⇒ G) , seq (F :: L) G. bch L (G⇒ F ) A , seq L G ∧ bch L F A.

seq L (Πx:τ. F x) , ∇x:τ. seq L (F x). bch L (Πx:τ. F x) A , ∃t:τ. bch L (F t) A.

seq L A , atom A ∧ member F L ∧ bch L F A. bch L A A , >.

Figure 3 Encoding of HH rules as inductive definitions in G.

The definitional clause for seq and bch are listed in Figure 3. Note that we use a list
of formulas to represent the multiset context in HH. This is not a problem since we can
prove that the ordering of clauses in the list in seq and bch formulas does not affect their
derivability as theorems about seq and bch in G.

The encoding of HH in G is adequate. The first two clauses defining seq exactly capture
the reduce rule. Note that in the second clause we use ∇ to encode Π in HH, since Π
introduces fresh and unanalyzable eigenvariables into the HH signature. The third clause
encodes the focus rule, where atom is defined as

atom F ,
(
∀G. (F = Πx:τ.G x) ⊃ ⊥

)
∧
(
∀G1, G2. (F = (G1 ⇒ G2)) ⊃ ⊥

)
.

The clauses defining bch exactly capture the backchain rule. Note that the two rules for
introducing Π actually represents a collection of rules for each instance of τ . In other words,
these rule are actually schematic rules. This is possible since the proof theory allows inductive
definitions to have infinitely many clauses. We will often write elements in olist in reverse
order separated by commas; the exact meaning of the comma depends on its context. For
example, given L1, L2 : olist and A : o, {L1, L2, A `G} stands for seq (A ::L) G for some
L : olist such that append L1 L2 L holds.

Theorems of HH specifications can be proved through this encoding in G. As an example,
consider proving the uniqueness of the encoding of typing in STLC shown in Section 3.2. The
theorem can be stated as follows:

∀L,M, T, T ′. {Γ, L ` of M T} ⊃ {Γ, L ` of M T ′} ⊃ T = T ′.

where Γ represents the program clauses defining of in Section 3.2.2

6 Formalizing Independence

This section first describes the formalization of independence in terms of strengthening for HH
sequents of a certain shape in G. Then a general algorithm for automatically deriving such
strengthening lemmas is presented. Lastly, an application of the formalization for pruning
variable dependencies in G is described.

6.1 Independence as Strengthening Lemmas in G
A strengthening lemma has the following form in G: ∀x̄. {Γ, F `G} ⊃ {Γ `G}. As we have
discussed in Section 3, an HH derivation always starts with applying reduce to turn the right
hand side to atomic form. Thus, it suffices to consider instances of strengthening lemmas
where G is atomic. This lemma is usually proved by induction on the only assumption. The
proof proceeds by inductively checking that a derivation of {Γ′, F `A} cannot contain any
application of focus rule on F . In Section 3 we have shown that an HH derivation starting

2 This is not precisely correct, since the typing context L also needs to be characterized by some inductive
property; a complete exposition on this encoding can be found in the Abella tutorial [1].
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with an atomic goal can be seen as repeatedly applying bcred. At every point in such a proof,
we check whether the atomic goal A matches the head of F . If such a match never occurs,
we can drop the assumption F from every HH sequent.

We formalize this intuition to establish independence for STLC in terms of a kind of
strengthening lemma in G. Concretely, by the adequacy of the encoding of STLC in HH
and the adequacy of the encoding of HH in G, τ2 is independent of τ1 in Γ if the following
strengthening lemma is provable in G:

∀t.∇x. {JΓK, Jτ1K x ` Jτ2K (t x)} ⊃ ∃t′. t = (λy. t′) ∧ {JΓK ` Jτ2K t′}.

Note that the variables in the context Γ become nominal constants of appropriate types
which are absorbed into formulas. The term (t x) indicates the possible dependence of t
on x. The conclusion t = (λy. t′) asserts that t is βη-convertible to a term with a vacuous
abstraction; this is indicated by the fact that t′ is bound outside the scope of λ. To prove
any instance of this lemma for particular types τ1 and τ2, we proceed by induction on the
only assumption. The conclusion ∃t′. t = (λy. t′) is immediately satisfied when the atomic
goals in the derivation do not match Jτ1K x, since this is the only hypothesis where x occurs.

As an example, ty is independent of tm in JΓK which contains the clauses in Figure 2 is
formalized as the following lemma:

∀t.∇x. {JΓK, t̂m x ` t̂y (t x)} ⊃ ∃t′. t = (λy. t′) ∧ {JΓK ` t̂y t′}

By induction on the assumption and introducing the goals, we get an inductive hypothesis

∀t.∇x. {JΓK, t̂m x ` t̂y (t x)}∗ ⊃ ∃t′. t = (λy. t′) ∧ {JΓK ` t̂y t′}

and a new hypothesis {JΓK, t̂m x` t̂y (t x)}@. Unfolding this hypothesis amounts to analyzing
all possible ways to derive this using the definitional clauses of Figure 3. Since t̂y (t x)
cannot match t̂m x, the selected focus cannot be t̂m x, so the only options are clauses selected
from JΓK, of which only two clauses have heads compatible with t̂y (t x). In the first case, for
the clause t̂y b, we unite t x with b, instantiating the eigenvariable t with λy. b; this in turn
gives us the witness for t′ to finish the proof. In the other case, t x is united with arr t1 t2
(for fresh eigenvariables t1 and t2). Here, t1 and t2 are first raised over x to make the two
terms have the same nominal constants, and bcred then reduces the hypothesis to the pair of
hypotheses, {JΓK, t̂m x ` t̂y (t1 x)}∗ and {JΓK, t̂m x ` t̂y (t2 x)}∗. The inductive hypothesis
applies to both of these, so we conclude that {JΓK ` t̂y t′1}∗ and {JΓK ` t̂y t′2}∗ for suitable
t′1 and t′2 that are independent of x. We can then finish the proof by forward-chaining on
the definitional clauses for HH. Observe that this proof follows the informal proof described
in Section 4.2

As another example, let’s see why tm is not independent of ty, since abstractions contain
their argument types. The relevant lemma would be:

∀t.∇x. {JΓK, t̂y x ` t̂m (t x)} ⊃ ∃t′. t = (λy. t′) ∧ {JΓK ` t̂m t′}.

Here, a direct induction on the assumption would not work because we can now focus on
the fourth clause of Figure 2 that would extend the context of the HH sequent with a fresh
assumption of the form t̂m x′. The inductive hypothesis is prevented from being used because
the context has grown. This is a standard feature of HH derivations, and we therefore need
to give an inductive characterization of the structure of the dynamically growing context.
We use the technique of defining these dynamic extensions in terms of context definitions; for
example, for the t̂m predicate, this definition has the following clauses:

ctx nil , >; (∇x. ctx (t̂m x :: L)) , ctx L.
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Then we generalize the lemmas as follows:

∀t, L.∇x. ctx L ⊃ {JΓK, L, t̂y x ` t̂m (t x)} ⊃ ∃t′. t = (λy. t′) ∧ {JΓK, L ` t̂m t′}.

Now, by induction, when the fourth clause of Figure 2 is selected for focus, one of the
hypotheses of the resulting bcred is {JΓK, L, t̂y x ` t̂y (t1 x)} (for a new eigenvariable t1). It
is entirely possible that t̂y (t1 x) is proved by selecting t̂y x. Thus we cannot conclude the
original assumption does not depend on t̂y x – so tm is not independent of ty.

6.2 Automatically Deriving Strengthening Lemmas
The above illustrations show that these strengthening lemmas have a predictable form and
proof structure. We will now give an algorithm that extracts these proofs automatically. The
key insight is that the strengthening lemmas can be provable because of a failure to match
the heads of the encoded clauses against the right hand sides of the HH sequent. Therefore,
we simply need to enumerate the possible forms of the right hand sides and generate a
mutually inductive lemma to cover all possibilities. This intuition is not entirely trivial to
implement, since the HH contexts can potentially grow on every bcred step, which must then
be accounted for.

For F = (Πx̄. F1 ⇒ . . . ⇒ Fn ⇒ A), let Hp(F ) stand for the head predicate in A and
Lp(F ) for {Hp(Fi) | 1 ∈ i..n}. To prove ∀x̄. {Γ, F `A} ⊃ {Γ `A}, we proceed as follows:

1. For every predicate a in Γ, we compute the possible dynamic contexts that arise in proofs
of atomic formulas of head a.

2. For every predicate a in Γ and A, we compute a collection of predicates S(a) which
contains the head predicates of atomic formulas that may occur as the goal in a derivation
starting with an atomic goal formula A′ for which Hp(A′) = a. That is, the provability
of any goal A′ of head a only depends on formulas whose heads are in S(a).

3. If Hp(A) = a and Hp(F ) 6∈ S(a), then for every predicate a′ ∈ S(a) and any atomic goal
A′ s.t. Hp(A′) = a′, ∀x̄. {Γ, F ` A′} ⊃ {Γ ` A′} is provable. The proof proceeds by a
simultaneously induction on all these formulas.

4. Since a ∈ S(a), the required lemma is just one of the cases of the simultaneous induction.

Before we elaborate on these steps in the following subsections, note that our algorithm
is sound and terminating, but not complete. The existence of a decision procedure for
strengthening lemmas is outside the scope of this paper.

6.2.1 Calculating the dynamic contexts
Let Γ be a context that contains only finite distinct clauses, A be an atomic goal and F be some
program clause. We would like to prove the strengthening lemma ∀x̄. {Γ, F `A} ⊃ {Γ`A} in
G. Let ∆ be the set of predicates occurring in Γ. For every predicate a ∈ ∆, let C(a) denote
a set of formulas that can possibly occur in the dynamic contexts of atomic formulas of head
a. The only way formulas can be introduced into dynamic contexts is by applying bcred.
Given a program clause Πx̄. G1 ⇒ · · · ⇒ Gn ⇒ A, the dynamic context of H(Gi) is obtained
by extending the context of A with program clauses in L(Gi) for 1 ≤ i ≤ n. Algorithm 1
derives a set of constraints C on C based on this observation. It traverses all the program
clauses and their sub-program clauses in formulas in Γ and collects a set C of constraints for
dynamic contexts which must be satisfied by derivations starting with Γ as the context.

To compute a set of dynamic contexts that satisfies C, we start with C(a) = ∅ for all
a ∈ ∆ and iteratively apply the constraint equations until the constraint is satisfied. It is
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Algorithm 1 Collecting constraints on dynamic contexts
Let Γ′ be a finite set equal to Γ and C ← ∅
while Γ′ 6= ∅ do

pick some D = (Πx̄. G1 ⇒ · · · ⇒ Gn ⇒ A) from Γ′
add equations {C(Hp(Gi)) = C(Hp(Gi)) ∪ C(Hp(A)) ∪ L(Gi) | i ∈ 1..n} to C
remove D from Γ′ and add clauses in

⋃
i∈1..n

L(Gi) to Γ′
end while

Algorithm 2 Collecting constraints on the dependency relation
let Γ′ be a finite set equal to Γ and S ← ∅
for all a ∈ ∆ do

for all D ∈ Γ′ ∪ C(a) where D = (Πx̄. G1 ⇒ . . .⇒ Gn ⇒ A) and Hp(A) = a do
add (S(a) = S(a) ∪

⋃
i∈1..n

S(Hp(Gi))) to S
end for

end for

easy to see that this algorithm terminates: since the iterations never shrink C(a) for a ∈ ∆,
the only way the algorithm goes on forever is to keep adding new clauses in every iteration.
This is impossible since there are only finitely many distinct program clauses. In the end,
we get a finite set of dynamic clauses C(a) for every a ∈ ∆ that satisfies constraints in C.
Suppose C(a) = {D1, . . . , Dn} for a ∈ ∆. We define the context relation ctxa as follows:

ctxa nil , >; ctxa (D1 :: L) , ctxa L; · · · ctxa (Dn :: L) , ctxa L.

6.2.2 Generating the dependency relation between predicates
By the bcred rule, given a program clause Πx̄. G1 ⇒ . . .⇒ Gn ⇒ A, the provability of A will
depend on the provability of H(Gi) for 1 ∈ 1..n. For any a ∈ ∆ ∪ {Hp(A)}, a can proved by
backchaining on either some clause in Γ or in the dynamic contexts C(a). Since both Γ and
C(a) are known and finite, we can derive a set S(a) containing predicates that a depends on.

The steps for computing S are similar to that for C. First, we derive a set of constraints
S, by Algorithm 2. To generate the dependency relations, we start with S(a) = {a} for all
a ∈ ∆ ∪ {Hp(A)} and iteratively apply the constraint equations until the constraints in S
are satisfied. The algorithm terminates by an analysis similar to the previous one.

6.2.3 Constructing proofs for the strengthening lemmas
Now we are in a position to prove the strengthening theorem ∀x̄. {Γ, F ` A} ⊃ {Γ ` A} in
G. Since the proof of A may depend on formulas with different heads, we generalize the
strengthening lemma to take into account of related predicates.

I Theorem 3. Let S(Hp(A)) = {a1, . . . , an}, The generalized strengthening lemma is

(∀Γ′, x̄1. ctxa1 Γ′ ⊃ {Γ,Γ′, F ` a1 x̄1} ⊃ {Γ,Γ′ ` a1 x̄1}) ∧ · · · ∧
(∀Γ′, x̄n. ctxan Γ′ ⊃ {Γ,Γ′, F ` an x̄n} ⊃ {Γ,Γ′ ` an x̄n})

If Hp(F ) 6∈ S(Hp(A)), then this lemma has a proof in G.

Proof. By simultaneous induction on {Γ,Γ′, F ` ai x̄i} for 1 ≤ i ≤ n. J

The original strengthening lemma is an immediate corollary of Theorem 3:

I Corollary 4. If Hp(F ) 6∈ S(Hp(A)), then ∀x̄. {Γ, F `A} ⊃ {Γ `A} has a proof in G. J
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Since the proofs for Theorem 3 is constructive, we obtain a certifying algorithm to state
and prove strengthening lemmas in G on demand.

6.3 Application
This section describes an application of the formalization of independence: to prune un-
necessary dependence on variables in G. When analyzing the terms containing nominal
constants in G, it is often necessary to introduce variable dependencies on such constants.
As an example, the ∀ introduction rule creates a new eigenvariable that is raised over the
nominal constants in the principal formula. However, if we can show that the type of the
eigenvariable is independent from the types of the nominal constants, then we can suppress
this dependency. In Abella, the theorem prover based on G, an ad-hoc algorithm based on
checking of subordination relations is used to prune such dependencies, but the exact logical
basis of the algorithm has never been adequately formulated.

Now that we can derive independence lemmas, we can recast this pruning of nominal
constants in terms of the closed-world reading of types. To give it a formal treatment in
the logic, we reflect the closed-world reading of types into the proofs. This can be done by
encoding the type theory of HH (which is STLC) into an HH specification as described in
Section 4 and then to use the derived strengthening lemmas directly.

As an example, suppose we want to prove the following theorem

∀X,T. name X ⊃ {of X T} ⊃ · · ·

where X has type tm and T has type ty. By introducing the assumptions and case analysis
on name X, X will be unified with a nominal constant n and the dependence of T on n

will be introduced, resulting in the hypothesis {of n (T n)}. This dependence of T on n
is vacuous as we have already seen – types cannot depend on terms in STLC. However, to
formally establish the independence, we require T to be a well-formed type, so we need to
change the theorem to

∀X,T, L. ctx L ⊃ {Γ, L ` t̂y T} ⊃ name X ⊃ {of X T} ⊃ · · ·

where Γ contains the program clauses described in Figure 2. For the purpose of demonstration,
we assume the context definition ctx contains infinitely many nominal constants of type t̂m,
which is defined as follows:

ctx nil , >; (∇x. ctx (t̂m x :: L)) , ctx L.

We perform the same introduction and case analysis on name X and get hypotheses ctx (L n),
{Γ, L n`t̂y (T n)} and {of n (T n)}. By the definition of ctx, when treated as a multiset, L n
must be equivalent to (t̂m n::L′) where L′ does not contain n. Thus {Γ, L′, t̂m n` t̂y (T n)}
holds. At this point, we can use the algorithm in Section 6.2 to derive and prove the following
strengthening lemma

∀T.∇x. {Γ, L′, t̂m x ` t̂y (T x)} ⊃ ∃T ′. T = (λy. T ′) ∧ {Γ, L′ ` t̂y T ′}.

By applying it to {Γ, L′, t̂m n ` t̂y (T n)}, we get T = λy. T ′ for some T ′ not containing y.
Hence {of n (T n)} becomes {of n T ′}. Note that we choose a particular definition of ctx
for demonstration; the exact context of well-formed terms can vary in practice, based on the
signature. Nevertheless, pruning of nominal constants can always be expressed by proving
and applying the strengthening lemmas derived from independence.
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7 Related Work

The earliest formulation of dependency that we were able to find is by Miller [9, Definition
11.3], where it is defined in terms of derivability of a certain fragment of strict logic for use
in a unification procedure. Although we do not have a proof of this, this notion appears to
coincide with the negation of our notion of independence. It is unclear why this definition
was never adopted in subsequent work on logical frameworks, but we can speculate that
one reason is its inherent cost, since it requires proving an arbitrary theorem of relevant
logic. Indeed, using independence in the core unification engine is probably inadvisable if
the unification engine is to be trusted.

It is more popular to define subordination relations independently of proof-theory, as has
been done for many variants of LF. In [15], Virga proposed a dependence relation between
types and type families in LF to constraint higher-order rewritings to well-behaved expressions.
Later, this relation was popularized as subordination and used in the type theory of canonical
LF to show that canonical terms of one type τ is not affected by introduction of terms of
another type that is not subordinate to τ [17, 7]. The subordination relations in these cases
are defined to be strong enough so that the type theory only deals with well-formed instances.

For reasoning applications, in order to move from one context to another, it is often
necessary to check if a term of type τ1 can occur in the normal form of another type τ2.
Traditionally, the complement of subordination has been thought to be the right interpretation
of independence. However, it is unclear how exactly it can be translated into evidence in the
theory that supports the reasoning. Thus, ad hoc algorithms have been developed in systems
like Twelf [11], Beluga [12] and Abella [18], which all lack formal definitions.

8 Conclusion and Future Work

We proposed a proof-theoretic characterization of independence in a two-level logic framework,
and gave an example of such characterization by encoding the type theory of STLC in the
logic HH and interpreting the independence relation as strengthening lemmas in a reasoning
logic G. We developed an algorithm to automatically establish the independence relation
and strengthening lemmas and showed its application to pruning variable dependence in G.

Interpreting independence as strengthening should be realizable in other logical frameworks
that support inductive reasoning. We chose the two-level logic framework because it provides
a first-class treatment of contexts, which makes proofs of strengthening lemmas easy. It
would be worth investigating a similar formal development in logical frameworks such as
Twelf and Beluga where contexts are either implicit or built into the type system.

The characterization of independence can be extended to more sophisticated type theories.
Recently, it was shown that the encoding of LF in G [13] can be used transparently to perform
inductive reasoning over LF specifications [14]. We plan to develop a characterization of
independence of LF based on this approach, which will formalize the important concept of
world subsumption for migrating LF meta-theorems between different LF context schema.

Finally, one benefit of a logical characterization that is almost too obvious to state is
that it opens up independence to both external validation and user-guidance. In LF, where
inhabitation is undecidable, the notion of independence proposed in this paper will generally
not be automatically derivable. Presenting the user with unsolved independence obligations
may be an interesting interaction mode worth investigating.
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