
Mixin Composition Synthesis Based on
Intersection Types∗

Jan Bessai1, Andrej Dudenhefner1, Boris Düdder1, Tzu-Chun
Chen2, Ugo de’Liguoro3, and Jakob Rehof1

1 Technical University of Dortmund, Dortmund, Germany
{jan.bessai, boris.duedder, andrej.dudenhefner,
jakob.rehof}@cs.tu-dortmund.de

2 Technical University of Darmstadt, Darmstadt, Germany
tcchen@rbg.informatik.tu-darmstadt.de

3 University of Torino, Torino, Italy
ugo.deliguoro@unito.it

Abstract
We present a method for synthesizing compositions of mixins using type inhabitation in inter-
section types. First, recursively defined classes and mixins, which are functions over classes, are
expressed as terms in a lambda calculus with records. Intersection types with records and record-
merge are used to assign meaningful types to these terms without resorting to recursive types.
Second, typed terms are translated to a repository of typed combinators. We show a relation
between record types with record-merge and intersection types with constructors. This relation
is used to prove soundness and partial completeness of the translation with respect to mixin
composition synthesis. Furthermore, we demonstrate how a translated repository and goal type
can be used as input to an existing framework for composition synthesis in bounded combinatory
logic via type inhabitation. The computed result corresponds to a mixin composition typed by
the goal type.

1998 ACM Subject Classification F.4.1 Mathematical Logic – λ Calculus and Related Systems

Keywords and phrases Record Calculus, Combinatory Logic, Type Inhabitation, Mixin, Inter-
section Type

Digital Object Identifier 10.4230/LIPIcs.TLCA.2015.76

1 Introduction

Starting with Cardelli’s pioneering work [13], various typed λ-calculi extended with records
have been thoroughly studied to model sophisticated features of object-oriented program-
ming languages, like recursive objects and classes, object extension, method overriding and
inheritance (see e.g. [1, 11, 23]).

Here, we focus on the synthesis of mixin compositions. In the object-oriented paradigm,
mixins [9, 10] have been introduced as an alternative construct for code reuse that improves
over the limitations of multiple inheritance, e.g. connecting incompatible base classes and
semantic ambiguities caused by the diamond problem. Together with abstract classes and
traits, mixins (functions over classes) can be considered as an advanced construct to obtain
flexible implementations of module libraries and to enhance code reusability; many popular

∗ This work was partially supported by EU COST Action IC1201: BETTY and MIUR PRIN CINA Prot.
2010LHT4KM, San Paolo Project SALT.

© Jan Bessai, Andrej Dudenhefner, Boris Düdder, Tzu-Chun Chen, Ugo de’Liguoro, and Jakob Rehof;
licensed under Creative Commons License CC-BY

13th International Conference on Typed Lambda Calculi and Applications (TLCA’15).
Editor: Thorsten Altenkirch; pp. 76–91

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.76
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Bessai, A. Dudenhefner, B. Düdder, T. Chen, U. de’Liguoro, and J. Rehof 77

programming languages miss native support for mixins, but they are an object of intensive
study and research (e.g. [8, 24]). In this setting we aim at synthesizing classes from a
library of mixins that can be used in programming languages like Java, which do not natively
support mixins. Our particular modeling approach is inspired by modern language features
(e.g. ECMAScript “bind”) to preserve contexts in order to prevent programming errors [21].

We formalize synthesis of classes from a library of mixins as an instance of the relativized
type inhabitation problem in bounded combinatory logic with intersection types [20]. Rel-
ativized type inhabitation is the decision problem: given a combinatory type context ∆
and a type τ does there exist an applicative term e such that e has type τ under the type
assumptions in ∆? We denote type inhabitation by ∆ ⊢BCL ? ∶ τ and implicitly include the
problem of constructing a term inhabiting τ .

Relativized type inhabitation, which is undecidable in general [20], is decidable in k-
bounded combinatory logic BCLk(→,∩), that is, combinatory logic typed with arrow and
intersection types of depth at most k, and hence an algorithm for semi-deciding type
inhabitation for BCL(→,∩) = ⋃k BCLk(→,∩) can be obtained by iterative deepening over k
and solving the corresponding decision problem in BCLk(→,∩) [20]. In the present paper, we
enable combinatory synthesis of classes via intersection typed mixin combinators. Intersection
types [4] play an important rôle in combinatory synthesis, because they allow for semantic
specification of components and synthesis goals [20, 5].

Now, looking at {C1 ∶ σ1, . . . ,Cp ∶ σp,M1 ∶ τ1, . . . ,Mq ∶ τq} ⊆ ∆ as the abstract specification
of a library including classes Ci and mixins Mj with interfaces σi and τj respectively, and
given a type τ specifying an unknown class, we may identify the class synthesis problem with
the type inhabitation problem ∆ ⊢BCL ? ∶ τ . To make this feasible, we have to bridge the
gap between the expressivity of highly sophisticated type systems used for typing classes and
mixins, for instance F -bounded polymorphism used in [12, 15], and the system of intersection
types from [4]. In doing so, we move from the system originally presented in [16], consisting
of a type assignment system of intersection and record types to a λ-calculus which we enrich
here with record merge operation (called “with” in [15]), to allow for expressive mixin
combinators. The type system is modified by reconstructing record types ⟨li ∶ σi ∣ i ∈ I⟩ as
intersection of unary record types ⟨li ∶ σi⟩, and considering a subtype relation extending
the one in [4]. This is however not enough for typing record merge, for which we consider
a type-merge operator +. The problem of typing extensible records and merge, faced for
the first time in [27, 26], is notoriously hard; to circumvent difficulties the theory of record
subtyping in [15] (where a similar type-merge operator is considered) allows just for “exact”
record typing, which involves subtyping in depth, but not in width. Such a restriction, that
has limited effects w.r.t. a rich and expressive type system like F -bounded polymorphism,
would be too severe in our setting. Therefore, we undertake a study of the type algebra of
record types with intersection and type-merge, leading to a type assignment system where
exact record typing is required only for the right-hand side operand of the term merge
operator, which is enough to ensure soundness of typing.

The next challenge is to show that we can type in a meaningful way in our system
classes and mixins, where the former are essentially recursive records and the latter are made
of a combination of fixed point combinators and record merge. Such combinators, which
usually require recursive types, can be typed in our system by means of an iterative method
exploiting the ability of intersection types to represent approximations of the potentially
infinite unfolding of recursive definitions.

The final problem we face is the encoding of intersection types with record types and type-
merge into the language of BCL(→,∩). For this purpose we consider a conservative extension

TLCA’15

78 Mixin Composition Synthesis Based on Intersection Types

of bounded combinatory logic, called BCL(TC), where we allow unary type constructors that
are monotonic and distribute over intersection. We show that the (semi) algorithm solving
inhabitation for BCL(→,∩) can be adapted to BCL(TC), by proving that the key properties
necessary to solve the inhabitation problem in BCL(→,∩) are preserved in BCL(TC) and
showing how the type-merge operator can be simulated in BCL(TC). In fact, type-merge is
not monotonic in its second argument, due to the lack of negative information caused by the
combination of + and ∩. Our work culminates in two theorems that ensure soundness and
completeness of the so obtained method w.r.t. synthesis of classes by mixins composition.

Related works. This work evolves from the contributions [5, 17, 6] to the workshop ITRS’14.
The papers that have inspired our work, mainly by Cook and others, have been cited above.
The theme of using intersection types and bounded-polymorphism for typing object-oriented
languages and inheritance has been treated in [14, 25]. Type inhabitation has been recently
used for synthesis of object oriented code [22, 18], but to our best knowledge the present
paper provides, for the first time, a theory of type-safe mixin composition synthesis based on
the component-oriented approach of combinatory logic synthesis.

2 Intersection Types for Mixins and Classes

2.1 Intersection and record types
We consider a type-free λ-calculus of extensible records, equipped with a merge operator.
The term syntax is defined by the following grammar:

ΛR ∋M,N,Mi ∶∶= x ∣ (λx.M) ∣ (MN) ∣ (M.l) ∣ R ∣ (M ⊕R) terms
R ∶∶= ⟨li =Mi ∣ i ∈ I⟩ records

where x ∈ Var and l ∈ Label range over denumerably many term variables and labels
respectively, and the sets of indexes I are finite. Free and bound variables are defined as
usual for ordinary λ-calculus, and we name Λ0

R the set of all closed terms in ΛR; terms
are identified up to renaming of bound variables and M{N/x} denotes capture avoiding
substitution of N for x in M . We adopt notational conventions from [3]; in particular
application associates to the left and external parentheses are omitted when unnecessary;
also the dot notation for record selection takes precedence over λ, so that λx. M.l reads
as λx.(M.l). If not stated otherwise ⊕ also associates to the left, and we avoid external
parentheses when unnecessary.

Terms R ≡ ⟨li =Mi ∣ i ∈ I⟩ (writing ≡ for syntactic identity) represent records, with fields
li and Mi as the respective values; we set lbl(⟨li =Mi ∣ i ∈ I⟩) = {li ∣ i ∈ I}. The term M.l

is field selection and M ⊕R is record merge. In particular if R1 and R2 are records then
R1 ⊕ R2 is the record with as fields the union of the fields of R1 and R2 and as values those
of the original records but in case of ambiguity, where the values in R2 prevail. The syntactic
constraint that R is a record in M ⊕R is justified after Definition 8.

The actual meaning of these operations is formalized by the following reduction relation:

I Definition 1 (ΛR reduction). Reduction Ð→⊆ Λ2
R is the least compatible relation such

that:

(β) (λx.M)N Ð→ M{N/x}
(sel) ⟨li =Mi ∣ i ∈ I⟩.lj Ð→ Mj if j ∈ I
(⊕) ⟨li =Mi ∣ i ∈ I⟩ ⊕ ⟨lj = Nj ∣ j ∈ J⟩ Ð→ ⟨li =Mi, lj = Nj ∣ i ∈ I ∖ J, j ∈ J⟩

J. Bessai, A. Dudenhefner, B. Düdder, T. Chen, U. de’Liguoro, and J. Rehof 79

We claim that Ð→∗ is Church-Rosser, and that (M ⊕ R1) ⊕ R2 is equivalent to M ⊕ (R1 ⊕
R2) under any reasonable observational semantics (e.g. by extending to ΛR applicative
bisimulation from the lazy λ-calculus).

Record merge subsumes field update: M.l ∶= N ≡M ⊕ ⟨l = N⟩, but merge is not uniformly
definable in terms of update as long as labels are not expressions in the calculus.

In the spirit of Curry’s assignment of polymorphic types and of intersection types in
particular, types are introduced as a syntactical tool to capture semantic properties of terms,
rather than as constraints to term formation.

I Definition 2 (Intersection types for ΛR).

T ∋ σ,σi ∶∶= a ∣ ω ∣ σ1 → σ2 ∣ σ1 ∩ σ2 ∣ ρ types
T⟨⟩ ∋ ρ, ρi ∶∶= ⟨⟩ ∣ ⟨l ∶ σ⟩ ∣ ρ1 + ρ2 ∣ ρ1 ∩ ρ2 record types

where a ranges over type constants, l ∈ Label.

We use σ, τ , possibly with sub and superscripts, for types in T and ρ, ρi, possibly with
superscripts, for record types in T⟨⟩ only. Note that → associates to the right, and ∩ binds
stronger than →. As with intersection type systems for the λ-calculus, the intended meaning
of types are sets, provided a set theoretic interpretation of constants a.

Following [4], type semantics is given axiomatically by means of the subtyping relation ≤,
that can be interpreted as subset inclusion. It is the least pre-order over T such that:

I Definition 3 (Type inclusion: arrow and intersection types).

σ ≤ ω, ω ≤ ω → ω,

σ ∩ τ ≤ σ, σ ∩ τ ≤ τ, σ ≤ τ1 & σ ≤ τ2 ⇒ σ ≤ τ1 ∩ τ2,

(σ → τ1) ∩ (σ → τ2) ≤ σ → τ1 ∩ τ2 σ2 ≤ σ1 & τ1 ≤ τ2 ⇒ σ1 → τ1 ≤ σ2 → τ2

We write σ = τ for σ ≤ τ and τ ≤ σ.

I Definition 4 (Type inclusion: record types).

⟨l ∶ σ⟩ ∩ ⟨l ∶ τ⟩ ≤ ⟨l ∶ σ ∩ τ⟩, σ ≤ τ ⇒ ⟨l ∶ σ⟩ ≤ ⟨l ∶ τ⟩,
⟨l ∶ σ⟩ ≤ ⟨⟩, ⟨l ∶ σ⟩ + ⟨⟩ = ⟨l ∶ σ⟩ = ⟨⟩ + ⟨l ∶ σ⟩,
⟨l ∶ σ⟩ + ⟨l ∶ τ⟩ = ⟨l ∶ τ⟩, ⟨l ∶ σ⟩ + ⟨l′ ∶ τ⟩ = ⟨l ∶ σ⟩ ∩ ⟨l′ ∶ τ⟩ (l ≠ l′),
⟨l ∶ σ⟩ + (⟨l ∶ τ⟩ ∩ ρ) = ⟨l ∶ τ⟩ ∩ ρ, ⟨l ∶ σ⟩ + (⟨l′ ∶ τ⟩ ∩ ρ) = ⟨l′ ∶ τ⟩ ∩ (⟨l ∶ σ⟩ + ρ) (l ≠ l′).

While Definition 3 is standard after [4], comments on Definition 4 are in order. Type ⟨⟩
is the type of all records. Type ⟨l ∶ σ⟩ is a unary record type, whose meaning is the set of
records having at least a field labeled by l, with value of type σ; therefore ⟨l ∶ σ⟩ ∩ ⟨l ∶ τ⟩ is
the type of records having label l with values both of type σ and τ , that is of type σ ∩ τ . In
fact the equation ⟨l ∶ σ⟩ ∩ ⟨l ∶ τ⟩ = ⟨l ∶ σ ∩ τ⟩ is derivable. On the other hand ⟨l ∶ σ⟩ ∩ ⟨l′ ∶ τ⟩,
with l ≠ l′, is the type of records having fields labeled by l and l′, with values of type σ and
τ respectively. It follows that intersection of record types can be used to express properties
of records with arbitrary (though finitely) many fields, which justifies the abbreviation
⟨li ∶ σi ∣ i ∈ I ≠ ∅⟩ = ⋂i∈I⟨li ∶ σi⟩ and ⟨li ∶ σi ∣ i ∈ ∅⟩ = ⟨⟩, where we assume that the li are
pairwise distinct. Finally, as it will be apparent from Definition 8 below, ρ1 + ρ2 is the type
of all records obtained by merging a record of type ρ1 with a record of type ρ2, which is
intended to type ⊕ that is at the same time a record extension and field updating operation.
Since this is the distinctive feature of the system introduced here, we comment on this by
means of a few lemmas, illustrating its properties.

TLCA’15

80 Mixin Composition Synthesis Based on Intersection Types

I Lemma 5.
1. (∀j ∈ J ⊆ I. σj ≤ τj)⇒ ⟨li ∶ σi ∣ i ∈ I⟩ ≤ ⟨lj ∶ τj ∣ j ∈ J⟩,
2. ⟨li ∶ σi ∣ i ∈ I⟩ + ⟨lj ∶ τj ∣ j ∈ J⟩ = ⟨li ∶ σi,mj ∶ τj ∣ i ∈ I ∖ J, j ∈ J⟩,
3. ∀ρ ∈ T⟨⟩. ∃ ⟨li ∶ σi ∣ i ∈ I⟩. ρ = ⟨li ∶ σi ∣ i ∈ I⟩.

Part (1) of Lemma 5 states that subtyping among intersection of unary record types
subsumes subtyping in width and depth of ordinary record types from the literature. Part (2)
shows that the + type constructor reflects at the level of types the operational behavior of
the merge operator ⊕. Part (3) says that any record type is equivalent to an intersection of
unary record types; this implies that types of the form ρ1 + ρ2 are eliminable in principle.
However they play a key role in typing mixins, motivating the issue of control of negative
information in the synthesis process: see sections 2.2 and 4. More properties of subtyping
record types w.r.t. + and ∩ are listed in the next lemma. Let us preliminary define the map
lbl ∶ T⟨⟩ → ℘(Label) (where ℘(Label) is the powerset of Label) by:

lbl(⟨l ∶ σ⟩) = {l}, lbl(ρ1 ∩ ρ2) = lbl(ρ1 + ρ2) = lbl(ρ1) ∪ lbl(ρ2).

Then we immediately have:

I Lemma 6.
1. ρ1 = ρ2 ⇒ lbl(ρ1) = lbl(ρ2),
2. lbl(ρ1) ∩ lbl(ρ2) = ∅⇒ ρ1 + ρ2 = ρ1 ∩ ρ2.

In (1) above ρ1 = ρ2 is ρ1 ≤ ρ2 ≤ ρ1. About (2) note that condition lbl(ρ1) ∩ lbl(ρ2) = ∅ is
essential, since ρ1 + ρ2 ≠ ρ2 + ρ1 in general, as it immediately follows by Lemma 5.2.

I Lemma 7.
1. (ρ1 + ρ2) + ρ3 = ρ1 + (ρ2 + ρ3),
2. (ρ1 ∩ ρ2) + ρ3 = (ρ1 + ρ3) ∩ (ρ2 + ρ3),
3. ρ1 ≤ ρ2 ⇒ ρ1 + ρ3 ≤ ρ2 + ρ3,
4. ρ1 + ρ2 = ρ1 ∩ ρ2 ⇔ ρ1 + ρ2 ≤ ρ1.

I Remark. In general ρ1 + (ρ2 ∩ ρ3) ≠ (ρ1 + ρ3) ∩ (ρ2 + ρ3): take ρ1 ≡ ⟨l1 ∶ σ1, l2 ∶ σ2⟩, ρ2 ≡
⟨l1 ∶ σ′1⟩ and ρ3 ≡ ⟨l2 ∶ σ′2⟩, with σ1 ≠ σ′1 and σ2 ≠ σ′2. Then we have: ρ1 + (ρ2 ∩ ρ3) = ρ1 +
⟨l1 ∶ σ′1, l2 ∶ σ′2⟩ = ⟨l1 ∶ σ′1, l2 ∶ σ′2⟩, while (ρ1 +ρ3)∩ (ρ2 +ρ3) = ⟨l1 ∶ σ1, l2 ∶ σ′2⟩∩ ⟨l1 ∶ σ′1, l2 ∶ σ2⟩ =
⟨l1 ∶ σ1 ∩ σ′1, l2 ∶ σ2 ∩ σ′2⟩. The last example suggests that (ρ1 + ρ3) ∩ (ρ2 + ρ3) ≤ ρ1 + (ρ2 ∩ ρ3).
On the other hand ρ2 ≤ ρ3 /⇒ ρ1 + ρ2 ≤ ρ1 + ρ3. Indeed:

⟨l0 ∶ σ1, l1 ∶ σ2⟩ + ⟨l1 ∶ σ3, l2 ∶ σ4⟩ = ⟨l0 ∶ σ1, l1 ∶ σ′1, l2 ∶ σ2⟩
/≤ ⟨l0 ∶ σ0, l1 ∶ σ1, l2 ∶ σ2⟩ if σ′1 /≤ σ1
= ⟨l0 ∶ σ1, l1 ∶ σ2⟩ + ⟨l2 ∶ σ4⟩

even if ⟨l1 ∶ σ1, l2 ∶ σ2⟩ ≤ ⟨l2 ∶ σ2⟩. From this and (3) of Lemma 7, we conclude that + is
monotonic in its first argument, but not in its second one.

We come now to the type assignment system. A basis (also called a context in the
literature) is a finite set Γ = {x1 ∶ σn, . . . , xn ∶ σn}, where the variables xi are pairwise
distinct; we set dom(Γ) = {x ∣ ∃σ. x ∶ σ ∈ Γ} and we write Γ, x ∶ σ for Γ ∪ {x ∶ σ} where
x /∈ dom(Γ). Then we consider the following extension of the system in [4], also called BCD
in the literature.

J. Bessai, A. Dudenhefner, B. Düdder, T. Chen, U. de’Liguoro, and J. Rehof 81

I Definition 8 (Type Assignment). The rules of the assignment system are:

x ∶ σ ∈ Γ
(Ax)

Γ ⊢ x ∶ σ

Γ, x ∶ σ ⊢M ∶ τ
(→ I)

Γ ⊢ λx.M ∶ σ → τ

Γ ⊢M ∶ σ → τ Γ ⊢ N ∶ σ
(→ E)

Γ ⊢MN ∶ τ

Γ ⊢M ∶ σ Γ ⊢M ∶ τ
(∩)

Γ ⊢M ∶ σ ∩ τ

(ω)
Γ ⊢M ∶ ω

Γ ⊢M ∶ σ σ ≤ τ
(≤)

Γ ⊢M ∶ τ

(⟨⟩)
Γ ⊢ ⟨li =Mi ∣ i ∈ I⟩ ∶ ⟨⟩

Γ ⊢Mk ∶ σ k ∈ I
(rec)

Γ ⊢ ⟨li =Mi ∣ i ∈ I⟩ ∶ ⟨lk ∶ σ⟩

Γ ⊢M ∶ ⟨l ∶ σ⟩
(sel)

Γ ⊢M.l ∶ σ

Γ ⊢M ∶ ρ1 Γ ⊢ R ∶ ρ2 (∗)
(+)

Γ ⊢M ⊕R ∶ ρ1 + ρ2

where (∗) in rule (+) is the side condition: lbl(R) = lbl(ρ2).

Using Lemma 5.1, the following rule is easily shown to be admissible:

Γ ⊢Mj ∶ σj ∀j ∈ J ⊆ I
(rec′)

Γ ⊢ ⟨li =Mi ∣ i ∈ I⟩ ∶ ⟨lj ∶ σi ∣ j ∈ J⟩

Contrary to this, the side condition (∗) of rule (+) is equivalent to “exact” record typing in
[10], disallowing record subtyping in width. Such a condition is necessary for soundness of
typing. Indeed suppose that Γ ⊢M0 ∶ σ and Γ ⊢M ′

0 ∶ σ′0 but Γ /⊢M ′
0 ∶ σ0; then without (∗)

we could derive:

Γ ⊢ ⟨l0 =M0⟩ ∶ ⟨l0 ∶ σ0⟩ Γ ⊢ ⟨l0 =M ′
0, l1 ∶ σ1⟩ ∶ ⟨l1 ∶ σ1⟩

Γ ⊢ ⟨l0 =M0⟩ ⊕ ⟨l0 =M ′
0, l ∶1∶ σ1⟩ ∶ ⟨l0 ∶ σ0, l1 ∶ σ1⟩

from which we obtain that Γ ⊢ (⟨l0 =M0⟩ ⊕ ⟨l0 =M ′
0, l ∶1∶ σ1⟩).l0 ∶ σ0 breaking subject

reduction, since (⟨l0 =M0⟩ ⊕ ⟨l0 =M ′
0, l ∶1∶ σ1⟩).l0 Ð→∗ M ′

0. The essential point is that
proving that Γ ⊢ N ∶ ⟨l ∶ σ⟩ doesn’t imply that l′ /∈ lbl(R′) for any l′ ≠ l, which follows only by
the uncomputable (not even r.e.) statement that Γ /⊢ N ∶ ⟨l′ ∶ ω⟩, a negative information.

This explains the restriction to record terms as the second argument of ⊕ : in fact allowing
M ⊕ N to be well formed for an arbitrary N we might have N ≡ x in λx. (M ⊕ x). But
extending lbl to all terms in ΛR is not possible without severely limiting the expressiveness
of the assignment system. In fact to say that lbl(N) = lbl(R) if N Ð→∗ R would make the lbl
function non computable; on the other hand putting lbl(x) = ∅, which is the only reasonable
and conservative choice as we do not know of possible substitutions for x in λx. (M ⊕ x),
implies that the latter term has type ω → ω = ω at best.

As a final remark, let us observe that we do not adopt exact typing of records in general,
but only for typing the right-hand side of ⊕-terms, a feature that will be essential when
typing mixins.

I Lemma 9. Let σ ≠ ω:
1. Γ ⊢ x ∶ σ ⇐⇒ ∃τ. x ∶ τ ∈ Γ & τ ≤ σ,
2. Γ ⊢ λx.M ∶ σ ⇐⇒ ∃ I, σi, τi. Γ, x ∶ σi ⊢M ∶ τi & ⋂i∈I σi → τi ≤ σ,
3. Γ ⊢MN ∶ σ ⇐⇒ ∃ τ. Γ ⊢M ∶ τ → σ & Γ ⊢ N ∶ τ ,
4. Γ ⊢ ⟨li =Mi ∣ i ∈ I⟩ ∶ σ ⇐⇒ ∀i ∈ I ∃ σi. Γ ⊢Mi ∶ σi & ⟨li ∶ σi ∣ i ∈ I⟩ ≤ σ,
5. Γ ⊢M.l ∶ σ ⇐⇒ Γ ⊢M ∶ ⟨l ∶ σ⟩,
6. Γ ⊢M ⊕R ∶ σ ⇐⇒ ∃ ρ1, ρ2. Γ ⊢M ∶ ρ1 & Γ ⊢ R ∶ ρ2 & lbl(R) = lbl(ρ2) & ρ1 + ρ2 ≤ σ.

TLCA’15

82 Mixin Composition Synthesis Based on Intersection Types

I Theorem 10 (Subject reduction). Γ ⊢M ∶ σ & M Ð→ N ⇒ Γ ⊢ N ∶ σ.

Proof Sketch. The proof is by cases of reduction rules, using Lemma 9. The only relevant
case is when M ≡ R1 ⊕ R2, with R1 ≡ ⟨li =Mi ∣ i ∈ I⟩ and R2 ≡ ⟨lj = Nj ∣ j ∈ J⟩, and N ≡
⟨li =Mi, lj = Nj ∣ i ∈ I ∖ J, j ∈ J⟩. By Lemma 9.6 we may suppose w.l.o.g. that σ = ρ1 + ρ2,
and that ρ1 = ⟨li ∶ σi ∣ i ∈ I ′⟩ for some I ′ ⊆ I, and ρ2 = ⟨lj ∶ τj ∣ j ∈ J ′⟩ for some J ′ ⊆ J ; but also
we know that J ′ = J , because of condition (∗).

Now by Lemma 5.2, ρ1 +ρ2 = ⟨li ∶ σi, lj ∶ τj ∣ i ∈ I ′ ∖ J, j ∈ J⟩; on the other hand by Lemma
9.4, we know that Γ ⊢Mi ∶ σi for all i ∈ I ′, Γ ⊢ Nj ∶ τj for all j ∈ J , and therefore we conclude
that Γ ⊢ N ∶ ⟨li ∶ σi, lj ∶ τj ∣ i ∈ I ′ ∖ J, j ∈ J⟩ by multiple applications of rules (rec) and (∩). J

2.2 Class and Mixin combinators
The following definition of classes and mixins is inspired by [15] and [10] respectively, though
with some departures to be discussed below. To make the description more concrete, in the
examples we add constants to ΛR.

Recall that a combinator is a term in Λ0
R, namely a closed term. Let Y be Curry’s fixed

point combinator: λf.(λx.f(xx))(λx.f(xx)) (the actual definition of Y is immaterial, since
all fixed point combinators have the same types in BCD).

I Definition 11. Let myClass, state and argClass be (term) variables and Y be a fixed point
combinator; then we define the following sets of combinators:

Class: C ∶∶= Y(λmyClass λ state. ⟨li = Ni ∣ i ∈ I⟩)
Mixin: M ∶∶= λ argClass.Y(λmyClassλ state. (argClass state) ⊕ ⟨li = Ni ∣ i ∈ I⟩)

We define C andM as the sets of classes and mixins respectively.

To illustrate this definition let us use the abbreviation let x = N in M ≡ M{N/x}.
Then a class combinator C ∈ C can be written in a more perspicuous way as follows:

C ≡ Y(λmyClass λ state. let self = (myClass state) in ⟨li = Ni ∣ i ∈ I⟩). (1)

A class is the fixed point of a function, the class definition, mapping a recursive definition
of the class itself and a state S, that is the value or a record of values in general, for
the instance variables of the class, into a record ⟨li = Ni ∣ i ∈ I⟩ of methods. A class C is
instantiated to an object O ≡ C S by applying the class C to a state S. Hence we have:

O ≡ C S Ð→∗ let self = (C S) in ⟨li = Ni ∣ i ∈ I⟩,

where the variable self is used in the method bodies Ni to call other methods from the same
object. Note that the recursive parameter myClass might occur in the Ni in subterms other
than (myClass state), and in particular Ni{C/myClass} might contain a subterm C S′, where
S′ is a state possibly different than S; even C itself might be returned as the value of a
method. Classes are the same as in [15] §4, but for the explicit identification of self with
(myClass state).

We come now to typing of classes. Let R = ⟨li = Ni ∣ i ∈ I⟩, and suppose that C ≡
Y(λmyClass λ state.R) ∈ C. To type C we must find a type σ (a type of its state) and a
sequence of types ρ1, . . . , ρn ∈ T⟨⟩ such that for all i < n:

myClass ∶ σ → ρi, state ∶ σ ⊢ R ∶ ρi+1.

J. Bessai, A. Dudenhefner, B. Düdder, T. Chen, U. de’Liguoro, and J. Rehof 83

Note that this is always possible for any n: in the worst case, we can take ρi = ⟨li ∶ ω ∣ i ∈ I⟩
for all 0 < i ≤ n. In general one has more expressive types, depending on the typings of the
Ni in R (see example 12 below). It follows that:

⊢ λmyClass λ state.R ∶ (ω → ρ1) ∩ ⋂
1≤i<n

(σ → ρi)→ (σ → ρi+1),

and therefore, by using the fact that ⊢Y ∶ (ω → τ1)∩⋯∩(τn−1 → τn)→ τn for arbitrary types
τ1, . . . , τn, we conclude that the typing of classes has the following shape (where ρ = ρn):

⊢ C ≡ Y(λmyClass λ state. ⟨li = Ni ∣ i ∈ I⟩) ∶ σ → ρ (2)

In conclusion the type of a class C is the arrow from the type of the state σ to a type ρ of
its instances.

I Example 12. The class Point has an integer state and contains the method get to retrieve
the state, set to update the current state and shift to add a value to the current state.

Point = Y(λmyClass.λstate.let self = myClass state in

⟨get = state, set = λstate′.state′, shift = λd.self.set(self.get + d)⟩)

Note that in a setting without references, we rely on purely functional state updates.
Therefore, every function returns a new state that can be used to construct the new object.
An example for this is set, which just returns the new state.

To type Point we have ⊢ Point ∶ Int→ ρPoint where ρPoint = ρ2 and

ρ1 = ⟨get ∶ Int, set ∶ Int→ Int, shift ∶ ω⟩
ρ2 = ⟨get ∶ Int, set ∶ Int→ Int, shift ∶ Int→ Int⟩

using Y ∶ (ω → Int→ ρ1) ∩ ((Int→ ρ1)→ Int→ ρ2)→ Int→ ρ2

A mixin M ∈M is a combinator such that, if C ∈ C then M C reduces to a new class
C ′ ∈ C, inheriting from C. Writing M in a more explicit way we obtain:

M ≡ λ argClass.Y(λmyClassλ state.let super = (argClass state) in

let self = (myClass state) in

super ⊕ ⟨li = Ni ∣ i ∈ I⟩)

In words, a mixin merges an instance C S of the input class C with a new state S together
with a difference record R ≡ ⟨li = Ni ∣ i ∈ I⟩, that would be written ∆(C S) in terms of [10].
Note that our mixins are not the same as class modificators (also called wrappers e.g. in [9])
because the latter do not take the instantiation of a class as the value of super, but the class
definition, namely the function defining the class before taking its fixed point.

Let M ≡ λ argClass.Y(λmyClassλ state. (argClass state) ⊕ R) ∈M; to type M we have to
find types σ1, σ2, ρ1 and a sequence ρ2

1, . . . , ρ
2
n ∈ T⟨⟩ of record types such that for all 1 ≤ i < n

it is true that lbl(R) = lbl(ρ2
i) and such that, setting Γ0 = {argClass ∶ σ1 → ρ1,myClass ∶

ω, state ∶ σ1 ∩ σ2} and Γi = {argClass ∶ σ1 → ρ1,myClass ∶ (σ1 ∩ σ2) → ρ1 + ρ2
i , state ∶ σ1 ∩ σ2}

for all 1 ≤ i < n, we may deduce for all 0 ≤ i < n:

Γi ⊢ state ∶ σ1 ∩ σ2

(≤)
Γi ⊢ state ∶ σ1

(→ E)
Γi ⊢ argClass state ∶ ρ1 Γi ⊢ R ∶ ρ2

i+1 lbl(R) = lbl(ρ2
i+1) (+)

Γi ⊢ (argClass state) ⊕ R ∶ ρ1 + ρ2
i+1

TLCA’15

84 Mixin Composition Synthesis Based on Intersection Types

Hence for all 0 ≤ i < n we can derive the typing judgment:

argClass ∶ σ1 → ρ1 ⊢ λmyClassλ state. (argClass state) ⊕ R ∶

((σ1 ∩ σ2)→ (ρ1 + ρ2
i))→ (σ1 ∩ σ2)→ (ρ1 + ρ2

i+1)

and therefore, by reasoning as for classes, we get (setting ρ2 = ρ2
n):

⊢M ≡ λ argClass.Y(λmyClassλ state. (argClass state) ⊕ R) ∶
(σ1 → ρ1) → (σ1 ∩ σ2) → (ρ1 + ρ2) (3)

Spelling out this type, we can say that σ1 is a type of the state of the argument-class of
M ; σ1 ∩ σ2 is the type of the state of the resulting class, that refines σ1. ρ1 expresses the
requirements of M about the methods of the argument-class, i.e. what is assumed to hold for
the usages of super and argClass in R to be properly typed; ρ1 + ρ2 is a type of the record of
methods of the refined class, resulting from the merge of the methods of the argument-class
with those of the difference R; since in general there will be overridden methods, whose types
might be incompatible, the + type constructor cannot be replaced by intersection.

I Example 13. The mixin Movable, provided an argument class that contains a set and a
shift method, creates a new class with (potentially overwritten) methods set and move along
with delegated methods. The method set is fixed to set the underlying state to 1 and the
method move shifts the state by 1.

Movable = λargClass.Y(λmyClass.λstate.let super = argClass state in

let self = myClass state in

super⊕ ⟨set = super.set(1),move = self.shift(1)⟩)

Note that to update self and super one can use myClass and argClass. Generalizing for all
ρ ∈ T⟨⟩ following the argumentation above we can choose:

ρ1 = ρ ∩ ⟨set ∶ Int→ Int, shift ∶ Int→ Int⟩ ρ2 = ⟨set ∶ Int,move ∶ Int⟩
σ1 = Int σ2 = ω
ρ2

1 = ⟨set ∶ Int,move ∶ ω⟩ ρ2
2 = ⟨set ∶ Int,move ∶ Int⟩

Using these choices we can type Y by

⊢Y ∶ (ω → (Int→ ρ1 + ρ2
1)) ∩ ((Int→ ρ1 + ρ2

1)→ (Int→ ρ1 + ρ2
2))→ (Int→ ρ1 + ρ2

2)

and obtain the typings of Movable for all ρ:
. . .

⊢Movable ∶ (Int→ ρ ∩ ⟨set ∶ Int→ Int, shift ∶ Int→ Int⟩)→ (Int→ ρ1
+ ρ2

2)
(≤)

⊢Movable ∶ (Int→ ρ ∩ ⟨set ∶ Int→ Int, shift ∶ Int→ Int⟩)→ (Int→ ρ + ⟨set ∶ Int,move ∶ Int⟩)

3 Encoding of Record Types in Bounded Combinatory Logic

Our main goal is to combine type information given by intersection types for ΛR and the
capabilities of the logical programming language given by BCL inhabitation to synthesize
meaningful mixin compositions as terms of a combinatory logic. Such combinatory terms are
formed by application of combinators from a repository (combinatory logic context) ∆.

J. Bessai, A. Dudenhefner, B. Düdder, T. Chen, U. de’Liguoro, and J. Rehof 85

I Definition 14 (Combinatory Term). E,E′ ∶∶= C ∣ (E E′), C ∈ dom(∆)

We create repositories of typed combinators that can be considered logic programs for the
existing BCL synthesis framework (CL)S [7] to reason about semantics of such compositions.
The underlying type system of (CL)S is an extension of the intersection type system BCD
[4] by covariant constructors. The extended type system TC, while suited for synthesis, is
flexible enough to encode record types and features of +. While (CL)S implements covariant
constructors of arbitrary arity, we only use unary constructors, which are sufficient for our
encoding.

I Definition 15 (Intersection Types with Constructors TC). The set TC is given by:

TC ∋ σ, τ, τ1, τ2 ∶∶= a ∣ α ∣ ω ∣ τ1 → τ2 ∣ τ1 ∩ τ2 ∣ c(τ)

where a ranges over constants, α over type variables and c over unary constructors C.

TC adds the following two subtyping axioms to the BCD system

τ1 ≤ τ2 ⇒ c(τ1) ≤ c(τ2) c(τ1) ∩ c(τ2) ≤ c(τ1 ∩ τ2)

The additional axioms ensure constructor distributivity, i.e., c(τ1) ∩ c(τ2) = c(τ1 ∩ τ2).

I Definition 16 (Type Assignment in TC).

C ∶ τ ∈ ∆ S Substitution
(Var)

∆ ⊢BCL C ∶ S(τ)
∆ ⊢BCL E ∶ σ → τ ∆ ⊢BCL E′ ∶ σ

(→ E)
∆ ⊢BCL EE′ ∶ τ

∆ ⊢BCL E ∶ σ ∆ ⊢BCL E ∶ τ
(∩)

∆ ⊢BCL E ∶ σ ∩ τ

∆ ⊢BCL E ∶ σ σ ≤ τ
(≤)

∆ ⊢BCL E ∶ τ

We extend the necessary property of beta-soundness and a notion of paths and organized
types from [20] to constructors in the following way.

I Lemma 17 (Extended Beta-Soundness). If ⋂
i∈I
(σi → τi)∩ ⋂

j∈J
cj(τj)∩ ⋂

k∈K
αk∩ ⋂

k′∈K′
ak′ ≤ c(τ),

then {j ∈ J ∣ cj = c} ≠ ∅ and ⋂{τj ∣ j ∈ J, cj = c} ≤ τ .

I Definition 18 (Path). A path π is a type of the form: π ∶∶= a ∣ α ∣ τ → π ∣ c(ω) ∣ c(π), where
α is a variable, τ is a type, c is a constructor and a is a constant.

I Definition 19 (Organized Type). A type τ is called organized, if it is an intersection of
paths τ ≡ ⋂i∈I τi, where τi for i ∈ I are paths.

Similarly, we obtain the following property of subtyping w.r.t. organized types.

I Lemma 20. Given two organized types τ ≡ ⋂i∈I τi and σ ≡ ⋂j∈J σj, we have τ ≤ σ iff for
all j ∈ J there exists an i ∈ I with τi ≤ σj.

Note that for all intersection types there exists an equivalent organized intersection type
coinciding with the notion of strict intersection types [2].

For a set of typed combinators ∆ and a type τ ∈ TC we say τ is inhabitable in ∆, if there
exists a combinatory term E such that ∆ ⊢BCL E ∶ τ . In the following we fix a finite set of
labels L ⊆ Label that are used in the particular domain of interest for mixin composition
synthesis.

TLCA’15

86 Mixin Composition Synthesis Based on Intersection Types

Records as Unary Covariant Distributing Constructors

We define constructors ⟪⋅⟫ and l(⋅) for l ∈ L to represent record types using the following
partial translation function

J⋅K∶T→ TC, JτK =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ if τ ≡ ω or τ ≡ a
Jτ1K→ Jτ2K if τ ≡ τ1 → τ2

Jτ1K ∩ Jτ2K if τ ≡ τ1 ∩ τ2

⟪l(τ)⟫ if τ ≡ ⟨l ∶ τ⟩
⟪ω⟫ if τ ≡ ⟨⟩
undefined else

Since atomic records are covariant and distribute over ∩, the presented translation
preserves subtyping. We have J⟨li ∶ τi ∣ i ∈ I⟩K = J⋂i∈I ⟨li ∶ τi⟩K = ⋂i∈I ⟪li(JτiK)⟫ if I ≠ ∅.

Note that the translation function J⋅K is not defined for types containing + in T. Addi-
tionally, + has non-monotonic properties and therefore cannot be immediately represented
by a covariant type constructor. Simply applying Lemma 5(3) is impossible, if the left-hand
side of + is all-quantified. There are two possibilities to deal with this situation. The
first option is extending the type-system used for inhabitation. Here, the main difficulty
is that existing versions of the inhabitation algorithm crucially rely on the separation of
intersections into paths [20]. As demonstrated in the remark accompanying Lemma 7, it
becomes unclear how to perform such a separation in the presence of the non-monotonic +
operation. The second option, pursued in the rest of this section, is to use the expressiveness
of the logical programming language given by BCL(TC) inhabitation. Specifically, encoding
T types containing + as TC types accompanied by following repositories ∆L and ∆℘(L) suited
for BCL(TC) inhabitation. We introduce ∣L∣ distinct variables αl′ indexed by l′ ∈ L and 2∣L∣
distinct constructors wL(⋅) indexed by L ⊆ L.

∆L ={W{l} ∶ w{l}(⋂
l′∈L∖{l}

⟪l′(αl′)⟫) ∣ l ∈ L}

∆℘(L) ={WL ∶ w{l1}(α)→ w{l2}(α)→ . . .→ w{lk}(α)→ wL(α) ∣ k ≥ 2,{l1, . . . , lk} = L ⊆ L} .

These repositories are purely logical in a sense that they do not represent terms in ΛR
but encode necessary side conditions in the logic program. In particular, we formalize the
conditions for the absence of a label in a record type by the following Lemma 21. This
encoding of negative information is crucial to encode non-monotonic properties of +.
I Lemma 21. Let l ∈ L be a label and let τ ∈ T be a type such that JτK is defined. w{l}(JτK)
is inhabitable in ∆L ∪∆℘(L) iff τ ∈ T⟨⟩ ∪ {ω} with l /∈ lbl(τ).

Proof Sketch. Let l ∈ L be a label.
(⇒) Let wlog. JτK ≡ ⋂

i∈I
τi be an organized intersection type such that w{l}(JτK) is inhabitable

in ∆L ∪ ∆℘(L). The only combinator with a matching target to inhabit w{l}(JτK) is
W{l}. Due to distributivity of type constructors there exists a substitution S such that
S(w{l}(⋂

l′∈L∖{l}
⟪l′(αl′)⟫)) ≤ w{l}(JτK). By Lemma 20 followed by Lemma 17 we obtain

for each i ∈ I that there exists an l′ ∈ L∖{l} such that τi = ⟪l′(JσiK)⟫ for some type σi ∈ T.
By definition of J⋅K and distributivity we obtain τ ∈ T⟨⟩ ∪ {ω} with l /∈ lbl(τ).

(⇐) Let τ = ⋂
l′∈L
⟨l′ ∶ τl′⟩ (resp. ⟨⟩) for some L ⊆ L ∖ {l} and types τl′ ∈ T for l′ ∈ L. We have

W{l} ∶ S(w{l}(⋂
l′∈L∖{l}

⟪l′(αl′)⟫)) ≤ w{l}(JτK) for a substitution S(αl′) =
⎧⎪⎪⎨⎪⎪⎩

Jτl′K if l′ ∈ L
ω else

J

J. Bessai, A. Dudenhefner, B. Düdder, T. Chen, U. de’Liguoro, and J. Rehof 87

I Lemma 22. Let L ⊆ L be a non-empty set of labels and let τ ∈ T be a type such that JτK is
defined. wL(JτK) is inhabitable in ∆L ∪∆℘(L) iff τ ∈ T⟨⟩ ∪ {ω} with L ∩ lbl(τ) = ∅.

Proof Sketch. Using WL and Lemma 21 for each argument of WL. J

Our intermediate goal is to use inhabitation in ∆L ∪ ∆℘(L) to translate types of the
shape ρ + ⋂

l∈L
⟨l ∶ τl⟩ into ρ ∩ ⋂

l∈L
⟨l ∶ τl⟩, which in general is incorrect. The following Lemma 23

describes sufficient circumstances where this translation holds.

I Lemma 23 (∆L ∪∆℘(L) Translation Soundness). Let L ⊆ L be a non-empty set of labels,
let ρ ∈ T⟨⟩ be a type such that JρK is defined and let τl ∈ T for l ∈ L be types. If wL(JρK) is
inhabitable in ∆L ∪∆℘(L) then ρ + ⋂

l∈L
⟨l ∶ τl⟩ = ρ ∩ ⋂

l∈L
⟨l ∶ τl⟩.

Proof Sketch. Since wL(JρK) is inhabitable in ∆L ∪∆℘(L) we have lbl(ρ)∩L = ∅. The result
follows from Lemma 6 (2). J

Next, we show by the following Lemma 24 that inhabitation in ∆L is not too restrictive.

I Lemma 24 (∆L ∪∆℘(L) Translation Completeness). Let L ⊆ L be a non-empty set of labels,
let τl ∈ T for l ∈ L be types, let ρ ∈ T⟨⟩ be a type such that JρK is defined. There exists a type
ρ′ ∈ T⟨⟩ such that wL(Jρ′K) is inhabitable in ∆L ∪∆℘(L) and ρ′ ∩ ⋂

l∈L
⟨l ∶ τl⟩ ≤ ρ + ⋂

l∈L
⟨l ∶ τl⟩.

Proof Sketch. Given ρ = ⋂
l′∈L′
⟨l′ ∶ τ ′l′⟩ choose ρ′ = ⋂

l′∈L′∖L
⟨l′ ∶ τ ′l′⟩ (resp. ρ′ = ⟨⟩ if L′ ∖ L = ∅).

By Lemma 22 wL(Jρ′K) is inhabitable in ∆L ∪∆℘(L) and ρ′ ∩ ⋂
l∈L
⟨l ∶ τl⟩ ≤ ρ + ⋂

l∈L
⟨l ∶ τl⟩. J

Note that in Lemma 24 the type ρ′ can be chosen greater than ρ only due to the
non-monotonic properties of +.

4 Mixin Composition Synthesis by Type Inhabitation

In this section we denote type assignment in ΛR by ⊢⟨⟩ and fix the following ingredients:
A finite set of classes C.
For each C ∈ C types σC ∈ T, ρC ∈ T⟨⟩ such that JσC → ρCK is defined and ∅ ⊢⟨⟩ C ∶ σC →
ρC .
A finite set of mixinsM.
For each M ∈M types σM ∈ T and ρ1

M , ρ
2
M ∈ T⟨⟩ such that JσM K, Jρ1

M K, Jρ2
M K are defined

and for all types ρ ∈ T⟨⟩ we have ∅ ⊢⟨⟩ M ∶ (σM → ρ ∩ ρ1
M)→ (σM → ρ + ρ2

M).
For each M ∈M the non-empty set of labels LM = lbl(ρ2

M) ⊆ L.

We translate given classes and mixins to the following a repository ∆C,ML of combinators

∆C,ML ={C ∶ JσC → ρCK ∣ C ∈ C}
∪ {M ∶ wLM

(α)→ (JσM K→ α ∩ Jρ1
M K)→ (JσM K→ α ∩ Jρ2

M K) ∣M ∈M}
∪∆L ∪ {WLM

∈ ∆℘(L) ∣M ∈M, ∣LM ∣ > 1}

To simplify notation, we introduce the infix metaoperator ≫ such that x≫ f = f x. It is
right associative and has the lowest precedence. Accordingly, x≫ f ≫ g = g (f x).

Although types in ∆C,ML do not contain record-merge, we show by following Theorem 25
that types of mixin compositions in BCL(→,∩) are sound.

TLCA’15

88 Mixin Composition Synthesis Based on Intersection Types

I Theorem 25 (Soundness). Let M1, . . . ,Mn ∈M be mixins, let L1, . . . , Ln ⊆ L be sets of
labels, let C ∈ C be a class and let σ ∈ T, ρ ∈ T⟨⟩ be types such that Jσ → ρK is defined.
If ∆C,ML ⊢BCL C ≫ (M1 WL1)≫ (M2 WL2)≫ . . .≫ (Mn WLn) ∶ Jσ → ρK,
then ∅ ⊢⟨⟩ C ≫M1 ≫M2 ≫ . . .≫Mn ∶ σ → ρ.

Proof Sketch. Induction on n proving Li = LMi followed by Lemma 23 and (→ E). J

Complementary, we show by the following Theorem 26 that typing of mixin compositions
in BCL(→,∩) is complete with respect to previously described typing in T.

I Theorem 26 (Partial Completeness). Let Γ ⊆ {xC ∶ σC → ρC ∣ C ∈ C} ∪ {xρM ∶ (σM →
ρ ∩ ρ1

M) → (σM → ρ + ρ2
M) ∣ M ∈ M, ρ ∈ T⟨⟩, JρK is defined} be a finite context and let

σ ∈ T, ρ ∈ T⟨⟩ be types such that Jσ → ρK is defined.
If Γ ⊢⟨⟩ xC ≫ xρ1

M1
≫ xρ2

M2
≫ . . .≫ xρn

Mn
∶ σ → ρ,

then ∆C,ML ⊢BCL C ≫ (M1 WLM1
)≫ (M2 WLM2

)≫ . . .≫ (Mn WLMn
) ∶ Jσ → ρK.

Proof Sketch. Induction on n choosing for each xρM where ρ = ⋂
l∈L
⟨l ∶ τl⟩ (resp. ρ = ⟨⟩) the

substitution Si(α) = ⋂
l∈L∖LM

⟪l(τl)⟫ to type M ∈ ∆C,ML and using (→ E) and Lemma 24. J

Coming back to our running example, we obtain

∆{Point},{Movable}
{get,set,shift,move} = { Point ∶ Int→ ⟪get(Int) ∩ set(Int→ Int) ∩ shift(Int→ Int)⟫,

Movable ∶ w{set,move}(α)
→ (Int→ α ∩ ⟪set(Int→ Int) ∩ shift(Int→ Int)⟫)
→ (Int→ α ∩ ⟪set(Int) ∩move(Int)⟫),

W{get} ∶ w{get}(⟪set(α1) ∩ shift(α2) ∩move(α3)⟫),
W{set} ∶ w{set}(⟪get(α1) ∩ shift(α2) ∩move(α3)⟫),
W{shift} ∶ w{shift}(⟪get(α1) ∩ set(α2) ∩move(α3)⟫),
W{move} ∶ w{move}(⟪get(α1) ∩ set(α2) ∩ shift(α3)⟫),
W{set,move} ∶ w{set}(α)→ w{move}(α)→ w{set,move}(α)}

We may ask inhabitation questions such as

∆{Point},{Movable}
{get,set,shift,move} ⊢BCL? ∶ JInt→ ⟨shift ∶ Int→ Int,move ∶ Int⟩K

and obtain the combinatory term “Movable W{set,move} Point” as a synthesized result. From
Theorem 25 we know

∅ ⊢⟨⟩ Movable Point ∶ Int→ ⟨shift ∶ Int→ Int,move ∶ Int⟩

On the other hand, if we want to inhabit JInt→ ⟨set ∶ Int→ Int,move ∶ Int⟩K we ob-
tain no results. From Lemma 26 we know that, restricted to the previously described
typing in T, there is no mixin composition applied to a class with the resulting type
Int→ ⟨set ∶ Int→ Int,move ∶ Int⟩.

The presented encoding has several benefits with respect to scalability. First, the size of
the presented repositories is polynomial in ∣L∣ ∗ ∣C∣ ∗ ∣M∣. Second, expanding the label set
L requires only to update combinators in ∆L leaving existing types of classes and mixins
untouched. Third, adding a class/mixin to an existing repository is as simple as adding
one typed combinator for the class/mixin and at most one logical combinator. Again, it is
important that the existing combinators in the repository remain untouched. As an example,
we add the following mixin MovableBy to ∆{Point},{Movable}

{get,set,shift,move}.

J. Bessai, A. Dudenhefner, B. Düdder, T. Chen, U. de’Liguoro, and J. Rehof 89

MovableBy = λargClass.Y(λmyClass.λstate.
let super = argClass state in

let self = myClass state in super⊕ ⟨move = super.shift⟩)

In ΛR for all types ρ ∈ T⟨⟩ we have

∅ ⊢⟨⟩ MovableBy∶ (Int→ ρ ∩ ⟨shift ∶ Int→ Int⟩)→ (Int→ ρ + ⟨move ∶ Int→ Int⟩)

We obtain the following extended repository

∆{Point},{Movable,MovableBy}
{get,set,shift,move} = ∆{Point},{Movable}

{get,set,shift,move} ∪ {MovableBy ∶ w{move}(α)

→ (Int→ α ∩ ⟪shift(Int→ Int)⟫)→ (Int→ α ∩ ⟪move(Int→ Int)⟫)}

Asking the inhabitation question

∆{Point},{Movable,MovableBy}
{get,set,shift,move} ⊢BCL? ∶ JInt→ ⟨set ∶ Int,move ∶ Int→ Int⟩K

synthesizes “Point ≫ (Movable W{set,move}) ≫ (MovableBy W{move})”. Note that even in
such a simplistic scenario the order in which mixins are applied can be crucial mainly because
⊕ is not commutative. Moreover, the early binding of self and the associated preservation of
overwritten methods may make multiple applications of a single mixin meaningful.

5 Conclusion and Future Work

We presented a theory for automatic compositional construction of object oriented classes by
combinatory synthesis. This theory is based on the λ-calculus with records and ⊕ typed
by intersection types with records and +. It is capable of modeling classes as states to
records (i.e. objects), and mixins as functions from classes to classes. Mixins can be assigned
meaningful types using + expressing their compositional character. However, non-monotonic
properties of + are incompatible with the existing well-studied theory of BCL(→,∩) synthesis.
Therefore, we designed a translation to repositories of combinators typed in BCL(TC). We
have proven this translation to be sound (Theorem 25) and partially complete (Theorem 26).
A notable feature is the encoding of negative information (the absence of labels). It exploits
the logic programming capabilities of inhabitation, by adding sets of combinators serving
as witnesses for the non-presence of labels. In section 4 we also showed that this encoding
scales wrt. extension of repositories.

Future work includes further studies on the possibilities to encode predicates exploiting
patterns similar to the negative information encoding. The partial completeness result
indicates a more expressive power of type constructors compared to records. Another
direction of future work is to extend types of mixins and classes by semantic as well as modal
types [19], a development initiated in [5]. In particular, the expressiveness of semantic types
can be used to assign meaning to multiple applications of a single mixin and allow to reason
about object oriented code on a higher abstraction level as well as higher semantic accuracy.

Acknowledgments. The authors would like to thank the anonymous reviewers for their
valuable comments.

TLCA’15

90 Mixin Composition Synthesis Based on Intersection Types

References
1 Martín Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.
2 Steffen Van Bakel. Strict intersection types for the lambda calculus. ACM Comput. Surv.,

43(3):20:1–20:49, April 2011.
3 H. Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103 of Studies

in Logic and the Foundations of Mathematics. North-Holland, 1984.
4 H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A Filter Lambda Model and the

Completeness of Type Assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.
5 Jan Bessai, Boris Düdder, Andrej Dudenhefer, and Moritz Martens. Delegation-based

mixin composition synthesis. http://www-seal.cs.tu-dortmund.de/seal/downloads/
papers/paper-ITRS2014.pdf, 2014.

6 Jan Bessai, Boris Düdder, Andrej Dudenhefner, Tzu-Chun Chen, and Ugo de’Liguoro. Typ-
ing classes and mixins with intersection types. arXiv preprint arXiv:1503.04911, 2015.

7 Jan Bessai, Andrej Dudenhefner, Boris Düdder, Moritz Martens, and Jakob Rehof. Com-
binatory Logic Synthesizer. In Tiziana Margaria and Bernhard Steffen, editors, ISoLA’14,
volume 8802, pages 26–40, 2014.

8 Viviana Bono, Amit Patel, and Vitaly Shmatikov. A core calculus of classes and mixins.
In ECOOP, volume 1628 of Lecture Notes in Computer Science, pages 43–66, 1999.

9 Gilad Bracha. The Programming Language JIGSAW: Mixins, Modularity and Multiple
Inheritance. PhD thesis, Univeristy of Utha, 1992.

10 Gilad Bracha and William R. Cook. Mixin-based inheritance. In OOPSLA/ECOOP, pages
303–311, 1990.

11 Kim B. Bruce. Foundations of Object-Oriented Languages – Types and Semantics. MIT
Press, 2002.

12 Peter S. Canning, William R. Cook, Walter L. Hill, Walter G. Olthoff, and John C. Mitchell.
F-bounded polymorphism for object-oriented programming. In FPCA, pages 273–280, 1989.

13 Luca Cardelli. A semantics of multiple inheritance. In Semantics of Data Types, volume
173, pages 51–67, 1984.

14 Adriana B. Compagnoni and Benjamin C. Pierce. Higher-order intersection types and
multiple inheritance. Mathematical Structures in Computer Science, 6(5):469–501, 1996.

15 William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In
POPL’90, pages 125–135. ACM Press, 1990.

16 Ugo de’Liguoro. Characterizing convergent terms in object calculi via intersection types.
In TLCA, pages 315–328, 2001.

17 Ugo de’Liguoro and Tzu chun Chen. Semantic Types for Classes and Mixins. http://www.
di.unito.it/~deligu/papers/UdLTC14.pdf, 2014.

18 Boris Düdder. Automatic Synthesis of Component & Connector-Software Architectures with
Bounded Combinatory Logic. Dissertation, TU Dortmund, 2014.

19 Boris Düdder, Moritz Martens, and Jakob Rehof. Staged composition synthesis. In ESOP,
volume 8410 of Lecture Notes in Computer Science, pages 67–86, 2014.

20 Boris Düdder, Moritz Martens, Jakob Rehof, and Paweł Urzyczyn. Bounded Combinatory
Logic. In Proceedings of CSL’12, volume 16, pages 243–258. Schloss Dagstuhl, 2012.

21 Standard Ecma. ECMA-262 ECMAScript Language Specification, 2011.
22 Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete Completion

using Types and Weights. SIGPLAN Notices, 48(6):27–38, 2013.
23 Oleg Kiselyov and Ralf Lämmel. Haskell’s overlooked object system. CoRR,

abs/cs/0509027, 2005.
24 Martin Odersky and Matthias Zenger. Scalable component abstractions. In OOPSLA,

pages 41–57. ACM, 2005.

http://www-seal.cs.tu-dortmund.de/seal/downloads/papers/paper-ITRS2014.pdf
http://www-seal.cs.tu-dortmund.de/seal/downloads/papers/paper-ITRS2014.pdf
http://www.di.unito.it/~deligu/papers/UdLTC14.pdf
http://www.di.unito.it/~deligu/papers/UdLTC14.pdf

J. Bessai, A. Dudenhefner, B. Düdder, T. Chen, U. de’Liguoro, and J. Rehof 91

25 Benjamin C. Pierce. Intersection types and bounded polymorphism. Mathematical Struc-
tures in Computer Science, 7(2):129–193, 1997.

26 Didier Rémy. Typing record concatenation for free. In POPL’92, pages 166–176, 1992.
27 Mitchell Wand. Type inference for record concatenation and multiple inheritance. Inf.

Comput., 93(1):1–15, 1991.

TLCA’15

	Introduction
	Intersection Types for Mixins and Classes
	Intersection and record types
	Class and Mixin combinators

	Encoding of Record Types in Bounded Combinatory Logic
	Mixin Composition Synthesis by Type Inhabitation
	Conclusion and Future Work

