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Abstract
The cubical sets model of Homotopy Type Theory introduced by Bezem, Coquand and Huber [2]
uses a particular category of presheaves. We show that this presheaf category is equivalent to
a category of sets equipped with an action of a monoid of name substitutions for which a finite
support property holds. That category is in turn isomorphic to a category of nominal sets [15]
equipped with operations for substituting constants 0 and 1 for names. This formulation of
cubical sets brings out the potentially useful connection that exists between the homotopical
notion of path and the nominal sets notion of name abstraction. The formulation in terms of
actions of monoids of name substitutions also encompasses a variant category of cubical sets with
diagonals, equivalent to presheaves on Grothendieck’s “smallest test category” [8, pp. 47–48]. We
show that this category has the pleasant property that path objects given by name abstraction
are exponentials with respect to an interval object.
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1 Introduction

We begin by reviewing the notion of cubical set introduced by Bezem, Coquand and Huber [2,
Section 2] and motivate the move to a nominal presentation of it.

I Definition 1.1 (Directions). Throughout the paper D is a fixed, infinite set whose elements
we write as x, y, z, . . . and call directions. We assume D is disjoint from the two-element set
2 = {0, 1}.

Let C be the small category whose objects X,Y, . . . are finite subsets of D and whose
hom-sets C(X,Y ) consist of all functions s : X → Y ∪ 2 with the property

(∀x, x′ ∈ X) s x = s x′ /∈ 2 ⇒ x = x′ (1)

Such a function is extended to one defined on the whole of X∪2 by taking s 0 = 0 and s 1 = 1.
Then composition in C is given by composition of functions, with identity morphisms given
by inclusions X ↪→ X ∪ 2.

I Definition 1.2 (Cubical sets). A cubical set is a functor C → Set and a morphism of
cubical sets is a natural transformation between such functors. Thus the category of cubical
sets is the category [C,Set] of set-valued presheaves on the category Cop.
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We refer the reader to Bezem, Coquand and Huber [2] for the geometric intuition behind
the terminology ‘cubical set’ and the connection with the notion of the same name in homotopy
theory. Like any presheaf category, [C,Set] gives rise to a model of extensional Martin-Löf
Type Theory, organised as a category with families (CwF) in the sense of Dybjer [5]. See
Hofmann [9, Section 4] for an account of presheaf CwFs. In order to model Homotopy Type
Theory and in particular Voevodsky’s Univalence Axiom [21], Bezem, Coquand and Huber
consider families of presheaves equipped with operations for filling open boxes – a more
uniform version of the classic Kan filling condition in combinatorial homotopy theory. The
resulting families of Kan cubical sets support an interpretation of identity types and [2]
contains a sketch of why there is a universe satisfying the Univalence Axiom with respect to
these identity types.

Motivation for a nominal approach

Presheaf models of type theory in general, and in particular the cubical sets model of
Homotopy Type Theory mentioned above, inevitably involve quantifications over Kripke
possible-worlds (which are finite sets of directions in the cubical case) that tend to obscure
the simple intuition behind these models, because of the need to write explicit weakening
functions from a world to future worlds. Furthermore, cubical sets of paths and the Kan
filling condition make use of constructions involving a choice of directions x ∈ D that are
suitably fresh, but whose properties are independent of which particular fresh direction is
chosen. This is precisely the situation for which the theory of nominal sets [6, 15] was created.
In particular it admits a rich theory of freshness that makes implicit the dependence upon
possible worlds of directions. According to the authors of the experimental implementation
of Kan cubical sets [4], “it was convenient to use the alternative presentation of cubical sets
as nominal sets”. That alternative presentation was announced in [14]. Here we take an
alternative approach based on monoids of name substitutions, leading to the equivalences
of Theorems 2.9 and 2.13 below. This facilitates the description of Π-types (Section 3.2)
and universes (Section 3.3); but more importantly, it allows path objects to be described
in terms of the well-developed nominal sets theory of name abstraction (Section 2.2). The
presentation in terms of monoids of substitutions also encompasses a variant of cubical
sets with diagonals (Section 4), equivalent to presheaves on Grothendieck’s “smallest test
category” [8, pp. 47–48] and referred to in [2]. We show that this category has the pleasant
property that path objects given by name abstraction are exponentials with respect to an
interval object (Theorem 4.2).

A note on constructivity

The model of univalence based on simplicial sets [12] uses classical set theory. One of Bezem,
Coquand and Huber’s motivations for considering cubical sets instead of simplicial sets is
that they can be made a model of univalence within constructive logics, which makes a
computational version possible. It is therefore of interest whether the results in this paper
are constructively valid. Like [15], upon some of whose results it relies, this paper is written
using naive classical set theory. In a constructive setting, equality for elements of the set D
of directions should be assumed to be decidable and D should be ‘finitely inexhaustible’, in
the sense that for each subset X ⊆ D that is in bijection with a finite ordinal, there exists
some x ∈ D with x /∈ X. Starting from that basis, it seems likely that much of the theory of
nominal sets is constructively valid. However, at the very least one has to replace the use of
smallest finite support sets in arguments by the existence of some finite support set. For if
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204 Nominal Presentation of Cubical Sets Models of Type Theory

equality is undecidable in some set upon which name permutations act, then the existence of
some finite support for an element of the set does not necessarily mean there is a smallest
one; see [20, Section 1.2.1]. We leave for future work the questions of whether use of smallest
supports can always be avoided and whether the results of this paper are constructively valid.

2 Monoids of Substitutions

In this section we reformulate cubical sets in terms of monoids of substitutions, where the
crucial property of ‘finite support’ gives a well-behaved theory of degeneracy via freshness.

I Definition 2.1 (Substitutions). As far as this paper is concerned, a finite substitution is
a function σ : D → D ∪ 2 for which Dom σ , {x ∈ D | σ x 6= x} is finite. Let Sb denote
the monoid whose elements are finite substitutions, with the monoid operation given by
composition: σσ′ , σ̂ ◦ σ′, where σ̂ : D ∪ 2→ D ∪ 2 is the function

σ̂ b , b if b ∈ 2,
σ̂ x , σ x if x ∈ D.

(2)

(Note that Dom σσ′ is indeed finite, since it is contained in Dom σ ∪Dom σ′.) The identity
element ι ∈ Sb is given by the inclusion D ↪→ D ∪ 2. If x ∈ D and i ∈ D ∪ 2, we write

(i/x) ∈M (3)

for the finite substitution mapping x to i and otherwise acting like the identity; and if
x, x′ ∈ D, then we write

(x x′) ∈M (4)

for the finite substitution that transposes x and x′ and otherwise acts like the identity. By a
monoid of substitutions M we mean any submonoid of Sb containing (x x′) and (b/x) for all
b ∈ 2 and all x, x′ ∈ D.

The notion of finite support is most often applied to actions of permutations, for example
in the theory of nominal sets [15, Chapter 2]. However, it generalizes well to actions of more
general forms of substitution; see [7, Definition 7], for example.

I Definition 2.2 (Finitely supported M-sets). For any monoid M we write write SetM for
the category whose objects are sets Γ equipped with a (left) M-action _ ·_ : M× Γ→ Γ

ι · d = d σ′ · (σ · d) = σ′σ · d (d ∈ Γ, σ, σ′ ∈M) (5)

and whose morphisms are functions γ : Γ→ Γ′ preserving the action

γ(σ · d) = σ · (γ d) (σ ∈M, d ∈ Γ) (6)

When M is a monoid of substitutions (Definition 2.1) and Γ ∈ SetM, we say that a finite
subset X ⊆fin D supports an element d ∈ Γ if

(∀σ, σ′ ∈M) ((∀x ∈ X) σ x = σ′x) ⇒ σ · d = σ′ · d (7)

We write SetM
fs for the full subcategory of SetM consisting of those Γ such that for all d ∈ Γ

there exists a finite subset X ⊆fin D that supports d. We call SetM
fs the category of finitely

supported M-sets.
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I Example 2.3 (The interval). Let M be a monoid of substitutions. We make I , D∪ 2 into
an object of SetM via the action given by function application: σ · i , σ̂ i, for all i ∈ I. With
respect to this action, an element of x ∈ D ⊆ I is supported by {x} and the two elements of
2 ⊆ I are supported by ∅. We call I the interval in SetM

fs .

I Lemma 2.4. Let M be a monoid of substitutions and b ∈ 2 some fixed Boolean value. For
each d ∈ Γ ∈ SetM, a finite subset X ⊆fin D supports d iff

(∀x ∈ D) x /∈ X ⇒ (b/x) · d = d (8)

Proof. Taking σ = (b/x) and σ′ = ι in (7), we get that it implies (8). To prove (8) implies
(7), we proceed by induction on the size of the finite set

ds(σ, σ′) , {x ∈ D | σ x 6= σ′x} (9)

(It is finite, because it is contained in Dom σ ∪ Dom σ′.) The base case is trivial. For the
induction step, suppose

(∀x ∈ X) σ x = σ′x (10)

and that y ∈ ds(σ, σ′). We have to prove that σ · d = σ′ · d. Since σ y 6= σ′y, from (10) we
must have y /∈ X and hence (∀x ∈ X) σ(b/y) x = σ′(b/y) x. Since ds(σ(b/y), σ′(b/y)) =
ds(σ, σ′)−{y}, by induction hypothesis σ(b/y) · d = σ′(b/y) · d. But since X satisfies (8) and
y /∈ X, it follows that (b/y) ·d = d. Therefore σ ·d = σ · ((b/y) ·d) = σ(b/y) ·d = σ′(b/y) ·d =
σ′ · ((b/y) · d) = σ′ · d, as required. J

I Corollary 2.5. Suppose Γ ∈ SetM and d ∈ Γ is supported by X ⊆fin D.
1. For any morphism γ : Γ→ Γ′ in SetM, γ d ∈ Γ′ is also supported by X.
2. For any σ ∈M, σ ·d ∈ Γ is supported by the finite subset σX∩D = {σ x | x ∈ X∧σ x /∈ 2}.

Proof. Fix some b ∈ 2. For part 1, if x ∈ D satisfies x /∈ X, then

(b/x) · (γ d) = γ((b/x) · d) by (6)
= γ d by Lemma 2.4.

So by Lemma 2.4 again, X supports γ d.
For part 2, if y /∈ σX ∩ D, then (∀x ∈ X) (b/y)σ x = (̂b/y)(σ x) = σ x; so because X

supports d we have (b/y) · (σ · d) = (b/y)σ · d = σ · d. So Lemma 2.4 implies that σX ∩ D
supports σ · d. J

I Definition 2.6 (Least supports). Let M be a monoid of substitutions and Γ ∈ SetM
fs . By

Lemma 2.4, for each d ∈ Γ

supp d , {x ∈ D | (0/x) · d 6= d} (11)

is finite and is the least finite supporting set of directions for d. Note that supp d = {x ∈ D |
(1/x) · d 6= d}.

I Definition 2.7 (The monoid Cb). Let Cb ⊆ Sb be the subset consisting of finite substitu-
tions σ satisfying an injectivity condition like (1):

(∀x, x′ ∈ D) σ x = σ x′ /∈ 2 ⇒ x = x′
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Cb is a monoid of substitutions in the sense of Definition 2.1. It enjoys the following
homogeneity property with respect to the small category C from Section 1.

I Lemma 2.8 (Homogeneity). For all morphism s ∈ C(X,Y ) there is a finite substitution
σ ∈ Cb satisfying (∀x ∈ X) s x = σ x.

Proof. Given s ∈ C(X,Y ), let X1 , {x ∈ X | s x /∈ 2} and X2 , {x ∈ X | s x ∈ 2}. Thus
X = X1 ] X2 and s restricts to a bijection between X1 and Y1 , {s x | x ∈ X1}. Pick a
finite permutation π of D that agrees with s on X1 and is the identity outside the finite set
X1 ∪ Y1 (it is always possible to do so – see for example [15, Lemma 1.14]). Then

σ x ,

{
s x if x ∈ X2

π x otherwise

is a suitable element of Cb. J

I Theorem 2.9. The category [C,Set] of cubical sets is equivalent to the category SetCb
fs of

finitely supported Cb-sets.

Proof. We define a functor I∗ : [C,Set]→ SetCb
fs as follows. Each inclusion X ⊆ Y between

finite subsets of D yields a morphism X ↪→ Y in C. So given C ∈ [C,Set] we can take the
colimit of C restricted to the poset (Pfin D,⊆) of finite subsets of D: I∗C , colimX∈Pfin D C X.
Concretely, I∗C consists of equivalence classes [X,x] of pairs (X,x) ∈

∑
X∈C C X for the

equivalence relation that relates (X,x) and (X ′, x′) when there is some Y ⊇ X ∪X ′ with
C(X ↪→ Y )x = C(X ′ ↪→ Y )x′. Note that by definition of the monoid Cb, for each σ ∈ Cb
and X ∈ C the restricted function σ|X : X → σX is a morphism in C(X,σX ∩ D). Then

σ · [X,x] , [σX ∩ D, C(σ|X)x] (12)

gives a well-defined Cb-action on I∗C. Furthermore, with respect to this action an element
[X,x] ∈ I∗C is supported by X; for if σ and σ′ agree on X, then C(σ|X) = C(σ′|X) and
hence σ · [X,x] = σ′ · [X,x]. So I∗C ∈ SetCb

fs .
The assignment C ∈ [C,Set] 7→ I∗C ∈ SetCb

fs extends to a functor as follows. Given a
natural transformation ϕ : C → C ′ in [C,Set] we get a well-defined function I∗ϕ : I∗C →
I∗C ′ by defining

I∗ϕ [X,x] , [X,ϕXx] (13)

The naturality of ϕX in X ∈ C ensures not only that this definition is independent of
the choice of representative (X,x) for the element [X,x], but also that I∗ϕ preserves the
Cb-action (12).

We complete the proof of the theorem by showing that I∗ : [C,Set]→ SetCb
fs is faithful,

full and essentially surjective.

I∗ is faithful: Note that any inclusion X ↪→ Y in C is split, for example by the morphism
p ∈ C(Y,X) where

p y ,

{
y if y ∈ X
0 otherwise

(y ∈ Y )

Therefore C(X ↪→ Y ) : C X → C Y is an injective function in Set with left inverse
C p. Thus if ϕ,ϕ′ ∈ [C,Set](C,C ′) and I∗ϕ = I∗ϕ′, then for any X ∈ C and x ∈ C X
we have [X,ϕXx] = I∗ϕ [X,x] = I∗ϕ′[X,x] = [X,ϕ′Xx], so that for some Y ⊇ X,
C(X ↪→ Y )(ϕXx) = C(X ↪→ Y )(ϕ′Xx); and since C(X ↪→ Y ) is injective this gives
ϕXx = ϕ′Xx. Therefore ϕ = ϕ′.
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I∗ is full: Suppose C,C ′ ∈ [C,Set] and γ ∈ SetCb
fs (I∗C, I∗C ′). It is not hard to see that

(∀d ∈ I∗C ′) supp d ⊆ X ⇒ (∃!x ∈ C ′X) d = [X,x] (14)

Indeed if d = [Y, y] and supp d ⊆ X, then d is supported by X ∩ Y and hence the
substitution σ ∈ Cb mapping each y ∈ Y − X to 0 and otherwise acting like the
identity satisfies σ · d = d; therefore d = σ · [Y, y] = [X ∩ Y,C ′(σ|Y )y] = [X,C ′(X ∩ Y ↪→
X)C ′(σ|Y )y]. The uniqueness part of (14) follows from the injectivity of each C ′(X ↪→ Y ),
noted above. For each X ∈ C and x ∈ C X, by part 1 of Corollary 2.5 we have that
supp(γ[X,x]) ⊆ supp[X,x] and hence that supp(γ[X,x]) ⊆ X. Therefore from (14) we
have (∀x ∈ C X)(∃!x′ ∈ C ′X) γ[X,x] = [X,x′]. So for each X ∈ C there is a function
ϕX : C X → C ′X satisfying

(∀x ∈ C X) γ[X,x] = [X,ϕXx] (15)

It suffices to show that ϕX is natural in X, since then by combining (13) with (15) we
have that ϕ ∈ [C,Set](C,C ′) satisfies I∗ϕ = γ. For naturality, given s ∈ C(X,Y ) to
prove ϕY (C sx) = C ′s (ϕXx) it suffices to show [Y, ϕY (C sx)] = [Y,C ′s (ϕXx)], because
of the injectivity of the functions C(Y ↪→ Z) : C Y → C Z (see above). Now we use the
homogeneity property in Lemma 2.8: picking a substitution σ ∈ Cb that agrees with
s on X, we have [Y, ϕY (C sx)] = γ[Y,C s x] = γ[σX ∩ D, C(σ|X)x] = γ(σ · [X,x]) =
σ · (γ[X,x]) = σ · [X,ϕXx] = [σX ∩ D, C ′(σ|X)(ϕXx)] = [Y,C ′s (ϕXx)], as required.
I∗ is essentially surjective: Given Γ ∈ SetCb

fs , for each X ∈ C consider the subset of Γ
consisting of the elements supported by the finite subset X ⊆fin D:

I∗ΓX , {d ∈ Γ | supp d ⊆ X} (16)

For each s ∈ C(X,Y ) there is a well-defined function I∗Γ s : I∗ΓX → I∗ΓY satisfying

I∗Γ s d = σ · d where σ ∈ Cb is any substitution satisfying σ|X = s (17)

(There is such a σ by Lemma 2.8; I∗Γ s d is independent of the choice of σ because X
supports d; and I∗Γ s d ∈ I∗ΓY by part 2 of Corollary 2.5.) Since ι|X = idX we get
I∗Γ idx d = ι · d = d; and since (σ′σ)|X = s′ ◦ s when s = σ|X and s′ = σ′|Y , we get
I∗Γ (s′ ◦ s) d = σ′σ · d = σ′ · (σ · d) = I∗Γ s′(I∗Γ s d). So I∗Γ ∈ [C,Set]. To complete the
proof we will construct an isomorphism εΓ : I∗(I∗Γ) ∼= Γ in SetCb

fs .
First note that in (17), if s is an inclusion X ↪→ Y , then we can take σ = ι and therefore
I∗Γ (X ↪→ Y )d = ι · d = d. It follows that if (X, d) and (X ′, d′) both represent the same
equivalence class in I∗(I∗Γ), then d = I∗Γ (X ↪→ Y )d = I∗Γ (X ′ ↪→ Y )d′ = d′ (where
Y ⊇ X ∪X ′). So we get a well-defined function εΓ : I∗(I∗Γ)→ Γ satisfying

εΓ[X, d] = d (18)

This preserves the Cb-action because

εΓ(σ · [X, d]) = εΓ[σX ∩ D, I∗Γ(σ|X)d] by (12)
= I∗Γ(σ|X)d by (18)
= σ · d by (17)
= σ · (εΓ[X, d]) by (18) again.

It is an injective function, because if [X, d], [X ′, d′] ∈ I∗(I∗Γ) satisfy d = d′, then
supp d = supp d′ ⊆ X ∩X ′ (by Lemma 2.4) and as above we have I∗Γ(X ∩X ′ ↪→ X)d =
d = d′ = I∗Γ(X ∩X ′ ↪→ X ′)d′; hence [X, d] = [X ′, d′]. It is a surjective function, because
each d ∈ Γ is finitely supported by some X ⊆fin D and hence d = εΓ[X, d]. So altogether,
εΓ is an isomorphism in SetCb

fs . J
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2.1 Nominal sets with 01-substitution
In this section we deduce from Theorem 2.9 the equivalence announced in [14]. We assume
some familiarity with the theory of nominal sets; see for example [15].

Let Nom denote the category of nominal sets and equivariant functions over the set
of atoms D. If M is any monoid of substitutions (Definition 2.1), then the group PermD
of finite permutations of D is a submonoid of M, because every finite permutation is the
composition of finitely many transpositions. Thus the M-action on each Γ ∈ SetM

fs restricts
to a PermD-action. If X ⊆ D supports d ∈ Γ in the sense of Definition 2.2, then it is in
particular a support in the usual sense of nominal sets [15, Section 2.1]:

(∀π ∈ PermD) ((∀x ∈ X) π x = x) ⇒ π · d = d (19)

Hence each Γ ∈ SetM
fs is a nominal set and indeed there is a forgetful functor SetM

fs → Nom,
since morphisms in SetM

fs are in particular equivariant functions.

I Lemma 2.10 (Freshness). Suppose M is a monoid of substitutions and that d ∈ Γ ∈ SetM
fs .

Then supp d as defined in Definition 2.6 is the least finite support for d ∈ Γ qua nominal
sets, that is, the least finite subset X ⊆ D satisfying (19). Hence the relation

x # d , x /∈ supp d (x ∈ D, d ∈ Γ)

coincides with the nominal notion of freshness [15, Chapter 3].

Proof. First note that since (7) implies (19), supp d is a finite subset of D satisfying (19).
If X ⊆fin D is any other such, we will show that (8) holds and hence that supp d ⊆ X, by
Lemma 2.4. Indeed, if b ∈ 2 and x ∈ D − X, choose some y ∈ D not in the finite subset
X ∪ {x} ∪ supp d. Then

(b/x) · d = (x y)(b/y)(x y) · d since (b/x) = (x y)(b/y)(x y) ∈M
= (x y)(b/y) · d by (19) with π = (x y), since x, y /∈ X
= (x y) · d by Lemma 2.4, since y /∈ supp d
= d by (19) again

as required for (8). J

I Remark 2.11. By contrast with nominal sets in general, the freshness relation for objects
of SetM

fs can be characterised in terms of substitution of 0 or 1, as follows:

x # d ⇔ (0/x) · d = d ⇔ (1/x) · d = d (x ∈ D, d ∈ Γ ∈ SetM
fs ) (20)

This is an immediate consequence of Definition 2.6, which relies upon the characterisation of
support in Lemma 2.4.

I Definition 2.12 (Nominal 01-substitution structures). Let 01-Nom be the category whose
objects are nominal sets Γ equipped with source and target operations (x := 0)_, (x := 1)_ :
Γ→ Γ in each direction x ∈ D satisfying for all π ∈ PermD, x, x′ ∈ D, b, b′ ∈ 2 and d ∈ Γ

π · ((x := b)d) = (π x := b)(π · d) (21)
x # (x := b)d (22)
x # d⇒ (x := b)d = d (23)
x 6= x′ ⇒ (x := b)(x′ := b′)d = (x′ := b′)(x := b)d (24)
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The morphisms of 01-Nom are the equivariant functions γ ∈ Nom(Γ,Γ′) that also commute
with the source and target operations in each direction: γ((x := b)d) = (x := b)(γ d).
Composition and identities are as in Nom.

I Theorem 2.13. The category 01-Nom of nominal sets with 01-substitution structure is
isomorphic to the category SetCb

fs of finitely supported Cb-sets and hence (by Theorem 2.9)
is equivalent to the category [C,Set] of cubical sets.

Proof. We noted above that the Cb-action on Γ ∈ SetCb
fs restricts to a PermD-action,

making it a nominal set. We get source and target operations in each direction x ∈ D by
defining (x := b)d , (b/x) · d. These satisfy (21) because π(b/x) = (b/π x)π ∈ Cb; they
satisfy (22) because of part 2 of Corollary 2.5 and Lemma 2.10; they satisfy (23) because of
Lemmas 2.4 and 2.10; and they satisfy (24) because (b/x)(b′/x′) = (b′/x′)(b/x) ∈ Cb when
x 6= x′. Furthermore, since each morphism γ ∈ SetCb

fs (Γ,Γ′) commutes with the Cb-action,
it is not only an equivariant function, but also preserves the source and target operations
defined as above. So we get a functor SetCb

fs → 01-Nom which is the identity on underlying
nominal sets.

Conversely, given Γ ∈ 01-Nom, we can combine the PermD-action with the source and
target operations to get a Cb-action on Γ as follows: for each σ ∈ Cb and d ∈ Γ, consider

σ · d , π · (x1 := b1) · · · (xn := bn)d (25)

where x1, . . . , xn are the distinct element of {x ∈ Dom σ | σ x ∈ 2}, where bi = σ xi for
i = 1, . . . , n, and where π ∈ PermD is a finite permutation agreeing with σ on {x ∈ Dom σ |
σ x /∈ 2}. Note that there is such a permutation, because σ is injective on {x ∈ Dom σ | σ x /∈
2}; and (25) is independent of which π we choose, and independent of the order in which
we list the elements of {x ∈ Dom σ | σ x ∈ 2} (because of property (24)). In case n = 0,
by (x1 := b1) · · · (xn := bn)d we mean d. Thus ι · d = d; and it is not hard to see that this
definition also satisfies σ′ · (σ · d) = σ′σ · d. So we get a Cb-action on Γ and clearly each
d ∈ Γ is supported by supp d with respect to this action. Furthermore, for each morphism
γ ∈ 01-Nom(Γ,Γ′), since γ(π · (x1 := b1) · · · (xn := bn)d) = π · (x1 := b1) · · · (xn := bn)(γ d)
and supp(γ d) ⊆ supp d, we get γ(σ · d) = σ · (γ d). So we get a functor 01-Nom→ SetCb

fs ,
which once again is the identity on underlying nominal sets.

It is easy to see that these two functors are mutually inverse, so that 01-Nom ∼=
SetCb

fs . J

I Remark 2.14. The proof of the equivalence [C,Set] ' 01-Nom given in [14] is somewhat
different from the above one and was inspired by proofs of equivalences between (pre)sheaf
categories and nominal sets equipped with substitution structures studied by Staton [17]; see
in particular the proof of Proposition 9 in [18].

2.2 Path objects
One of the advantages of replacing cubical sets by the equivalent notion of nominal sets with
01-substitution (Theorem 2.13) is that the construct used in [2, Section 8.2] to model identity
types coincides across the equivalence with a central and widely used notion of nominal set
theory, namely that of name abstraction [15, Chapter 4].

Given a nominal set Γ ∈ Nom, the nominal set [D]Γ of name-abstractions of elements of
Γ has underlying set consisting of equivalence classes of pairs (x, d) ∈ D× Γ for a generalised
form of α-equivalence, namely the equivalence relation

(x, d) ≈α (x′, d′) , (∃y # (x, d, x′, d′)) (y x) · d = (y x′) · d′ (26)
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We write 〈x〉d for the ≈α-equivalence class of (x, d). The action of finite permutations
π ∈ PermD on such equivalence classes is well-defined by

π · 〈x〉d , 〈π x〉(π · d) (27)

and one can show that the least support of 〈x〉d with respect to this action is supp d− {x};
see [15, Proposition 4.5].

If Γ ∈ 01-Nom, then because of properties (21) and (22), the source and target operations
induce morphisms d0, d1 ∈ Nom([D]Γ,Γ) satisfying

db〈x〉d = (x := b)d (b ∈ 2, x ∈ D, d ∈ Γ)

Then properties (23) and (24) correspond to the commutation of the following diagrams,
where rΓ ∈ Nom(Γ, [D]Γ) and sΓ ∈ Nom([D][D]Γ, [D][D]Γ) are morphisms satisfying

rΓ d = 〈x〉d for some/any x # d (28)
sΓ〈x〉〈y〉d = 〈y〉〈x〉d (29)

Γ

Γ rΓ //

idΓ

==

idΓ !!

[D]Γ

d0

OO

d1

��
Γ

[D][D]Γ

[D]db

��

∼=
sΓ // [D][D]Γ

[D]db′

��
[D]Γ

db′ ""

[D]Γ

db
||

Γ
In fact these are diagrams in 01-Nom, because there is a well-defined nominal 01-substitution
structure on each [D]Γ satisfying

(x := b)(〈y〉d) = 〈y〉((x := b)d) if x 6= y (30)

and then d0, d1, rΓ and sΓ are morphisms in 01-Nom.
For each Γ ∈ 01-Nom, one can think of elements p ∈ [D]Γ as paths in Γ from d0p

to d1p. For each d ∈ Γ, rΓ d ∈ [D]Γ is a degenerate path from d to itself. The object
〈d0 , d1〉 : [D]Γ → Γ × Γ of the slice category 01-Nom/Γ × Γ corresponds under the
equivalence of Theorem 2.13 to the structure that Bezem, Coquand and Huber use to model
identity types, at least in the case that the cubical set corresponding to Γ satisfies a uniform
Kan filling condition [2, Section 5].

3 Modelling Type Theory with Families of M-sets

We have reformulated cubical sets in a way that emphasises actions of monoids of substitutions.
Since any monoid M can be regarded as a one-object category, SetM is in particular a
category of set-valued presheaves and so can be given the standard category-with-families
structure for such a category [9, Section 4]. However, in this case the structure is quite simple
(if one is familiar with monoid actions): as we will see, one just uses a dependently-typed
version of monoid action. We begin by recalling briefly the definition of category-with-families
in order to fix notation; see [9] for more details and [1] for a more abstract, category-theoretic
perspective.

I Definition 3.1 (Category with families [5]). A category with families (CwF) is specified by
a category C with a terminal object 1, together with the following structure:
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For each object Γ ∈ C, a collection C(Γ), whose elements are called families over Γ.
For each object Γ ∈ C and family A ∈ C(Γ), a collection C(Γ ` A) of elements of the
family A over Γ.
Operations for re-indexing families and elements along morphisms in C

A ∈ C(Γ) γ ∈ C(Γ′,Γ)
A[γ] ∈ C(Γ′)

a ∈ C(Γ ` A) γ ∈ C(Γ′,Γ)
a[γ] ∈ C(Γ′ ` A[γ])

satisfying

A[idΓ] = A (A ∈ C(Γ))
A[γ ◦ γ′] = A[γ][γ′] (A ∈ C(Γ), γ ∈ C(Γ′,Γ), γ′ ∈ C(Γ′′,Γ′))
a[idΓ] = a (a ∈ C(Γ ` A)

a[γ ◦ γ′] = a[γ][γ′] (a ∈ C(Γ ` A), γ ∈ C(Γ′,Γ), γ′ ∈ C(Γ′′,Γ′))

For each family A ∈ C(Γ), a comprehension object Γ.A ∈ C equipped with a projection
morphism p ∈ C(Γ.A,Γ), a generic element v ∈ C(Γ.A ` A[p]) and a pairing operation

γ ∈ C(Γ′,Γ) A ∈ C(Γ) a ∈ C(Γ′ ` A[γ])
〈γ , a〉 ∈ C(Γ′,Γ.A)

satisfying

p ◦ 〈γ , a〉 = γ

v[〈γ , a〉] = a

〈γ , a〉 ◦ γ′ = 〈γ ◦ γ′ , a[γ′]〉
〈p , v〉 = idΓ.A

For each object Γ ∈ C, one can make C(Γ) into a category by taking, for each A,B ∈ C(Γ),
the set of morphisms C(Γ)(A,B) to be C(Γ.A ` B[p]) with identities given by generic elements
and composition given by c ◦ b , c[〈p , b〉]. Then the mapping A ∈ C(Γ) 7→ p ∈ C(Γ.A,Γ)
extends to a full and faithful functor to the slice category

C(Γ)→ C/Γ (31)

A
b→ B 7→ Γ.A

〈p,b〉 //

p
��

Γ.B

p
��

Γ

The re-indexing operations are mapped to pullback functors between slices, since for each
A ∈ C(Γ) and γ ∈ C(Γ′,Γ)

Γ′.A[γ]
〈γ◦p,v〉 //

p
��

Γ.A

p
��

Γ′
γ

// Γ

(32)

is a pullback in C; see [9, Proposition 3.9].
The contexts, types-in-context, terms-in-context and term-substitutions of Type Theory

are interpreted in a CwF by its objects, families, elements and morphisms respectively; see
[9, Section 3.5]. Furthermore, one can translate each type-forming construct to an equivalent
structure within CwFs. For example:
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I Definition 3.2 (Σ- and Π-types in CwFs). A Cwf C has
Σ-types if there are operations

A ∈ C(Γ) B ∈ C(Γ.A)
ΣAB ∈ C(Γ)

a ∈ C(Γ ` A) B ∈ C(Γ.A) b ∈ C(Γ ` B[〈idΓ , a〉])
pair a b ∈ C(Γ ` ΣAB)

c ∈ C(Γ ` ΣAB)
fst c ∈ C(Γ ` A)

c ∈ C(Γ ` ΣAB)
snd c ∈ C(Γ ` B[〈idΓ , fst c〉])

satisfying

(ΣAB)[γ] = Σ(A[γ])(B[〈γ ◦ p , v〉])
(pair a b)[γ] = pair (a[γ]) (b[γ])

(fst c)[γ] = fst(c[γ])
(snd c)[γ] = snd(c[γ])

fst(pair a b) = a

snd(pair a b) = b

pair (fst c) (snd c) = c

Π-types if there are operations

A ∈ C(Γ) B ∈ C(Γ.A)
ΠAB ∈ C(Γ)

b ∈ C(Γ.A ` B)
lam b ∈ C(Γ ` ΠAB)

c ∈ C(Γ ` ΠAB)
a ∈ C(Γ ` A)

app c a ∈ C(Γ ` B[〈idΓ , a〉])

satisfying

(ΠAB)[γ] = Π(A[γ])(B[〈γ ◦ p , v〉])
(lam b)[γ] = lam b[〈γ ◦ p , v〉]

(app c a)[γ] = app (c[γ]) (a[γ])
app (lam b) a = b[〈idΓ , a〉]

lam(app (c[p]) v) = c

I Remark 3.3. If C is a locally cartesian closed category, it is always possible to find a CwF
with the same underlying category C for which the functors in (31) are not only full and
faithful, but also essentially surjective; see [13, 1]. In that case each category of families
C(Γ) is equivalent to the slice category C/Γ and the CwF structure is just providing an
equivalent version of the traditional use of slice categories to model families of objects in
category theory [16] – one in which pullback strictly commutes with composition and hence
correctly models properties of substitution in type theory. This applies to the categories we
consider in this paper, [C,Set], SetM and SetM

fs , since they are all toposes and hence in
particular locally cartesian closed. However, in these cases it not necessary to apply a general
construction as in [13, 1], since there are natural and useful notions of ‘family of presheaves’
and ‘family of M-sets’ equivalent to the use of slice categories. Such families are used in [2]
for the category of cubical sets; and we describe analogues for SetM and SetM

fs in the next
two sections. Note that the equivalence I∗ : [C,Set] ' SetCb

fs from Theorem 2.9 gives an
equivalence [C,Set]/C ' SetCb

fs /I∗C for each cubical set C; and therefore the category of
families over C, being equivalent to [C,Set]/C and hence to SetCb

fs /I∗C, is also equivalent
to the category of families for I∗C in the CwF described in Section 3.2 for the case M = Cb.



A.M. Pitts 213

3.1 CwF structure of SetM

Let M be an arbitrary monoid.

Families SetM(Γ) over an object Γ ∈ SetM consist of Γ-indexed families of sets A =
(Ad | d ∈ Γ) equipped with a ‘dependently-typed M-action’, that is, a family of functions

_ · _ ∈
∏
σ∈M

∏
a∈Ad Aσ·d (d ∈ Γ)

satisfying ι · a = a ∈ Ad(= Aι·d) and σ′ · (σ · a) = σ′σ · a ∈ Aσ′σ·d(= Aσ′·(σ·d)).
Elements SetM(Γ ` A) of a family A ∈ SetM(Γ) consist of dependently-typed functions
f ∈

∏
d∈ΓAd that preserve the M-action, in the sense that σ · (f d) = f(σ · d) ∈ Aσ·d.

Re-indexing of a family A ∈ SetM(Γ) along γ ∈ SetM(Γ′,Γ) is the family A[γ] , (Aγ d′ |
d′ ∈ Γ′) with dependently-typed M-action: σ ∈ M, a ∈ A[γ]d′ = Aγ d′ 7→ σ · a ∈
Aσ·(γ d′) = Aγ(σ·d′) = A[γ]σ·d′ . The re-indexing of an element f ∈ SetM(Γ ` A) along
γ ∈ SetM(Γ′,Γ) is the element f [γ] ∈ SetM(Γ′ ` A), where f [γ] d′ = f(γ d′).
Comprehension for the CwF SetM is created by that for Set. Thus given A ∈ SetM(Γ),
the comprehension object Γ.A ∈ SetM is given by the dependent product of sets

Γ.A ,
∑
d∈ΓAd equipped with the M-action σ · (d, a) , (σ · d, σ · a) (33)

First projection yields a morphism p ∈ SetM(Γ.A,Γ) and the generic element v ∈
SetM(Γ.A ` A[p]) is given by second projection: v(d, a) , a ∈ Ad = A[p](d,a). The
pairing operation is

γ ∈ SetM(Γ′,Γ) f ∈ SetM(Γ′ ` A[γ])
〈γ , f〉 ∈ SetM(Γ′,Γ.A)

〈γ , f〉 d′ , (γ d′, f d′) (d′ ∈ Γ′)

These operations satisfy the equations required for a CwF (Definition 3.1). In this case
the functors (31) are equivalences: any object γ : Γ′ → Γ of the slice category SetM/Γ is
isomorphic to p : Γ.A→ Γ for some family A ∈ SetM(Γ), namely Ad , {d′ ∈ Γ′ | γ d′ = d}
with dependently-typed action given by the M-action of Γ′. Since SetM is a topos (being a
presheaf category), it is in particular locally cartesian closed. One can use the equivalences
SetM(Γ) ' SetM/Γ to transfer this local cartesian closed structure to operations in the
CwF SetM for modelling Σ- and Π-types (Definition 3.2). Given families A ∈ SetM(Γ) and
B ∈ SetM(Γ.A), then ΣAB ∈ SetM(Γ) is given by the dependent product of sets

(ΣAB)d ,
∑
a∈Ad B(d,a) equipped with M-action σ · (a, b) , (σ · a, σ · b) (34)

with pair a b, fst c and snd c as for Set. However, ΠAB ∈ SetM(Γ) is more complicated:

(ΠAB)d , {f ∈
∏
σ′∈M

∏
a∈Aσ′·d

B(σ′·d,a) | (∀σ, σ′ ∈M)(∀a ∈ Aσ′·d)

σ · (f σ′ a) = f (σσ′) (σ · a) ∈ B(σσ′·d,σ·a)} (d ∈ Γ) (35)

with M-action:
σ ∈M f ∈ (ΠAB)d

σ · f ∈ (ΠAB)σ·d
σ · f , λσ′ ∈M.λa ∈ Aσ′σ·d. f (σ′σ) a

Application is given by

g ∈ SetM(Γ ` ΠAB) h ∈ SetM(Γ ` A)
app g h ∈ SetM(Γ ` B[〈id , h〉])

app g h d , g d ι (h d) (d ∈ Γ) (36)

and currying by

k ∈ SetM(Γ.A ` B)
lam k ∈ SetM(Γ ` ΠAB)

lam k d , λσ′ ∈M.λa ∈ Aσ′·dk (σ′ · d, a) (d ∈ Γ) (37)
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3.2 CwF structure of SetM
fs

Now let M be a monoid of substitutions (Definition 2.1)

I Lemma 3.4. The full subcategory SetM
fs is closed under taking finite limits in SetM.

Proof. Just note that for each element (d1, . . . , dn) of a finite limit, since the action of M
on the finite limit is componentwise, if each component di is supported by Xi, the the whole
element is supported by X1 ∪ · · · ∪Xn. J

I Lemma 3.5. Given Γ ∈ SetM, define

Γfs , {d ∈ Γ | d is supported by some finite subset X ⊆fin D}

Then Γ 7→ Γfs is the object part of a right adjoint to the inclusion functor SetM
fs ↪→ SetM.

Proof. First note that by part 2 of Corollary 2.5, Γfs is closed under the M-action on Γ
and hence gives an object in SetM

fs . For the right adjointness we just have to see that
given Γ′ ∈ SetM

fs , any morphism γ ∈ SetM(Γ′,Γ) factors (necessarily uniquely) through the
inclusion Γfs ↪→ Γ. But if d′ ∈ Γ′ is supported by X ⊆fin D, then by part 1 of Corollary 2.5,
γ d′ ∈ Γ is also supported by X. J

I Remark 3.6. Combining Lemmas 3.4 and 3.5, we have that if M is a monoid of substitutions,
then SetM

fs is a topos and there is a geometric surjection SetM → SetM
fs whose direct image

part is the right adjoint functor (_)fs : SetM → SetM
fs (see [11, Proposition 4.15(ii)], for

example).

The CwF structure on SetM given above restricts to one for SetM
fs when M is a monoid

of substitutions. For each Γ ∈ SetM
fs we define:

Families A ∈ SetM
fs (Γ) are families of M-sets A ∈ SetM(Γ) for which the comprehension

object (33) is in SetM
fs . This amounts to requiring that for each d ∈ Γ, every a ∈ Ad

possesses a finite support with respect to the dependently-typed M-action, that is, a
finite subset X ⊆fin D satisfying supp d ⊆ X and (∀σ, σ′ ∈M)((∀x ∈ X) σ x = σ′ x) ⇒
σ · a = σ′ · a. (The condition supp d ⊆ X, i.e. X supports d, is important since with it,
when (∀x ∈ X) σ x = σ′ x holds, it makes sense to compare σ · a and σ′ · a for equality,
because we have σ · a ∈ Aσ·d = Aσ′·d 3 σ′ · a.) Note that the functor from Lemma 3.5
extends to a fibre-wise version:

Γ ∈ SetM
fs , A ∈ SetM(Γ) 7→ Afs ∈ SetM

fs (Γ)
(Afs)d , {a ∈ Ad | (d, a) ∈ (Γ.A)fs} (d ∈ Γ)

(38)

Elements f ∈ SetM
fs (Γ ` A) are the same as in SetM, namely dependently-typed functions

f ∈
∏
d∈ΓAd that preserve the M-action.

Re-indexing is the same as in SetM, since if X supports (γ d′, a) in Γ.A, then it supports
(d′, a) in Γ′.A[γ].
Comprehension objects are as in (33), since by definition Γ.A is in the subcategory SetM

fs
when A ∈ SetM

fs (Γ).

I Remark 3.7. We noted above that the functors (31) give equivalences when C = SetM.
Because of the definition of families in SetM

fs (and the fact that the objects of SetM
fs are closed

under isomorphisms in SetM), it follows that (31) is also an equivalence when C = SetM
fs .
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Σ-types in SetM
fs are as in (34), since (a, b) ∈ (ΣAB)d is supported by any X ⊇ supp(d, a)

that supports b ∈ B(d,a).
Π-types in SetM

fs are obtained by applying the functor (38) to (35). Thus for each
Γ ∈ SetM

fs , A ∈ SetM
fs (Γ) and B ∈ SetM

fs (Γ.A) we define ΠfsAB ∈ SetM
fs (Γ) by

(ΠfsAB)d , ((ΠAB)fs)d (d ∈ Γ) (39)

and one can check that the application (36) and currying (37) operations preserve the finite
support property. Combining (35) with (39) in the case that Γ = 1, we recover the following
description of exponentials in SetM

fs that will be useful later.

I Lemma 3.8 (Exponentials in SetM
fs ). Given Γ,∆ ∈ SetM

fs , their exponential ∆Γ is given
by the set (Γ �M ∆)fs of finitely supported elements of

Γ �M ∆ , {f ∈ Set(M× Γ,∆) | (∀σ, σ′ ∈M)(∀d ∈ Γ) σ · f(σ′, d) = f(σσ′, σ · d)}

where the M-action on Γ �M ∆ is

σ · f , λ(σ′, d) ∈M× Γ. f(σ′σ, d)

The evaluation morphism ev ∈ SetM
fs (∆Γ × Γ,∆) is given by ev(f, d) = f(ι, d); and the

currying of γ ∈ SetM
fs (Γ′ × Γ,∆) is cur γ ∈ SetM

fs (Γ′,∆Γ), where cur γ d′ = λ(σ, d) ∈
M× Γ. γ(σ · d′, d). J

3.3 Hofmann-Streicher universes
Hofmann and Streicher [10] describe a way of lifting a Grothendieck universe in Set to a
type-theoretic universe in any presheaf category. This is used by Bezem, Coquand and
Huber [2] to construct a universe within the category [C,Set] of cubical sets. We give the
construction for the case when the presheaf category is SetM for a monoid M and then apply
the coreflection (_)fs : SetM → SetM

fs from Lemma 3.5 when M is a monoid of substitutions.
Let U be a Grothendieck universe (see [19], for example) containing D and hence also M.

We lift U to an object U of SetM whose underlying set consists of certain pairs (F, act) where
F is a function from M to U and act ∈

∏
σ∈M

∏
σ′∈M(F (σ′σ))F σ. Thus F is an M-indexed

family of sets F σ ∈ U (σ ∈M) and act maps σ, σ′ ∈M to a function act σ σ′ : F σ → F (σ′σ).
We use the following notation for act:

σ′ · a , act σ σ′ a ∈ F (σ′σ) (σ′ ∈M, a ∈ F σ) (40)

and refer to (F, act) via F . For it to be in U we require act to be a dependently typed
M-action (cf. Section 3.1), in the sense that if a ∈ F σ, then

ι · a = a ∈ F σ = F (ισ) (41)
σ′′ · (σ′ · a) = (σ′′σ′) · a ∈ F ((σ′′σ′)σ) = F (σ′′(σ′σ)) (42)

If F ∈ U and σ ∈M, then we get σ · F ∈ U by defining

(σ · F )σ′ , F (σ′σ) (43)

with dependently typed M-action on σ ·F given by the one for F . (This makes sense, since if
a ∈ (σ ·F )σ′ = F (σ′σ), then σ′′ ·a ∈ F (σ′′(σ′σ)) = (σ ·F )(σ′′σ′).) These definitions make U
into an object in SetM, since one can easily check that ι · F = F and σ′ · (σ · F ) = (σ′σ) · F .
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I Definition 3.9 (Hofmann-Streicher lifting for SetM
fs ). Let M be a monoid of substitutions

and let U ∈ SetM be the M-set derived from a Grothendieck universe U ∈ Set as above.
Let E ∈ SetM(U) be the family mapping each F ∈ U to

EF , F ι with dependently-typed M-action given by (40)

(Note that this makes sense, because if a ∈ EF = F ι, then σ · a ∈ F (σι) = F (ισ) =
(σ · F ) ι = Eσ·F .) Applying the functor (_)fs : SetM → Sub from Lemma 3.5 to the
projection morphism p : U.E → U we get a morphism p : (U.E)fs → Ufs in SetM

fs and (by
Remark 3.7) a corresponding family Efs ∈ SetM

fs (Ufs), where

(Efs)F , {a ∈ F ι | (F, a) ∈ (U.E)fs} (F ∈ Ufs) (44)

Note that if F ∈ Ufs, then F ι ∈ U and hence (Efs)F ∈ U . In general we say that a family
A ∈ SetM

fs (Γ) has fibres in U if Ad ∈ U for all d ∈ Γ. The family (44) not only has fibres in
U , but is weakly universal among such families, in the following sense.

I Theorem 3.10. Let M be a monoid of substitutions and Efs ∈ SetM
fs (Ufs) be the Hofmann-

Streicher universe in the CwF of finitely supported M-sets derived from a Grothendieck
universe U ∈ Set. Then for each Γ ∈ SetM

fs and family A ∈ SetM
fs (Γ) with fibres in U , there

is a morphism pAq ∈ SetM
fs (Γ, Ufs) with A = Efs[pAq].

Proof. For each d ∈ Γ and σ ∈M define

pAq d σ , Aσ·d ∈ U (45)

If σ′ ∈M and a ∈ pAq d σ = Aσ·d, then the dependently-typed M-action on A ∈ SetM
fs (Γ)

gives us σ′ · a ∈ Aσ′·(σ·d) = pAq d (σ′σ), satisfying (41) and (42). So for each d ∈ Γ, we get
pAq d ∈ U . Furthermore

(σ′ · (pAq d))σ = (pAq d)(σσ′) by (43)
= Aσσ′·d by (45)
= Aσ·(σ′·d)

= pAq (σ′ · d)σ by (45) again

so that pAq ∈ SetM(Γ, U). Since Γ ∈ SetM
fs , if follows from Lemma 3.5 that pAq factors

through Ufs ↪→ U to give pAq ∈ SetM
fs (Γ, Ufs). Since it follows from this that supp(pAq d) ⊆

supp d, if a ∈ Ad is supported by X ⊇ supp d, then X also supports (pAq d, a) in U.E.
Therefore by (44), for all d ∈ Γ we have

Ad = {a ∈ pAq d ι | (pAq d, a) ∈ (U.E)fs} = Efs[pAq]d

so that re-indexing the family Efs along pAq gives Efs[pAq] = A. J

4 Cubical sets with diagonals

In footnote 2 of [2] the authors say

‘In a previous attempt, we have been considering the category of finite sets with maps
I → J + 2 (i.e. the Kleisli category for the monad I + 2). This category appears on
pages 47–48 in Pursuing Stacks [8] as “in a sense, the smallest test category”.’



A.M. Pitts 217

Call this category S. Thus S is like the category C from Section 1, but without the injectivity
condition (1) on morphisms. In Section 2 we moved from the small category C to the
submonoid Cb of the monoid Sb of all substitutions (Definition 2.1) and replaced cubical
sets [C,Set] by the equivalent category SetCb

fs of finitely supported Cb-sets. If one starts
from S rather than C, then one gets the whole monoid of substitutions Sb and can consider
the category SetSb

fs of finitely supported Sb-sets.

I Theorem 4.1. The categories [S,Set] and SetSb
fs are equivalent.

Proof. One can check that the proof method of Theorem 2.9 still goes through when one
replaces the category C by S and the monoid Cb by Sb. Indeed the proof is easier, because
the ‘homogeneity’ property (the analogue of Lemma 2.8) needed for the fullness and essential
surjectivity of the functor I∗ : [S,Set] → SetSb

fs is trivial: for each s ∈ S(X,Y ) we get a
substitution σ ∈ Sb that agrees with s on X simply by defining

σ x ,

{
s x if x ∈ X
x otherwise.

J

One advantage of SetSb
fs over SetCb

fs stems from the following theorem. Regarding each
Γ ∈ SetSb

fs as a nominal set as in Section 2.1, we can make the nominal set [D]Γ of name
abstractions into an object of SetSb

fs via an Sb-action satisfying

x # σ ⇒ σ · 〈x〉d = 〈x〉(σ · d) (x ∈ D, σ ∈ Sb, d ∈ Γ) (46)

where we regard Sb as a nominal set, and hence make sense of the condition x # σ, via the
conjugation action of permutations: π · σ , πσπ−1. (The support of σ with respect to this
action is Dom σ ∪

⋃
x∈Domσ supp(σ x).) Thus the action of σ is well-defined by sending an

element 〈x〉d ∈ [D]Γ to 〈y〉(σ(x y) · d), where y is some (or indeed, any) direction satisfying
y # (x, σ, d); cf. [15, Theorem 9.18].

I Theorem 4.2. [D]Γ is isomorphic in the category SetSb
fs to the exponential ΓI of Γ by the

interval object I from Example 2.3.

Proof. Recall the definition of [D]Γ in terms of the equivalence relation ≈α (26). If (x, d) ≈α
(x′, d′), then picking any y # (x, d, x′, d′) we have (y x) · d = (y x′) · d′ ∈ Γ. Since for any
i ∈ I, the substitutions (i/y)(y x) and (i/x) agree on supp d, we have (i/x) · d = (i/y)(y x) · d;
similarly (i/x′) · d′ = (i/y)(y x′) · d′. Therefore (i/x) · d = (i/x′) · d′. So there is a well-defined
function ev : [D]Γ× I→ Γ satisfying

ev(〈x〉d, i) = (i/x) · d (x ∈ D, d ∈ Γ, i ∈ I) (47)

(Note that since Cb does not contain the substitution (i/x) when i ∈ D− {x}, it would not
be possible to make this definition in the category SetCb

fs .)
When x # σ, we have σ(i/x) = (σ i/x)σ ∈ Sb and hence σ · ev(〈x〉d, i) = ev(σ · 〈x〉d, σ · i).

So ev is a morphism in SetSb
fs ([D]Γ × I,Γ). We verify that it has the universal property

required for the exponential. Given γ ∈ SetSb
fs (Γ′ × I,Γ) we get a well-defined function

cur γ : Γ′ → [D]Γ

cur γ d′ , 〈x〉γ(d′, x) where x # d′ (48)
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This satisfies σ · (cur γ d′) = cur γ (σ ·d′) and hence gives a morphism cur γ ∈ SetSb
fs (Γ′, [D]Γ).

Note that

ev(cur γ d′, i) = ev(〈x〉γ(d′, x), i) where x # d′

= (i/x) · γ(d′, x) by (47)
= γ((i/x) · d′, (i/x) · x) since γ is a morphisms in SetSb

fs

= γ(d′, i) since x # d′

so that ev ◦ (cur γ × idI) = γ. The uniqueness of cur γ with this property follows from an
η-rule for elements of [D]Γ:

(∀p ∈ [D]Γ)(∀x ∈ D) x # p ⇒ p = 〈x〉ev(p, x) (49)

which in turn follows the fact that for any 〈x〉d ∈ [D]Γ and y # (x, d) it is the case that
〈x〉d = 〈y〉((y x) · d) = 〈y〉((y/x) · d). J

Iterating the theorem, we get that the exponential ΓIn (the object of n-cubes in Γ) is
isomorphic to [D](n)Γ, where

[D](0)Γ , Γ
[D](n+1)Γ , [D]([D](n)Γ) (50)

Note that [D](n)Γ ∈ SetSb
fs is the nominal set of n-ary name abstractions 〈x1, . . . , xn〉d (with

x1, . . . , xn mutually distinct directions) equipped with the Sb-action satisfying the evident
generalisation of (46) to n-ary name abstractions.

One may think of objects of SetSb
fs as cubical sets ‘with diagonals’, because (unlike the case

for [C,Set] ' SetCb
fs ) each square 〈x, y〉d ∈ [D](2)Γ contains a diagonal path 〈z〉(z/x)(z/y)·d ∈

[D]Γ. Of course, under the isomorphism in the above theorem, diagonalization [D](2)Γ→ [D]Γ
corresponds to the morphism ΓI2 → ΓI given by precomposing with the diagonal 〈idI , idI〉 :
I→ I× I.
I Remark. Gabbay and Hofmann [7] prove the analogue of Theorem 4.2 for their category
of ‘nominal renaming sets’. This category is like 01-Nom except that it uses nominal sets
equipped with name-for-name substitutions, rather than 01-for-name substitutions. They
also have an analogue of Theorem 2.13: an equivalence between the category of nominal
renaming sets and a sheaf subcategory the presheaf category [F,Set], where F is the small
category whose objects are finite subsets of D and whose morphisms are all functions between
such subsets; see [7, Theorem 38].

5 Conclusion

We have shown how to reformulate cubical sets, originally given as presheaves, in terms of
sets whose elements are finitely supported with respect to a given action of a monoid of name
substitutions. Because of the equivalences we have established (Theorems 2.9, 2.13 and 4.1),
there is no difference in the category-theoretic properties of the two formulations. However,
the approach using monoids of name substitutions leads to a relatively simple notion of
family of cubical sets (Section 3) and allows access to the well-developed nominal sets notions
of freshness to calculate with degeneracy of cubes and name abstraction to calculate with
paths (proofs of equality); see the implementation of Kan cubical sets [4].

We saw that in the category SetSb
fs , paths are arbitrary functions from an interval object

(Theorem 4.2). Coquand [3] has noted that this property can enable simpler formulations of
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the Kan filling condition, simpler proofs of closure of Kan complete families under taking
Π-types, and more natural realizers for operations like the elimination rule for the circle. So
there may be a sub-CwF of SetSb

fs consisting of families satisfying some Kan-filling condition
which yields a technically simpler model of univalent foundations than the one in [2]. Of
course, to be computationally useful, such a model has to exist in a constructive meta-theory.
We leave this for future investigation.
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