
Dialectica Categories and Games with Bidding
Jules Hedges

Queen Mary University of London, UK
j.hedges@qmul.ac.uk

Abstract
This paper presents a construction which transforms categorical models of additive-free pro-
positional linear logic, closely based on de Paiva’s dialectica categories and Oliva’s functional
interpretations of classical linear logic. The construction is defined using dependent type the-
ory, which proves to be a useful tool for reasoning about dialectica categories. Abstractly, we
have a closure operator on the class of models: it preserves soundness and completeness and has
a monad-like structure. When applied to categories of games we obtain ‘games with bidding’,
which are hybrids of dialectica and game models, and we prove completeness theorems for two
specific such models.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Linear logic, Dialectica categories, categorical semantics, model theory,
game semantics, dependent types, functional interpretations

Digital Object Identifier 10.4230/LIPIcs.TYPES.2014.89

1 Introduction

This paper presents a construction which transforms categorical models of additive-free
propositional linear logic, closely based on de Paiva’s dialectica categories and Oliva’s
functional interpretations of classical linear logic.

The dialectica categories [9] are a family of models of intuitionistic logic, and classical
and intuitionistic linear logic, based on Gödel’s dialectica interpretation. Dialectica models
of classical linear logic are described in [9], based on earlier models of intuitionistic logic
and intuitionistic linear logic in [7]. Historically they were the first models of linear logic
to not equate multiplicative and additive units, and they have been generalised in several
ways, for example [13] defines dialectica categories starting only from a partially ordered
fibration. The construction in this paper is closely related to [8] and [11]; the similarities
and differences between that construction and the original dialectica categories is discussed
in those papers. While most of the literature on dialectica categories aims to construct large
classes of structured categories and then characterise those which are sound models of some
logic, the aim of this paper is rather different: to construct a small number of concrete models
which can be interpreted as game models and are amenable to a proof-theoretic analysis of
the valid formulas, and in particular are as close as possible to being complete models of
linear logic.

Based on de Paiva’s models, [28] gave a syntactic dialectica and Diller-Nahm interpretation
to first order affine logic, and [24] to classical linear logic. The semantics of the Diller-Nahm
variant is explored in detail in chapter 4 of [9], and will be used in this paper. A completeness
theorem is given in [25] for the dialectica interpretation, based on Gödel’s original completeness
theorem for Heyting arithmetic [1], which has not been exploited so far in the semantic
literature. This relies on a small but crucial modification to de Paiva’s interpretation of the
linear exponentials. The Diller-Nahm interpretation of linear logic appears in [24] and [26],

© Jules Hedges;
licensed under Creative Commons License CC-BY

20th International Conference on Types for Proofs and Programs (TYPES 2014).
Editors: Hugo Herbelin, Pierre Letouzey, and Matthieu Sozeau; pp. 89–110

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2014.89
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

90 Dialectica Categories and Games with Bidding

although no completeness proof for the Diller-Nahm interpretation of linear logic appears in
the literature, to the author’s knowledge.

The dialectica interpretation, intuitively, is a proof translation which takes a formula ϕ
to a quantifier-free formula |ϕ|xy in which the variables x and y appear free. The variable x
represents ‘witnesses’, or evidence that a theorem is true, and y represents ‘counter-witnesses’,
or evidence that a theorem is false. The validity of a theorem is then reduced to the existence
of a witness which defeats every counter-witness, that is, ∃x∀y. |ϕ|xy . However even if ϕ is a
first-order formula the variables x and y may have higher types. The original purpose was to
prove the relative consistency of Heyting arithmetic to the quantifier-free language called
system T, however the dialectica interpretation is now mainly used to give a computational
interpretation to theorems of classical analysis, see [17].

The semantic equivalent to the dialectica interpretation, at least from the point of view
of this paper, is to replace the formula |ϕ|xy with a double-indexed family of objects in some
model R. We can imagine that we are composing the syntactic proof translation with a
semantic interpretation of formulas. The fact that the dialectica interpretations of linear
negation and multiplicative conjunction are given recursively by∣∣ϕ⊥∣∣y

x
=
(
|ϕ|xy

)⊥
|ϕ⊗ ψ|x,uf,g = |ϕ|xfu ⊗ |ψ|

u
gx

(in particular, that the same connectives occur on the right hand side) tells us that R must
have a sound interpretation of these connectives. This leads us to the construction in [8],
which builds a dialectica category from a posetal model of multiplicative linear logic, or
lineale [10]. The dialectica interpretation eliminates additives (in the sense that additives do
not appear on the right hand side of the corresponding formulas), and it is also possible to
eliminate exponentials in a sound way by defining

|!ϕ|xf = |ϕ|xfx

However the completeness theorem of [25] relies on changing this definition to

|!ϕ|xf = ! |ϕ|xfx

To interpret this semantically R must also have a sound interpretation of the exponential,
which leads to our construction of dialectica categories beginning from an arbitrary model of
multiplicative-exponential linear logic (MELL). Thus this work can be seen as the result of
a ‘dialogue’ between syntax and semantics.

Overall, we have a construction D which takes a model of MELL to a model of LL.
The first of two aims of this paper is to explore the abstract properties of D. We prove in
section 6 that D is functorial, and that it has a monad-like structure on a particular category
of models of MLL, although one of the monad laws fails and even the weaker result fails
to extend to MELL. This is closely related to the main theorem in [12]. (We could also
explore the 2-categorical properties of D, but that is left for later work.) We also prove that
D preserves soundness (section 3) and completeness (section 5) for MELL, so we can justify
calling it a ‘closure operator’ on models.

The second aim of this paper is to construct specific dialectica categories (rather than
axiomatically-defined families) which have logical completeness properties. This requires that
the underlying model also has completeness properties, which in practice means constructing
a dialectica category from a category of games. In section 4 we informally describe such a

Jules Hedges 91

dialectica category as a category of ‘games with bidding’, greatly extending the comments in
[6] on viewing dialectica categories as game models. In particular in section 5 we consider
‘Hyland-Ong games with bidding’ based on [15], and ‘asynchronous games with bidding’
based on [20], and prove that these models are complete respectively for MLL and MELL.

The model of asynchronous games with bidding, in particular, is an extremely interesting
model because the starting model has the strongest possible completeness theorem, namely
it is fully complete for MELL. An analysis of the formulas containing additives which are
valid in this model will be carried out in a follow-up paper, but an overview of the argument
is given in section 7.

There are two main technical ideas in this paper which contribute to our two aims. The
first is that we replace the posets of [8] and [16] with categories, and use dependent type
theory in defining and reasoning about our models. If our metatheory has choice this formally
gains nothing, however in practice dependent type theory proves to be a powerful tool.
Dialectica categories were used with dependent types in [5], but in a semantic rather than a
syntactic way. Our use of syntactic dependent types will be justified in particular in sections
5 and 6, which would be hard to formalise otherwise. It also suggests the implementation of
this construction (and the formalisation of the proofs in this paper) in a dependently typed
programming language. This would require libraries for 2-category theory and monoidal
category theory, and would be an interesting way to embed linear reasoning into a proof
assistant. This was carried out in Coq in [3], for the special case in which the underlying
model is the built-in type of propositions.

The second idea is that we work with the linear-nonlinear semantics of MELL and
LL given in [4]. Although the relationship between linear categories and linear-nonlinear
adjunctions is well understood, a direct formulation of dialectica categories as linear-nonlinear
adjunctions is still quite informative: it allows the relationship between the linear and
intuitionistic dialectica categories to be clearly seen, and allows us to factor the exponential
into four parts. This also suggests turning back around to syntax and studying a syntactic
dialectica interpretation of linear-nonlinear logic.

Note that in this paper we are only considering classical linear logic. The differences
between dialectica models of classical and intuitionistic linear logic are subtle: firstly for
intuitionistic linear logic the sets of witnesses and counterexamples must both be nonempty,
whereas for classical linear logic one may be empty; and secondly for intuitionistic linear logic
we consider the bids in games with bidding to be sequential rather than simultaneous. Since
the two logics coincide in the absence of additives, the difference will not often affect us.

2 The dialectica transformations of a category

In this section we will define the two dialectica transformations of a category, and relate them
to the existing literature on dialectica categories. The game-semantic intuition corresponding
to these definitions will be given in section 4.

Let R be an arbitrary category. We will define a category Dl(R) called the linear dialectica
transformation of R. The objects of Dl(R) are double-indexed families GXY where X and Y
are arbitrary sets not both empty, and each Gxy is an object of R. Throughout this paper we
will specify such objects using the notation

GXY :
(
x

y

)
7→ · · ·

where the right hand side is an expression in terms of x and y. Since X and Y will often
be (dependent) pairs we will drop the parentheses, as is done in the proof theory literature.

TYPES’14

92 Dialectica Categories and Games with Bidding

Sometimes we will decorate witness and counter-witness variables with their individual types
for clarity, as in

GX×UY×V :
(
x : X,u : U
y : Y, v : V

)
7→ · · ·

A morphism from GXY to HUV is an element of a dependent type in the category of sets:

homDl(R)
(
GXY ,HUV

)
=

∑
f :X→U
g:V→Y

∏
x:X
v:V

homR

(
Gxgv,Hfxv

)
Hence a morphism is a triple (f, g, α) where f : X → U , g : V → Y and α is a double-indexed
family of R-morphisms

αx,v : Gxgv → Hfxv
The proof-theoretic reading of this is that a morphism consists of a witness, together with
a mapping that takes each counter-witness to a proof that the counter-witness is invalid.
This is simply the type-theoretic interpretation of the usual dialectica interpretation of linear
implication, with quantifiers replaced by dependent types.

For simplicity, in this paper we only explicitly use the set-theoretic interpretation of
dependent type theory, however it should be straightforward to generalise to any model of
dependent type theory. This would require R to be enriched over a locally cartesian closed
category C, and that we have a suitable fibration of objects of R over C to replace set-indexed
families, similar to [13] (this idea was suggested in [14]).

In Dl(R) the identity morphism on GXY is given by the identity functions on X and Y
together with identity morphisms in R. The composition of a morphism GXY (HUV given
by (f, g, α) and another HUV (IPQ given by (f ′, g′, β) is given by f ′ ◦ f : X → P and
g ◦ g′ : Q→ Y , together with the composition

(β ◦ α)x,q = βfx,v ◦ αx,g′q : homR

(
Gxg(g′q), I

f ′(fx)
q

)
I Lemma 1. Let R be any category, then Dl(R) is a category with finite products and
coproducts.

Proof. By proposition 3.7 of [16]. J

Using the axiom of choice (at least in the case C = Set), this definition is equivalent to
MN (C) in [8] where N is the posetal reflection of R (assuming a Grothendieck universe, since
R will be large in general). To be clear, this definition is not intended to be exactly equivalent
to the original dialectica categories in [9], which is more elegant and far more general but is
hard to use for concrete calculations. In particular using type theory gives us explicit names
for all of our morphisms, and this will make our life easier especially in sections 5 and 6.
Moreover we can avoid using the axiom of choice in our metatheory, and so the contents of
this paper could be directly implemented in a dependently typed programming language.

Next we will construct the Diller-Nahm translation Di(S) of an arbitrary category S
with finite products. This construction is most closely related to that in [13], although we
consider it in far less generality than in that paper. The objects of Di(S), as before, are
double-indexed families GXY where X and Y are sets not both empty and each Gxy is an
element of S. The hom-sets are defined by

homDi(S)
(
GXY ,HUV

)
=

∑
f :X→U

g:X×V→Y ∗

∏
x:X
v:V

homS

 ∏
y∈g(x,v)

Gxy ,Hfxv



Jules Hedges 93

Here Y ∗ is the set of finite multisets with elements in Y . This definition is the type-theoretic
interpretation of the Diller-Nahm interpretation of intuitionistic implication

∃fX→U , gX×V→Y
∗
∀xX , vV .

(
∀y ∈ g(x, v). |ϕ|xy

)
→ |ψ|fxv

However we carefully distinguish ‘internal’ and ‘external’ quantifiers: the internal ∀ is
interpreted as the categorical product in the underlying model, and the external ∃∀ is
interpreted as dependent types in C.

In Di(S) the structure is very similar. If we have a morphism given by f : X → U and
g : X × V → Y ∗ and another given by f ′ : U → P and g′ : U ×Q→ V ∗ the composition is
given by f ′ ◦ f : X → P and

λxX , qV .g′(fx, q) >>= λvV .g(x, v) : X ×Q→ Y ∗

together with composition in S. Here >>= is the bind operator of the finite multiset monad,
where l >>= f applies f to each element of l, each giving a multiset, and collects the results
with a union.

I Lemma 2. Let S be any category with finite products, then Di(S) is a category with finite
products.

Proof. By section 3 of [13]. J

3 The dialectica transformation of a linear-nonlinear adjunction

We begin with a general definition of a model of MELL and a model of LL. A model of
multiplicative linear logic (MLL) is given by a ∗-autonomous category R [2], that is, a
symmetric monoidal closed category (R,⊗,(, 1) with a functor ⊥ : R → R and natural
isomorphisms ⊥◦⊥ ∼= idR and

homR(X ⊗ Y, Z⊥) ∼= homR(X, (Y ⊗ Z)⊥)

For the interpretation of exponentials we use the linear-nonlinear semantics of [4], which
is surveyed in detail in [22]. A categorical model of MELL is given by a ∗-autonomous
category R together with another category S with finite products and an adjunction

S ⊥ R

L

M

or, more briefly,

L aM : R→ S

Here L (called linearisation) and M (called multiplication) are lax symmetric monoidal
functors, that is, there are natural transformations

M(X)×M(Y)→M(X ⊗ Y) > →M(1)
L(X)⊗ L(Y)→ L(X × Y) 1→ L(>)

TYPES’14

94 Dialectica Categories and Games with Bidding

and the unit and counit of the adjunction must also respect the monoidal and cartesian
monoidal structures (ie. the adjunction must be a symmetric monoidal adjunction). Such a
setup is called a linear-nonlinear adjunction. Given this adjunction, the denotation of the
exponential ! is the composition L ◦M , which is a comonad on R (and conversely, if we
have a model in which ! is given explicitly we can recover S, M and L from the co-Kleisli
adjunction). The entire model, which contains a pair of categories and functors and various
natural transformations, will be denoted R. For a model of LL we simply require that R
also has finite products.

Given such a model of MELL, the dialectica transformation of this model will be a new
pair of categories and a linear-nonlinear adjunction

Di(S) ⊥ Dl(R)

Ddn(L)

Df (M)

The categories Dl(R) and Di(S) are precisely the categories defined in the previous section.
The transformations of the functors M and L will be given below. The transformed model
as a whole will be denoted D(R).

The interpretations of each connective in Dl(R) is given in Figure 1.

I Lemma 3. Let R be any ∗-autonomous category, then Dl(R) is a ∗-autonomous category.

Proof. By propositions 3.6 of [16]. J

Now we give the dialectica transformations Df (M) and Ddn(L) of the multiplication and
linearisation functors. The operation Df is a straightforward lifting operation. The subscript
f stands for functor since this construction will be used in section 6 to give the action of D
on maps (or functors) of models. Suppose the multiplication functor is M : R → S. The
functor Df (M) : Dl(R)→ Di(S) acts on objects GXY of Dl(R) by

(Df (M)(G))XY :
(
x

y

)
7→M(Gxy)

For the action of Df (M) on morphisms, suppose we have a morphism of Dl(R) from GXY to
HUV given by (f, g, α) where f : X → U , g : V → Y and αx,v : homR

(
Gxgv,Hfxv

)
. We need to

find an element of

∑
f ′:X→U

g′:X×V→Y ∗

∏
x:X
v:V

homS

 ∏
y∈g′(x,v)

M(Gxy),M(Hf
′x
v)


We take f ′ = f and g′(x, v) to be the multiset containing only gv. Then∏

y∈g′(x,v)

M(Gxy) = M(Gxgv)

and so M(αx,v) is a morphism of the correct type.
Suppose the linearisation functor is L : S → R. The functor Ddn(L) : Di(S) → Dl(R)

acts on objects GXY by

(Ddn(L)(G))XX→Y ∗ :
(
x

f

)
7→
⊗
y∈fx

L(Gxy)

Jules Hedges 95

Multiplicatives

1{∗}{∗} :
(
∗
∗

)
7→ 1

⊥{∗}{∗} :
(
∗
∗

)
7→ ⊥

(GXY)⊥ = (G⊥)YX :
(
y

x

)
7→ (Gxy)⊥

GXY ⊗HUV = (G ⊗H)X×U(U→Y)×(X→V) :
(
x, u

f, g

)
7→ Gxfu ⊗Hugx

GXY `HUV = (G `H)(V→X)×(Y→U)
Y×V :

(
f, g

y, v

)
7→ Gfvy `Hgyv

Additives

>{∗}∅

0∅{∗}

GXY &HUV = (G &H)X×UY+V :
(
x, u

z

)
7→

{
Gxz if z ∈ Y
Huz if z ∈ V

GXY ⊕HUV = (G ⊕H)X+U
Y×V :

(
z

y, v

)
7→

{
Gzy if z ∈ X
Hzv if z ∈ U

Exponentials

!GXY = (!G)XX→Y ∗ :
(
x

f

)
7→
⊗
y∈fx

!Gxy

?GXY = (?G)Y→X
∗

Y :
(
g

y

)
7→

¸
x∈gy

?Gxy

Figure 1 Interpretation of constants and connectives in Dl(R).

TYPES’14

96 Dialectica Categories and Games with Bidding

Here
⊗

y∈fx is the fold of the monoidal product of R over the finite multiset fx, where the
fold over the empty multiset is the unit 1 ∈ R. The subscript dn stands for Diller-Nahm,
since this definition contains the essence of the Diller-Nahm functional interpretation. The
intuitive justification for this definition is that the exponential Ddn(L) ◦Df (M) should be
an interpretation of

!∀y ∈ fx. |ϕ|xy
which is the Diller-Nahm interpretation of the exponentials in [24]. Since we are working
over set theory we ‘know’ the (finite) size of fx, so we can replace the ∀ with a folded &.
(This is a subtle point: we are simply defining a family of formulas, whereas when using
free variables a formula must have a fixed structure.) Then we use the fact that ! is strong
monoidal (the ‘transmutation principle’ of linear logic, see section 7.1 of [22]) to obtain⊗

y∈fx

! |ϕ|xy

When this is factored as⊗
y∈fx

L
(
M |ϕ|xy

)
the M becomes absorbed into the definition of Df (M), and we are left with Ddn(L). (We
could write it instead as L&, but using ⊗L gives the exponential in Figure 1 directly. Taking
the exponential to be ⊗! is preferable to !& because we need not assume that L has products.)

Now suppose we have a morphism of Di(S) from GXY to HUV given by (f, g, α) where
f : X → U , g : X × V → Y ∗ and

αx,v : homS

 ∏
y∈g(x,v)

Gxy ,Hfxv


We need to find an element of

homDl(R)
(
(Ddn(L)(G))XX→Y ∗ , (Ddn(L)(H))UU→V ∗

)
The witnesses are f : X → U and g′ : (U → V ∗)→ (X → Y ∗) given by

g′ = λhU→V
∗
, xX .h(fx) >>= λvV .g(x, v)

Given x ∈ X and h : U → V ∗ we need to find an element of

homR

(
(Ddn(L)(G))xg′h, (Ddn(L)(H))fxh

)
= homR

 ⊗
y∈g′hx

L(Gxy),
⊗

v∈h(fx)

L(Hfxv)


We have⊗

v∈h(fx)

L(αx,v) : homR

 ⊗
v∈h(fx)

L

 ∏
y∈g(x,v)

Gxy

 ,
⊗

v∈h(fx)

L(Hfxv)


Here we can use that L is a symmetric monoidal functor to get an element of

homR

 ⊗
v∈h(fx)

⊗
y∈g(x,v)

L(Gxy),
⊗

v∈h(fx)

L(Hfxv)


Finally the left hand side can be written as a single monoidal product over y ∈ g′hx by
definition of the monadic bind.

Jules Hedges 97

I Lemma 4. Ddn(L) a Df (M) : Dl(R)→ Di(S) is a linear-nonlinear adjunction.

Proof. By proposition 14 of [22] it suffices to prove that Ddn(L) a Df (M) is an adjunction
and Ddn(L) is strong symmetric monoidal.

The equation for the adjunction is

homDl(R)
(
Ddn(L)(GXY),HUV

) ∼= homDi(S)
(
GXY ,Df (M)(HUV)

)
We evaluate

homDl(R)
(
Ddn(L)(GXY),HUV

)
=

∑
f :X→U

g:V→(X→Y ∗)

∏
x:X
v:V

homR

(⊗
y∈gvx

L(Gxy),Hfxv

)

and

homDi(S)
(
GXY ,Df (M)(HUV)

)
=

∑
f :X→U

g:X×V→Y ∗

∏
x:X
v:V

homS

 ∏
y∈g(x,v)

Gxy ,M(Hfxv)


These are isomorphic using L aM and the fact that L is strong monoidal.

To prove that Ddn(L) is strong monoidal we must show that

Ddn(L)(GXY)⊗Ddn(L)(HUV) ∼= Ddn(L)(GXY &HUV)

We evaluate

(Ddn(L)(G)⊗Ddn(L)(H))X×U(X×U→Y ∗)×(X×U→V ∗) :
(
x, u

f, g

)
7→

⊗
y∈f(x,u)

L(Gxy)⊗
⊗

v∈g(x,u)

L(Huv)

and

Ddn(L)(G &H)X×UX×U→(Y+V)∗ :
(
x, u

h

)
7→

⊗
z∈h(x,u)

{
L(Gxz) if z ∈ Y
L(Huz) if z ∈ V

These are isomorphic due to the natural isomorphism Y ∗ × V ∗ ∼= (Y + V)∗ (note that this
isomorphism does not hold if we replace finite multisets with finite ordered lists, ie. free
commutative monoids by free noncommutative monoids). Finally, the symmetry of Ddn(L)
also inherits easily from that of L. J

We can therefore derive the interpretation of ! as the composition Ddn(L)◦Df (M). Given
an object Gxy , its exponential is

(!G)XX→Y ∗ :
(
x

f

)
7→
⊗
y∈fx

!Gxy

where the exponential in the underlying model is ! = L ◦M .
It is worth noting that, as in chapter 4 of [9], the functor Ddn(L) factors into three parts

Ddn(L) = B ◦A ◦Df (L) where A and B (called T and S in [9]) are endofunctors on Dl(R)
given respectively by

(A(G))XY ∗ :
(
x

s

)
7→
⊗
y∈s
Gxy

TYPES’14

98 Dialectica Categories and Games with Bidding

and

(B(G))XX→Y :
(
x

f

)
7→ Gxfx

We can interpret A and B game-semantically as giving two different advantages to Abelard.
A allows Abelard to play several moves, and B allows Abelard to observe Eloise’s move.
Both of these are expressed by monads on the category of sets, respectively the finite multiset
monad and the reader monad (X →). The exponential of Dl(R) therefore factors into four
parts as

B ◦A ◦Df (L) ◦Df (M)

The functors A and B have much structure in their own right: they are both comonads
on Dl(R) with a distributivity law between them making B ◦ A into another comonad.
However B ◦A is a linear exponential comonad (which is a direct categorical semantics of
the exponential, see [16]), whereas A and B individually are not. The entire reason we also
compose with Df (L) ◦Df (M) = Df (L ◦M), which after all requires more structure in the
underlying model, is to obtain the completeness theorem in section 5.

The lemmas in this section add up to a soundness theorem.

I Theorem 5. If R is a sound model of MELL then D(R) is a sound model of LL.

4 Games with bidding

In section 5 we will investigate applying the transformation D to models which are complete
(that is truth implies provability, which is a weaker property than full completeness which is
more often considered). In practice this means letting R be a game model. In this section
we give some general remarks about D(R) when R is a game model.

In general, a game model is a category R whose objects are games, and whose morphisms
are (relative) winning strategies. Thus logically formulas are denoted by games and proofs
by winning strategies. The denotation of linear negation is interchange of players (at least
for classical linear logic), and the denotation of ⊗ is some form of concurrent play, making R
into a *-autonomous category. For models which have additives the product G &H is usually
denoted by a game in which Abelard chooses which of the two games will be played, and
for G ⊕ H Eloise makes the choice. The exponential is often similar to an infinite tensor
product. The point of making these informal observations is that they are preserved under
the transformation D.

We begin by considering the two-element boolean algebra B as a degenerate game model
containing only two games: one which Eloise wins immediately, and one which Abelard wins
immediately. Thus we can see D(B), which is called G(C) in the terminology of [9] (where C
is the category of sets or another suitable model of dependent type theory), as a model of
games with bidding in which the games contain only the bidding round, and after the bidding
round one player is declared to have won. The possibility of viewing dialectica categories as
categories of games has been discussed in several places, and in particular in the final section
of [6], and this section greatly extends that idea.

One issue with viewing dialectica categories as games is the strange ‘causality’ in a game
such as GXY (HUV , in which u depends on x but not v, and y depends on v but not x. One
way to view the strange dynamics of this game is as a generalisation of history-freeness in
which the moves are chosen in the order (x, u, v, y), where Abelard’s strategy to choose x, v is
history-free and Eloise’s strategy may depend on the most recent move but not the remainder

Jules Hedges 99

of the history. Alternatively we can imagine the bidding round to be played by two teams of
two players (like in bridge) with a particular message-passing protocol

X

U

Y

V

Partners sit opposite each other, withX and Y representing Abelard and U and V representing
Eloise, and the arrows representing the direction of message-passing. Unfortunately both of
these intuitions (history-freeness and message-passing) break down when we consider higher
order bids (that is, bids which are functions depending on other functions). There is a general
but less satisfactory intuition in these cases: the players submit (higher order) computer
programs, which are finite representations of their strategy, to play on their behalf.

Now we consider informally a ‘general non-degenerate game model’. The conclusion is
that the construction D, which can be applied to any model, preserves the property of ‘being
a game model’. For a concrete game model these informal remarks could be made precise: the
simplest example is the category of Blass games of [6]; in section 5 we consider the category
of Hyland-Ong games [15] and the category of asynchronous games of [20].

An object GXY of Dl(R) consists of sets of bids X and Y for Eloise and Abelard, together
with a game Gxy in the underlying model for each pair of bids. Thus a winning strategy
for Eloise consists of a bid x ∈ X, together with a winning strategy σy for Gxy for every
bid y of Abelard. Thus GXY can be seen as a game with bidding: first Eloise and Abelard
simultaneously bid, and then the pair of chosen bids determines precisely which subsequent
game will be played. (Very informally this is somewhat like the game of bridge: there is an
initial bidding round which determines exactly which variant of whist will be played.)

The negation of Dl(R) is to interchange players in the bidding round and then apply
the negation of R. Thus when R is a game model the negation of Dl(R) overall is simply
interchange of players in the compound game. The other connectives which behave very
cleanly are the additives: they are similar to the additives in a general game model except
that the choice of which game to play occurs simultaneously with the other bids. Thus for
example in the game GXY &HUV Abelard chooses a game and a bid for that game, but since
Eloise bids simultaneously she must choose a bid for both games. Thus a winning strategy
for Eloise in GXY &HUV consists of a pair of bids (x, u) together with winning strategies for
both Gxy and Huv .

The denotation of the tensor product GXY ⊗HUV is more complicated. Eloise simply bids a
pair (x, u). Simultaneously Abelard must bid a pair of functions f : U → Y and g : X → V ,
and then the games Gxfu and Hugx are played in parallel in the sense specified by R. Similarly
the exponential !GXY is played as follows. Firstly Eloise chooses a bid x ∈ X. Then Abelard
observes this and chooses a finite multiset y1, . . . , yn ∈ Y . For each yi there is an exponential
!Gxyi

, which will be similar to the parallel composition of infinitely many copies of Gxyi
. Then

each of the !Gxyi
is played in parallel, but typically a different sense of parallel than is used

for exponentials. Since the notion of winning strategy for Eloise in these games will depend
on exactly what notion of parallelism is used in R, it is difficult to say more in general.

TYPES’14

100 Dialectica Categories and Games with Bidding

As explained above, in some cases it is possible to consider this as a game played by
two pairs of partners with a message-passing protocol, but in general it is necessary to
consider functions which can depend on other functions in a higher-order way. Thus from a
game-semantic perspective it will be more satisfying to replace the category of sets with a
different locally cartesian closed category in which functions contain only a finite amount of
information, such as a coherence space model of type theory [23]. Particularly interesting
would be to link to recent work in progress of Abramsky, Jagadeesan and others on game
semantics of dependent type theory. (These models are closely related to recent work on
linear dependent types [29].) This would lead to a two-layered game model in which the
bidding round has finer structure and the bids themselves specify strategies for sub-games.
The difficulty would be to find a suitable sense in which R is enriched and fibered over the
model of dependent types.

5 Relative completeness for additive-free fragments

I Definition 6 (Complete model). Let R be a model of LL. A mapping from atoms to
objects of R is called a valuation in R. Given a valuation v, we can extend it inductively to
an interpretation of formulas in R, denoted JϕKv or simply JϕK.
R is called a complete model of LL if for all formulas ϕ,ψ, if homR(JϕKv, JψKv) is

nonempty for all valuations v then the sequent ϕ ` ψ is derivable in LL. Completeness for
MELL and other fragments is defined similarly.

A characterisation theorem for a functional interpretation is a result saying that the
equivalence between ϕ and its functional interpretation ∃x∀y. |ϕ|xy is derivable in some system,
usually a base language like HAω extended with characterisation principles, which are axioms
validated by the functional interpretation such as the axiom of choice, Markov’s principle
and independence of premise. In order to obtain the statement of the following lemma we
take the logical formula

ϕ↔ ∃x∀y. |ϕ|xy

and split the bi-implication into its defining conjunction, then in each part we prenex the
quantifiers and interpret them as dependent types. (Special care would need to be paid to
these manipulations if the category of sets was replaced by a different model, as suggested in
the previous section.)

The characterisation theorem for classical linear logic in [25] uses not ∃x∀y but a Henkin
quantifier,

Æx
y , and so this ‘rearrangement’ is unsound. The result we see is that this lemma

fails to extend from MELL to LL. (Given that this simultaneity is at the heart of the
functional interpretations of classical linear logic, it is remarkable that this method works at
all.) See section 7 for a discussion of how to extend the completeness theorem to include
additives by correctly interpreting the simultaneous quantifier.

I Lemma 7. Let R be a model of MELL and let v be a valuation in R. Let ϕ be a formula of
MELL with interpretation |ϕ|XY in D(R), where the interpretation of an atomic proposition
is

|p|{∗}{∗} :
(
∗
∗

)
7→ v(p)

Then the types∑
x:X

∏
y:Y

homR(JϕK, |ϕ|xy)

Jules Hedges 101

and∑
y:Y

∏
x:X

homR(|ϕ|xy , JϕK)

are inhabited.

Proof. These are proved simultaneously by induction on ϕ. In the base case we have ϕ = p

is an atom, and the point ∗ and identity morphism witnesses both (1) and (2).
In the negation case for (1) the inductive hypothesis for (2) gives y ∈ Y together

with morphisms πx : homR(|ϕ|xy , JϕK). Then π⊥x : homR(Jϕ⊥K,
∣∣ϕ⊥∣∣y

x
). The case for (2) is

symmetric.
For (1) of ⊗ the inductive hypothesis gives x and u together with morphisms πy :

homR(JϕK, |ϕ|xy) and σv : homR(JψK, |ψ|uv). Then for each f : U → Y and g : X → V we have

πfu ⊗ σgx : homR

(
Jϕ⊗ ψK, |ϕ⊗ ψ|x,uf,g

)
For (2) of ⊗ the inductive hypothesis gives y and v together with morphisms πx :

homR(|ϕ|xy , JϕK) and σu : homR(|ψ|uv , JψK). Define f : U → Y by fu = y and g : X → V by
gx = v. Then for each (x, u) we have

πx ⊗ σu : homR

(
|ϕ⊗ ψ|x,uf,g , Jϕ⊗ ψK

)
For (1) of !, by the inductive hypothesis we have x together with morphisms in πy :

homR(JϕK, |ϕ|xy). Let f : X → Y ∗. We have

⊗
y∈fx

!πy : homR

⊗
y∈fx

!JϕK,
⊗
y∈fx

! |ϕ|xy


Since R is a model of MELL we have an inhabitant of

homR

!JϕK,
⊗
y∈fx

!JϕK


and we are done.

For (2) of !, by the inductive hypothesis we have y together with morphisms πx :
homR(|ϕ|xy , JϕK). Take f to be the constant function returning the singleton multiset
containing y. Then we have

!πx : homR(
⊗
y∈fx

! |ϕ|xy , !JϕK)

and we are done. J

(This lemma would be much less interesting if we used the dialectica rather than the
Diller-Nahm exponential, because in that case X and Y would always have size 0 or 1. The
Diller-Nahm interpretation of MELL, on the other hand, allows interesting sets such as
N = {∗}∗ and R = N→ N.)

I Theorem 8 (Relative completeness). Let R be a model of MELL and let ϕ be a formula
of MELL which is true in D(R). Then ϕ is true in R.

TYPES’14

102 Dialectica Categories and Games with Bidding

Proof. Let v be a valuation in R, and let ϕ be a formula of MELL with interpretation |ϕ|XY
in D(R) using the same interpretation of atomic propositions defined in the lemma. Since ϕ
is true in D(R) we have a winning bid x : X together with winning strategies

πy : homR(1, |ϕ|xy)

From (2) of the lemma we have y : Y together with winning strategies

σx : homR(|ϕ|xy , JϕK)

Therefore

σx ◦ πy : homR(1, JϕK)

Since this holds for every valuation, ϕ is true in R. J

Let HO be the category of Hyland-Ong games and history-free, uniformly winning
strategies [15], with the the identity functor considered as an exponential. Then D(HO) is
the model of ‘Hyland-Ong games with bidding’. (As a linear-nonlinear adjunction, the model
of Hyland-Ong games has R = S = HO, and L = M is the identity functor.)

I Corollary 9. D(HO) is a sound model of LL and a complete model of MLL.

Notice that because the posetal reflection of HO is a lineale in the sense of [8] (including
having a trivial exponential), the category D(HO) is an example of the construction in that
paper (modulo size issues). However examples of this kind have not been considered before,
and in particular the completeness result is new.

Let AG be the category Z of asynchronous games and (equivalence classes of) innocent
winning strategies [20]. This is a sound model of LL which is proven in [21] to be complete
for MELL. That paper also provides a small variation which is complete for LL, although
using that model will not be necessary for our purposes.

I Corollary 10. D(AG), the category of asynchronous games with bidding, is a sound model
of LL and a complete model of MELL.

A large part of the motivation for this paper is to introduce the category D(AG) and
prove its soundness. It is an interesting model which will be studied in detail by the author
in a follow-up paper: in particular there is a way to analyse the formulas containing additives
which are valid in the model. See section 7 for a summary of the argument.

6 D is a functor

Given a model R of MELL, presented as a linear-nonlinear adjunction, we have defined a
model D(R) of LL. Since a collection of models forms a category we can ask whether D is
a functor. The answer is ‘yes’ for the strongest notion of a morphism of models: a pair of
functors which commute with all of our structure. Results of this kind are standard, and
appear as early as [27].

Since models are pairs of structured categories, they moreover form a 2-category, with
1-cells given by pairs of monoidal functors satisfying suitable conditions, and 2-cells given by
pairs of natural transformations. We will leave the consideration of 2-categorical issues for
later work, but it should be noted that most of the diagrams in this section commute only
up to natural isomorphism.

Jules Hedges 103

This section does not contain all cases of the proofs (which would take another paper),
but highlight the most interesting cases. Most of the proofs amount to showing that certain
(sometimes quite formidable) dependent types are inhabited, and thus are natural candidates
for formalisation in a dependently typed programming language, with suitable libraries for
monoidal category theory and 2-category theory. The author intends to carry this out in the
future.

I Definition 11 (Morphism of linear-nonlinear adjunctions). Let L a M : R → S and
L′ aM ′ : R′ → S′ be linear-nonlinear adjunctions. A morphism (F,G) from the former to
the latter consists of functors

S ⊥ R

S′ ⊥ R′

L

M

L′

M ′

G F

such that
1. F is a monoidal functor
2. F and G are cartesian monoidal functors
3. The following diagram commutes:

R S R

R′ S′ R′

M L

F G F

M ′ L′

4. The following diagram commutes:

homR(Lx, y) homR′(F (Lx), Fy) homR′(L′(Gx), Fy)

homS(x,My) homS′(Gx,G(My)) homS′(Gx,M ′(Fy))

F

G

Φ Ψ

(where Φ, Ψ are the isomorphisms associated to the adjunctions L aM and L′ aM ′).

The category of linear-nonlinear adjunctions and morphisms will be called LL -Mod.
The (larger) category of linear-nonlinear adjunctions in which R and R′ do not necessarily

TYPES’14

104 Dialectica Categories and Games with Bidding

have products (and F is not necessarily cartesian monoidal) will be called MELL -Mod.
There is a forgetful functor U : LL -Mod→MELL -Mod.

This definition is based on the ‘maps of adjunctions’ in [18]. The equivalent definitions for
the intuitionistic variants are given in [19]. If we weaken this to having natural transformations
M ′ ◦ F =⇒ G ◦M and L′ ◦G =⇒ F ◦ L we obtain the linear-nonlinear equivalent of the
‘map of models’ of [16].

I Lemma 12. D is a functor MELL -Mod→ LL -Mod.

Proof. We need to prove that

Di(S) ⊥ Dl(R)

Di(S′) ⊥ Dl(R′)

Ddn(L)

Df (M)

Ddn(L′)

Df (M ′)

Df (G) Df (F)

is a morphism of LL -Mod, given that (F,G) is a morphism of MELL -Mod.
We will prove the conditions for exponentials, namely that we have commuting squares

Dl(R) Di(S) Dl(R)

Dl(R′) Di(S′) Dl(R′)

Df (M) Ddn(L)

Df (F) Df (G) Df (F)

Df (M ′) Ddn(L′)

For the left hand square let GXY ∈ Dl(R). We have

((Df (M ′) ◦Df (F))(G))XY :
(
x

y

)
7→ (M ′ ◦ F)(Gxy)

((Df (G) ◦Df (M))(G))XY :
(
x

y

)
7→ (G ◦M)(Gxy)

These are equivalent using the identity functions on X and Y and the natural isomorphism
M ′ ◦ F ∼= G ◦M . For the right hand square let GXY ∈ Di(S). Then we have

((Ddn(L′) ◦Df (G))(G))XX→Y ∗ :
(
x

f

)
7→
⊗
y∈fx

(L′ ◦G)(Gxy)

((Df (F) ◦Ddn(L))(G))XX→Y ∗ :
(
x

f

)
7→ F

⊗
y∈fx

L(Gxy)



Jules Hedges 105

S ⊥ R

Di(S) ⊥ Dl(R)

D2
i (S) ⊥ D2

l (R)

L

M

ηS ηR

Ddn(L)

Df (M)

µR

D2
dn(L)

D2
f (M)

Figure 2 Unit and multiplication of D.

Using the identity functions on X and X → Y ∗ together with the natural isomorphism
L′ ◦G ∼= F ◦ L and the fact that F is monoidal we have natural transformations

⊗
y∈fx

(L′ ◦G)(Gxy) ∼=
⊗
y∈fx

(F ◦ L)(Gxy) ∼= F

⊗
y∈fx

L(Gxy)


J

We have defined D as a functor MELL -Mod → LL -Mod. By composing with the
forgetful functor in the opposite direction we obtain an endofunctor on MELL -Mod. Next
we will investigate a monad-like structure on D. The starting point is the observation that
there is a family of functors µR : D2

l (R) → Dl(R), motivated by logical considerations in
the next section, which appears to be the multiplication of a monad. We investigate this
structure and show that, on the contrary, D is not a monad. The functors µR behave badly
with respect to exponentials, and the corresponding functors µS : D2

i (S)→ Di(S) cannot
be defined in a reasonable way. The resulting setup is illustrated in Figure 2. Even when
restricting to just MLL, the functors µR are only lax monoidal, and the second monad law
fails to hold, even in a lax way.

The main theorem of [12], which gives a sense in which the dialectica interpretation is a
pseudo-monad, is extremely closely related. There are two main differences, other than the
fact that our dialectica categories are far less general. The first is that Hofstra’s multiplication
operator, from a game-semantic point of view, treats the two players asymmetrically, and so
appears to be incompatible with classical linear logic. The second is that, by using linear-
nonlinear semantics, we insist on soundness for linear logic with exponentials. Nevertheless
the second monad law does not appear to rely on either of these facts, which implies that
the constructions are more different than they appear.

I Lemma 13. The functor

ηR : R→ Dl(R)

TYPES’14

106 Dialectica Categories and Games with Bidding

which takes an object x ∈ R to the game with one play and outcome x,

(ηR(x)){∗}{∗} :
(
∗
∗

)
7→ x

extends to a natural transformation I→ D.

Next we explicitly find D2(R) as a model of MELL. An object GXY of D2
l (R) consists of

sets X and Y together with a family of objects Gxy of Dl(R). Each such Gxy itself has the
form (Gxy)U

x
y

V x
y
, where Uxy and V xy are families of sets dependent on x and y, and we have a

family of objects (Gxy)uv of R. This defines the objects of both categories D2
l (R) and D2

i (S).
Consider objects GXY and HWZ of D2

l (R) given by (Gxy)U
x
y

V x
y

and (Hwz)P
w
z

Qw
z
, and consider a

morphism from G to H. This consists of functions f : X → W and g : Z → Y together
with morphisms from Gxgz to Hfxz in Dl(R). Each such morphism itself consists of functions
α : Uxgz → P fxz and β : Qfxz → V xgz together with morphisms in R. Thus we have

homD2
l
(R)(G,H) =

∑
f :X→W
g:Z→Y

∏
x:X
z:Z

∑
α:Ux

gz→P
fx
z

β:Qfx
z →V

x
gz

∏
u:Ux

gz

q:Qfx
z

homR

(
(Gxgz)uβq, (Hfxz)αuq

)

By thinking of D2
l (R) as a game model the definition of µR becomes obvious. We begin

with a game model R of MLL, and prepend a bidding round to obtain Dl(R), then prepend
an earlier bidding round to obtain D2

l (R). A strategy for a game in this model consists of
a bid in the first bidding round, together with a bid in the second bidding round for each
possible bid of the opponent, and finally a strategy for each resulting game. This can be
converted into a game with a single bidding round by bidding dependent types. Formally,
given GXY in D2

l (R) given by (Gxy)U
x
v

V x
y
, we define the object µR(G) of Dl(R) by

(µR(G))
∑

x:X

∏
y:Y

Ux
y∑

y:Y

∏
x:X

V x
y

:
(
x, f

y, g

)
7→ (Gxy)fygx

The functors µR are lax monoidal but not strong monoidal, and they do not commute with
exponentials, even in a lax way. The linear-nonlinear semantics gives us a better perspective
on this problem. We can think of objects of Di(S) as games with bidding, but in which in
the bidding round Abelard has the advantages granted by the exponential, namely he can
observe Eloise’s move and then choose several possible moves. In particular, the sequentiality
of the bidding prevents us from extending our intuition about µR to D2

i (S). A compound
game in D2

i (S) has two bidding rounds which are each played sequentially, and so bids are
made in the order ∃∀∃∀. We cannot reduce this to a single round of dependent bidding,
because there is no way to specify that Abelard’s first bid cannot depend on Eloise’s second
bid.

Restricting to MLL, the first monad law holds up to natural isomorphism.

I Theorem 14. There are natural isomorphisms

Dl(R) D2
l (R)

D2
l (R) Dl(R)

ηDl(R)

µRDf (ηR)

µR

Jules Hedges 107

The second monad law

D3
l (R) D2

l (R)

D2
l (R) Dl(R)

µDl(R)

µRDf (µR)

µR

fails, even in a lax way (that is, this diagram does not contain a 2-cell).

7 Towards the additives

In this section we briefly look at the question of how the completeness result in section 5
should be extended to full LL. The intuition is that we are trying to simulate the behaviour
of the simultaneous quantifier in [25], in order to find a better analogue to the characterisation
theorem ϕ˛ Æx

y |ϕ|
x
y . This is ongoing work by the author, and this section only outlines

the method.
We extend the language of MELL as follows. For a double-indexed family of formulas

|ϕ|XY we freely add a formula called
(⊕x:X

&y:Y
)
|ϕ|xy . These new formulas are called simultaneous

additives (they could also be called ‘Henkin additives’, because simultaneous quantifiers
are a special case of Henkin quantifiers). The definition is fully recursive, so the individual
formulas |ϕ|xy may themselves be simultaneous additives.

The intuition for simultaneous additives is exactly that for Henkin quantifiers in dialogue
semantics. In dialogue semantics, for a folded additive disjunction ⊕x:X Eloise (the verifier)
chooses x, and for a folded additive conjunction &y:Y Abelard (the falsifier) chooses y. For
the simultaneous additive

(⊕x:X
&y:Y

)
these choices are made simultaneously by the players.

There is a single introduction rule for simultaneous additives that captures this intuition.
Suppose we have double-indexed families of formulas |ϕi|Xi

Yu
for 1 ≤ i ≤ m and |ψj |Uj

Vj
for

1 ≤ j ≤ n. For all functions

fj :
∏
i′

Xi′ ×
∏
j′ 6=j

Vj′ → Uj

gi :
∏
i′ 6=i

Xi′ ×
∏
j′

Vj′ → Yi

for 1 ≤ i ≤ m and 1 ≤ j ≤ n we have a proof rule

Γ,
(
|ϕi|xi

gi(~x−i,~v)

)m
i=1
` ∆,

(
|ψj |fj(~x,~v−j)

vj

)n
j=1

for all ~x ∈
∏
iXi, ~v ∈

∏
j Vj

Γ,
((⊕xi:Xi

&yi:Yi

)
|ϕi|xi

yi

)m
i=1
` ∆,

((⊕uj :Uj

&vj :Vj

)
|ψj |uj

vj

)n
j=1

There is a hypothesis for all tuples ~x,~v, hence this rule is generally infinitary. (The proof rule
in [25] on which this is based uses free variables for ~x and ~v instead; it might be necessary to
impose a restriction that the subproofs are ‘uniform’ in the parameters in some way.) The
extended language will be called DLL.

TYPES’14

108 Dialectica Categories and Games with Bidding

We extend the valuation of formulas in a model D(R) to include simultaneous additives.

If each |ϕ|xy is a formula in the language of DLL with interpretation
∣∣∣|ϕ|xy∣∣∣Ux

y

V x
y

then the

interpretation of
(⊕x:X

&y:Y
)
|ϕ|xy is given precisely by the µ operator:

∣∣∣∣(⊕x : X
&y : Y

)
|ϕ|xy

∣∣∣∣
∑

x:X

∏
y:Y

Ux
y∑

y:Y

∏
x:X

V x
y

:
(
x, f

y, g

)
7→
∣∣∣|ϕ|xy∣∣∣fy

gx

It is an open question what should be the semantics of simultaneous additives in an arbitrary
category. If it exists, it must have properties of both a limit and a colimit, since it includes
products and coproducts as special cases.

I Theorem 15. Let R be any category, then Dl(R) validates the simultaneous additive
introduction rule.

If we try to prove the equivalence of ϕ and
(⊕x:X

&y:Y
)
|ϕ|xy , where ϕ is a formula of LL, we find

that we need some additional principles beyond DLL, corresponding to the characterising
principles of a functional interpretation. Two of these are(

⊕x : X,u : U
&f : Y U , g : V X

)
|ϕ⊗ ψ|x,uf,g (

(
⊕x : X
&y : Y

)
|ϕ|xy ⊗

(
⊕u : U
&v : V

)
|ψ|uv

and(
⊕z : X + U

&y : Y, v : V

)
|ϕ⊕ ψ|zy,v (

(
⊕x : X
&y : Y

)
|ϕ|xy ⊕

(
⊕u : U
&v : V

)
|ψ|uv

The first is a propositional analogue of the parallel choice principle in [26], which itself is a
generalisation of the independence of premise principle. Write DLL# for DLL extended with
these axioms and others for the exponential. Then, by directly simulating the characterisation
theorem for a functional interpretation it should be possible to prove that if R is sound and
complete for MELL then D(R) is sound and complete for DLL#. In particular, D(AG)
should be a sound and complete model of DLL#.

We continue by a purely syntactic argument. We prove that DLL has full cut elimination,
and is a conservative extension of LL by identifying the usual additives with suitable
simultaneous additives. Now if we take a formula ϕ in the language of LL which is validated
by D(AG), we know that ϕ is derivable in DLL#, with a proof potentially involving both
cuts and the characterising principles. In particular, since ϕ does not contain simultaneous
additives, any simultaneous additives introduced in the proof by a characterising principle
must be removed by a cut. By analysing the ways in which cut elimination can fail in the
presence of characterising principles, it should be possible to identity axioms in the language
of LL which are sound and complete for D(AG). A simple example is the formula ⊥⊗>,
which is valid in every dialectica category but is not provable in MELL.

References
1 Jeremy Avigad and Solomon Feferman. Gödel’s functional (“Dialectica”) interpretation. In

S. Buss, editor, Handbook of proof theory, volume 137 of Studies in logic and the foundations
of mathematics, pages 337–405. North Holland, Amsterdam, 1998.

2 Michael Barr. *-autonomous categories and linear logic. Mathematical structures in com-
puter science, 1(2):159–178, 1991.

Jules Hedges 109

3 Andrej Bauer. The Dialectica interpretation in Coq. Available electronically at
http://math.andrej.com/2011/01/03/the-dialectica-interpertation-in-coq/,
2011.

4 P. N. Benton. A mixed linear and non-linear logic: proofs, terms and models (preliminary
report). Technical report, University of Cambridge, 1994.

5 Bodil Biering. Cartesian closed Dialectica categories. Annals of pure and applied logic,
156(2-3):290–307, 2008.

6 Andreas Blass. A game semantics for linear logic. Annals of pure and applied logic, 1991.
7 Valeria de Paiva. The dialectica categories. In Proc. of categories in computer science,

1989.
8 Valeria de Paiva. Categorical multirelations, linear logic and petri nets. Technical report,

University of Cambridge, 1991.
9 Valeria de Paiva. The dialectica categories. Technical report, University of Cambridge,

1991.
10 Valeria de Paiva. Lineales: algebras and categories in the semantics of linear logic. In

D. Barker-Plummer, D. Beaver, Johan van Benthem, and P. Scotto di Luzio, editors, Words,
Proofs and Diagrams. CSLI, 2002.

11 Valeria de Paiva. Dialectica and Chu construtions: Cousins? Theory and applications of
categories, 17(7):127–152, 2007.

12 Pieter Hofstra. The dialectica monad and its cousins. In Models, Logics, and Higher-
dimensional Categories: A Tribute to the Work of Mihaly Makkai, volume 53 of CRM
Proceedings and Lecture Notes, pages 107–139. American Mathematical Society, 2011.

13 Martin Hyland. Proof theory in the abstract. Annals of pure and applied logic, 114(1-3):43–
78, 2002.

14 Martin Hyland. Slides of an invited lecture ‘Fibrations in Logic’ at
Category Theory 2007, Coimbra, Portrugal. Available electronically at
https://www.dpmms.cam.ac.uk/ martin/Research/Slides/ct2007.pdf, 2007.

15 Martin Hyland and Luke Ong. Fair games and full completeness for multiplicative linear
logic without the MIX rule. Unpublished manuscript, 1993.

16 Martin Hyland and Andrea Schalk. Glueing and orthogonality for models of linear logic.
Theoretical computer science, 294(1-2):183–231, 2003.

17 Ulrich Kohlenbach. Applied proof theory: proof interpretations and their use in mathematics.
Springer, 2008.

18 Saunders Mac Lane. Categories for the working mathematician. Springer, 1978.
19 Maria Emilia Maietti, Paola Maneggia, Valeria de Paiva, and Eike Ritter. Relating cat-

egorical semantics for intuitionistic linear logic. Applied categorical structures, 13(1):1–36,
2005.

20 Paul-André Melliès. Asynchronous games 3: An innocent model of linear logic. Proceedings
of the 10th Conference on Category Theory and Computer Science, 2004.

21 Paul-André Melliès. Asynchronous games 4: A fully complete model of propositional linear
logic. Proceedings of the 20th Conference on Logic in Computer Science, 2005.

22 Paul-André Melliès. Categorical semantics of linear logic. In Interactive models of compu-
tation and program behaviour. Société Mathématique de France, 2009.

23 Alexandre Miquel. A model for impredicative type systems with universes, intersection
types and subtyping. In In Proceedings of the 15th Annual IEEE Symposium on Logic in
Computer Science (LICS’00), 2000.

24 Paulo Oliva. Computational interpretations of classical linear logic. Proceedings of
WoLLIC’07, 4576:285–296, 2007.

25 Paulo Oliva. An analysis of Gödel’s dialectica interpretation via linear logic. Dialectica,
62:269–290, 2008.

TYPES’14

110 Dialectica Categories and Games with Bidding

26 Paulo Oliva. Functional interpretations of linear and intuitionistic logic. Information and
Computation, 208(5):565–577, 2010.

27 Philip J. Scott. The “Dialectica” interpretation and categories. Mathematical logic quarterly,
24(31-36):553–575, 1978.

28 Masaru Shirahata. The dialectica interpretation of first-order classical affine logic. Theory
and applications of categories, 2006.

29 Matthijs Vákár. Syntax and semantics of linear dependent types. Technical report, Uni-
versity of Oxford, 2014.

	Introduction
	The dialectica transformations of a category
	The dialectica transformation of a linear-nonlinear adjunction
	Games with bidding
	Relative completeness for additive-free fragments
	D is a functor
	Towards the additives

