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Abstract
A Boolean constraint satisfaction problem (CSP) is called approximation resistant if independ-
ently setting variables to 1 with some probability α achieves the best possible approximation ratio
for the fraction of constraints satisfied. We study approximation resistance of a natural subclass
of CSPs that we call Symmetric Constraint Satisfaction Problems (SCSPs), where satisfaction of
each constraint only depends on the number of true literals in its scope. Thus a SCSP of arity k
can be described by a subset S ⊆ {0, 1, . . . , k} of allowed number of true literals.

For SCSPs without negation, we conjecture that a simple sufficient condition to be approx-
imation resistant by Austrin and Håstad is indeed necessary. We show that this condition has
a compact analytic representation in the case of symmetric CSPs (depending only on the gap
between the largest and smallest numbers in S), and provide the rationale behind our conjec-
ture. We prove two interesting special cases of the conjecture, (i) when S is an interval (i.e.,
S = {i | l ≤ i ≤ r} for some l ≤ r) and (ii) when S is even (i.e., s ∈ S ⇔ k − s ∈ S). For
SCSPs with negation, we prove that the analogous sufficient condition by Austrin and Mossel is
necessary for the same two cases, though we do not pose an analogous conjecture in general.
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1 Introduction

Constraint Satisfaction Problems (CSPs) are among the most fundamental and well-studied
class of optimization problems. Given a fixed integer k and a predicate Q ⊆ {0, 1}k, an
instance of CSP(Q) without negation is specified by a set of variables X = {x1, . . . , xn}
on the domain {0, 1} and a set of constraints C = {C1, . . . , Cm}, where each constraint
Cj = (xj,1, . . . , xj,k) is a k-tuple of variables. An assignment X 7→ {0, 1} satisfies Cj
if (xj,1, . . . , xj,k) ∈ Q. For an instance of CSP(Q) with negation, each constraint Cj is
additionally given offsets (bj,1, . . . , bj,k) ∈ {0, 1}k and is satisfied if (xj,1⊕bj,1, . . . , xj,k⊕bj,k) ∈
Q where ⊕ denotes the addition in F2. The goal is to find an assignment that satisfies as
many constraints as possible.

CSPs contain a large number of famous problems such as Max-SAT (with negation), and
Max-Cut / Max-Set-Splitting (without negation) by definition. They have always played a
crucial role in the theory of computational complexity, as many breakthrough results such as
the NP-completeness of 3SAT, the Probabilistically Checkable Proofs (PCP) theorem, and
the Unique Games Conjecture (UGC) study hardness of a certain CSP.
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Based on these works, recent works on approximability of CSPs focus on characterizing
every CSP according to its approximation resistance. We define random assignments to be
the class of algorithms that assign xi ← 1 with probability α independently. A CSP is called
approximation resistant, if for any ε > 0, it is NP-hard to have a (ρ∗ + ε)-approximation
algorithm, where ρ∗ is the approximation ratio achieved by the best random assignment.
Even assuming the UGC, the complete characterzation of approximation resistance has not
been found, and previous works either change the notion of approximation resistance or
study a subclass of CSPs to find a characterization, and more general results tend to suggest
more complex characterizations.

This work considers a natural subclass of CSPs where a predicate Q is symmetric –
for any permutation π : [k] 7→ [k], (x1, . . . , xk) ∈ Q if and only if (xπ(1), . . . , xπ(k)) ∈ Q.
Equivalently, for every such Q, there exists S ⊆ [k] ∪ {0} such that (x1, . . . , xk) ∈ Q if
and only if (x1 + · · · + xk) ∈ S. Let SCSP(S) denote such a symmetric CSP. While this
is a significant restriction, it is a natural one that still captures the following fundamental
problems, such as Max-SAT, Max-Not-All-Equal-SAT, t-out-of-k-SAT (with negation), and
Max-Cut, Max-Set-Splitting, Discrepancy minimization (without negation). Except the work
of Austrin and Håstad [2], many works on this line focused CSPs with negation, while we
feel that the aforementioned problems without negation have a very natural interpretation
as (hyper)graph coloring and are worth studying.

There is a simple sufficient condition to be approximation resistant due to Austrin and
Mossel [4] with negation, and due to Austrin and Håstad [2] without negation. For SCSPs,
we show that these simple sufficient conditions can be further simplfied and understood more
intuitively, and suggest that they might also be necessary for and thus precisely characterize
approximation resistance. We prove it for two natural special cases (which capture all
problems mentioned in the last paragraph) for both SCSPs with / without negation, and
provide reasons that we believe this is true at least for SCSPs without negation.

1.1 Related Work
Given the importance of CSPs and the variety of problems that can be formulated as a
CSP, it is a natural task to classify all CSPs according to their computational complexity
for some well-defined task. For the task of deciding satisfiability (i.e., finding an assignment
that satisfies every constraint if there is one), the work of Schaefer [14] gave a complete
characterization on the Boolean domain in 1978.

However, such a classification seems much harder when we study approximability of
CSPs. Since the seminal work of Håstad [11], many natural problems have been proven to be
approximation resistant. These examples include Max-3SAT / Max-3LIN (with negation) and
Max-4-Set-Splitting (without negation), and for Boolean CSPs of arity 3, putting together
the hardness results of [11] with the algorithmic results of Zwick [16], it is known that a
CSP is approximation resistant if and only if it is implied by parity. However, characterizing
approximation resistance of every CSP for larger arity k is a harder task. The Ph.D. thesis of
Hast [10] is devoted to this task for k = 4, and succeeds to classify 354 out of 400 predicates.

The advent of the Unique Games Conjecture (UGC) [12], though it is not as widely
believed as P 6= NP, revived the hope to classify every CSP according to its approximation
resistance. For CSPs with negation, the work of Austrin and Mossel [4] gave a simple
sufficient condition to be approximation resistant, namely the existence of a balanced
pairwise independent distribution that is supported on the satisfying assignments of the
predicate. The work of Austrin and Håstad [2] proved a similar sufficient condition for
CSPs without negation, and that if this condition is not met, this predicate (both with /
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without negation) is useful for some polynomial optimization – for every such Q, there is
a k-variate polynomial p(y1, . . . , yk) such that if we are given an instance of CSP(Q) that
admits a (1− ε)-satisfying assignment, the altered problem, where we change each constraint
Cj ’s payoff from I[(xj,1 ⊕ bj,1, . . . , xj,k ⊕ bj,k) ∈ Q] (where I[·] is the indicator function) to
p(xj,1 ⊕ bj,1, . . . , xj,k ⊕ bj,k), admits an approximation algorithm that does better than any
random assignment.

Predicates that don’t admit a pairwise independent distribution supported on their
satisfying assignments can be expressed as the sign of a quadratic polynomial (see [2]). This
motivates the study of the approximability of such predicates, though it is known that
there are approximation resistant predicates that can be expressed as a quadratic threshold
function and thus the sufficient condition of Austrin and Mossel [4] is not necessary for
approximation resistance. Still this motivates the question of understanding which quadratic
threshold functions can be approximated non-trivially.

Cheraghchi, Håstad, Isaksson, and Svensson [8] studied the simpler case of predicates
which are the sign of a linear function with no constant term, obtaining algorithms beating
the random assignment threshold of 1/2 in some special cases. Austrin, Benabbas, and
Magen [1] conjecture that every such predicate can be approximated better than a factor 1/2
and is therefore not approximation resistant. They prove that predicates that are the sign of
symmetric quadratic polynomials with no constant term are not approximation resistant.

Assuming the UGC, the work of Austrin and Khot [3] gave a characterization of ap-
proximation resistance for even k-partite CSPs, and Khot, Tulsiani, and Worah [13] gave
a characterization of strong approximation resistance for general CSPs – strong approxim-
ation resistance roughly means hardness of finding an assignment that deviates from the
performance of the random assignment in either direction (i.e., it is hard to also find an
assignment saisfying a noticeably smaller fraction of constraints than the random assignment).
These two works are notable in studying approximation resistance of general CSPs, but their
characterizations become more complicated, which they suggest is necessary.

Without the UGC, even the existence of pairwise independent distribution supported on
the predicate is not known to be sufficient for approximation resistance. Another line of work
shows partial results either by using a stronger condition [7], or by using a restricted model
of computation (e.g., Sherali-Adams or Lasserre hierarchy of convex relaxations) [15, 6, 5].

1.2 Our Results
Our work was initially motivated by a simple observation that for symmetric CSPs, the
sufficient condition to be approximation resistant by Austrin and Håstad [2] admits a more
compact and intuitive two-dimensional description in R2.

Fix a positive integer k and denote [k] = {1, 2, . . . , k}. For s ∈ [k]∪{0}, let P (s) ∈ R2 be
the point defined by P (s) := ( sk ,

s(s−1)
k(k−1) ). For any s, P (s) lies on the curve y = k

k−1x
2 − x

k−1 ,
which is slightly below the curve y = x2 for x ∈ [0, 1]. Given a subset S ⊆ [k] ∪ {0}, let
PS := {P (s) : s ∈ S} and conv(PS) be the convex hull of PS . For symmetric CSPs, the
condition of Austrin and Håstad depends on whether this convex hull intersects a certain
curve or a point.

For SCSP(S) without negation, the condition becomes whether conv(PS) intersects the
curve y = x2. If we let smin and smax be the minimum and maximum number in S

respectively, by convexity of y = k
k−1x

2 − x
k−1 , it is equivalent to that the line passing

P (smin) and P (smax) and y = x2 intersect, which is again equivalent to (see Lemma A.4)

(smax + smin − 1)2

k − 1 ≥ 4smaxsmin
k

. (1)

APPROX/RANDOM’15



308 Towards a Characterization of Approximation Resistance for Symmetric CSPs

Figure 1 An example when k = 10 and S = {2, 5, 8}. The solid curve is y = x2 and the dashed
curve is y = k

k−1x
2 − x

k−1 , where all P (s) lie. In this case the triangle conv(PS) intersects y = x2,
so SCSP(S) is approximation resistant.

A simple calculation shows that the above condition is implied by (smax − smin) ≥√
2(smax + smin) which in turn holds if (smax − smin) ≥ 2

√
k. This means that SCP(S) is

approximation resistant unless smin and smax are very close. See Figure 1 for an example.
We conjecture that this simple condition completely characterizes approximation resistance
of symmetric CSPs without negation. Note that we exclude the cases where S contains 0 or
k, since without negation, a trivial deterministic strategy to give the same value to every
variable satisfies every constraint.

I Conjecture 1.1. For S ⊆ [k − 1], SCSP(S) without negation is approximation resistant if
and only if (1) holds.

The hardness claim, the “if” part, is currently proved only under the UGC, but our focus
is on the algorithmic claim that the violation of (1) leads to an approximation algorithm
that outperforms the best random assignment. Even though we were not formally able to
prove Conjecture 1.1, we explain the rationale behind the conjecture and we prove it for the
following two natural special cases in Section 2:
1. S is an interval: S contains every integer from smin to smax.
2. S is even: s ∈ S if and only if k − s ∈ S.

I Theorem 1.2. If S ⊆ [k−1] and S is either an interval or even, SCSP(S) without negation
is approximation resistant if and only if (1) holds (the hardness claim, i.e., the “if" part, is
under the Unique Games conjecture).

For SCSP(S) with negation, the analogous condition is whether conv(PS) contains a
single point ( 1

2 ,
1
4 ) or not. While it is tempting to pose a conjecture similar to Conjecture 1.1,

we refrain from doing so due to the lack of evidence compared to the case without negation.
However, we prove the following theorem which shows that the analogous characterization
works at least for the two special cases introduced above.

I Theorem 1.3. If S ⊂ [k]∪{0} and S is either an interval or even, SCSP(S) with negation
is approximation resistant if and only if conv(PS) contains ( 1

2 ,
1
4 ) (the hardness claim, i.e.,

the “if" part, is under the Unique Games conjecture).
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1.3 Techniques
We mainly focus on SCSPs without negation, and briefly sketch why the violation of (1)
might lead to an approximation algorithm that outperforms the best random assignment.
Let α∗ be the probability that the best random assignment uses, and ρ∗ be the expected
fraction of constraints satisfied by it. Our algorithms follow the following general framework:
sample correlated random variables X1, . . . , Xn, where each Xi lies in [−α∗, 1 − α∗], and
independently round xi ← 1 with probability α∗ +Xi.

Fix one constraint C = (x1, . . . , xk) (for SCSPs with negation, additionally assume that
offsets are all 0). Using symmetry, the probability that it is satisfied by the above strategy
can be expressed as

ρ∗ +
k∑
l=1

cl E
I∈([k]

l )
[
∏
i∈I

Xi].

For some coefficients {cl}l∈[k]. These coefficients cl can be expressed by the following two
ways.

Let f(α) : [0, 1] 7→ [0, 1] the probability that a constraint is satisfied by a random
assignment with probability α. cl is proportional to f (l)(α∗), the l’th derivative of f
evaluated at α∗.
Let Q = {(x1, . . . , xk) ∈ {0, 1}k : (x1 + · · ·+ xk) ∈ S} be the predicate associated with S.
When α∗ = 1

2 , cl is proportional to the Fourier coefficient Q̂(T ) with |T | = l.

Given this observation, α∗ for SCSPs without negation has nice properties since it should
be a global maximum in the interval [0, 1]. In particular, it should be a local maximum so
that c1 = f ′(α) = 0 and c2, f

′′(α) ≤ 0. By modifying an algorithm by Austrin and Håstad [2],
we prove that we can sample X1, . . . , Xn such that the average second moment E[XiXj ] is
strictly negative if (1) does not hold. By scaling Xi’s so that the product of at least three
Xi’s becomes negligible, this idea results in an approximation algorithm that outperforms
the best random assignment, except the degenerate case where c2 = f ′′(α∗) = 0 even though
α∗ is a local maximum. This is the main rationale behind Conjecture 1.1 and we elaborate
this belief more in Section 2. It is notable that our conjectured characterization for the case
without negation only depends on the minimum and the maximum number in S, while α∗
depends on other elements.

For SCSPs with negation where α∗ is fixed to be 1
2 , the situation becomes more complicated

since c1 and f ′(α) are not necessarily zero and there are many ways that conv(PS) does
not contain ( 1

2 ,
1
4 ) (in the case of SCSPs without negation, the slope of the line separating

conv(PS) and y = x2 is always positive, but it is not the case here). Therefore, a complete
characterization requires understanding interactions among c1, c2, and the separating line.
We found that the somewhat involved method of Austrin, Benabbas, and Magen [1] gives a
way to sample these X1, . . . , Xn with desired first and second moments to prove our results
when S exhibits additional special structures, but believe that a new set of ideas are required
to give a complete characterization.

1.4 Organization
In Section 2, we study SCSPs without negation. We further elaborate our characterization
in Section 2.1, and provide an algorithm in Section 2.2. We study SCSPs with negation in
Section 3.

APPROX/RANDOM’15
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2 Symmetric CSPs without negation

2.1 A 2-dimensional characterization
Fix k and S ⊆ [k − 1]. Our conjectured condition to be approximation resistant is that
conv(PS) intersects the curve y = x2, which is equivalent to (1). Austrin and Håstad [2]
proved that this simple condition is sufficient to be approximation resistant.

I Theorem 2.1 ([2]). Let S ⊆ [k − 1] be such that (1) holds. Then, assuming the Unique
Games Conjecture, SCSP(S) without negation is approximation resistant.

They studied general CSPs and their condition is more complicated than stated here. See
Appendix A to see how it is simplified for SCSPs. We conjecture that for SCSPs, this
condition is indeed equivalent to approximation resistance.

I Conjecture 2.2 (Restatement of Conjecture 1.1). For S ⊆ [k−1], SCSP(S) without negation
is approximation resistant if and only if (1) holds.

To provide our rationale behind the conjecture, we define the function f : [0, 1] 7→ [0, 1]
to be the probability that one constraint is satisfied by the random assignment that gives
xi ← 1 independently with probability α.

f(α) =
∑
s∈S

(
k

s

)
αs(1− α)k−s

Let α∗ ∈ [0, 1] be a value that maximizes f(α), and ρ∗ := f(α∗). There might be more
than one α with f(α) = ρ∗. In Section 2.2, we prove that S is not approximation resistant if
there exists one such α∗ with a negative second derivative.

I Theorem 2.3. S ⊆ [k − 1] be such that (1) does not hold and there exists α∗ ∈ [0, 1] such
that f(α∗) = ρ∗ and f ′′(α∗) < 0. Then, there is a randomized polynomial time algorithm for
SCSP(S) that satisfies strictly more than ρ∗ fraction of constraints in expectation.

Since f(0) = f(1) = 0 < ρ∗, every α ∈ [0, 1] with f(α) = ρ∗ must be a local maximum,
so it should have f ′(α) = 0 and f ′′(α) ≤ 0. If α is a local maximum, f ′′(α) = 0 also
implies f ′′′(α) = 0, so ruling out this degeneracy at a global maximum gives the complete
characterization!

Ruling out this degeneracy at a global maximum does not seem to be closely related to
general shape of f(α) or S. It might still hold even if f(α) has multiple global maxima, or S
satisfies (1) so that SCSP(S) is approximation resistant.

However, examples in Figure 2 led us to believe that the condition (1) is also related to
general shape of f . When S contains two numbers l and r with l + r = k, as two numbers
become far apart, f becomes unimodal to bimodal, and the transition happens exactly
when (1) starts to hold. Furthermore, the degenerate case f ′(α∗) = f ′′(α∗) = 0 happens
when (1) holds with equality. Intuitively, when two numbers l and r are far apart, it is a
better strategy to focus on only one of them (i.e. α∗ ≈ l

k or r
k ) so f is bimodal, but if (1)

does not hold and l and r are close enough, it is better to target in the middle to satisfy both
l and r with reasonability probability so that f is unimodal with a large negative curvature
at α∗.

Having more points between l and r seems to strengthen the above intuition, and removing
the assumption that l + r = k only seems to add algebraic complication without hurting the
intuition. Thus, we propose the following stronger conjecture that implies Conjecture 1.1.
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Figure 2 Examples for k = 36. Left: S = {18}, (1) is not satisfied, unimodal with α∗ = 1
2 ,

f ′′( 1
2 ) < 0. Middle: S = {15, 21}, (1) is satisfied with equality, unimodal with α∗ = 1

2 , but
f ′′( 1

2 ) = 0. Right: S = {14, 22}, (1) is satisfied with slack, bimodal with two α∗, but f ′′(α∗) < 0.

I Conjecture 2.4. If (1) does not hold, f(α) is unimodal in [0, 1] with the unique maximum
at α∗, and f ′′(α∗) < 0.

While we are unable to formally prove Conjecture 2.4 for every S, we establish it for the
case when S is either an interval (Section 2.3) or even (Section 2.4), thus proving Theorem 1.2.

2.2 Algorithm
Let α∗ ∈ [0, 1] be such that f(α∗) = ρ∗ and f ′′(α∗) < 0. Furthermore, suppose that S
does not satisfy (1). We give a randomized approximation algorithm which is guaranteed to
satisfy strictly more than ρ∗ fraction of constraints in expectation, proving Theorem 2.3. Let
D := D(k) be a large constant determined later. Our strategy is the following.
1. Sample X1, . . . , Xn from some correlated multivariate normal distribution where each Xi

has mean 0 and variance at most σ2 for some σ := σ(k).
2. For each i ∈ [n], set

X ′i =


−Dα∗ if Xi < −Dα∗

D(1− α∗) if Xi > D(1− α∗)
Xi otherwise

so that α∗ + X′i
D is always in [0, 1].

3. Set xi ← 1 independently with probability α∗ + X′i
D .

Fix one constraint C and suppose that C = (x1, . . . , xk). We consider a multivariate
polynomial

g(y1, . . . , yk) :=
∑

T⊆[k],|T |∈S

∏
i∈T

(α∗ + yi
D

)
∏

i∈[k]\T

(1− α∗ − yi
D

).

g(X ′1, . . . , X ′k) is equal to the probability that the constraint C is satisfied. By symmetry,
for any 1 ≤ i1 < · · · < il ≤ k, the coefficient of a monomial yi1yi2 . . . yil only depends on l.
Let cl be this coefficient.

I Lemma 2.5. cl = (k−l)!
k!Dl f

(l)(α∗).

Proof. Note that g(y, y, . . . , y) = f(α∗ + y
D ), which has the Taylor expansion

k∑
l=0

f (l)(α∗)
l! ( y

D
)l.

APPROX/RANDOM’15
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Since g is multilinear, by symmetry, the coefficient of a monomial yi1yi2 . . . yil in g(y1, . . . , yk)
is equal to the coefficient of yl in f(α∗ + y

D ) divided by
(
k
l

)
, which is cl = (k−l)!

k!Dl f
(l)(α∗). J

We analyze the overall performance of this algorithm. Let Dl be the distribution on([n]
l

)
where we sample a constraint C uniformly at random, sample l distinct variables from(

C
l

)
, and output their indices. We prove the following lemma, which implies that by taking

large D, the effect of truncation from Xi to X ′i and the contribution of monomials of degree
greater than two become small.

I Lemma 2.6. The expected fraction of constraints satisfied by the above algorithm is at
least

ρ∗ + c2

(
k

2

)
E

(i,j)∼D2
[XiXj ]−Ok( 1

D3 ) = ρ∗ + f ′′(α∗)
2D2 E

(i,j)∼D2
[XiXj ]−Ok( 1

D3 ),

where Ok(·) is hiding constants depending on k.

Proof. Note that as long as S does not contain 0 or k, α∗ ∈ [ 1
k , 1−

1
k ]. For any 1 ≤ l ≤ k

and 1 ≤ i1 < · · · < il ≤ k, we apply Lemma B.1 (set D ← D
k ),

|E[
l∏

j=1
Xij ]− E[

l∏
j=1

Xij ]| ≤ 2l · σl · l! · e−D/kl.

If we expand f(α) =
∑k
l=0 alα

l, each coefficient al has magnitude at most 2k, which
means that |f (l)(α∗)| is bounded by k2kk!. Therefore, any |cl| is at most k2kk!. Let cmax
be this quantity. Summing over this error for all monomials, the probability that a fixed
constraint C = {x1, . . . , xk} is satisfied is

E[g(X ′1, . . . , X ′k)] ≥ E[g(X1, . . . , Xk)]− cmax · 22k · σk · k! · e−D/k
2

= ρ∗ +
k∑
l=1

cl
∑

1≤i1<···<il≤k
Xi1Xi2 . . . Xil −Ok(e−D/k

2
)

= ρ∗ +
k∑
l=1

cl
∑

1≤i1<···<il≤k
Xi1Xi2 . . . Xil −Ok(e−D/k

2
)

Averaging over m constraints, the expected fraction of satisfied constraints is at least

ρ∗ +
k∑
l=1

cl

(
k

l

)
E

(i1,...,il)∼Dl

[Xi1 . . . Xil ]−Ok(e−D/k
2
)

= ρ∗ + c2

(
k

2

)
E

(i1,i2)∼D2
[Xi1Xi2 ] +

k∑
l=3

cl

(
k

l

)
E

(i1,...,il)∼Dl

[Xi1 . . . Xil ]−Ok(e−D/k
2
)

= ρ∗ + c2

(
k

2

)
E

(i1,i2)∼D2
[Xi1Xi2 ]−Ok( 1

D3 ),

where the first equality follows from the fact that E[Xi] = 0 for all i. Recall that cl =
(k−l)!
k!Dl f

(l)(α∗) so that |cl| = Ok( 1
Dl ). J

Therefore, if we have a way to sample X1, . . . , Xn such that each Xi has mean 0 and
variance at most σ2, and E(i,j)∼D2 [XiXj ] < −δ for some δ := δ(k) > 0, taking D large
enough ensures that the algorithm satisfies strictly more than ρ∗ fraction of constraints. We
now show how to do such a sampling.
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We assume that for some ε := ε(k) > 0, the given instance admits a solution that
satisfies (1− ε) fraction of constraints. Otherwise, the random assignment with probability
α∗ guarantees the approximation ratio of ρ∗

1−ε . The following lemma completes the proof of
Theorem 2.3.

I Lemma 2.7. Suppose that S does not satisfy (1). For sufficiently small ε, δ > 0 and
sufficiently large σ all depending only on k, given an instance of SCSP(S) where (1 − ε)
fraction of constraints are simultaneously satisfiable, it is possible to sample X1, . . . , Xn from
a multivariate normal distribution such that each Xi has mean 0 and variance bounded by
σ2, and E(i,j)∼D2 [XiXj ] < −δ.

Proof. Recall that (1) is equivalent to the fact that the line ` passing P (smin) and P (smax)
intersects the curve y = x2. Let a be the value that the vector (a,−1) is orthogonal to `. a
is strictly positive since ` has a positive slope. If ` and y = x2 do not intersect, there is a
line with the same slope as ` that strictly separates y = x2 and {P (s) : s ∈ S} – in other
words, there exists c ∈ R such that

ax− y + c > γ > 0 for (x, y) ∈ {P (s) : s ∈ S}.
ax− x2 + c < 0 for any x ∈ R⇒ c < −a2

4 .

Consider a constraint C = (x1, . . . , xk). Since (Ei∈[k][xi],Ei 6=j∈[k][xixj ]) = P (x1+· · ·+xk),
if C is satisfied,

a E
i∈[k]

[xi]− E
i 6=j∈[k]

[xixj ] + c > γ.

Let

η := − min
x1,...,xk∈{0,1}

(
a E
i∈[k]

[xi]− E
i 6=j∈[k]

[xixj ] + c

)
.

We solve the following semidefinite programm (SDP):

maximize a E
i∈D1

[〈v0, vi〉]− E
i,j∈D2

[〈vi, vj〉] + c

subject to ||v0|| = 1
〈vi, v0〉 = ||vi||2 for all i ∈ [n]

Note that 〈vi, v0〉 = ||vi||2 implies ||vi|| ≤ 1. For any assignment to x1, . . . , xn, setting
vi = xiv0 satisfies that xi = 〈v0, vi〉 and xixj = 〈vi, vj〉. Since at least (1 − ε) fraction
of constraints can be simultaneously satisfied, the optimum of the above SDP is at least
(1− ε)γ − εη. Given γ > 0 and η, take sufficiently small ε, δ > 0 such that (1− ε)γ − εη = δ.
There are finitely many S (thus γ and η) for each k, so ε and δ can be taken to depend only
on k. Given vectors v0, v1, . . . , vn, we sample X1, . . . , Xn by the following simple procedure:
1. Sample a vector g whose coordinates are independent standard normal.
2. Let Xi = 〈g, vi − a

2v0〉.

It is clear that E[Xi] = 0 for each i, and E[X2
i ] = ||vi − a

2v0||2 ≤ (a+ 1)2 + 1, so taking
σ := σ(k) large enough ensures that the variance of each Xi is bounded by σ2. We now
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compute the second moment.

E
i,j∼D2

[XiXj ]

= E
i,j∼D2

[〈vi −
a

2v0, vj −
a

2v0〉]

= E
i,j∼D2

[〈vi, vj〉]− a E
i∈D1

[〈vi, v0〉] + a2

4
< E

i,j∼D2
[〈vi, vj〉]− a E

i∈D1
[〈vi, v0〉]− c

≤ − ((1− ε)γ − εη) = −δ,

where the first inequality follows from c < −a
2

4 and the second follows from the optimality
of our SDP. J

2.3 Case of Interval S
We study properties of f(α) when S is an interval – S = {smin, smin+ 1, . . . , smax−1, smax},
and prove Conjecture 2.4 for this case. One notable fact is that as long as S is interval, the
conclusion of Conjecture 2.4 is true even if S does satisfy (1) and becomes approximation
resistant.

I Lemma 2.8. Suppose S ⊆ [k − 1] is an interval. Then, f(α) is unimodal in [0, 1] with the
unique maximum at α∗ and f ′′(α∗) < 0.

Proof. Let l := smin and r = smax. Given

f(α) =
r∑
s=l

(
k

s

)
αs(1− α)k−s

and

f ′(α) =
r∑
s=l

(
k

s

)(
sαs−1(1− α)k−s − (k − s)αs(1− α)k−s−1

)
,

since
(
k
s

)
(k − s) =

(
k
s+1
)
(s+ 1), we have

f ′(α) =
(
k

l

)
lαl−1(1− α)k−l −

(
k

r

)
(k − r)αr(1− α)k−r−1.

If 0 < α < 1, setting β := α
1−α gives a unique non-zero solution to f ′(β) = 0. This proves

the unimodality. For the second derivative,

f ′′(α) =
(
k

l

)
l(l − 1)αl−2(1− α)k−l −

(
k

l

)
l(k − l)αl−1(1− α)k−l−1+(

k

r

)
(k − r)(k − r − 1)αr(1− α)k−r−2 −

(
k

r

)
r(k − r)αr−1(1− α)k−r−1

=
(
k

l

)
lαl−2(1− α)k−l−1

(
(l − 1)(1− α)− (k − l)α

)
+(

k

r

)
(k − r)αr−1(1− α)k−r−2

(
(k − r − 1)α− r(1− α)

)
.
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Since l−1
k−1 <

l
k ≤ α

∗ ≤ r
k <

r
k−1 ,

(l − 1)(1− α∗)− (k − l)α∗ = (l − 1)− (k − 1)α∗ < 0

and

(k − r − 1)α∗ − r(1− α∗) = (k − 1)α∗ − r < 0,

so that f ′′(α∗) < 0. J

2.4 Case of Even S
We study properties of f(α) when S is even – s ∈ S if and only if k − s ∈ S, and prove
Conjecture 2.4 for this case. We first simplify (1) for this setting. If we let l := smin and
r := smax = k − l, (1) is equivalent to

(l + r − 1)2

k − 1 ≥ 4lr
k

⇔ k(k − 1) ≥ 4lr ⇔ (r − l)2 ≥ k.

Therefore, (1) is equivalent to

r − l ≥
√
k (2)

I Lemma 2.9. Suppose S ⊆ [k − 1] is even. If (2) does not hold, f(α) is unimodal in [0, 1]
with the unique maximum at α∗ = 1

2 and f ′′(α∗) < 0.

Proof. Given a even S, let S1 = {s ∈ S : s ≤ k/2}. When we write fS to denote the
dependence of f on S, we can decompose fS(α) =

∑
s∈S1

f{s,k−s}(α), so the following claim
proves the lemma. J

I Claim 2.10. Let l ≤ k
2 and r = k− l such that r− l <

√
k ⇔ k(k−1) < 4lr. Let S = {l, r}.

f is unimodal with the unique maximum at 1
2 , and f

′′( 1
2 ) < 0.

Proof. Note that f is symmetric around α = 1/2. If there exists a local maximum at
α′ ∈ (0, 1/2), f also has a local maximum at (1−α′) with the same value, so there must exist
a local minimum in (α′, 1− α′). In particular, there is α ∈ (α′, 1− α′) such that f ′(α) = 0
and f ′′(α) ≥ 0. We prove that such α cannot exist.

f ′(α) = 0

⇔
(
k

l

)
αl−1(1− α)r−1(l − kα) +

(
k

r

)
αr−1(1− α)l−1(r − kα) = 0

⇔
(
k
l

)
αl−1(1− α)r−1(

k
r

)
αr−1(1− α)l−1

=
(
k
l

)
(1− α)r−l(
k
r

)
αr−l

= − (kα− r)
(kα− l)

Similarly,

f ′′(α) ≥ 0

⇔
(
k
l

)
(1− α)r−l(
k
r

)
αr−l

≥ −r(r − 1)(1− α)2 − 2rlα(1− α) + l(l − 1)α2

l(l − 1)(1− α)2 − 2rlα(1− α) + r(r − 1)α2 .
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By symmetry, we can assume α ≥ 1
2 , so that (kα− l) ≥ 0 and l(l − 1)(1− α)2 − 2rlα(1−

α) + r(r − 1)α2 ≥ 0.

(kα− r)
(kα− l) ≤

r(r − 1)(1− α)2 − 2rlα(1− α) + l(l − 1)α2

l(l − 1)(1− α)2 − 2rlα(1− α) + r(r − 1)α2

⇔ (kα− r)(l(l − 1)(1− α)2 − 2rlα(1− α) + r(r − 1)α2)
≤ (kα− l)(r(r − 1)(1− α)2 − 2rlα(1− α) + l(l − 1)α2)

⇔ α2(l3 − r3 − (l2 − r2) + rl(l − r)− 2k(l2 − r2) + 2k(l − r))+
α(k(l2 − r2)− k(l − r))− rl(l − r) ≤ 0

⇔ α2(−k2 + k) + α(k2 − k)− rl ≥ 0 divide by (l − r) and use l + r = k

However, α2(−k2 + k) +α(k2− k)− rl has a negative leading coefficient and its discriminant
is

(k2 − k)2 − 4rl(k2 − k) = (k2 − k)(k2 − k − 4rl) < 0

by the assumption of the claim. J

We do not formally prove the converse, but Figure 2 shows examples where it is tight.
When (2) holds with equality, f still has the unique local maximum at 1

2 but f ′′( 1
2 ) = 0, and

even when (2) holds with small slack, two local maxima start to appear. This phenomenon is
one of the main reasons that we pose Conjecture 2.4. Though we were not able to formally
prove for the general case, we believe that the violation of (1) not only allows us to sample
random variables with desired second moments but also ensures that f(α) is a nice unimodal
curve.

3 Approximability of symmetric CSPs with negation

Fix k and S ⊂ [k] ∪ {0}. In this section, we consider SCSP(S) with negation and prove
Theorem 1.2. Note that in this section we allow S to contain 0 or k. For example, famous
Max-3SAT is 3-SCSP({1, 2, 3}). We still exclude the trivial case S = [k] ∪ {0}.

The condition we are interested in is whether conv(PS) contains ( 1
2 ,

1
4 ). In SCSPs with

negation, the sufficient condition of Austrin and Mossel on general CSPs to be approximation
resistant becomes equivalent to it. See Appendix A to see the equivalence.

I Theorem 3.1 ([2]). Fix k and let S ⊂ [k] ∪ {0} be such that conv(PS) contains ( 1
2 ,

1
4 ).

Then, assuming the Unique Games Conjecture, SCSP(S) with negation is approximation
resistant.

On the other hand, we now show that the algorithm of Austrin et al. [1], which is inspired
by Hast [10], can be used to show that if S is an interval or even and conv(PS) does not
contain ( 1

2 ,
1
4 ), SCSP(S) is not approximation resistant.

Let f : {0, 1}k 7→ {0, 1} be the function such that f(x1, . . . , xk) = 1 if and only if
(x1 + · · ·+xk) ∈ S. Define the inner product of two functions as 〈f, g〉 = Ex∈{0,1}k [f(x)g(x)],
and for T ⊆ [k], let χT (x1, . . . , xk) =

∏
i∈T (−1)xi . It is well known that {χT }T⊆[k] form an

orthonormal basis and every function has a unique Fourier expansion with respect to this
basis,

f =
∑
T⊆[k]

f̂(T )χT , f̂(T ) := 〈f, χT 〉.
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Define

f=d(x) =
∑
|T |=d

f̂(S)χT (x).

The main theorem of Austrin et al. [1] is

I Theorem 3.2 ([1]). Suppose that there exists η ∈ R such that

2η√
2π
f=1(x) + 2

π
f=2(x) > 0 (3)

for every x ∈ f−1(1). Then there is a randomized polynomial time algorithm that approximates
SCSP(S) better than the random assignment in expectation.

We compute f=1 and f=2.

f̂({1}) = 〈f, χ{1}〉 = 1
2k
∑
s∈S

((
k − 1
s

)
−
(
k − 1
s− 1

))
f̂({1, 2}) = 〈f, χ{1,2}〉 = 1

2k
∑
s∈S

((
k − 2
s

)
− 2
(
k − 2
s− 1

)
+
(
k − 2
s− 2

))
By symmetry, f̂T =: f̂1 is the same for all |T | = 1 and f̂T =: f̂2 is the same for all |T | = 2. If
we let s = x1 + · · ·+ xk,

f=1(x) = f̂1
∑
i∈[k]

(−1)xi = kf̂1 E
i∈[k]

[−2xi + 1] = kf̂1(−2 s
k

+ 1)

f=2(x) = f̂2
∑
i6=j

(−1)xi+xj =
(
k

2

)
f̂2 E

i 6=j
[(−2xi + 1)(−2xj + 1)] =

(
k

2

)
f̂2(4 s(s− 1)

k(k − 1) − 4 s
k

+ 1).

3.1 When S is an interval
Let S = {l, l + 1, . . . , r − 1, r}. If r ≤ k

2 , we have (−2s
k + 1) ≤ 0 for all s ∈ S, so choosing η

either large enough or small enough ensures (3). Similarly, if l ≥ k
2 , (3) holds. Therefore, we

assume that l < k
2 and r > k

2 , and compute f̂2.

f̂2 = 1
2k

r∑
s=l

((
k − 2
s

)
− 2
(
k − 2
s− 1

)
+
(
k − 2
s− 2

))
= 1

2k

((
k − 2
l − 2

)
−
(
k − 2
l − 1

)
+
(
k − 2
r

)
−
(
k − 2
r − 1

))
Since

(
k−2
l−1
)
>
(
k−2
l−2
)
for 0 < l < k

2 and
(
k−2
r−1
)
>
(
k−2
r

)
for k

2 < r < k, f̂2 < 0 except when
l = 0 and r = k (i.e., S = [k] ∪ {0}).

If conv(PS) does not contain ( 1
2 ,

1
4 ), there exist α, β ∈ R such that for any (a, b) ∈

conv(PS),

α(a− 1
2) + β(b− 1

4) > 0.

If k is even, s := k
2 ∈ S and P (s) = ( 1

2 ,
s−1

2(k−1) ) where s−1
2(k−1) <

1
4 , which implies β < 0 since

the above inequality should hold for all s ∈ S. When k is odd (let k = 2s+ 1), s and s+ 1
should be in S and

1
2

(
P (s) + P (s+ 1)

)
= (1

2 ,
s2

k(k − 1)),
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where s2

k(k−1) <
1
4 . Therefore, we can conclude β < 0 in any case. For any x ∈ f−1(1) with

s = x1 + · · ·+ xk and P (s) = (a, b),
2η√
2π
f=1(x) + 2

π
f=2(x)

= 2η√
2π
kf̂1(−2a+ 1) + 2

π

(
k

2

)
f̂2(4b− 4a+ 1)

= 8
βπ

(
k

2

)
f̂2

( 2η√
2πkf̂1

8
βπ

(
k
2
)
f̂2

(−2a+ 1) + β(b− a+ 1
4)
)

= 8
βπ

(
k

2

)
f̂2

(
(−α+ β

2 )(−2a+ 1) + β(b− a+ 1
4)
)

by adjusting η so that
2η√
2πkf̂1

8
βπ

(
k
2
)
f̂2

= −α+ β

2

= 8
βπ

(
k

2

)
f̂2

(
α(a− 1

2) + β(b− 1
4)
)

> 0.

Therefore, (3) is satisfied if S is an interval and conv(S) does not contain ( 1
2 ,

1
4 ).

3.2 When S is even
Given S, let Q ∈ {0, 1}k be the predicate associated with S and f : {0, 1}k 7→ {0, 1} be the
indicator function of Q. We want to show that when S is even,

2η√
2π
f=1(x) + 2

π
f=2(x) > 0

is satisfied for any x ∈ f−1(1). When S is even,

f̂1 = 1
2k+1

∑
s∈S

((
k − 1
s

)
−
(
k − 1
s− 1

)
+
(
k − 1
k − s

)
−
(

k − 1
k − s− 1

))
= 0.

We compute the sign of the contribution of each s to f̂2.(
k − 2
s

)
− 2
(
k − 2
s− 1

)
+
(
k − 2
s− 2

)
≥ 0

⇔ (k − s)(k − s− 1)− 2s(k − s) + s(s− 1) ≥ 0
⇔ 4s2 − 4sk + k2 − k ≥ 0

⇔ s ≤ k −
√
k

2 or s ≥ k +
√
k

2

We also consider the line passing P (s) and P (k − s). If we denote t = k − s, Its slope is
t(t−1)−s(s−1)

k(k−1)
t−s
k

= t2 − s2 − (t− s)
(k − 1)(t− s) = 1,

and the value of this line at 1
2 is at least 1

4 when

s(s− 1) + (k − s)(k − s− 1)
2k(k − 1) ≥ 1

4
⇔ 2s(s− 1) + 2(k − s)(k − s− 1) ≥ k(k − 1)

⇔ s ≤ k −
√
k

2 or s ≥ k +
√
k

2 .
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Intuitively, if we consider the line of slope 1 that passes ( 1
2 ,

1
4 ), P (s) is below this line

if s ∈ (k−
√
k

2 , k+
√
k

2 ). Let S1 = S ∩ {0, 1, . . . , dk2 e}. If S1 contains a value s1 ≤ k−
√
k

2 and a
value s2 ≥ k−

√
k

2 (including the case s1 = s2 = k−
√
k

2 is an integer in S1), the line passing
P (s1) and P (k − s1) passes a point ( 1

2 , t1) for some t1 ≥ 1
4 and the line passing P (s2) and

P (k − s2) passes a point ( 1
2 , t2) for some t2 ≤ 1

4 . Therefore, conv(PS) contains a point ( 1
2 ,

1
4 )

and S becomes balanced pairwise independent. We consider the remaining two cases.
1. s < k−

√
k

2 for all s ∈ S1: f̂2 > 0 and for all s ∈ S, −( sk −
1
2 )+ ( s(s−1)

k(k−1) −
1
4 ) > 0. Therefore,

for any x ∈ f−1 with s = x1 + · · ·+ xk,

2η√
2π
f=1(x) + 2

π
f=2(x)

= 2
π
f=2(x)

= 2
π

(
k

2

)
f̂2(4 s(s− 1)

k(k − 1) − 4 s
k

+ 1)

> 0.

2. s > k−
√
k

2 for all s ∈ S1: f̂2 < 0 and for all s ∈ S, −( sk −
1
2 ) + ( s(s−1)

k(k−1) −
1
4 ) < 0. Similarly

as above, for any x ∈ f−1 with s = x1 + · · ·+ xk, (3) is satisfied.
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A Austrin-Håstad Condition for Symmetric CSPs

This section explains how the condition of Austrin-Håstad [2] is simplified for SCSPs. They
studied general CSPs where a predicate Q is a subset of {0, 1}k. Note that given S ⊆ [k]∪{0},
SCSP(S) is equivalent to CSP(Q) where

Q = {(x1, . . . , xk) ∈ {0, 1}k : (x1 + · · ·+ xk) ∈ S} (4)

Given Q, their general definition of pairwise independence and positive correlation is given
below.

I Definition A.1. Q is balanced pairwise independent if there is a distribution µ supported
on Q such that Prµ[xi = 1] = 1

2 for every i ∈ [k] and Prµ[xi = xj = 1] = 1
4 for every

1 ≤ i < j ≤ k.

I Definition A.2. Q is positively correlated if there is a distribution µ supported on Q and
p, ρ ∈ [0, 1] with ρ ≥ p2 such that Prµ[xi = 1] = p for every i ∈ [k] and Prµ[xi = xj = 1] = ρ

for every 1 ≤ i < j ≤ k.

We formally prove that their definitions have simpler descriptions in R2 for symmetric
CSPs. Recall that given s ∈ [k] ∪ {0},

P (s) = ( s
k
,
s(s− 1)
k(k − 1)) ∈ R2 and PS := {P (s) : s ∈ S} .

I Lemma A.3. Let S ⊆ [k] ∪ {0} and Q be obtained by (4). Q is pairwise independent if
and only if conv(PS) contains ( 1

2 ,
1
4 ), and Q is positively correlated if and only if conv(PS)

intersects the curve y = x2.

Proof. We first prove the second claim of the lemma. Let Q be positively correlated
with parameters p, ρ (ρ ≥ p2) and the distribution µ such that Prµ[xi = 1] = p for all i,
Prµ[xi = xj = 1] = ρ and for all i < j. Let ν be the distribution of x1 + · · · + xk where
(x1, . . . , xk) are sampled from µ.

(p, ρ) = (E
i
[xi], E

i<j
[xixj ]) = ( E

s∼ν
[ s
k

], E
s∼ν

[ s(s− 1)
k(k − 1) ]) = E

s∼ν
[P (s)],

proving that positive correlation of Q implies (p, ρ) ∈ conv(PS). Since P (s) is strictly below
the curve y = x2 for any s ∈ [k − 1] and (p, ρ) is on or above this curve, conv(PS) must
intersect y = x2.

Suppose that conv(PS) intersects the curve y = x2. There exists a distribution ν on
S such that Es∼ν [P (s)] = (p, p2). Let µs be the distribution on {0, 1}k that uniformly
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samples a string with exactly s 1’s. Let µ be the distribution where s is sampled from ν

and (x1, . . . , xk) is sampled from µs. By definition, Prµ[xi = 1] and Prµ[xi = xj = 1] do not
depend on choice of indices,

Pr
µ

[x1 = 1] = E
µ

[x1] = E
s∼ν

E
x∼µs

[x1] = E
s∼ν

[ s
k

] = p

Pr
µ

[x1 = x2 = 1] = E
µ

[x1x2] = E
s∼ν

E
x∼µs

[x1x2] = E
s∼ν

[ s(s− 1)
k(k − 1) ] = p2,

implying that (p, p2) ∈ conv(PS).
The proof of the first claim is similar except that the curve y = x2 is replaced by

( 1
2 ,

1
4 ). J

I Lemma A.4. conv(PS) intersects the curve x = y2 if and only if

(smax + smin − 1)2

k − 1 ≥ 4smaxsmin
k

.

Proof. Let l = smin and r = smax. The line passing P (l) and P (r) has a slope
r(r−1)−l(l−1)

k(k−1)
r−l

k

=
r+l−1
k−1 and a y-intercept b such that

l(l − 1)
k(k − 1) = r + l − 1

k − 1 · l
k

+ b⇔ b = l(l − 1)− l(r + l − 1)
k(k − 1) = −lr

k(k − 1) .

This line intersects y = x2 if and only if

x2 = r + l − 1
k − 1 x− lr

k(k − 1)

has a real root, which is equivalent to

(r + l − 1
k − 1 )2 − 4lr

k(k − 1) ≥ 0⇔ (r + l − 1)2

k − 1 ≥ 4lr
k
. J

B Technical Proof

I Lemma B.1. Let Y1, . . . , Yl be sampled from a multivariate normal distribution where each
Yi has mean 0 and variance at most σ2. Let Y ′1 , . . . , Y ′l be such that

Y ′i =


Yi if |Yi| ≤ D
D if Yi > D

−D if Yi < −D

Then, for large enough D,

|E[
l∏
i=1

Yi]− E[
l∏
i=1

Y ′i ]| ≤ 2l · σl · l! · e−D/l.

Proof. For each i ∈ [l], let Y ′′i = Y ′i − Yi. Take D large enough so that

E[|Y ′′i |l] = 2
∫ ∞
y=D

(y −D)lφ(y) ≤ 2
∫ ∞
y=D

ylφ(y) ≤ e−D.

APPROX/RANDOM’15
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Also each Yi, a normal random variable with mean 0 and variance σ, satisfies E[|Yi|l] ≤ σl · l!.
We have

|E[
l∏
i=1

Yi]− E[
l∏
i=1

Y ′i ]| =

∣∣∣∣∣∣
∑

T⊆[l],T 6=[l]

E[
∏
i∈T

Yi
∏
i/∈T

Y ′′i ]

∣∣∣∣∣∣
≤

∑
T⊆[l],T 6=[l]

∏
i∈T

(E[|Yi|l])1/l
∏
i/∈T

(E[|Y ′′i |l])1/l

(by Generalized Hölder’s inequality [9])

≤ 2l · σl · l! · e−D/l . J
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