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Abstract
Given a stream with frequencies fd, for d ∈ [n], we characterize the space necessary for approxi-
mating the frequency negative moments Fp =

∑
|fd|p, where p < 0 and the sum is taken over all

items d ∈ [n] with nonzero frequency, in terms of n, ε, andm =
∑
|fd|. To accomplish this, we ac-

tually prove a much more general result. Given any nonnegative and nonincreasing function g, we
characterize the space necessary for any streaming algorithm that outputs a (1±ε)-approximation
to
∑
g(|fd|), where again the sum is over items with nonzero frequency. The storage required is

expressed in the form of the solution to a relatively simple nonlinear optimization problem, and
the algorithm is universal for (1± ε)-approximations to any such sum where the applied function
is nonnegative, nonincreasing, and has the same or smaller space complexity as g. This partially
answers an open question of Nelson (IITK Workshop Kanpur, 2009).
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1 Introduction

A stream is a sequence S = ((d1, δ1), (d2, δ2), . . . , (dN , δN )), where di ∈ [n] are called the
items or elements in the stream and δi ∈ Z is an update to the dith coordinate of an implicitly
defined n-dimensional vector. Specifically, the frequency of d ∈ [n] after k ≤ N updates is

f
(k)
d =

∑
{δj |j ≤ k, dj = d},

and the implicitly defined vector f := f (N) is commonly referred to as the frequency vector
of the stream S. Let M := max{n, |f (k)

d | : d ∈ [n], 0 ≤ k ≤ N} and m =
∑
d |fd|; thus,

it requires O(logM) bits to exactly determine the frequency of a single item. This model
is commonly known as the turnstile streaming model, as opposed to the insertion-only
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model which has δi = 1, for all i, but is the same otherwise. In an insertion-only stream
N = m ≥M .

Streams model computing scenarios where the processor has very limited access to the
input. The processor reads the updates one-at-a-time, without control of their order, and
is tasked to compute a function on the frequency vector. The processor can perform its
computation exactly if it stores the entire vector f , but this may be undesirable or even
impossible when the dimension of f is large. Thus, the goal is to complete the computation
using as little storage as possible. Typically, exact computation requires storage linear in n,
so we seek approximations.

Given a stream with frequencies fd, for d ∈ [n], we consider the problem of approximating
the frequency negative moments, specifically Fp =

∑
|fd|p where p < 0 and the sum is

taken over all items d ∈ [n] with nonzero frequency. We characterize, up to factors of
O(ε−1 log2 n logM) in the turnstile model and O(ε−1 logM) in the insertion-only model, the
space necessary to produce a (1± ε)-approximation to Fp, for p < 0, in terms of the accuracy
ε, the dimension n, and the L1 length m of f .

Negative moments, also known as “inverse moments”, of a probability distribution have
found several applications in statistics. Early on, they were studied in application to sampling
and estimation problems where the sample size is random [35, 18] as well as in life-testing
problems [31]. More recently, they appear in the design of multi-center clinical trials [24] and
in the running time analysis of a quantum adiabatic algorithm for 3-SAT [37, 38]. F0/F−1
is the harmonic mean of the (nonzero) frequencies in the insertion-only model, and more
generally, the value (Fp/F0)1/p is known as the pth power mean [10]. The harmonic mean
is the truest average for some types of data, for example speeds, parallel resistances, and
P/E ratios [34].

To our knowledge this is the first paper to consider streaming computation of the frequency
negative moments and the first to determine the precise dependence of the space complexity
of streaming computations on m. In fact, in the process of characterizing the storage
necessary to approximate the frequency negative moments, we actually characterize the
space complexity of a much larger class of streaming sum problems. Specifically, given
any nonnegative, nonincreasing function g : N → R we determine to within a factor of
O(ε−1 log2 n logM) the space necessary to approximate

g(f) :=
∑

d∈supp(f)

g(|fd|),

where supp(f) := {d ∈ [n] : fd 6= 0} is the support of f . Furthermore, the sketch providing a
(1± ε)-approximation for g(f) is universal for a (1± ε)-approximation for any nonnegative
nonincreasing function with the same or smaller space complexity as g. This partially answers
a question of Nelson [33] – which families of functions admit universal sketches?

The attention on m is warranted; in fact, the complexity in question depends delicately
on this parameter. If we forget about m for a moment, then a standard reduction from the
communication problem Index implies that computing a (1± 1

2 )-approximation to Fp, for
p < 0, requires Ω(n) bits of storage – nearly enough to store the entire vector f . However,
the reduction requires m = Ω(n1−1/p), recall that p < 0. If m = o(n1−1/p) then, as we show,
one can often get away with o(n) bits of memory.

The next two sections outline our approach to the decreasing streaming sum problem and
state our main results. Section 1.3 reviews previous work on streaming sum problems. In
Section 2 we show how our results solve the frequency negative moments problem. Sections 3
and 5 prove the main results. Section 4 and Section 6 describe the implementation details
for the streaming setting.
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1.1 Preliminaries
Let F = {f ∈ Nn :

∑
fd ≤ m} and let T and I denote the sets of turnstile streams and

insertion-only streams, respectively, that have their frequency vector f satisfying |f | ∈ F .
The set F is the set of all nonnegative frequency vectors with L1 norm at most m. Clearly,
F is the image under coordinate-wise absolute value of the set of all frequency vectors with
L1 norm at most m. We assume n ≤ m.

In order to address the frequency negative moments problem we will address the following
more general problem. Given a nonnegative, nonincreasing function g : N→ R, how much
storage is needed by a streaming algorithm that (1± ε)-approximates g(f), for the frequency
vector f of any stream S ∈ T or S ∈ I? Equivalently, we can assume that g(0) = 0, g
is nonnegative and nonincreasing on the interval [1,∞), and extend the domain of g to Z
by requiring it to be symmetric, i.e., g(−x) = g(x). Therefore, g(f) =

∑n
i=1 g(fd). For

simplicity, we call such functions “decreasing functions”.
A randomized algorithm A is a turnstile streaming (1± ε)-approximation algorithm for

g(f) if

P {(1− ε)g(f) ≤ A(S) ≤ (1 + ε)g(f)} ≥ 2
3

holds for every stream S ∈ T , and insertion only algorithms are defined analogously. For
brevity, we just call such algorithms “approximation algorithms” when g, ε, and the streaming
model are clear from the context. We consider the maximum number of bits of storage used
by the algorithm A with worst case randomness on any valid stream.

A sketch is a, typically randomized, data structure that functions as a compressed version
of the stream. Let G ⊆ RN × (0, 1/2]. We say that a sketch is universal for a class G if for
every (g, ε) ∈ G there is an algorithm that, with probability at least 2/3, extracts from the
sketch a (1± ε)-approximation to g(f). The probability here is taken over the sketch as well
as the extraction algorithm.

Our algorithms assume a priori knowledge of the parameters m and n, where m = ‖f‖1
and n is the dimension of f . In practice, one chooses n to be an upper bound on the number
of distinct items in the stream. Our algorithm remains correct if one instead only knows
m ≥ ‖f‖1, however if m� ‖f‖1 the storage used by the algorithm may not be optimal. We
assume that our algorithm has access to an oracle that computes g on any valid input. In
particular, the final step of our algorithms is to submit a list of frequencies, i.e., a sketch, as
inputs for g. We do not count the storage required to evaluate g or to store its value.

1.2 Our results
Our lower bound is proved by a reduction from the communication complexity of disjointness
wherein we parameterize the reduction with the coordinates of |f |, the absolute value of a
frequency vector. The parameterization has the effect of giving a whole collection of lower
bounds, one for each frequency vector among a set of many. Specifically, if f ∈ F and
g(f) ≤ ε−1g(1) then we find an Ω(| supp(f)|) lower bound on on the number of bits used by
any approximation algorithm. This naturally leads us to the following nonlinear optimization
problem

σ(ε, g,m, n) := max
{
| supp(f)| : f ∈ F , g(f) ≤ ε−1g(1)

}
, (1)

which gives us the “best” lower bound. We will use σ = σ(ε, g,m, n) when ε, g, m, and n are
clear from the context. Our main lower bound result is the following.

APPROX/RANDOM’15
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I Theorem 1. Let g be a decreasing function, then any k-pass insertion-only streaming
(1± ε)-approximation algorithm requires Ω(σ/k) bits of space.

Before we consider approximation algorithms, let us consider a special case. Suppose
there is an item d∗ in the stream that satisfies g(fd∗) ≥ εg(f). An item such as d∗ is called
an ε-heavy element. If there is an ε-heavy element in the stream, then g(1) ≥ g(fd∗) ≥ εg(f)
which implies | supp(f)| ≤ σ, by the definition of σ. Of course, in this case it is possible
compute g(f) with O(σ logM) bits in one pass in the insertion-only model and with not
much additional space in the turnstile model simply by storing a counter for each element of
supp(f). Considering the Ω(σ) lower bound, this is nearly optimal. However, it only works
when f contains an ε-heavy element.

Our approximation algorithm is presented next. It gives a uniform approach for handling
all frequency vectors, not just those with ε-heavy elements.

Algorithm 1 (1± ε)-approximation algorithm for g(f).
1: Compute σ = σ(ε, g,m, n) and let

q ≥ min
{

1, 9σ
ε| supp(f)|

}
. (2)

2: Sample pairwise independent random variables Xd ∼ Bernoulli(q), for d ∈ [n], and let
W = {d ∈ supp(f) : Xd = 1}.

3: Compute fd, for each d ∈W .
4: Output q−1∑

d∈W g(fd).

Algorithm 1 outlines the important components of our streaming algorithm and suppresses
the details needed to implement it on a stream. In particular, | supp(f)| is not known ahead
of time, and in fact, any streaming algorithm that computes it exactly requires Ω(n) bits of
storage. This and the remaining details can be handled with existing streaming technology
as described in Section 6.

Algorithm 1 simply samples each element of supp(f) pairwise independently with prob-
ability q. The expected sample size is q| supp(f)|, so in order to achieve optimal space we
should take equality in Equation 2. The choice yields, in expectation, q| supp(f)| = O(σ/ε)
samples. Section 4 explains how to compute σ quickly and with small storage, and the
correctness of Algorithm 1 is established by the following theorem. It is proved in Section 3.

I Theorem 2. There is a turnstile streaming algorithm that, with probability at least 2/3,
outputs a (1± ε)-approximation to g(f) and uses O(ε−1σ log2(n) log(M)) bits of space. The
algorithm can be implemented in the insertion-only model with O(ε−1σ log(M) + log2 n) bits
of space.

It is worth mentioning that the suppressed constants in the asymptotic bounds of
Theorems 1 and 2 are independent of g, ε, m, and n.

The optimization problem (1) reappears in the proof of Theorem 2. The key step is the
observation mentioned above. Namely, for the particular frequency vector f that is our input,
if there is an item d satisfying g(|fd|) ≥ εg(f) then | supp(f)| ≤ σ.

Let us now emphasize a particular feature of this algorithm. Previously, we commented
that choosing equality in (2) is optimal in terms of the space required. However, Algorithm 1
is still correct when the inequality is strict. Notice that the sketch is just a (pairwise
independent) random sample of supp(f) and its only dependence on g and ε is through the
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parameter σ/ε. Let g′ and ε′ be another decreasing function and error parameter satisfying
σ(ε′,g′,m,n)

ε′ ≤ σ(ε,g,m,n)
ε , then

q′ = min
{

1, 9σ′

ε′| supp(f)|

}
≤ q = min

{
1, 9σ
ε| supp(f)|

}
.

In particular, this means that the sketch that produces an (1 ± ε)-approximation to g(f)
also suffices for an (1± ε′)-approximation to g′. For example, if one takes g′ ≥ g, pointwise
with g′(1) = g(1), then σ(ε, g′,m, n) ≤ σ(ε, g,m, n) so one can extract from the sketch
(1 ± ε)-approximations to g(f) and g′(f), each being separately correct with probability
2/3. Thus, the sketch is universal for any decreasing function g′ and accuracy ε′ where
σ(ε′,g′,m,n)

ε′ ≤ σ(ε,g,m,n)
ε . In the context of the frequency negative moments, this implies

that the sketch yielding a (1 ± ε)-approximation to Fp, for p < 0, is universal for (1 ± ε)-
approximations of Fp′ , for all p ≤ p′ < 0.

Computing the sketch requires a priori knowledge of σ. If one over-estimates σ the
algorithm remains correct, but the storage used increases. To know σ requires knowledge
of m, or at least an good upper bound on m. This is a limitation, but there are several
ways to mitigate it. If one does not know m but is willing to accept a second pass through
the stream, then using the algorithm of [26] one can find a (1 ± 1

2 )-approximation to m
with O(logM) bits of storage in the first pass and approximate g(f) on the second pass. A
(1± 1

2 )-approximation to m is good enough to determine σ to within a constant, which is
sufficient for the sketch. Alternatively, one can decide first on the space used by the algorithm
and, in parallel within one pass, run the algorithm and approximate m. After reading the
stream one can determine for which decreasing functions g and with what accuracy ε does
the approximation guarantee hold.

1.3 Background
Much of the effort dedicated to understanding streaming computation, so far, has been
directed at the frequency moments Fp =

∑
|fi|p, for 0 < p <∞, as well as F0 and F∞, the

number of distinct elements and the maximum frequency respectively. In the turnstile model,
F0 is distinguished from L0 = | supp(f)|, the number of elements with a nonzero frequency.

The interest in the frequency moments began with the seminal paper of Alon, Matias,
and Szegedy [1], who present upper and lower bounds of O(ε−2n1−1/p) and Ω(n1−5/p),
respectively, on the space needed to find a (1 ± ε)-approximation to Fp, and a separate
O(ε−2 logm) space algorithm for F2. Since then, many researchers have worked to push the
upper and lower bounds closer together. We discuss only a few of the papers in this line
of research, see [36] an the references therein for a more extensive history of the frequency
moments problem.

To approximate Fp, Alon, Matias, and Szegedy inject randomness into the stream and
then craft an estimator for Fp on the randomized stream. A similar approach, known as stable
random projections, is described by Indyk [22] for Fp, when 0 < p ≤ 2 (also referred to as `p
approximation). Kane, Nelson, and Woodruff [26] show that Indyk’s approach, with a more
careful derandomization, is optimal. Using the method of stable random projections, Li [29]
defined the so-called harmonic mean estimator for Fp, when 0 < p < 2, which improves upon
the sample complexity of previous methods. We stress that this is not an estimator for the
harmonic mean of the frequencies in a data stream, rather it is an estimator for Fp that
takes the form of the harmonic mean of a collection of values.

For p > 2, the AMS approach was improved upon [15, 16] until a major shift in the design
of streaming algorithms began with the algorithm of Indyk and Woodruff [23] that solves the

APPROX/RANDOM’15
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frequency moments problem with, nearly optimal, n1−2/p( 1
ε logn)O(1) bits. Their algorithm

introduced a recursive subsampling technique that was subsequently used to further reduce
space complexity [5, 7], which now stands at O(ε−2n1−2/p logn) in the turnstile model [17]
with small ε and O(n1−2/p) in the insertion-only model with ε = Ω(1) [6].

Recently, there has been a return to interest in AMS-type algorithms motivated by the
difficulty of analyzing algorithms that use recursive subsampling. “Precision Sampling” of
Andoni, Krauthgamer, and Onak [2] is one such algorithm that accomplishes nearly optimal
space complexity without recursive subsampling. Along these lines, it turns out that one can
approximate g(f) by sampling elements d ∈ [n] with probability roughly qd ≈ g(fd)/ε2g(f),
or larger, and then averaging and scaling appropriately, see Proposition 4. Algorithm 1 takes
this approach, and also fits in the category of AMS-type algorithms. However, it is far from
clear how to accomplish this sampling optimally in the streaming model for a completely
arbitrary function g.

A similar sampling problem has been considered before. Monemizadeh and Woodruff [32]
formalized the problem of sampling with probability qd = g(fd)/g(f) and then go on to focus
on Lp sampling, specifically g(x) = |x|p, for 0 ≤ p ≤ 2. In follow-up work, Jowhari, Săglam,
and Tardos offer Lp sampling algorithms with better space complexity [25].

As far as the frequency moments lower bounds go, there is a long line of research following
AMS [4, 13, 19, 3] that has led to a lower bound matching the best known turnstile algorithm
of Ganguly [17] to within a constant [30], at least for some settings of m and ε. The insertion-
only algorithm of Braverman et al. [6] matches the earlier lower bound of Chakrabarti, Khot,
and Sun [13].

For a general function g not much is known about the space-complexity of approximating
g(f). Most research has focused on specific functions. Chakrabarti, Do Ba, and Muthukrish-
nan [12] and Chakrabarti, Cormode, and Muthukrishnan [11] sketch the Shannon Entropy.
Harvey, Nelson, and Onak [21] approximate Renyi log(‖f‖αα)/(1−α), Tsallis (1−‖x‖αα)/(α−1),
and Shannon entropies. Braverman, Ostrovsky, and Roytman [8, 9] characterized nonnegative,
nondecreasing functions that have polylogarithmic-space approximation algorithms and they
present a universal sketching algorithm for this class of functions. Their algorithm is based
on the subsampling technique. Guha, Indyk, McGregor [20] study the problem of sketching
common information divergences between the streams, i.e., statistical distances between the
probability distributions with p.m.f.s e/‖e‖1 and f/‖f‖1.

2 The frequency negative moments

Before proving Theorems 1 and 2, let us deploy them to determine the streaming space
complexity of the frequency negative moments. It will nicely illustrate the trade-off between
the length of the stream and the space complexity of the approximation.

The first step is to calculate σ(ε, g,m, n), where g(x) = |x|p, for x 6= 0 and p < 0, and
g(0) = 0. There is a maximizer of (1) with L1 length m because g is decreasing. The
convexity of g on [0,∞) implies that σ ≤ max{s ∈ R : s(m/s)p ≤ ε−1}, and σ is at least
the minimum of n and max{s ∈ N : s(m/s)p ≤ ε−1} by definition. Thus, we can take
σ = min

{
n, θ

(
ε
−1

1−pm
−p

1−p

)}
. This gives us the following corollary to Theorems 1 and 2.

I Corollary 3. For any p < 0 and ε > 0, any algorithm that outputs a (1± ε)-approximation
to Fp requires Ω(min{n, ε

−1
1−pm

−p
1−p }) bits of space. Such an approximation can be found with

O(ε−
2−p
1−pm

−p
1−p log2 n logM) bits in a turnstile stream and O(ε−

2−p
1−pm

−p
1−p logM) bits in an

insertion-only stream.
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For example, taking p = −1, which is what we need to estimate the harmonic mean, we
find that the complexity is approximately σ

ε = min{n, θ(ε−3/2m1/2)}. This is also the space
complexity of approximating the harmonic mean of the nonzero frequencies. It is apparent
from the formula that the relationship between m and n is important for the complexity.

3 Correctness of the algorithm

This section presents the proof that our approximation algorithm is correct. Algorithm 1
describes the basic procedure, and Section 6 describes how it can be implemented in the
streaming setting. The correctness relies on our ability to perform the sampling and the
following simple proposition.

I Proposition 4. Let g be a nonnegative function and let Xd ∼ Bernoulli(pd) be pair-
wise independent random variables with pd ≥ min

{
1, 9g(fd)

ε2g(f)

}
, for all d ∈ [n]. Let Ĝ =∑n

d=1 p
−1
d Xdg(fd), then P (|Ĝ− g(f)| ≤ εg(f)) ≥ 8

9 .

Proof. We have EĜ = g(f) and V ar(Ĝ) ≤
∑
d p
−1
d g(fd)2 = 1

9 (εg(f))2, by pairwise indepen-
dence. The proposition now follows from Chebyshev’s inequality. J

The algorithm samples each element of supp(f) with probability about σ/ε supp(f). In
order to show that this sampling probability is large enough for Proposition 4 we will need
one lemma. It gives us some control on σ(ε, g,m, n) as ε varies.

I Lemma 5. If α < ε, then ε(1 + σ(ε, g,m, n)) ≥ ασ(α, g,m, n).

Proof. Let σε = σ(ε, g,m, n) and define σα similarly. Let f ∈ F such that σα = | supp(f)|
and g(f) ≤ α−1g(1), without loss of generality the coordinates are ordered such that
f1 ≥ f2 ≥ · · · ≥ fσα > 0. Let s′ = α

ε σα, and let f ′ be the vector that takes the first bs′c
coordinates from f and is 0 thereafter. The choice is made so that f ′ ∈ F and

g(f ′) ≤ α

ε
g(f) ≤ ε−1g(1).

Then, by definition of σε, we have

σε ≥ | supp(f ′)| =
⌊α
ε
σα

⌋
≥ α

ε
σα − 1. J

For brevity, we only state here the correctness of the streaming model sampling algorithm,
which uses standard techniques. The details of the algorithm are given in the Section 6.

I Lemma 6. Given s ≤ n, there is an algorithm using O(s log2 n logM) bits of space in
the turnstile model and O(s logM + log2 n) bits in the insertion-only model that samples
each item of supp(f) pairwise-independently with probability at least min{1, s/| supp(f)|}
and, with probability at least 7/9, correctly reports the frequency of every sampled item and
the sampling probability.

Finally, we prove the correctness of our approximation algorithm. Here is where we will
again use the optimality of σ in its definition (1). In regards to the lower bound of Theorem 1,
this upper bound leaves gaps of O(ε−1 log2 n logM) and O(ε−1 logM) in the turnstile and
insertion-only models, respectively.

APPROX/RANDOM’15
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Proof of Theorem 2. We use the algorithm of Lemma 6 to sample with probability at least
q = min{1, 9(σ + 1)/ε| supp(f)|}. Let us first assume that q ≥ min{1, 9g(fd)/ε2g(f)}, for all
d, so that the hypothesis for Proposition 4 is satisfied. The algorithm creates samples Wi,
for i = 0, 1, . . . , O(logn), where each item is sampled in Wi with probability qi = 2−i. For
each i such that qi ≥ q, Proposition 4 guarantees that Ĝi = q−1

i

∑
d∈Wi

g(fd) is a (1 ± ε)-
approximation with probability at least 8/9. With probability at least 7/9, the algorithm
returns one of these samples correctly, and then the approximation guarantee holds. Thus,
the approximation guarantee holds with probability at least 2/3.

It remains to show that q ≥ min{1, 9g(fd)/εg(f)}, for all d ∈ [n]. Let α = g(1)/g(f) then
define σε = σ(ε, g,m, n) and σα = σ(α, g,m, n). By definition | supp(f)| ≤ σα, thus if α ≥ ε
then | supp(f)| ≤ σα ≤ σε, so the sampling probability is 1 and the claim holds.

Suppose that α < ε. For all d ∈ [n], we have

g(fd)
g(f) ≤

g(1)
g(f) = α ≤ ε(1 + σε)

σα
≤ ε(1 + σε)
| supp(f)| ,

where the second inequality comes from Lemma 5 and the third from the definition of σα as
a maximum. In particular, this implies that

9ε−1(σ + 1)
| supp(f)| ≥

9g(fd)
ε2g(f) ,

which completes the proof. J

4 Computing σ

The value σ is a parameter that is needed for Algorithm 1. That means we need a way
to compute it for any decreasing function. As we mentioned before, the only penalty for
overestimating σ is inflation of the storage used by the algorithm so to over-estimate σ by a
constant factor is acceptable. This section shows that one can find σ′ such that σ ≤ σ′ ≤ 4σ
quickly, with O(logn) bits of storage, and by evaluating g at just O(logm) points.

Because g is decreasing, the maximum of (1) will be achieved by a vector f of length m.
This is regardless of whether m ≤ n or m > n. Lemma 7 says that we might as well take all
of the other frequencies to be equal, so we can find a near maximizer by enumerating the
single value of those frequencies. Specifically,

s(y) = min
{
m

y
,
g(1)
εg(y)

}
is the maximum bound we can achieve using y as the single frequency. The value of σ is at
most twice max{s(y) : (m/n) ≤ y ≤ m}, by Lemma 7.

But we do not need to check every y = 1, 2, . . . ,m to get a pretty good maximizer. It
suffices to check only values where y is a power of two. Indeed, suppose that y∗ maximizes
s(y) and let y∗ ≤ y′ ≤ 2y∗. We will show that s(y′) ≥ s(y∗)/2, and since there is a power of
two between y∗ and 2y∗ this implies that its s value is at least s(y∗)/2 ≥ σ/4.

Since y∗ is a maximizer we have s(y′) ≤ s(y∗), and because y′ ≥ y∗ and g is decreasing
we have g(y′) ≤ g(y∗). This gives us

g(1)
εg(y′) ≥

g(1)
εg(y∗) ≥ s(y

∗).

We also have
m

y′
≥ m

2y∗ ≥
1
2s(y

∗).
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Combining these two we have s(y′) ≥ s(y∗)/2.
Thus, one can get by with enumerating at most lgm values to approximate the value

of the parameter σ. Take the largest of the lgm values tried and quadruple it to get the
approximation to σ.

5 Lower bounds for decreasing streaming sums

It bears repeating that if g(x) decreases to 0 as x→∞ then one can always prove an Ω(n)
lower bound on the space complexity of approximating g(f). However, the stream needed
for the reduction may be very long (as a function of n). Given only the streams in T or I,
those with L1-length m or less, a weaker lower bound may be the best available. The present
section proves this “best” lower bound, establishing Theorem 1.

The proof uses a reduction from the communication complexity of disjointness, see the
book of Kushilevitz and Nisan [28] for background on communication complexity. The
proof strategy is to parameterize the lower bound reduction in terms of the frequencies f .
Optimizing the parameterized bound over f ∈ F gives the best possible bound from this
reduction.

The proof of Theorem 1 is broken up with a two lemmas. The first lemma is used in the
reduction from Disj(s), the s-element disjointness communication problem. It will show up
again later when we discuss a fast scheme for computing σ for general functions.

I Lemma 7. Let yi ∈ R≥0, for i ∈ [s], and let v : R→ R≥0. If
∑
yi ≤ Y and

∑
v(yi) ≤ V ,

then there exists i such that s
2yi ≤ Y and s

2v(yi) ≤ V .

Proof. Without loss of generality y1 ≤ y2 ≤ · · · ≤ ys. Let ij , j ∈ [σ], order the sequence
such that v(yi1) ≤ v(yi2) ≤ · · · ≤ v(yis) and let I = {ij |j ≤ bs/2c+ 1}. By the Pigeon Hole
Principle, there exists i ∈ I such that i ≤ bs/2c+ 1. Thus s

2yi ≤
∑s
j=bs/2c+1 yij ≤ Y and

s
2v(yi) ≤

∑s
j=bs/2c+1 v(yj) ≤ V . J

I Lemma 8. Let g be decreasing and ε > 0. If f = (y, y, . . . , y, 0, . . . , 0) ∈ F and g(f) ≤
ε−1g(1), then any k-pass (1 ± ε)-approximation algorithm requires Ω(| supp(f)|/k) bits of
storage.

Proof. Let s = b| supp(f)|/2c and let A be an (1 ± ε)-approximation algorithm. The
reduction is from Disj(s, 2) where Alice receives A ⊆ [s] and Bob receives B ⊆ [s]. Their goal
is to jointly determine whether A ∩B = ∅ or not. Our protocol will answer the equivalent
question: is B ⊆ Ac or not? Alice and Bob will answer the question by jointly creating a
notional stream, running A on it, and thresholding the outcome.

For each d ∈ Ac, Alice puts (d, 1) in the stream y times. She then runs A on her portion
of the stream and sends the contents its memory to Bob. For each d ∈ B, Bob adds (d, 1)
to the stream. Bob runs A on his portion of the stream and sends the memory back to
Alice. She recreates her portion of the stream, advances A, sends the memory to Bob, etc.,
until each player has acted k times. In addition to the algorithm’s memory, on each pass
Alice sends at most dk−1 lg |A|e binary digits of |A| so that Bob knows |A| at the end of the
protocol.

The stream is a member of I by construction; let f ′ be its frequency vector. At the end,
Bob finishes computing A(f ′). All of the frequencies are y, y + 1, or 1. If

A(f ′) ≤ (1 + ε)[|B|g(y + 1) + (s− |A| − |B|)g(y)],

then Bob declares B ⊆ Ac and otherwise B 6⊆ Ac.
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The exact value of g(f ′) is

|A ∩B|g(1) + |B \A|g(y + 1) + (s− |A| − |B|+ |A ∩B|)g(y).

If B ⊆ Ac this value is

V0 := |B|g(y + 1) + (s− |A| − |B|)g(y),

and otherwise, because g is decreasing, it is at least

V1 := g(1) + (|B| − 1)g(y + 1) + (s− |B| − |A|+ 1)g(y).

We find

V1 − V0 ≥ g(1) ≥ εg(f) ≥ 2εsg(y) ≥ 2εV0

Hence, if A(f ′) is a (1±ε)-approximation to g(f ′), then Bob’s decision is correct. The protocol
with solves Disj(s) which requires, in the worst case, Ω(s) bits of communication including
O(k−1 lg s) bits to send |A| and Ω(s) = Ω(| supp(f)|) bits for (2k − 1) transmissions of the
memory of A. Thus, in the worst case, at least one transmission has size Ω(| supp(f)|/k). J

Proof of Theorem 1. Let f ∈ F be a maximizer of (1) and apply Lemma 7 to the positive
elements of f . From this we find that there exists y such that ys′ ≤ ‖f‖1 and g(1) ≥ εs′g(y),
for s′ = σ/2. Therefore, f ′ = (y, y, . . . , y, 0, . . . , 0) ∈ F with bs′c coordinates equal to y.
Applying Lemma 8 to f ′ implies the desired bound. J

With Lemma 7 in mind, one may ask: why not restrict the maximization problem in (1),
the definition of σ, to streams that have all frequencies equal and still get the same order lower
bound? This is valid alternative definition. In fact, doing so does appreciably affect the effort
needed to compute σ, it is one of the main steps used by our algorithm to approximate σ in
Section 4. However, it makes reasoning about σ a bit messier. For example, in Section 1.2
we comment that if the frequency vector f contains an ε-heavy element then | supp(f)| ≤ σ.
This comes directly from the fact that {f ′ ∈ F : g(f ′) ≤ ε−1g(1)} is the feasible set for (1).
If we restrict the feasible set, then we cannot so directly draw the conclusion. Rather, we
must compare g(f) to points in the restricted feasible set by again invoking Lemma 7.

6 Details of the algorithm

The streaming implementation in the turnstile model will make use of the Count Sketch
algorithm of Charikar, Chen, and Farach-Colton [14]. It is easy to adapt their algorithm for
the purpose of finding supp(f). This gives us the following theorem.

I Theorem 9 (Charikar, Chen, Farach-Colton [14]). Suppose that S is a stream with at most s
items of nonzero frequency. There is a turnstile streaming algorithm Count Sketch(S, s, δ)
using O(s log n

δ logM) bits that, with probability at least 1 − δ, returns all of the nonzero
frequencies in S.

The sampling algorithm follows. Since we do not know | supp(f)| at the start of the
stream, we guess O(logn) possible values for it and try each one. After parsing the entire
stream, we can use an estimate of L0 = | supp(f)| in order to determine which guess is
correct. We use L̂0(S(i), ε, δ) to denote the output of an algorithm that produces a (1± 1

8 )-
approximation to L0 with probability at least 1 − δ, for example the algorithm of Kane,
Nelson, and Woodruff [27]. After the formal presentation of the algorithm we prove its
correctness and the claimed storage bounds.
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Algorithm 2 Pairwise independent sampling with probability q ≥ s/| supp(f)|.
1: procedure Sketch(Stream S, s > 0)
2: `← dlg(n/s)e
3: for 0 ≤ i ≤ ` do
4: Sample pairwise independent r.v.s Xi,d ∼ Bernoulli(2−i), for d ∈ [n]
5: Let S(i) be the substream of S with items {d : Xi,d = 1}
6: U (i) ← Count Sketch(S(i), 96s, 1/48)
7: end for
8: L← L̂0(S(i), 1/8, 1/18)
9: i∗ ← max

{
0,
⌊
lg L

18s
⌋}

10: return U (i∗), q = 2−i∗

11: end procedure

I Theorem 10. With probability at least 7/9, Algorithm 2 samples each item in supp(f)
with probability q ≥ s/| supp(f)| and the resulting sample of size O(s). The algorithm can be
implemented with O(s log(M) log2(n)) bits of space.

Proof. Let

k =
⌊

lg | supp(f)|
16s

⌋
.

If i∗ ∈ {k − 1, k}, the streams S(k−1) and S(k) both have small enough support, and the two
outputs U (k−1) and U (k) of Count Sketch are correct, then the output is correct. We
show that the intersection of these events occurs with probability at least 7/9.

First, with probability at least 17/18 L is (1± 1/8)-approximation to | supp(S)|. A direct
calculations then shows that i∗ ∈ {k − 1, k}.

The following two inequalities arise from the definition of k

64s
| supp(f)| ≥ 2−(k−1) ≥ 2−k ≥ 16s

| supp(f)| . (3)

The first inequality implies that the expected support sizes of S(k−1) and S(k) and their
variances are all at most 64s. Chebyshev’s inequality implies that each of these values exceeds
96s with probability no larger than 64/322 = 1/16. So long as they don’t, both streams are
valid inputs to Count Sketch. The last inequality of (3), with Theorem 9, implies that
the sampling probability is correct.

Putting it together, the total probability of failure is no larger than

1
18 + 2

16 + 2
48 = 2

9 , (4)

where the terms come from the | supp(f)| estimation, the support sizes of substreams k − 1
and k, and Count Sketch.

The space bound for turnstile streams follows from Theorem 9. Approximating the
support size of the stream with L̂0 can accomplished with O(logn log lognM) bits using the
algorithm of Kane, Nelson, and Woodruff [27]. J

Because of deletions in the turnstile model, we need to wait until the end of the stream
to rule out any of the guesses of | supp(f)|. This is not the case in the insertion only model.
As soon as the number of nonzero counters grows too large we can infer that the sampling
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probability is too large and discard the sample. It turns out that doing so is enough to cut a
logn factor from the space complexity of Algorithm 2. A further logn factor can be saved
because Count Sketch is not needed in the insertion-only model.

I Corollary 11. Algorithm 2 can be implemented with O(s logM + log2 n) bits of storage for
insertion-only streams.

Proof. Define ` independent collections of pairwise independent random variables Yi,d ∼
Bernoulli(1/2), for d ∈ [n], and choose the random variables in the algorithm to be

Xi,d =
i∏

j=1
Yi,d.

One easily checks that each collection {Xi,d}d∈[n] is pairwise independent and that P (Xi,d =
1) = 2−i, for all i and d. Storing the seeds for the collection Yi,d requires O(log2 n) bits.

We can first save a logn factor by bypassing Count Sketch and instead simply storing
counters for each element that appears in each of the ` substreams. The counters should be
stored in a hash table or other data structure with no space overhead and a small look-up
time. Let us label the maximum number of counters to be stored for each substream as t.
We choose t = max{96s, `}. If the set of counters for each substream is discarded as soon as
the number of nonzero counters exceeds the limit of O(t), then the total storage cannot grow
to large.

According to Lemma 12, the algorithm uses more than 12t counters with probability at
most 1/6`, at any given instant.

For each 0 ≤ i ≤ ` let T (i) be the longest prefix of stream S(i) such that | supp(T (i))| ≤ s
and let k(i) denote the number of updates in T (i). Now, notice that the number of counters
stored locally maximum at each k(i) and increasing for updates between k(i) and k(i+1).
Thus, it is sufficient to bound the storage used by the algorithm at these points.

By a union bound, the probability that the number of counters used by the algorithm
at any point k(1), k(2), . . . , k(`) is more than 12t is at most ` · 1/6` = 1/6. Finally, adapting
the final union bound of (4) in the previous proof we have that the probability of error is at
most (1/18) + (1/6) = 2/9. J

I Lemma 12. Let v ∈ {0, 1}n, define ` independent collections of pairwise independent
random variables Yi,d ∼ Bernoulli(1/2), for s ∈ [n] and i ∈ [`], and set

Xi,d =
i∏

j=1
Yi,d.

For a given s ∈ N, set k = 0 if
∑
d vd ≤ s or k = max{i : vTXi > s} otherwise, where

Xi = (Xi,1, Xi,2, . . . , Xi,n) ∈ {0, 1}n. Then

P (
∑̀
i=k+1

vTXi > 4s) ≤ 1
2s .

Proof. The sum is clearly monotonically increasing, so without loss of generality assume
` =∞. Notice that if k > 0, the sum is unchanged (i.e., it remains the same random variable)
upon replacing v with the coordinate-wise product of v and Xk. Thus we may also assume
that k = 0, i.e., | supp(v)| ≤ s.
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For each d ∈ supp(v), let Zd = sup{i : Xi,d = 1}. Notice that {Zd}d∈supp(v) is a pairwise
independent collection of Geometric(1/2) random variables and let Z =

∑
d∈supp(v) Zd. We

have that

Z =
∞∑
i=0

vTXi,

because Xi,d = 0 implies Xj,d = 0 for all j > i.
Pairwise independence implies EZ = V ar(Z) = 2| supp(v)| ≤ 2s, and by Chebyshev’s

inequality

P (|Z − 2s| > 2s) ≤ V ar(Z)
4s2 ≤ 1

2s . J

7 Conclusion

It may be possible to apply our methods in order to parameterize according to lengths other
than L1, for example L∞, or in terms of more general constraints on the set of feasible
streams. One challenge with such an adaptation is to ensure that the reduction “preserves”
these constraints. For example, if one replaces the L1 length constraint defining F with
the constraint that the L∞ length, i.e., maximum frequency, is at most M , then she must
take care to ensure that the reduction from Disj never produces a stream with maximum
frequency larger thanM . It is immediate from the structure of the reduction that it preserves
upper bounds on the L1 size of the frequencies, but our reduction may not preserve an upper
bound on the maximum frequency.

Recall that we require an upper bound on the L1 length of the frequency vector at the
start of the algorithm (in order to compute σ). Here the L1 length has an additional practical
advantage over other lengths because it can be computed exactly for insertion-only and
strict-turnstile streams by a one pass algorithm with at most O(logM) bits of memory, and
a (1± ε)-approximation requires only O(ε−2 logM) bits in the turnstile model [26]. Thus,
one can determine after the fact whether the supposed upper bound actually holds.
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