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Abstract
Low-degree polynomial approximations to the sign function underlie pseudorandom generators for
halfspaces, as well as algorithms for agnostically learning halfspaces. We study the limits of these
constructions by proving inapproximability results for the sign function. First, we investigate the
derandomization of Chernoff-type concentration inequalities. Schmidt et al. (SIAM J. Discrete
Math. 1995) showed that a tail bound of δ can be established for sums of Bernoulli random
variables with only O(log(1/δ))-wise independence. We show that their results are tight up
to constant factors. Secondly, the “polynomial regression” algorithm of Kalai et al. (SIAM
J. Comput. 2008) shows that halfspaces can be efficiently learned with respect to log-concave
distributions on Rn in the challenging agnostic learning model. The power of this algorithm relies
on the fact that under log-concave distributions, halfspaces can be approximated arbitrarily well
by low-degree polynomials. In contrast, we exhibit a large class of non-log-concave distributions
under which polynomials of any degree cannot approximate the sign function to within arbitrarily
low error.
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1 Introduction

Approximation theory is a classical area of mathematics that studies how well functions can
be approximated by simpler ones. It has found many applications in computer science. Most
of these applications of approximation theory focus on the approximation of functions by
polynomials in the uniform norm (or infinity norm). For instance, approximate degree, which
captures how well a boolean function can be approximated by low-degree polynomials in the
uniform norm, underlies important lower bounds in circuit complexity [6, 7, 66], quantum
query complexity [5, 1], and communication complexity [65]. It also underlies state-of-the
art algorithms in learning theory [35, 41], streaming [31], and in spectral methods [63].

While it is compelling to study polynomial approximations under the uniform norm,
there are scenarios where it is more natural to study weighted polynomial approximations,
where error is measured in terms of an Lp norm under some distribution. For instance, in
agnostic learning, the polynomial regression algorithm of Kalai et al. [35] has guarantees
based on how well functions in a concept class of interest can be approximated by low-degree
polynomials in L1 distance.
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In this work, we show how ideas from weighted approximation theory can yield tight
lower bounds for several problems in theoretical computer science. As our first application,
in the area of derandomization, we give a tight characterization of the amount of k-wise
independence necessary to establish Chernoff-like concentration inequalities. Second, we
establish a strong limitation on the distributions under which halfspaces can be learned using
the polynomial regression algorithm of Kalai et al.

1.1 Tail Bounds for Limited Independence
The famous Hoeffding bound [32] implies that if X ∈ {±1}n is a uniform random variable
and r ∈ Rn is fixed, then, for all T ≥ 0,

P
X

[|X · r| ≥ T ] ≤ 2e
− T2

2||r||22 .

We ask the following question:

For what pseudorandom X is the Hoeffding bound true?

More precisely, given T and δ, can we construct a pseudorandom X ∈ {±1}n such that
P
X

[|X · r| ≥ T ] ≤ δ for all r ∈ {±1}n?1 Of particular interest is the parameter regime

δ = 1/poly(n) and T = Θ(||r||2
√

log(1/δ)), which is natural in the context of derandomizing
efficient randomized algorithms.2 The probabilistic method gives a non-constructive proof
that there exists such an X which can be sampled with seed length O(log(n/δ)). The
challenge is to give an explicit construction of such an X which can be efficiently sampled
with a short seed.

This is a very natural pseudorandomness question: Concentration of measure is a
fundamental property of independent random variables and one of the key objectives of
pseudorandomness research is to replicate such properties for random variables with low
entropy. Finding a pseudorandom X exhibiting good concentration is also a relaxation of
a more general and well-studied pseudorandomness question, namely that of constructing
pseudorandom generators that fool linear threshold functions [21, 48, 28, 22]. This problem
can also be viewed as a special case of constructing pseudorandom generators for space-
bounded computation [57, 33, 60, 14, 15, 43, 61].

For δ = 1/ poly(n) and T = Θ(
√
n log(1/δ)), we can construct explicit X that can be

sampled with seed length O(log2 n) using a variety of methods (including [57, 48]). In
particular, it suffices for X to be O(log(1/δ))-wise independent:

I Theorem 1 (Tail Bound for Limited Independence). Let n ≥ 1, η > 0, and δ ∈ (0, 1) be
given. Let X ∈ {±1}n be k-wise independent for k = 2dη loge(1/δ)e. Let r ∈ Rn and set
T = e(η+1)/2η

√
k ||r||2. Then

P [|X · r| ≥ T ] ≤ δ.

Limited independence is a very general and intuitively appealing technique in pseudor-
andomness. As a tool for derandomization, it has been studied in the contexts of hashing
[46, 50], dimensionality reduction [37], random graphs [3], and circuits [4, 13]. A k-wise

1 For simplicity we restrict our attention to r ∈ {±1}n, instead of arbitrary real-valued r.
2 Smaller values of δ are also interesting and our results apply in these settings. However, our results are

most stark for reasonably large values of δ.
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independent X ∈ {±1}n can be sampled with seed length O(k · logn) [2], yielding a seed
length of O(log2 n) for the setting of parameters above.

In this work, we ask whether the tail bound of Theorem 1 for k-wise independence is
tight. That is, can we prove stronger tail bounds for k-wise independent X?

I Question 2. How much independence is needed for X to satisfy a Hoeffding-like tail bound?
That is, what is the minimum k = k(n, δ, T ) for which any k-wise independent X ∈ {±1}n
satisfies

P
X

[|X · r| ≥ T ] ≤ δ

for all r ∈ {−1, 1}n, where · denotes the inner product.

We remark that limited independence is not the only technique for derandomizing
concentration bounds. Another construction which achieves seed length O(logn · log(1/δ)) is
to sample X from a small-bias space [52]. Very recently, Gopalan et al. [27] constructed a
much more sophisticated generator with seed length Õ(log(n/δ)), which is nearly optimal.

1.1.1 Our Results
Theorem 1 shows that k(n, δ, T ) ≤ O(log(1/δ)) for T = O(

√
n log(1/δ)). In this work, we

show that this is essentially tight:

I Theorem 3. Let c > 5 be a constant and n sufficiently large. For 2−no(1) ≤ δ ≤ 1
poly(n)

and T = c
√
n log(1/δ), we have

k(n, δ, T ) ≥ Ω
(

log(1/δ)
log(c)

)
.

This means there exists a k-wise independent distribution X ∈ {±1}n such that

P

∣∣∣∣∣∣
∑
i∈[n]

Xi

∣∣∣∣∣∣ ≥ T
 > δ,

for k = k(n, δ, T ), n, δ, and T as above.
The only previous lower bound was

k(n, δ, T ) ≥ Ω
(

log(1/δ)
logn

)
,

which holds for any T ≤ n and is due to [64]. This is meaningful when δ < n−ω(1), but the
lower bound is trivial for δ = 1/poly(n). Thus our lower bound closes a large gap for the
δ = 1/ poly(n) regime, which is of considerable interest [29, 48, 27].

The lower bound of [64] follows immediately from the fact that a random variable X
that can be sampled with seed length s cannot satisfy a nontrivial tail bound with δ < 2−s,
and that there exist k-wise independent distributions that can be sampled with seed length
s ≤ O(k · logn). Indeed this lower bound holds for all distributions with small seed length
and is not specific to k-wise independence.

The most natural way to prove Theorem 3 would be to construct a family of k-wise
independent distributions that do not satisfy the required tail bound. However, we instead
study the dual formulation of the problem (following [4, 20, 9]) and then use lower bound
techniques from approximation theory. To the best of our knowledge, this indirect approach

APPROX/RANDOM’15
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is novel for proving impossibility results for k-wise independence. Our results imply the
existence of k-wise independent distributions with poor tail bounds, but give no immediate
indication as to how to construct them!

We now describe the proof idea in slightly more detail. The answer to Question 2 can be
posed in terms of the value of a certain linear program. The variables represent the probability
distribution of the random variable X and the constraints force X to be k-wise independent.
The objective of the linear program is maximize the tail probability P [|X · r| ≥ T ]. Thus, the
value of the program is at most δ if and only if k ≥ k(n, δ, T ). Taking the dual of this linear
program and appealing to strong duality yields an alternative characterization of k(n, δ, T ).
Namely, k(n, δ, T ) is the smallest k for which the threshold function FT (x) = 1(|x| ≥ T )
admits an upper sandwiching polynomial of degree k and expectation at most δ. Here, an
upper sandwiching polynomial is simply a polynomial p for which p(x) ≥ FT (x) pointwise.

We then use ideas from weighted approximation theory to give a lower bound on k

for which such sandwiching polynomials exist. In order to apply these ideas, we make a
few symmetrization and approximation arguments to reduce the problem to a continuous
one-dimensional problem: Find a degree lower bound for a univariate polynomial that is
a good upper sandwich for the function fT (x) = sgn(|x| − T ), with respect to a Gaussian
distribution. The solution to this problem appeals to a weighted Markov-type inequality.
This inequality generalizes the classical Markov inequality for uniform approximations, which
gives a bound on the derivative of a low-degree polynomial that is bounded on the unit
interval:
I Theorem 4 ([47]). Let p be a polynomial of degree d with |p(x)| ≤ 1 on the interval [−1, 1].
Then |p′(x)| ≤ d2 on [−1, 1].
The idea is that an upper sandwich for fT must have a large jump at the threshold T , which
is impossible for low-degree polynomials. The formal proof of this claim is based on a variant
of an “infinite-finite range” inequality, which asserts that the weighted norm of a polynomial
on the real line is bounded by its norm on a finite interval.

1.2 Agnostically Learning Halfspaces
Halfspaces are a fundamental concept class in machine learning, both in theory and in
practice.3 Their study dates back to the Perceptron algorithm of the 1950s. Halfspaces serve
as building blocks in many applications, including boosting and kernel methods.

Halfspaces can be learned in the PAC model [67] either by solving a linear program, or
via simple iterative update algorithms (e.g. the Perceptron algorithm). However, learning
halfspaces with classification noise is a much more difficult problem, and often needs to be
dealt with in practice.

In this work, we study a challenging model of adversarial noise – the agnostic learning
model of Kearns et al. [38]. In this model, a learner has access to examples drawn from a
distribution D on X × {±1} and must output a hypothesis h : X → {±1} such that

P
(x,y)∼D

[h(x) 6= y] ≤ opt + ε,

where opt is the error of the best concept in the concept class – that is,

opt = min
f∈C

P
(x,y)∼D

[f(x) 6= y] .

3 A halfspace is a function f : Rn → {±1} given by f(x) = sgn(w · x− θ) for w ∈ Rn and θ ∈ R, where
sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise.
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The theory of agnostic learning is not well-understood, even in the case of halfspaces.
Positive results for efficient agnostic learning of high-dimensional halfspaces are restricted to
limited classes of distributions.4 For instance, halfspaces can be learned under the uniform
distribution over the hypercube or the unit sphere, or on any log-concave distribution [35, 39].
On the negative side, a variety of both computational and information-theoretic hardness
results are known. For instance, proper agnostic learning of halfspaces (where the learner is
required to output a hypothesis that is itself a halfspace) is known to be NP-hard [24, 30].
Moreover, agnostically learning halfspaces under arbitrary distributions is as hard as PAC
learning DNFs [44], which is a longstanding open problem.

There is essentially only one known technique for agnostically learning high-dimensional
halfspaces: the L1 regression algorithm [35], which we discuss in more detail in Section 3.2.
In its most general form, the algorithm selects a linear space of functions H ⊂ {h : X → R}.
After drawing a number of examples (xi, yi) from D, it computes

h∗ = argmin
h∈H

∑
i

|h(xi)− yi|.

The output of the algorithm is sgn(h∗(x) − t) for some t. We need to ensure that the
minimisation can be computed efficiently (e.g. by linear programming) and that every
concept f ∈ C can be approximated by some h ∈ H – that is E

x∼D
[|h(x)− f(x)|] ≤ ε. If this

is the case, then C is agnostically learnable in time poly(|H|).
Kalai et al. (and most subsequent work on learning using L1 regression, e.g. [40, 26,

11, 36, 25]) chose H to be the class of low-degree polynomials. They showed that under
certain classes of distributions, every halfspace can be approximated by a polynomial of
degree Oε(1), and hence halfspaces are agnostically learnable in time nOε(1).

Distributional assumptions arise because the L1 approximation measure (namely
E
x∼D

[|h(x)− f(x)|]) depends on the underlying distribution. A distribution-independent
approximation would require an L∞ approximation, which is too much to hope for in many
circumstances.

1.2.1 Our Results
In this work, we ask whether polynomial regression can be extended to work beyond the
classes of distributions studied by Kalai et al. In particular, can polynomials provide good
L1 approximations to halfspaces under distributions with heavy tails? Such distributions,
including power law distributions, arise naturally in many physical, biological, and networking
contexts. Certain learning problems even require heavy tailed distributions on examples [51].

Our result addressing this question (Theorem 6) is a negative one. We show that
polynomial approximations to halfspaces do not exist for a large class of distributions,
namely:

I Definition 5. An absolutely continuous distribution D on R is a log-superlinear (LSL)
distribution if there exist C > 0 and γ ∈ (0, 1) such that the density w of D satisfies
w(x) ≥ C exp(−|x|γ).5

4 An efficient algorithm is one which runs in time polynomial in the dimension n for any constant ε > 0 –
that is, time nOε(1).

5 The name log-superlinear comes from the fact that the tails of the probability density function of a LSL
distribution are heavier than that of the log-linear Laplace distribution.

APPROX/RANDOM’15
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I Theorem 6. For any LSL distribution D, there exists ε > 0 such that no polynomial (of
any degree) can approximate the sign function with L1 error less than ε with respect to D.

In particular, this implies that the polynomial regression algorithm is not able to ag-
nostically learn thresholds on the real line to within arbitrarily small error. Note that this
result does not rule out the possibility that halfspaces can be agnostically learned by other
techniques. Indeed, the classic approach of empirical risk minimization (see [38] and the
references therein) gives an efficient algorithm for learning thresholds (which are halfspaces
in one dimension) under arbitrary distributions. Thus the problem of learning real thresholds
under LSL distributions is an explicit example for which polynomial regression fails while
other techniques can succeed.

If we were to take γ ≥ 1, the probability density function C(γ)e−|x|γ (where C(γ) is a
normalising constant) would give a log-concave distribution, in which case Kalai et al. [35]
show that good polynomial approximations to halfspaces exist. Thus our result gives a
threshold between where polynomial approximations to halfspaces exist and where they do
not.

Our result for thresholds extends readily to an impossibility result for learning halfspaces
over Rn:

I Theorem 7. For any product distribution D on Rn with a LSL marginal distribution on
some coordinate, there exists ε > 0 and a halfspace h such that no polynomial can approximate
h with L1 error less than ε with respect to D.

As with Theorem 3, the proof of Theorem 6 relies on several Markov-type inequalities
for weighted polynomial approximations. Early work on the approximate degree of boolean
functions [56, 59] used Markov’s inequality to get tight lower bounds on the degree of
uniform approximations to symmetric functions. For weighted approximations under LSL
distributions, we actually get a much stronger statement. It turns out that the derivative of
a polynomial is bounded near the origin independent of the degree as long as that polynomial
is absolutley bounded when integrated under a LSL distribution. With this powerful fact in
hand, the proof of Theorem 6 is quite simple. Consider the threshold function f(t) = sgn(t).
Since f has a “jump” at zero, any good polynomial approximation to f must be bounded
and have a large derivative near zero. The higher quality the approximation, the larger a
derivative we need. But since the derivative of any polynomial is bounded by a constant, we
cannot get arbitrarily good approximations to f using polynomials.

We give the full proof in Section 3.4, and discuss the multivariate generalization in Section
3.5.

1.2.2 Related Work
Our result echoes prior work establishing the limits of uniform polynomial approximations
for various concept classes. For instance, the seminal work of Minsky and Papert [49] showed
that there is an intersection of two halfpsaces over Rn which cannot be represented as
the sign of any polynomial. Building on work of Nisan and Szegedy [56], Paturi [59] gave
tight lower bounds for uniform approximations to symmetric boolean functions. This, and
subsequent work on lower bounds for approximate degree, immediately imply limitations for
distribution-independent agnostic learning via polynomial regression. Klivans and Sherstov
[42] also showed a strong generalization of Paturi’s result to disjunctions, giving limitations on
how well they can be approximated by linear combinations of arbitrary features. By contrast
to all of these results, our work shows a strong limitation for certain distribution-dependent
polynomial approximations.
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In the distribution-dependent setting, Feldman and Kothari [25] showed that polynomial
regression cannot be used to learn disjunctions with respect to symmetric distributions on
the hypercube. Recent work of Daniely et al. [19] also uses ideas from approximation theory
to show limitations on a broad class of regression and kernel-based methods for learning
halfspaces, even under a margin assumption. While our results only apply to polynomial
regression, they hold for approximations of arbitrarily high complexity (i.e. degree), and for
a large class of natural distributions.

The limitations we prove for polynomial regression do not rule out the existence of other
agnostic learning algorithms, including those using L1 regression with different feature spaces.
Wimmer [68] showed how to use a different family of basis functions to learn halfspaces over
symmetric distributions on the hypercube. Subsequent work of Feldman and Kothari [25]
improved the running time in the special case of disjunctions. We leave it as an intriguing
open question to determine whether other basis functions can be used to learn halfspaces
under LSL distributions.

2 Tail Bounds for Limited Independence

Our proof consists of three steps:
§2.1 First we reformulate the question of tail bounds for k-wise independent distributions

using linear programming duality and symmetrisation. This reduces the problem to
proving a degree lower bound on univariate polynomials. Namely we need to give a lower
bound on the degree of a polynomial p : {0, 1, · · · , n} → R such that p(i) ≥ 0 for all i,
p(i) ≥ 1 if |i−n/2| ≥ T , and E [p(i)] ≤ δ, where i is drawn from the binomial distribution.

§2.2 We then transform the problem from one about polynomials with a discrete domain to
one about polynomials with a continuous domain. This amounts to showing that, since
E [p(i)] ≤ δ with respect to the binomial distribution, we can bound E [p(x+ n/2)] with
respect to a truncated Gaussian distribution on x.

§2.3 Finally we can apply the tools of weighted approximation theory. We know that
p(x + n/2) is small for x near the origin, but p(T + n/2) ≥ 1. We show that any low-
degree polynomial that is bounded near the origin cannot grow too quickly. This implies
that p must have high degree.

2.1 Dual Formulation
Question 2 from the introduction is equivalent to finding the smallest k for which the value
of the following linear program is at most δ.

Linear Program Formulation of Question 2

max
ψ

∑
x∈{−1,1}n

ψ(x)FT (x)

s.t.
∑

x∈{−1,1}n
ψ(x)χS(x) = 0 for all |S| ≤ k

∑
x∈{−1,1}n

ψ(x) = 1

0 ≤ ψ(x) ≤ 1 for all x ∈ {−1, 1}n.

Here, FT (x) = 1 if |x| ≥ T and is 0 otherwise, and χS(x) is the Fourier character corresponding
to S ⊆ [n].

APPROX/RANDOM’15
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If we set P
X

[X = x] = ψ(x), then the constraints impose that X is a k-wise independent

distribution, while the objective function is P
X

[∣∣∣∑i∈[n] Xi

∣∣∣ ≥ T]. Thus the above linear
program finds the k-wise independent distribution with the worst tail bound. If the value of
the program is at most δ, then all k-wise independent distributions satisfy the tail bound, as
required.

Taking the dual of the above linear program yields the following.

Dual Formulation of Question 2

min
p

2−n
∑

x∈{−1,1}n
p(x)

s.t. deg(p) ≤ k
p(x) ≥ FT (x) for all x ∈ {−1, 1}n.

By strong duality, the value of the dual linear program is the same as that of the primal.
The multilinear polynomial p is an “upper sandwich” of FT – that is, p ≥ FT and
E

X∈{±1}n
[p(X)] is minimal. Therefore, k(n, δ, T ) is the smallest k for which FT admits an

upper sandwiching polynomial of degree k with expectation δ.
Consider the shifted univariate symmetrization of FT

F ′T (x) =
{

1 if |x− n/2| ≥ T
0 otherwise.

By applying the well-known Minsky-Papert symmetrization [49] to the dual formulation
above, we get the following characterization.

I Theorem 8. The quantity k(n, δ, T ) from Question 2 is the smallest k for which there
exists a degree-k univariate polynomial p : {0, . . . , n} → R such that
1. p(i) ≥ F ′T (i) for all 0 ≤ i ≤ n and
2. 2−n

∑n
i=0
(
n
i

)
p(i) ≤ δ.

The upper bound on k(n, δ, T ) (Theorem 1) is proved (in the appendix) by showing that

p(i) =
(
i− n/2
T

)k
satisfies the requirements of Theorem 8 for an appropriate even k.6 So this characterisation
does in fact capture how upper bounds are proved. The fact that it is a tight characterisation
allows us to prove that a barrier to the technique is in fact an impossibility result.

With this characterisation of our problem, we may move on to proving inapproximability
results.

2.2 A Continuous Version
To apply techniques from the theory of weighted polynomial approximations, we move to
polynomials on a continuous domain. We replace the binomial distribution upon which
Theorem 8 evaluates p with a Gaussian distribution.

6 While our results show that this polynomial is asymptotically optimal, numerical experiments have
shown that it is not exactly optimal.
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Define the probability density function

w(x) = 1√
π
e−x

2
.

We define the L∞ norm with respect to the weight w:

‖g‖L∞(S) = sup
x∈S
|g(x)|w(x).

Now we can give the continuous version of the problem:

I Theorem 9. Let T = c
√
n log(1/δ) for c ≥ 5, and d = k(n, δ, T ). Assume n ≥

(12c)2(3 log(1/δ))3. Then for T ′ = 4cT/
√
n, there is a degree d polynomial q such that

1. q(T ′) = q(−T ′) ≥ 1 and
2. ‖q‖L∞[−

√
d,
√
d] ≤ δ

0.9(n+ 1).

The following lemma is key to moving from the discrete to the continous setting. It
shows that if a polynomial is bounded at evenly spaced points, then it must also be bounded
between those points, assuming the number of points is sufficiently large relative to the
degree.

I Lemma 10 (adaptation of [23, 62, 56]). Let q be a polynomial of degree d such that |q(i)| ≤ 1
for i = 0, 1, . . . ,m, where 3d2 ≤ m. Then |q(x)| ≤ 3

2 for all x ∈ [0,m].

Proof. Let a = maxx∈[0,m] |q′(x)|. Then by the mean value theorem, |q(x)| ≤ 1 + a/2 for
x ∈ [0,m]. By Markov’s inequality ([47], see also [17]),

a ≤ 2d2(1 + a/2)
m

.

Rearranging gives

a

2 + a
≤ d2

m
≤ 1

3 .

Therefore, a ≤ 1, and hence |q(x)| ≤ 3
2 for x ∈ [0,m]. J

We also require the following anti-concentration lemma.

I Lemma 11.(
n

n/2 + α
√
n

)
≥ 2n−6α2

n+ 1 .

Proof. It is well known via Stirling’s approximation that
(
n
k

)
≥ 2nH(k/n)/(n+ 1), where H(·)

denotes the binary entropy function. We estimate

H

(
1
2 + α√

n

)
≥
(

1
2 + α√

n

)(
1− 2α

(log 2)
√
n

)
+
(

1
2 −

α√
n

)(
1 + 2α

(log 2)
√
n

)
≥ 1− 4α2

(log 2)n,

which concludes the proof. J

APPROX/RANDOM’15
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Proof of Theorem 9. Let p be the polynomial promised by Theorem 8. By Theorem 1, we
know that d ≤ 3 log(1/δ). Define

q(x) = p(x
√
n/4c+ n/2).

Then q(±T ′) = p(±T + n/2) ≥ F ′T (±T + n/2) = 1, dispensing with the first claim.
Now for all integers i in the interval n/2±

√
nd/4c, we have

2−n
(
n

i

)
|p(i)| ≤ δ

and hence, by Lemma 11,

|p(i)| ≤ 2nδ(
n

n/2+
√
nd/4c

) ≤ (n+ 1)δ26d/16c2
≤ (n+ 1)δ1−18/16c2

≤ (n+ 1)δ0.9.

By Lemma 10, |p(x)| ≤ 3
2 (n + 1)δ0.9 on the whole interval n/2 ±

√
nd/4c. Thus |q(x)| ≤

3
2 (n+ 1)δ0.9 on [−

√
d,
√
d], completing the proof. J

2.3 The Lower Bound
Now we state the result we need from approximation theory. The following “infinite-finite
range inequality” shows that the norm of weighted polynomial on the real line is determined
by its norm on a finite interval around the origin. Thus, an upper bound on the magnitude
of a polynomial near the origin yields a bound on its growth away from the origin. We will
apply this to the polynomial given to us in Theorem 9.

I Theorem 12. For any polynomial p of degree d and B > 1,

‖p‖L∞(R\[−B
√
d,B
√
d]) ≤ (2eB)d exp(−B2d)‖p‖L∞[−

√
d,
√
d].

The proof follows [45, Theorem 6.1] and [54, Theorem 4.16.12].

Proof. Let p̃ be a polynomial of degree d. Let Td(x) denote the dth Chebyshev polynomial
of the first kind [17]. By the extremal properties of Td, we have

|p̃(x)| ≤ |Td(x)|
(

max
t∈[−1,1]

|p̃(t)|
)
≤ (2|x|)d

(
max

t∈[−1,1]
|p̃(t)|

)
for |x| ≥ 1. Rescaling p(x) = p̃(x/

√
d) yields

|p(x)| ≤
(

2|x|√
d

)d(
max

t∈[−
√
d,
√
d]
|p(t)|

)
≤
√
πed

(
2|x|√
d

)d
‖p‖L∞[−

√
d,
√
d]

for |x| ≥
√
d. Now let |x| = B

√
d for some B > 1. Then

|p(x)|w(x) ≤ ed(2B)d exp(−B2d)‖p‖L∞[−
√
d,
√
d].

Since the coefficient (2eB)d exp(−B2d) is decreasing in B, this proves the claim. J

The above approximation theory result, combined with our continuous formulation
Theorem 9, enables us to complete the proof.

I Theorem 13. Let T = c
√
n log(1/δ) for c ≥ 5. Assume n ≥ (12c)2(3 log(1/δ))3 and

δ ≤ 1/n4. Then k(n, δ, T ) > log(1/δ)/9 log c.
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Proof. Let q be the polynomial given by Theorem 9. Let T ′ = 4cT/
√
n, d = log(1/δ)/9 log c,

and B = T ′/
√
d = 12c2√log c. For the sake of contradiction, we suppose that q satisfies the

conditions of Theorem 9, but deg(q) ≤ d. Then

‖q‖L∞(R\[−B
√
d,B
√
d]) = ‖q‖L∞(R\[−T ′,T ′]) ≥

exp(−T ′2)√
π

.

On the other hand, applying Theorem 12, gives

‖q‖L∞(R\[−B
√
d,B
√
d]) ≤ (2eB)d exp(−T ′2)δ0.9(n+ 1).

Combining the two inequalities gives

1√
π
≤ (2eB)dδ0.9(n+ 1) ≤

(
24ec2

√
log(c)

)log(1/δ)/9 log(c)
δ0.9(n+ 1) ≤ δ1/3(n+ 1),

which is a contradiction. J

Theorem 13 yields Theorem 3.

3 Agnostically Learning Halfspaces

The class of log-concave distributions over Rn (defined below) is essentially the broadest
under which we know how to agnostically learn halfspaces. While many distributions
used in machine learning are log-concave, such as the normal, Laplace, beta, and Dirichlet
distributions, log-concave distributions do not capture everything. For instance, the log-
normal distribution and heavier-tailed exponential power law distributions are not log-concave.
The main motivating question for this section is whether we can relax the assumption of
log-concavity for agnostically learning halfspaces. To this end, we show a negative result: for
LSL distributions, agnostic learning of halfspaces will require new techniques.

3.1 Background
Our starting point is the work of Kalai et al. [35]. Among their results is the following.

I Theorem 14 ([35]). The concept class of halfspaces over Rn is agnostically learnable in
time poly(nOε(1)) under log-concave distributions.

A log-concave distribution is an absolutely continuous probability distribution such
that the logarithm of the probability density function is concave. For example, the
standard multivariate Gaussian distribution on Rn has the probability density function
x 7→ e−||x||

2
2/2/(2π)n/2. The natural logarithm of this is −||x||22/2− n/2 · log(2π), which is

concave. The class of log-concave distributions also includes the Laplace distribution and
other natural distributions. However, it does not contain heavy-tailed distributions (such as
power laws) nor non-smooth distributions (such as discrete probability distributions).

Kalai et al. also show that we can agnostically learn halfspaces under the uniform
distribution over the hypercube {±1}n or over the unit sphere {x ∈ Rn : ||x||2 = 1}.

3.2 The L1 Regression Algorithm
The results of Kalai et al. are based on the so-called L1 regression algorithm, which relies on
being able to approximate the concept class in question by a low-degree polynomial:

APPROX/RANDOM’15
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I Theorem 15 ([35]). Fix a distribution D on X × {±1} and a concept class C ⊂ {f : X →
{±1}}.7 Suppose that, for all f ∈ C, there exists a polynomial p : X → R of degree at most d
such that E

x∼DX
[|p(x)− f(x)|] ≤ ε, where DX is the marginal distribution of D on X. Then,

with probability 1− δ the L1 regression algorithm outputs a hypothesis h such that

P
(x,y)∼D

[h(x) 6= y] ≤ min
f∈C

P
(x,y)∼D

[f(x) 6= y] + ε

in time poly(nd, 1/ε, log(1/δ)) with access only to examples drawn from D.

The L1 regression algorithm solves a linear program to find a polynomial p of degree at
most d that minimises

∑
i |p(xi)− yi|, where (xi, yi) are the examples sampled from D. The

hypothesis is then h(x) = sgn(p(x)− t), where t ∈ [−1, 1] is chosen to minimise the error of
h on the examples.

Given Theorem 15, proving Theorem 14 reduces to showing that halfspaces can be
approximated by low-degree polynomials under the distributions we are interested in. It
is important to note that making assumptions on the distribution is necessary (barring a
major breakthrough): Agnostically learning halfspaces under arbitrary distributions is at
least as hard as PAC learning DNF formulas [44]. Moreover, proper learning of halfspaces
under arbitrary distributions is known to be NP-hard [24].

In fact, we can reduce the task of approximating a halfspace to a one-dimensional problem.
A halfspace is given by f(x) = sgn(w · x− θ) for some w ∈ Rn and θ ∈ R. It suffices to find
a univariate polynomial p of degree at most d such that E

x∼Dw,θ
[|p(x)− sgn(x)|] ≤ ε, where

Dw,θ is the distribution of w · x− θ when x is drawn from DX . If DX is log-concave, then so
is Dw,θ.

3.3 On the Density of Polynomials
In this section, we give some intuition for why one might expect that polynomial approx-
imations do not suffice for learning under LSL distributions. It turns out that under a
LSL distribution w, polynomials actually fail to be dense in the space C0[w] of continuous
functions vanishing at infinity when weighted by w. This is in stark contrast to the classical
Weierstrass approximation theorem, which asserts that the polynomials are dense in C0
under the uniform weight. These kinds of results address Bernstein’s approximation problem
[10], a precise statement of which is as follows.

I Question 16. Let w : R→ [0, 1] be a measurable function. Let C0[w] denote the space of
continuous functions f for which lim|x|→∞ f(x)w(x) = 0. Under what conditions on w is it
true that for every f ∈ C0[w], there is a sequence of polynomials {pn}∞n=1 for which

lim
n→∞

‖(pn − f)w‖∞ = 0?

(The choice of the L∞ norm here appears to make very little difference). If Bernstein’s
problem admits a positive resolution, we say that the polynomials are dense in C0[w]. The
excellent survey of Lubinsky [45] presents a number of criteria for when polynomials are
dense. The one that is most readily applied was proved by Carleson [16] (but appears to be
implicit in [34]):

7 Here X = Rn.
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I Theorem 17. Let w be even and positive with log(w(ex)) concave. Then the polynomials
are dense in C0[w] iff∫ ∞

0

logw(x)
1 + x2 dx = −∞.

This immediately yields the following dichotomy result for exponential power distributions:

I Corollary 18. For γ > 0 and wγ(x) = exp(−|x|γ), the polynomials are dense in C0[wγ ] iff
γ ≥ 1.

In particular, this justifies our assertion that the polynomials fail to be dense in the
continuous functions under LSL distributions.

So what does this have to do with agnostically learning halfspaces? Recall that the
analysis of the L1-regression algorithm of Kalai et al. [35] reduces approximating a halfspace
under a distribution D to the problem of approximating each threshold function sgn(x− θ)
under each marginal distribution of D. So for the algorithm to work, we require D to have
marginals w under which sgn(x− θ) can be approximated arbitrarily well by polynomials.
Now if the polynomials are dense in C0[w], then threshold functions can also be approximated
arbitrarily well (since C0[w] is in turn dense in L1[w]). Such an appeal to density actually
underlies Kalai et al.’s proof of approximability under log-concave distributions. On the other
hand, if the polynomials fail to be dense, then one might conjecture that thresholds cannot
be arbitrarily well approximated.

Our result, presented in the next section, confirms the conjecture that even the sign
function cannot be approximated arbitrarily well by polynomials under LSL distributions

3.4 Lower Bound for One Variable
Consider the LSL density function

wγ(x) := C(γ) exp(−|x|γ)

on the reals for γ ∈ (0, 1), where C(γ) is a normalizing constant. Define the sign function
sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise. In this section, we show that for sufficiently
small ε, the sign function does not have an L1 approximation under the distribution wγ .
More formally,

I Proposition 19. For any γ ∈ (0, 1), there exists an ε = ε(γ) such that for any polynomial
p, ∫

R
|p(x)− sgn(x)|wγ(x) dx > ε.

The proof is based on the following Markov-type inequality, which roughly says that a
bounded polynomial cannot have a large derivative (under the weight wγ). This implies the
claim, since the sign function we are trying to approximate has a large “jump” at the origin.

I Lemma 20. For γ ∈ (0, 1) there is a constant M(γ) such that

sup
x∈R

(|p′(x)|wγ(x)) ≤M(γ)
∫
R
|p(x)|wγ(x) dx.

Proof. The lemma is a combination of a Markov-type inequality and a Nikolskii-type,
available in a survey of Nevai [54]:

APPROX/RANDOM’15
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I Theorem 21 ([55], [54, Theorem 4.17.4]). There exists a constant C1(γ) such that for any
polynomial p,∫

R
|p′(x)|wγ(x) dx ≤ C1(γ)

∫
R
|p(x)|wγ(x) dx.

I Theorem 22 ([53], [54, Theorem 4.17.5]). There exists a constant C2(γ) such that for any
polynomial p,

sup
x

(|p(x)|wγ(x)) ≤ C2(γ)
∫
R
|p(x)|wγ(x) dx.

J

Proof of Proposition 19. Fix ε ∈ (0, 1) and suppose p is a polynomial satisfying∫
R
|p(x)− sgn(x)|wγ(x) dx ≤ ε.

Since the absolute value of the sign function integrates to 1, this forces∫
R
|p(x)|wγ(x) dx ≤ 1 + ε ≤ 2.

Therefore, we have by Lemma 20 that |p′(x)|wγ(x) ≤ 2M(γ) for every x.
The idea is now to show that there is some x0 for which |p′(x0)|wγ(x0) ≥ Ω(1/ε). To

see this, let δ = 4ε/C(γ) and observe that there must exist some x+ ∈ [0, δ] such that
p(x+) ≥ 1/2. If this were not the case, then we would have∫

R
|p(x)− sgn(x)|wγ(x) dx ≥

∫ δ

0

(
1− 1

2

)
C(γ) exp(−xγ) dx ≥ δ

2C(γ) exp(−δγ) ≥ ε

for ε small enough, and hence δ small enough, to make exp(−δγ) ≥ 1/2, yielding a contradic-
tion. A similar argument shows that there is some x− ∈ [−δ, 0] with p(x−) ≤ −1/2. Therefore,
by the mean value theorem, there is some x0 ∈ [x−, x+] with p′(x0) ≥ 1/2δ = C(γ)/8ε.
Moreover, because we took δ small enough, we also have p′(x0)w(x0) ≥ C(γ)/16ε. This
shows that no polynomial ε-approximates sgn as long as ε < C/32M . J

Moreover, the proposition shows that it is impossible to get arbitrarily close polynomial
approximations to halfspaces under densities w for which there are constants C and γ ∈ (0, 1)
with w(x) ≥ C exp(−|x|γ) for all x ∈ R. This shows that LSL distributions on R do not
enable arbitrarily close polynomial approximations to halfspaces.

3.5 Extending the Lower Bound to Multivariate Distributions
It is straightforward to extend the lower bound from the previous section to product
distributions with LSL marginals.

I Theorem 23. Let X = (X1, . . . , Xn) be a random variable over Rn with density fX(x) =
w(x1)f(x2, . . . , xn). Suppose the density w specifies a univariate γ-LSL distribution. Then
there exists an ε = ε(γ) such that for any polynomial p,∫

Rn
|p(x1, . . . , xn)− sgn(x1)|fX(x1, . . . , xn) dx1dx2 . . . dxn > ε.

That is, the linear threshold function sgn(x1) cannot be approximated arbitrarily well by
polynomials.
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Proof. Let p(x1, . . . , xn) be a polynomial, and define a univariate polynomial q by “averaging
out” the variables x2, . . . , xn:

q(x1) :=
∫
Rn−1

p(x1, . . . , xn)f(x2, . . . , xn) dx2 . . . dxn.

Then we have∫
R
|q(x1)− sgn(x1)|w(x1) dx1

=
∫
R

∣∣∣∣∫
Rn−1

(p(x1, . . . , xn)− sgn(x1))f(x2, . . . , xn) dx2 . . . dxn

∣∣∣∣w(x1) dx1

≤
∫
R

(∫
Rn−1

|p(x1, . . . , xn)− sgn(x1)|f(x2, . . . , xn) dx2 . . . dxn

)
w(x1) dx1

=
∫
Rn

∫
Rn
|p(x1, . . . , xn)− sgn(x1)|fX(x1, . . . , xn) dx1dx2 . . . dxn.

By Proposition 19, the latter quantity must be at least ε(γ). J

Let wnγ (x) ∝ exp(−(|x1|γ+ · · ·+ |xn|γ)) denote the density of the “prototypical” multivari-
ate LSL distribution, with each marginal having the same exponential power law distribution.
Our impossibility result holds uniformly for every distribution in the sequence {wnγ }. That
is, for every γ ∈ (0, 1), there exists ε = ε(γ) for which halfspaces cannot be learned by
polynomials under any of the distributions specified by {wnγ }.

As a consequence, we get inapproximability results for several natural classes of distribu-
tions that dominate {wnγ } by constant factors (i.e. not growing with n).

1. Any power-law distribution, i.e. a distribution with density ∝ ‖x‖−M for some constant
M , since such a distribution dominates every wnγ .

2. Multivariate generalizations of the log-normal distribution, i.e. any distribution with
density ∝ exp(− polylog(‖x‖)).

3. Multivariate exponential power distributions, which have densities ∝ exp(−‖x‖γ) for
γ ∈ (0, 1). These distributions dominate the prototypical wnγ by the inequality of `p-norms:

‖x‖γ ≤ |x1|γ + · · ·+ |xn|γ

for every 0 ≤ γ ≤ 2.

4 Further Work

Our negative results naturally suggest a number of directions for future work.
Are there other suitable derandomizations of concentration inequalities? In this work,

we focused on understanding the limits of k-wise independent distributions. Gopalan et
al. [27] gave a much more sophisticated generator with nearly optimal seed length. But
could simple, natural pseudorandom distributions, such as small-bias spaces, give strong tail
bounds themselves?

Are halfspaces agnostically learnable under LSL distributions? Our negative result does
not even necessarily rule out the use of L1 regression for this task: The polynomial regression
algorithm of Kalai et al. [35] is in fact quite flexible. Nothing is really special about the basis
of low-degree monomials, and the algorithm works equally well over any small, efficiently
evaluable “feature space”. That is, if we can show that halfspaces are well-approximated

APPROX/RANDOM’15
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by linear combinations of features from a feature space F under a distribution D, then we
can agnostically learn halfspaces with respect to D in time proportional to |F|. Could one
hope for such approximations? Wimmer [68] and Feldman and Kothari [25] have shown how
to use non-polynomial basis functions to obtain faster learning algorithms on the boolean
hypercube. On the other hand, recent work of Dachman-Soled et al. [18] shows that, at
least for product distributions on the hypercube, polynomials yield the best basis for L1
regression.

Acknowledgements. We thank Varun Kanade, Scott Linderman, Raghu Meka, Jelani
Nelson, Justin Thaler, Salil Vadhan, Les Valiant, and several anonymous reviewers for helpful
discussions and comments.
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A Upper Bound for Limited Independence

Theorem 1 follows from the following well-known [64, 8] lemma, which we prove for com-
pleteness.

I Lemma 24. Let X ∈ {±1}n be uniform and r ∈ Rn. For all even k ≥ 2,

E
[
(X · r)k

]
≤
(
e ||r||22 k

)k/2
.

An even stronger form of Lemma 24 follows immediately from the hypercontractivity theorem
[12] [58, §9]: Letting f(x) = x · r, we have

E
[
(X · r)k

]
= ||f ||kk ≤

(
(k − 1)deg(f)/2 ||f ||2

)k
=
(√

k − 1 ||r||2
)k
,

as required. A self-contained proof follows.

Proof. We start by bounding the moment generating function of X · r: Let t ∈ R be fixed
later. For any i ∈ [n], we have

E
[
etriXi

]
= 1

2
(
etri + e−tri

)
=
∞∑
k=0

(tri)k + (−tri)k

2k! =
∞∑
k=0

(tri)2k

(2k)! ≤
∞∑
k=0

(t2r2
i )k

2kk! = et
2r2
i /2.

By independence,

E
[
et(X·r)

]
=

n∏
i=1

E
[
etriXi

]
≤

n∏
i=1

et
2r2
i /2 = et

2||r||22/2.
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We wish to bound a single moment, namely E
[
(X · r)k∗

]
for an even k∗. We do this by

picking one term out of the taylor series of E
[
et(X·r)]. First we remove the odd terms:

∑
k even

tk

k!E
[
(X · r)k

]
= 1

2

(
E
[
et(X·r)

]
+ E

[
e−t(X·r)

])
≤ et

2||r||22/2

We have E
[
(X · r)k

]
≥ 0 for even k, so we can remove terms from the above infinite sum

without increasing it. Thus

tk∗

k∗!
E
[
(X · r)k∗

]
≤
∑
k even

tk

k!E
[
(X · r)k

]
≤ et

2||r||22/2.

Rearranging and setting t =
√
k∗/ ||r||2, we obtain

E
[
(X · r)k∗

]
≤ k∗!
tk∗

et
2||r||22/2 =

k∗! ||r||k∗2 ek∗/2

√
k∗
k∗

≤

(
k2
∗ ||r||

2
2 e

k∗

)k∗/2

= (e ||r||22 k∗)
k∗/2,

as required. J

Now we can prove the upper bound for k-wise independence using the connection between
moment bounds and tail bounds [64].

Proof of Theorem 1. Note that, if X ∈ {±1}n is k-wise independent, then

E
[
(X · r)k

]
=

∑
i1···ik∈[n]

 k∏
j=1

rij

 · E
 k∏
j=1

Xij


is the same as for uniform X, as this is the expectation of a degree-k polynomial. By Lemma
24 and Markov’s inequality, we have (assuming k is even),

P [|X · r| ≥ T ] = P
[
(X · r)k ≥ T k

]
≤

E
[
(X · r)k

]
T k

≤

(
e ||r||22 k
T 2

)k/2

.

Substituting k = 2dη loge(1/δ)e and T = e(η+1)/2η
√
k ||r||2, we have

P [|X · r| ≥ T ] ≤
(

e ||r||22 k
(e(η+1)/2η

√
k ||r||2)2

)dη loge(1/δ)e

= e−dη loge(1/δ)e/η ≤ δ.
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