
Tighter Connections between Derandomization
and Circuit Lower Bounds∗

Marco L. Carmosino1, Russell Impagliazzo1, Valentine Kabanets2,
and Antonina Kolokolova3

1 Department of Computer Science, University of California San Diego
La Jolla, CA, USA
mcarmosi@cs.ucsd.edu, russell@eng.ucsd.edu

2 School of Computing Science, Simon Fraser University
Burnaby, BC, Canada
kabanets@cs.sfu.ca

3 Department of Computer Science, Memorial University of Newfoundland
St. John’s, NL, Canada
kol@mun.ca

Abstract
We tighten the connections between circuit lower bounds and derandomization for each of the
following three types of derandomization:

general derandomization of promise-BPP (connected to Boolean circuits),
derandomization of Polynomial Identity Testing (PIT) over fixed finite fields (connected to
arithmetic circuit lower bounds over the same field), and
derandomization of PIT over the integers (connected to arithmetic circuit lower bounds over
the integers).

We show how to make these connections uniform equivalences, although at the expense of using
somewhat less common versions of complexity classes and for a less studied notion of inclusion.

Our main results are as follows:
1. We give the first proof that a non-trivial (nondeterministic subexponential-time) algorithm

for PIT over a fixed finite field yields arithmetic circuit lower bounds.
2. We get a similar result for the case of PIT over the integers, strengthening a result of Jansen

and Santhanam [13] (by removing the need for advice).
3. We derive a Boolean circuit lower bound for NEXP ∩ coNEXP from the assumption of suffi-

ciently strong non-deterministic derandomization of promise-BPP (without advice), as well as
from the assumed existence of an NP-computable non-empty property of Boolean functions
useful for proving superpolynomial circuit lower bounds (in the sense of natural proofs of [20]);
this strengthens the related results of [11].

4. Finally, we turn all of these implications into equivalences for appropriately defined promise
classes and for a notion of robust inclusion/separation (inspired by [9]) that lies between the
classical “almost everywhere” and “infinitely often” notions.

1998 ACM Subject Classification F.2.3 Tradeoffs between Complexity Measures

Keywords and phrases derandomization, circuit lower bounds, polynomial identity testing, prom-
ise BPP, hardness vs. randomness

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.645

∗ This work was partially supported by the Simons Foundation and NSF grant CCF-121351 (M. Carmosino,
R. Impagliazzo) and by NSERC Discovery grant (V. Kabanets, A. Kolokolova)

© Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 645–658

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.645
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

646 Tighter Connections between Derandomization and Circuit Lower Bounds

1 Introduction

While randomness has become an indispensable tool for algorithm design, many (though not
all) randomized algorithms have later been derandomized, i.e., shown to have equivalent,
comparably fast deterministic algorithms. One highly successful method for derandomization
of whole classes of algorithms has been the “hardness as randomness” paradigm [2, 7, 28, 19,
5, 12, 24, 22, 26]. In this paradigm, problems that are hard for the type of computation to
be derandomized are converted into indistinguishable pseudo-random generators (PRGs) for
the same class, which then replace the random choices of the randomized algorithm.

It has long been observed that this method seems to require hardness for the non-uniform
version of the class (at least for worst-case derandomization). PRGs are a special case of
“black-box” derandomization methods, where the algorithm to be accessed is only modified by
replacing the random decisions with deterministic choices. It is relatively straightforward to
show that “black-box” derandomization requires a circuit bound against the type of algorithm
to be derandomized (see, e.g., [10]). Thus, via the hardness as randomness paradigm, strong
circuit lower bounds can be proved equivalent to universal “black-box” derandomization.

More surprisingly, there are results that show the reverse direction, that derandomization
requires strong circuit lower bounds, is true even for non-black-box algorithms [11]. In fact,
even derandomizing a specific algorithm, the randomized polynomial identity test (PIT) of
Schwartz and Zippel (also discovered by DeMillo and Lipton) [21, 29, 8], would imply strong
lower bounds for arithmetic circuits [14, 13, 1]. However, the proofs of these statements
are not direct reductions, but instead go through various complexity class collapses, and
the conclusions in one direction are not usually exact matches for the other. So, unlike for
“black-box” algorithms, we do not usually get a literal equivalence between a derandomization
result and a circuit lower bound (one exception is [13]).

In this paper, we tighten the connections between circuit lower bounds and derandomiza-
tion in several ways, for each of the three types of derandomization: general derandomization
of promise-BPP (connected to Boolean circuits), derandomization of PIT over fixed finite
fields (connected to arithmetic circuit lower bounds over the same field), and derandomization
of PIT over the integers (connected to arithmetic circuit lower bounds over the integers).
We show how to make these connections equivalences, although at the expense of using
somewhat less common versions of complexity classes and a less studied notion of inclusion,
the “robustly-often” inclusion introduced by [9]. Even for worst-case inclusion, we simplify
and strengthen the known connections in several ways.

1.1 Our results
Following [13], let ml-NE denote the class of multilinear n-variate polynomials F = {fn}n≥0
over a domain D (for D the set of integers or a finite field) whose graph:

{(a1, . . . , an, fn(a1, . . . , an)) | n ≥ 0, ai ∈ D, 1 ≤ i ≤ n}

is in the class NE = NTIME[2O(n)].

For finite fields, we show that derandomization of PIT implies that some polynomial
F ∈ ml-NE does not have polynomial sized arithmetic circuits over the same field, nor
does any polynomially bounded power of F .
This is the first result getting circuit lower bounds from derandomization of a randomized
PIT algorithm over fixed finite fields1.

1 Kabanets and Impagliazzo [14] prove a related but weaker version of the hardness-to-pseudorandomness

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 647

We improve on the advice requirements for known connections between derandomization
of PIT over the integers and arithmetic circuit lower bounds over the integers.
Impagliazzo et al. [11] showed that (even nondeterministic) polynomial-time derandomiza-
tion of promise-BPP would imply a Boolean circuit lower bound for NEXP. We strengthen
this to the circuit lower bound for the smaller class NEXP ∩ coNEXP. This is the same
class where sufficiently strong circuit lower bounds would imply that promise-BPP ⊆ NP.
[11] also showed that a Boolean circuit lower bound for NEXP would follow from the
existence of an NP-computable non-empty property of Boolean functions that is useful
for proving superpolynomial circuit lower bounds (in the sense of natural proofs of
Razborov and Rudich [20]). We also strengthen this to the lower bound for the class
NEXP ∩ coNEXP.
The two notions of inclusion and hardness most frequently used in complexity are
“every length” inclusion and hardness, and “infinitely often” inclusion and hardness.
Unfortunately, the negation of everywhere inclusion is only infinitely often hardness, and
vice versa. This prevents many of the connections above from being literal equivalences
between lower bounds and derandomization. Using a third notion of inclusion, a variant
of the “robustly often” inclusion of [9], we make all four of the above connections into
literal equivalences2.

1.2 Overview and related work
How can we argue that an upper bound on algorithmic complexity (efficient derandomization)
yields a lower bound on algorithmic complexity (circuit lower bounds)? The various results
in this area all follow the same general template (see, e.g., [3] for a formal treatment): We
assume that we have both a circuit upper bound for some large class such as NEXP, and a
general derandomization technique, and get a contradiction as follows:

Simulation: Meyer, Karp and Lipton [17] introduced techniques to give consequences of
non-uniform (circuit) upper bounds for uniform classes. Using interactive proofs [6, 23],
many of these can be extended to show that if a large class C such as EXP or PSPACE has
small circuits, then C also has short (constant-round) interactive proofs (see, e.g., [5]).

Derandomization: Invoking the generic derandomization technique in the above simulation,
we get that C can be simulated only with non-determinism.

Contradict a known lower bound: If C is NEXP itself, as in [11] and [27], the contradiction
comes from some version of the non-deterministic time hierarchy theorem. An alternate
method used by [1] is to pad up the non-trivial simulation of C in small non-deterministic
time to show that some analogous class superpoly-C can be simulated in NEXP. The class
superpoly-C will often be strong enough that a lower bound in that class can be shown by
direct diagonalization (see, e.g., [16]). By simulation, NEXP will inherit the same lower
bound.

result for finite fields: their arithmetic-complexity hardness assumption is not for a polynomial (defined
over all extension fields), but rather for the function that agrees with the polynomial over a particular
extension field.

2 [13] has an alternative method of getting an equivalence for the case of PIT over the integers, but at the
expense of moving to versions of the classes with advice.

APPROX/RANDOM’15

648 Tighter Connections between Derandomization and Circuit Lower Bounds

If both the circuit upper bound assumed and the derandomization assumed are worst-case,
then the above template can be filled out to get a variety of trade-offs. However, when one
or the other is only assumed to occur for infinitely many lengths of input, care needs to be
taken to compare the input sizes where the simulation is possible, the corresponding lengths
where derandomization is possible, and what non-worst-case versions of the known lower
bounds are true.

While the general issue of connections between circuit complexity and derandomization
has been the subject of intense research by many people, the papers most directly parallel to
this work are [11, 14, 1, 13, 18]. Here, we briefly describe the main results and techniques of
these five papers, and compare them to our results and techniques.

Promise-BPP. [11] considers the question of derandomizing promise-BPP. While there are
several other results in the paper, the main result for our purposes is an equivalence between
a circuit lower bound for NEXP and a “non-trivial” simulation of promise-BPP.

I Theorem 1 ([11]). NEXP 6⊂ P/poly if and only if promise-BPP ⊆ ∩ε>0io-NTIME[2nε]/nε.

While this is a strong result, and in fact an equivalence, there are some questions raised
by the details in this statement. Since promise-BPP ⊆ P/poly, we know that advice can
be powerful in this context. How significant is the small amount of advice allowed in the
sub-exponential time algorithms for promise-BPP? Is it really necessary or just a by-product
of the proof? Can we get a stronger conclusion if we assume a Circuit Acceptance Probability
Problem (estimating the acceptance probability of a size-n Boolean circuit to within an
additive error of at most 1/n; CAPP) algorithm with no advice? Also, [11] use the “Easy
Witness Lemma” to obtain their result, which is itself derived by a somewhat convoluted
indirect argument. Is this use of the Easy Witness Lemma necessary?

Here, we give some answers to these questions. Using arguments parallel to those in
[1, 18] with respect to PIT, we remove the Easy Witness Lemma. Then (as [1] did for PIT) we
show that sufficiently strong nondeterministic algorithms for promise-BPP (without advice)
imply the stronger conclusion that (NEXP ∩ coNEXP) 6⊆ P/poly (Theorem 5). So there does
seem to be a real difference between derandomizations with and without advice.

One use of advice in the original argument is that, if we have a different CAPP algorithm
for every ε > 0, then, for each length, the best value of ε and the algorithm that achieves that
ε can be both given as advice. To remove this advice, we need to have a single algorithm
that runs in nondeterministic sub-exponential time, 2nε(n) for some computable ε(n) ∈ o(1).
This seems an equally natural definition of a problem being computable in sub-exponential
time, and we adopt it throughout our paper. We prove some closure properties and normal
forms for this notion that might be of independent interest.

Circuit lower bounds and nontrivial useful properties. Razborov and Rudich [20] defined
an NP-constructive property useful against P/poly to be an NP-computable predicate on
2n-bit inputs (the truth tables of n-variate Boolean functions) such that, whenever the
predicate holds for infinitely many input lengths of a given family of Boolean functions
f = {fn}n≥0, it follows that f 6∈ P/poly. Call such a property nontrivial if there are infinitely
many input lengths n such that at least one truth table of size 2n satisfies the property.

It was shown in [11] that the existence of a nontrivial NP-constructive property useful
against P/poly implies that NEXP 6⊆ P/poly. We strengthen this to the circuit lower bound
for NEXP ∩ coNEXP for nontrivial NP-constructive properties useful against computably
superpolynomial circuit size. Moreover, we make this connection into an equivalence, using a
variant of the “robustly often” notion of [9] (Theorem 7).

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 649

Polynomial identity testing over the rationals. [14] extends the connections between
derandomization and circuit lower bounds to the arithmetic-complexity setting. In one
direction, they show that if both NEXP ⊆ P/poly and the permanent function has polynomial-
size arithmetic circuits over the rationals, then no nondeterministic sub-exponential time
algorithm can solve PIT, even for infinitely many input sizes. In the other direction, either
NEXP 6⊆ P/poly or the permanent requiring super-polynomial sized circuits gives some
nontrivial algorithm for PIT, although not quite a direct converse.

This again raises some questions. Stating the result in the contrapositive, a nontrivial
algorithm for PIT would yield either a Boolean circuit lower bound or an arithmetic circuit
lower bound. Intuitively, Boolean circuit lower bounds should be more difficult, so can we
get a similar result that only mentions arithmetic circuit lower bounds?

This question was addressed in [1, 18] and [13]. First, [1] and [18] give an alternate version
of the final contradiction step that allows them to avoid the Easy Witness Lemma. This not
only simplified the proof, but allowed them to replace the condition that NEXP ⊂ P/poly
with the weaker condition that (NEXP ∩ coNEXP) ⊂ P/poly. ([14] had also shown that
(NEXP ∩ coNEXP) ⊂ P/poly and the easiness of the permanent sufficed to show PIT 6∈ NP.)
[13] show that the Boolean and arithmetic lower bounds can be in some sense combined.
They show that derandomizing a certain version of PIT, low-PIT, in non-deterministic sub-
exponential time is equivalent to proving a super-polynomial lower bound for circuits with
restricted degrees on a multi-linear function whose values can be computed in NEXP/O(n).
However, being determined by the correct advice, the functions where the arithmetic lower
bound would hold in their result are somewhat non-constructive, and when the advice is
incorrect, the corresponding functions might not be defined at all, so they cannot be combined
into one universal function for each length.

We show that by using the [1, 18] type contradiction step, the two lower bounds can be
replaced by a single arithmetic circuit lower bound for a multilinear polynomial definable in
NEXP ∩ coNEXP, thus removing this somewhat awkward non-uniformity.

Polynomial identity testing over a fixed finite field. The polynomial identity testing
problem and arithmetic circuit complexity are also important over other fields, such as fixed
finite fields. Here one fixes some constant-size finite field F, and then asks for an efficient
algorithm to decide if a given arithmetic circuit C over F, defining a low-degree polynomial p
(over F and any finite field extending F), is such that p ≡ 0. The latter can be easily decided
by a randomized polynomial-time Schwartz-Zippel algorithm evaluating p on random points
from a sufficiently large (larger than the degree of p) extension field of F.

Do similar connections between hardness and pseudorandomness hold for fixed finite
fields? Before the work here, almost no such connections were known.

There are a number of obstacles to directly translating the [14] techniques to fixed
finite fields. First, in the “derandomization of PIT to arithmetic hardness” direction, [14]
use the clean algebraic recursive “expansion by minors” definition of the permanent, a
problem complete for #P. While the same recursion holds for the permanent over finite
fields, permanent over finite fields is not known to be #P complete, or even NP-hard (under
deterministic reductions).

Secondly, in the “arithmetic hardness to derandomization of PIT” direction, if the hitting
set generator from [14] fails using a given f as the hard function over a finite field, it only
follows that some power of f had a small arithmetic circuit, not the f itself. Though this
power of f can be manipulated to obtain an arithmetic circuit that agrees with f over some
particular extension field, the polynomial computed by this circuit would not be identically

APPROX/RANDOM’15

650 Tighter Connections between Derandomization and Circuit Lower Bounds

equivalent to f (see Section 2.5 for the difference between testing for identity and agreement
of polynomials over a finite field). Therefore, a power of f could still have small arithmetic
circuits and this would not contradict the hardness assumption used by [14] in the hardness
to randomness direction. Thus, [14] has only a weak hardness-to-randomness result in the
case of circuits over finite fields.

We give the first proof that nondeterministic polynomial identity testing over a fixed
finite field yields an arithmetic circuit lower bound (Theorem 2). We avoid the permanent by
showing a simulation lemma for an even larger class, PSPACE, by using a version of a PSPACE-
complete function of [25] with a similar algebraic recursive definition. We observe that, not
only would a small circuit for this function itself yield the required simulation, but also any
circuit for a small power of the function would have a similar consequence. This matches the
type of arithmetic lower bounds needed to derandomize polynomial identity testing using
the hitting set generator of [14]. Thus, the correct connection is between derandomizing PIT
and proving lower bounds on circuits that compute powers of polynomials.

Equivalence between circuit lower bounds and derandomization. While the results above
come closer to showing that each of these three derandomization problems are equivalent
to a corresponding lower bound, they are not literal equivalences. This is because of the
distinction between infinitely often computation and worst-case computation. Making worst-
case assumptions about algorithms is necessary to get even infinitely often hardness, but
infinitely often hardness only suffices to get algorithms that work infinitely often.

To make versions of our results that are literal equivalences, we consider an intermediate
notion between worst-case and infinitely-often computation, robustly-often computation
introduced by [13]. Informally, an algorithm solves a given problem robustly often if there
are infinitely many intervals of superpolynomially many input lengths where the algorithm
is correct on each length in the interval.

While this, somewhat less standard, notion of inclusion (as well as the related notion of
separation) is exactly what we need to make the connections between circuit lower bounds
and derandomization into equivalences (Theorems 3, 4, and 6), we feel that this notion
is quite natural and can be justified, e.g., by the following considerations. As technology
improves, in general, all computational elements will improve somewhat. But computational
elements will often get more diverse, so that say, the CPU in cell phones will not be improving
its computational power as quickly as the top super-computer will. A reasonable model is to
assume that there are two different Moore’s laws, one for “high-end” technology and one for
“low-end”, with different periods of doubling. Thus, high-end and low-end technologies will
be polynomially related in their resources, and the intermediate technologies will span the
range between them. Thus, it is natural to look at polynomially related ranges of parameters,
not just single values. Robust computation does just that, looking at whether computation
is possible not just on infinitely many single input lengths, but whether there are infinitely
many “technology levels” of unbounded polynomial reach where this computation is possible.

Remainder of the paper. The definitions are in Section 2. We formally state our main
results with proof sketches in Section 3, see the full version for complete proofs.

2 Definitions

2.1 Arithmetic circuit complexity classes
For a finite field F, define ASizeF[s(n)] to be the class of all families of n-variate polynomials
{fn} over F such that, for all sufficiently large n, the polynomial fn is computed by some

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 651

arithmetic circuit Cn of size at most s(n) over F (i.e., the polynomials fn(x1, . . . , xn) and
Cn(x1, . . . , xn) are formally the same when viewed as the sums of monomials). Over the
integers, the class ASizeZ[s(n)] is defined analogously.

We denote by ASizeDegF[s(n)] the subclass of ASizeF[s(n)] of families of n-variate poly-
nomials fn that have degree at most s(n). Over the integers, we denote by ASizeDegZ[s(n)]
the restricted class of polynomial families {fn} that have formal degree3 at most s(n).

“Easy” polynomials. Over the integers, we shall consider a polynomial f “easy” if some
constant multiple c · f is computable by a “small” arithmetic circuit. More formally, we
define ASizeDegMul[s(n)] as the class of polynomial families {fn} over Z of degree at most
s(n) such that, for some function g : N→ N we have {g(n)× fn} ∈ ASizeDegZ[s(n)] and g is
computed by a family of variable-free ASizeDegZ[s(n)] circuits. Thus, for each input length
n, we could compute a different constant multiple of f . ASizeDegMul is equivalent to the
class ASIZEDEG′ of [13].

Over finite fields, we shall consider a polynomial f “easy” if some bounded power fd
of f is computable by a “small” arithmetic circuit. More formally, over a finite field F,
we define the class ASizeDegPowF[s(n)] as the class of polynomial families {fn} over F of
degree at most s(n) such that, for some function d : N → N with d(n) ≤ s(n), we have
{fd(n)
n } ∈ ASizeDegF[s(n)].

2.2 Polynomials computable in NE: The class ml-NE
Fix an arbitrary finite field F = Fpk of characteristic p. Let f = {fn(x1, . . . , xn)}n≥0 be an
arbitrary family of polynomials over F. For a polynomial f and a monomial m, denote by
coeff(f,m) the coefficient of f at the monomial m (when f is written out as the sum of its
monomials). Define the languagemonomial(f) = {(a1, . . . , an, c) | a1, . . . , an ∈ {0, 1}, c ∈
F, coeff(fn, xa1

1 . . . xann) = c}. We denote by monomial(fn) the restriction of monomial(f)
to the case of fn, i.e., monomial(fn) defines the coefficients of the n-variate polynomial
fn. For multilinear polynomial families f over the integers, the language monomial(f) is
defined similarly, with the natural change that the coefficient c be an integer in binary.

We say that a family of multilinear polynomials f = {fn}n≥0 over a finite field F or over
integers Z is in the class ml-NE if monomial(f) ∈ NE.

Observe that if monomial(f) ∈ NE, then monomial(f) ∈ coNE also. Thus, we have
monomial(f) ∈ NE ⇐⇒ monomial(f) ∈ (NE∩coNE), and so ml-NE = ml-(NE∩coNE); the
same equivalence holds also for the definition of ml-NE used by Jansen and Santhanam [13]4.

2.3 Computably subexponential and superpolynomial bounded classes
We call a function α : N→ R≥0 computably super-constant, denoted by α(n) ∈ ωc(1), if there
exists computable, monotone non-decreasing function α′ : N→ R≥0 with α′(n)→∞ such
that, for all sufficiently large n ∈ N, α(n) ≥ α′(n). Without loss of generality, we may always
assume that our computably super-constant functions α(n) are computable in time poly(n)
(see full version for details).

3 For input gates, regardless of their label, the formal degree is 1; an addition gate has the formal degree
equal to the maximum of the formal degree of its input gates; a multiplication gate has the formal
degree equal to the sum of the formal degrees of its input gates.

4 The graph definition of ml-NE used by [13] and the monomial-coefficient definition of ml-NE given here
are equivalent because of efficient interpolation. We use the coefficient definition in our work just for
convenience, as it makes it obvious that one can evaluate polynomials over extensions of finite fields.

APPROX/RANDOM’15

652 Tighter Connections between Derandomization and Circuit Lower Bounds

The standard definition of NSUBEXP is
⋂
ε>0 NTIME[2nε]. This is problematic when we

need to run a padding argument for some language in this class, because the amount of
padding required will depend on ε. There is no uniform way to produce the specific ε required
for a particular amount of padding, so any padding argument must rely on advice to use the
correct value of ε. We use our notion of computably super-constant functions to trade a more
restricted class for freedom from advice, and define computably subexponential-time classes
as follows: We say that a language L is in nondeterministic computably subexponential
time, denoted L ∈ NSUBEXPc, if L ∈ NTIME[2n1/α(n)] for some α(n) ∈ ωc(1). We denote by
superpolyc any function nα(n) for some α(n) ∈ ωc(1).

2.4 Robustness

To establish equivalences between circuit lower bounds and derandomization, we need notions
that are intermediate between infinitely-often and almost-everywhere. In the spirit of [9], we
define “robust” notions of containment and separation for complexity classes. Our robust
ranges are some fixed computably super-polynomial function in length, whereas the ranges of
[9] are for every fixed polynomial function. The reason we require this alternative notion
is because the simulation steps of our arguments use superpolynomial amounts of padding.
The [9] definition handles fixed polynomial-time translations or translations with fixed
polynomial advice, but not superpolynomial translations. Our definition is an attempt to
make the minimal extention possible to [9] that can handle superpolynomial translations.
Thus we do not expect our results to hold under the [9] robustness notions, without major
technical innovation in hardness-randomness tradeoffs that dispenses with the necessity for
superpolynomial padding.

For functions l, r : N→ N, called left and right “interval functions”, define the (l, r)-core
of a set S ⊆ N to be the set of intervals [l(m), r(m)] that are entirely contained in S, i.e.,
core(S) = {m ∈ N | ∀n ∈ N (l(m) ≤ n ≤ r(m) =⇒ n ∈ S)}. A set S is called (l, r)-
robust if the (l, r)-core of S is infinite. Finally, we say that S is computably robust if S is
(m1/α(m),mα(m))-robust for some α ∈ ωc(1). For brevity, we shall call such a set S simply
α-robust.

Robust inclusions. For a language L and a complexity class C, we say that L is uniform
robustly often in C, denoted L ∈ ro?-C, if there is a language N ∈ C such that the set
S = {n ∈ N | Ln = Nn} is computably robust, where Ln = L ∩ {0, 1}n is the nth slice of L.
Our definition is “uniform” compared to the notion of [9] because the notion defined there
has interval lengths that are defined by every fixed polynomial function – this is an infinite
(but very regular) set of functions giving interval lengths. Our robust sets have a fixed pair
of interval functions.

We say that a family f = {fn} of multilinear polynomials (over a finite field F or
over integers Z) is in ro?-ml-NE, robustly often ml-NE, if, for some NE machine M , the set
S = {n ∈ N |M correctly decides monomial(fn)} is computably robust.

Robust promise classes. For a language L and a semantic complexity C, we say that L is
in uniform robustly promise C, denoted L ∈ rp?-C, if there is a Turing machine M such that

S = {n ∈ N | for all x ∈ {0, 1}n, M(x) is a C-type machine and M(x) decides if x ∈ Ln}

is computably robust.

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 653

I Remark. In general, ro?-C and rp?-C are different for a semantic class C. For example,
L ∈ ro?-(NE ∩ coNE) if there is a language N ∈ (NE ∩ coNE) that robustly often agrees with
L. That is, there is a pair of NE machines M1 and M2 such that, for every x ∈ {0, 1}n,
exactly one of M1 and M2 accepts x, and S = {n ∈ N |M1 decides Ln and M2 decides Ln}
is computably robust, where Ln is the complement of Ln.

In contrast, L ∈ rp?-(NE ∩ coNE) if there is a pair of NE machines M1 and M2 such that
S = {n ∈ N | M1 decides Ln and M2 decides Ln} is computably robust. Note that, in the
second case, the machines M1 and M2 may not be “complementary” on the input lengths
outside of S, and so we may not have any language N ∈ (NE ∩ coNE) that agrees with L
robustly often: in the rp?- case, the promise is not required to hold for slices outside the
robust set.

Significant separations. To complement the inclusion types above, we define uniform
significant separations denoted ro?-C 6⊆ SIZE[s(n)]. We write ro?-C 6⊆ SIZE[s(n)] if there is a
language L ∈ ro?-C over computably robust set S such that Ln cannot be computed by a
circuit of size s(n) for infinitely many values n ∈ core(S).

Intuitively, a uniform significant separation means that we can always locate hard lengths
for the separated class in the “middle” of large, computably robust intervals. This is different
from the [9] notion, which says (intuitively) that hard lengths are never too far apart. Under
our definition, if the robust set comes with a promise, this means that hard lengths are
located in the center of large ranges where the promise holds. This is what our arguments
for equivalence will hinge on. The generalization of this definition to arithmetic circuits and
uniform robust promise classes is obvious. For example, we define two uniform significant
separations below.

We say that ro?-ml-NE 6⊆ ASize[s(n)] if there is a polynomial family f = {fn} ∈ ro?-ml-NE,
with monomial(f) correctly decided by some NE machine on a computably robust set S,
such that fn cannot be computed by an arithmetic circuit of size s(n) for infinitely many
values n ∈ core(S). The case of other arithmetic circuit classes (ASizeDeg and ASizeDegPow)
is similar.

We say that rp?-(NE ∩ coNE) 6⊆ SIZE[s(n)] if there is a promise problem L ∈ rp?-(NE ∩
coNE), with a pair of NE machines correctly deciding L and L̄ over a computably robust set
S of input lengths, such that Ln cannot be computed by a Boolean circuit of size s(n) for
infinitely many input lengths n ∈ core(S).

2.5 Derandomization of Polynomial Identity Testing
Let F be any finite field. For D ∈ {Z,F}, the Polynomial Identity Testing over D, denoted
PITD, is the task to decide if a given arithmetic circuit C over D computes the identically
zero polynomial (when the polynomial C is expanded as the sum of monomials5). The
low-PITD variant is restricted to test only circuits that have degree (or, in the case of Z,
formal degree) less than their size.

A hitting set generator for PITD is a function H, that on input 1n, outputs a collection
of t tuples a1, . . . , at ∈ Dn such that, for every arithmetic circuit C(x1, . . . , xn) over D of

5 Stating this definition using sums-of-monomials is crucial, because over a finite field F, testing if
a polynomial agrees with the zero polynomial for all inputs over F is actually coNP-complete. The
sum-of-monomials definition that we use puts PITF ∈ BPP, and thus it is meaningful to ask for a
derandomization of this problem.

APPROX/RANDOM’15

654 Tighter Connections between Derandomization and Circuit Lower Bounds

size at most n, if C 6≡ 0, then there is at least one i ∈ [t] where C(ai) 6= 0. In case of a finite
field F, we allow the tuples a1, . . . , at to come from (F′)n for some extension field F′ of F.

It was shown by [14] that a multilinear polynomial f 6∈ ASizeDegPowF[superpolyc] can be
used to derandomize low-PITF in subexponential time (by constructing a hitting set).

2.6 Derandomization of promise-BPP
Derandomizing promise-BPP is equivalent to getting an efficient algorithm for estimating the
acceptance probability of a given Boolean circuit C(x1, . . . , xn) of size n to within an additive
error 1/n; the latter problem is called Circuit Acceptance Probability Problem (CAPP). We
use the notation promise-BPP ⊆ NSUBEXPc to mean that there is a nondeterministic Turing
machine that runs in computably subexponential time, and solves CAPP with an additive
approximation error 1/n. That is, on a given circuit C(x1, . . . , xn), the nondeterministic
machine has at least one accepting computation, and every accepting computation yields a
value r such that |Pra∈{0,1}n [C(a) = 1]− r| ≤ 1/n.

We say that promise-BPP ⊆ ro?-NSUBEXPc if a NSUBEXPc algorithm correctly approx-
imates CAPP only robustly often.

A collection a1, . . . , at ∈ {0, 1}n is a discrepancy set of size t for circuits of size n if, for every
Boolean circuit C of size n on n inputs,

∣∣Prz∈{0,1}n [C(z) = 1]−Pri∈[t][C(ai) = 1]
∣∣ ≤ 1/n.

It was shown by [5] that the truth table of a superpolynomial circuit-complexity Boolean
function can be used to get a subexponential-size discrepancy set (in subexponential time).

3 Our results

3.1 PIT vs. arithmetic circuit lower bounds
I Theorem 2. Fix an arbitrary finite field F. We have
1. low-PIT ∈ NSUBEXPc ⇒ ml-NE 6⊆ ASizeDegPow[superpolyc].
2. ml-NE 6⊆ ASizeDegPow[superpolyc] ⇒ low-PIT ∈ ro?-NSUBEXPc.

Proof sketch. (1) Assume a nondeterministic subexponential-time algorithm for low-PIT, but
that ml-NE has “small” arithmetic circuits. We arithmetize TQBF to get a PSPACE-complete
multilinear polynomial f = {fn} over F. This polynomial f turns out to be computable in
ml-NE, and so, by our assumption, some powers fdnn , for “small” dn, have small arithmetic
circuits over F.

For each n, we nondeterministically guess a small circuit and a small dn. Using the
ideas of the PSPACE = IP proof, we then verify that the guessed circuit computes the
polynomial fdnn . This verification algorithm uses our assumed low-PIT algorithm, and runs
in NSUBEXPc.

Computing powers fdnn is still PSPACE-complete, and so we get PSPACE ⊆ NSUBEXPc.
By padding, we obtain SPACE[superpolyc] ⊆ NE. By diagonalization, SPACE[superpolyc]
contains a language L of some computably superpolynomial Boolean circuit complexity,
almost everywhere. It follows that the multilinear extension of L over F requires arithmetic
circuits of computably superpolynomial size, almost everywhere. On the other hand, each
coefficient of this multilinear polynomial is computable in SPACE[superpolyc], and hence in
NE.

(2) Assume that some family g = {gn} of polynomials in ml-NE is such that all powers
gdnn , for “small” dn, require superpolynomial arithmetic circuit complexity for infinitely many
input lengths n. By [14], we get that low-PIT is in NSUBEXPc infinitely often. The input

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 655

lengths where low-PIT is easy (derandomized) correspond to the (smaller) input lengths
where the polynomials gn are actually hard.

To improve this “infinitely often” result to the “robustly often” one, we do the following:
when asked to derandomize low-PIT for a certain input length n, we go to the related smaller
length n′, and consider polynomials over a superpolynomial interval of input lengths above
n′ as candidate hard polynomials; we use each such polynomial to construct a candidate
hitting set by [14]. If the given interval above n′ contains a length m such that gm is hard,
then our derandomization succeeds. Since there infinitely many intervals containing a length
m where gm is hard, there will be infinitely many intervals of superpolynomial length where
our low-PIT algorithm is correct. J

I Theorem 3. Fix an arbitrary finite field F. We have

low-PIT ∈ ro?-NSUBEXPc ⇔ rp?-ml-NE 6⊆ ASizeDegPow[superpolyc].

Proof sketch. (⇒) We start as in the proof of Theorem 2, implication (1). We get a
PSPACE-complete multilinear polynomial f = {fn} over F such that some powers fdnn are
computable by small arithmetic circuits, for almost all input lengths n. Since our low-PIT
algorithm is correct for infinitely many superpolynomial intervals of input lengths, we can
guarantee the successful verification of an arithmetic circuit for fdnn for the corresponding
superpolynomial intervals of input lengths only. This yields PSPACE ⊆ ro?-NSUBEXPc,
and by padding, SPACE[superpolyc] ⊆ ro?-NE. Finally, by diagonalization and multilinear
extension, we get a family of multilinear polynomals gn over F that require computably
superpolynomial arithmetic circuit complexity almost everywhere, and yet we can compute
the coefficients of gn in NE for infinitely many superpolynomial intervals of input sizes n.

(⇐) As in the proof of Theorem 2, implication (2), we will use hard polynomials to
derandomize low-PIT by [14]. The difference now is that a given NE machine computes a
valid polynomial only over some computably robust set S of input lengths n, and that this
polynomial is hard only for infinitely many lengths n ∈ core(S). Still we can use this NE
machine to construct a candidate hitting set for a given low-PIT instance so that, for infinitely
many lengths n ∈ core(S), we get a correct hitting set, and so low-PIT ⊆ io-NSUBEXPc.
To boost this to the robustly often inclusion, we employ a similar trick as before: use a
superpolynomial-size interval of input lengths to get a collection of candidate hitting sets, and
take their union. When all input lengths fall into an interval where our NE machine computes
a valid polynomial, we get that the union of such candidate hitting sets is well-defined. If, in
addition, the polynomial computed by our NE machine is actually hard on some length in
this interval, then we get a correct hitting set. J

We have analogous results also for the case of integers Z, with analogous proofs (using the
analysis of [13] showing that Kaltofen’s [15] polynomial factorization algorithm over integers
respects formal degree). In particular, we have the following equivalence.

I Theorem 4. Over Z,

low-PIT ∈ ro?-NSUBEXPc ⇔ rp?-ml-NE 6⊆ ASizeDegMul[superpolyc].

3.2 Promise-BPP vs. Boolean circuit lower bounds
I Theorem 5. We have
1. promise-BPP ⊆ NSUBEXPc ⇒ (NE ∩ coNE) 6⊆ SIZE[superpolyc].
2. (NE ∩ coNE) 6⊆ SIZE[superpolyc] ⇒ promise-BPP ⊆ ro?-NSUBEXPc.

APPROX/RANDOM’15

656 Tighter Connections between Derandomization and Circuit Lower Bounds

Proof sketch. (1) Assume that CAPP is correctly approximated by an NSUBEXPc algorithm,
but every language in (NE ∩ coNE) has small superpolynomial-size Boolean circuits. The
latter means that E ⊆ SIZE[superpolyc], and hence, by [4], that E ⊆ MA[superpolyc], for
a related small superpolynomial time complexity. Using our CAPP algorithm, we get
MA[superpolyc] ⊆ NSUBEXPc. By padding the inclusion E ⊆ NSUBEXPc, we get that
TIME[2superpolyc] ⊆ NE. Finally, by diagonalization, we get a language L ∈ TIME[2superpolyc] ⊆
NE that requires computably superpolynomial circuit complexity (almost everywhere). Since
L̄ ∈ TIME[2superpolyc] ⊆ NE, the conclusion follows.

(2) Assume we have a pair of NE machines that compute L and L̄ for a language L
requiring superpolyc-size circuits infinitely often. By the hardness-randomness tradeoff of [5],
we get a NSUBEXPc algorithm that correctly approximates CAPP infinitely often; the input
lengths where the CAPP algorithm is correct correspond to the (smaller) input lengths where
the language L is actually hard. To boost this to the desired promise-BPP ⊆ ro?-NSUBEXPc
inclusion, we use the same “interval trick” as in the arithmetic case (Theorem 2, (2)), to
show that there is a NSUBEXPc algorithm that, robustly often, produces a discrepancy set
for circuits of size n. J

We extend the two implications of Theorem 5 to the equivalence, by carefully adapting
the arguments above to the setting of robust inclusions and separations.

I Theorem 6. promise-BPP ⊆ ro?-NSUBEXPc ⇔ rp?-(NE ∩ coNE) 6⊆ SIZE[superpolyc].

3.3 Robustly-often nontrivial useful properties
A property of Boolean functions is a family P = {Pn}n≥0 of predicates Pn : {0, 1}2n → {0, 1}.
For a function s : N→ N, we say that a property P is useful against SIZE[s] at length n if,
whenever Pn accepts the truth table of a Boolean n-variate function fn : {0, 1}n → {0, 1},
this means that fn requires circuit size at least s(n). We say that P is nontrivial at length n
if Pn accepts at least one truth table of length 2n. Finally, we say that P is robustly-often
nontrivially useful against SIZE[superpolyc] (denoted ro?-useful) if, for some s(n) ∈ superpolyc,
1. S = {n ∈ N | P is nontrivial at length n} is computably robust, and
2. P is useful against SIZE[s] at length n for infinitely many lengths n ∈ core(S).

As a corollary of Theorem 6, we get the following equivalence between circuit lower
bounds for NEXP ∩ coNEXP and the existence of ro?-useful properties.

I Theorem 7. The following are equivalent:
rp?-(NE ∩ coNE) 6⊆ SIZE[superpolyc] ⇐⇒
there is a NP-computable ro?-useful property
there is a P-computable ro?-useful property

Proof. (⇒) Assume we have a pair of NE machines M1 and M0 that correctly compute L
and L̄, respectively, for some computably robust set S of input lengths, where L requires
superpolyc circuit size for infinitely many input lengths in core(S). Define a property P as
follows:

“On input T ∈ {0, 1}2n , guess 2n candidate witnesses a1, . . . , a2n of length 2O(n) each,
and check, for every 1 ≤ i ≤ 2n, if Ti = b, for b ∈ {0, 1}, then Mb(i) accepts ai as a
witness. If succeed for all i’s, then accept. Otherwise, reject.”

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 657

Clearly, P is NP-computable. Note that Pn accepts the truth table of Ln (and nothing
else) for the computably robust set S of input lengths n, and so P is robustly-often nontrivial.
Finally, since L requires circuit size superpolyc for infinitely many input lengths n ∈ core(S),
we get that P is useful against SIZE[superpolyc] at length n for infinitely many n ∈ core(S).
Thus P is ro?-useful.

(⇐) Given an NP-computable property P that is nontrivial on a computably robust set
S of input lengths n, and useful against SIZE[superpolyc] for infinitely many n ∈ core(S),
we use P to nondeterministically guess a truth table T of length 2n, nondeterministically
verify that T is accepted by Pn, and use T as a “hard” Boolean function to derandomize
promise-BPP (using the hardness-randomness tradeoff of [5]).

We get that promise-BPP ⊆ io-NSUBEXPc, since infinitely often we get a truth table T of
superpolynomial circuit complexity. Using the “interval trick” (as in the proof of Theorem 5,
implication (2)), we boost this inclusion to get promise-BPP ⊆ ro?-NSUBEXPc, which, by
Theorem 6, implies rp?-(NE ∩ coNE) 6⊆ SIZE[superpolyc]. J

References
1 S. Aaronson and D. van Melkebeek. On circuit lower bounds from derandomization. Theory

of Computing, 7(1):177–184, 2011.
2 M. Ajtai and A. Wigderson. Deterministic simulation of probabilistic constant depth cir-

cuits. In Proceedings of the Twenty-Sixth Annual IEEE Symposium on Foundations of
Computer Science, pages 11–19, 1985.

3 B. Aydinlioglu and D. van Melkebeek. Nondeterministic circuit lower bounds from mildly de-
randomizing arthur-merlin games. In Proceedings of the 27th Conference on Computational
Complexity, CCC 2012, Porto, Portugal, June 26-29, 2012, pages 269–279. IEEE, 2012.

4 L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991.

5 L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time sim-
ulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993.

6 L. Babai and S. Moran. Arthur-merlin games: a randomized proof system, and a hierarchy
of complexity classes. Journal of Computer and System Sciences, 36(2):254–276, 1988.

7 M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing, 13:850–864, 1984.

8 R.A. DeMillo and R.J. Lipton. A probabilistic remark on algebraic program testing. In-
formation Processing Letters, 7:193–195, 1978.

9 L. Fortnow and R. Santhanam. Robust simulations and significant separations. In Auto-
mata, Languages and Programming – 38th International Colloquium, ICALP, Proceedings,
Part I, pages 569–580, 2011.

10 J. Heintz and C.-P. Schnorr. Testing polynomials which are easy to compute.
L’Enseignement Mathématique, 30:237–254, 1982.

11 R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: Exponen-
tial time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

12 R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandom-
izing the XOR Lemma. In STOC’97, pages 220–229, 1997.

13 M.J. Jansen and R. Santhanam. Stronger lower bounds and randomness-hardness trade-
offs using associated algebraic complexity classes. In Christoph Dürr and Thomas Wilke,
editors, STACS, volume 14 of LIPIcs, pages 519–530. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2012.

APPROX/RANDOM’15

658 Tighter Connections between Derandomization and Circuit Lower Bounds

14 V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1–2):1–46, 2004.

15 E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Micali,
editor, Randomness and Computation, volume 5 of Advances in Computing Research, pages
375–412. JAI Press, Greenwich, CT, 1989.

16 R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and
Control, 55(1-3):40–56, 1982.

17 R.M. Karp and R.J. Lipton. Turing machines that take advice. L’Enseignement Math-
ématique, 28(3-4):191–209, 1982.

18 J. Kinne, D. van Melkebeek, and R. Shaltiel. Pseudorandom generators, typically-correct
derandomization, and circuit lower bounds. Computational Complexity, 21(1):3–61, 2012.

19 N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and System
Sciences, 49:149–167, 1994.

20 Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–
35, 1997.

21 J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the Association for Computing Machinery, 27(4):701–717, 1980.

22 R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudorandom
generator. Journal of the Association for Computing Machinery, 52(2):172–216, 2005.

23 A. Shamir. IP=PSPACE. Journal of the Association for Computing Machinery, 39(4):869–
877, 1992.

24 M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR lemma.
Journal of Computer and System Sciences, 62(2):236–266, 2001.

25 L. Trevisan and S.P. Vadhan. Pseudorandomness and average-case complexity via uniform
reductions. Computational Complexity, 16(4):331–364, 2007.

26 C. Umans. Pseudo-random generators for all hardnesses. Journal of Computer and System
Sciences, 67(2):419–440, 2003.

27 R. Williams. Nonuniform acc circuit lower bounds. Journal of the ACM (JACM), 61(1):2,
2014.

28 A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of the Twenty-
Third Annual IEEE Symposium on Foundations of Computer Science, pages 80–91, 1982.

29 R.E. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of an Interna-
tional Symposium on Symbolic and Algebraic Manipulation (EUROSAM’79), LNCS, pages
216–226, 1979.

	Introduction
	Our results
	Overview and related work

	Definitions
	Arithmetic circuit complexity classes
	Polynomials computable in NE: The class ml-NE
	Computably subexponential and superpolynomial bounded classes
	Robustness
	Derandomization of Polynomial Identity Testing
	Derandomization of promise-BPP

	Our results
	PIT vs. arithmetic circuit lower bounds
	Promise-BPP vs. Boolean circuit lower bounds
	Robustly-often nontrivial useful properties

