
Deterministically Factoring Sparse Polynomials
into Multilinear Factors and Sums of Univariate
Polynomials∗

Ilya Volkovich

Department of EECS, CSE Division, University of Michigan, Ann Arbor, MI, USA
ilyavol@umich.edu

Abstract
We present the first efficient deterministic algorithm for factoring sparse polynomials that split
into multilinear factors and sums of univariate polynomials. Our result makes partial progress
towards the resolution of the classical question posed by von zur Gathen and Kaltofen in [6] to
devise an efficient deterministic algorithm for factoring (general) sparse polynomials. We achieve
our goal by introducing essential factorization schemes which can be thought of as a relaxation
of the regular factorization notion.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems

Keywords and phrases Derandomization, Multivariate Polynomial Factorization, Sparse poly-
nomials

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.943

1 Introduction

In this paper we study the problem of factorization of sparse polynomials.

1.1 Multivariate Polynomial Factorization
One of the fundamental problems in algebraic complexity is the problem of polynomial
factorization: given a polynomial P ∈ F[x1, x2, . . . , xn] over a field F, find its irreducible
factors. Other than being natural, the problem has many applications such as list decoding
[29, 9] and derandomization [10]. A large amount of research has been devoted to finding
efficient algorithms for this problem (see e.g. [5]) and numerous randomized algorithms were
designed [6, 12, 15, 5, 13, 4]. However, the question of whether there exist deterministic
algorithms for this problem remains an interesting open question (see [5, 17]).

1.2 Sparse Polynomials
Let P ∈ F[x1, x2, . . . , xn] be a n-variate polynomial over the field F. We denote by ‖P‖ the
sparsity of P . That is, the number of non-zero monomials in P . Suppose that the individual
degree of each variable xi is bounded by d, then the above number can reach (d+ 1)n. Our
case of interest is when ‖P‖ � (d+ 1)n. Indeed, in various applications [30, 6, 1, 7, 25, 21]
the desired regime is when ‖P‖ = poly(n, d). Such polynomials are refereed to as sparse
polynomials. More generally, we call a polynomial P s-sparse if ‖P‖ ≤ s. Otherwise, we say
that P is s-dense.

∗ Research partially supported by NSF grant CCF-1161233.

© Ilya Volkovich;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 943–958

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.943
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

944 Deterministically Factoring Sparse Polynomials into Multilinears and
∑
Univariates

Coming up with an efficient deterministic factorization algorithm for sparse polynomials
(given as a list of monomials) is a classical open question posed by von zur Gathen and
Kaltofen in [6]. An inherent difficulty in tackling the problem lies within the fact that a
factor of a sparse polynomial need not be sparse. The following example demonstrates that a
blow-up in the sparsity of a factor can be super-polynomial over any field. A similar example
appears as Example 5.1 in [6].

I Example 1. Let n ≥ 1. Consider the polynomial f(x̄) =
∏
i∈[n]

(xni −1) which can be written

as a product of g(x̄) =
∏
i∈[n]

(1 + xi + . . .+ xn−1
i) and h(x̄) =

∏
i∈[n]

(xi − 1).

Observe that ‖f‖ = ‖h‖ = 2n while ‖g‖ = nn, resulting in a quasi-polynomial blow-up.

Consequently, just writing down the irreducible factors as lists of monomials can take super-
polynomial time 1. In fact, the randomized algorithm of [6] assumes that the upper bound on
the sparsity of the factors is known. In light of this difficulty, a simpler problem was posed in
that same paper: Given m+ 1 sparse polynomials f1, f2, . . . fm, g test if g = f1 · f2 · . . . · fm.
This problem is referred to as “testing sparse factorization”.

Over the last three decades this question has seen only a very partial progress. For the
testing version of the problem, Saha et al. [20] presented an efficient deterministic algorithm
for the special case when the sparse polynomials are sums of univariate polynomials. (P
is a sum of univariate polynomial or a sum of univariates, for short, if it can be written
as a sum of univariate polynomials. That is, P =

∑n
i=1 Ti(xi).) Shpilka & Volkovich [25]

gave efficient deterministic factorization algorithms for multilinear sparse polynomials (see
Lemma 8 for more details). In this work, we make another step towards the resolution of the
problem. We consider the model of sparse polynomials that split into multilinear factors or
“multilinearly-split” for short. Formally, we say that a polynomial P is multilinearly-split if it
can be written as a product of multilinear polynomials.

Clearly, this model extends the one considered by Shpilka & Volkovich. Moreover, it can
be seen as a multivariate version of algebraically closed fields in the following sense. The only
irreducible univariate polynomials over algebraically closed fields are linear polynomials (i.e.
αx+ β) since every univariate polynomial splits into linear factors. However, this is not the
case in the multivariate setting. For example, the polynomial P (x, y) = x2 + y is irreducible
over any field. In our model, the above phenomenon does not occur as every polynomial
splits into multilinear factors. In addition, our model evades the aforementioned inherent
difficulty since a multilinear factor of a sparse polynomial is itself a sparse polynomial (see
Lemma 23 for more details). Below is our main result:

I Theorem 2 (Main). There exists a deterministic algorithm that given an s-sparse
multilinearly-split polynomial F ∈ F[x1, x2, . . . , xn] of degree d outputs its irreducible mul-
tilinear factors. The running time of the algorithm is poly(n, d, s, p, `) when F = Fp` and
poly(n, d, s, b) when F = Q and b is the bit complexity of the coefficients in F .

Our next results extend the ones in [20].

I Theorem 3. Let F ∈ F[x1, x2, . . . , xn] be a polynomial of degree d that splits into sums of
univariates. There exists a deterministic algorithm that given an oracle access to F outputs
its irreducible factors. The running time of the algorithm is poly(n, d, p, `) when F = Fp` and
poly(n, d, b) when F = Q and b is the bit complexity of the coefficients in F .

1 Although g is not irreducible, this issue can be resolved using standard techniques. For example, by
considering the product f + yh = (g + y)h for a new variable y.

I. Volkovich 945

Combining the result with the efficient algorithm of [20] for testing divisibility by a sum
of univariates, we obtain the following:

I Theorem 4. There exists a deterministic algorithm that given an s-sparse polynomial to
F ∈ F[x1, x2, . . . , xn] of degree d outputs its irreducible factors that are sums of univariates (if
any). The running time of the algorithm is poly(n, d, s, p, `) when F = Fp` and poly(n, d, s, b)
when F = Q and b is the bit complexity of the coefficients in F .

Note that the running times of our algorithms are essentially optimal, as we are invoking
the state-of-the-art deterministic factoring algorithm for a constant number of variables.
We note that even for the univariate case the best known deterministic factoring algorithm
has a polynomial dependence on the characteristic p. While in the randomized setting, the
dependence is polynomial in log p. A lot of effort was invested in trying to derandomize the
factorization algorithm when the characteristic of F is large (see e.g. [23, 5, 3, 17]).

1.3 Techniques

Let C be a class of polynomials and let fact(C) denote the class of factors of P ∈ C. Suppose
we want to map n-variate polynomials from C to (other) polynomials with, potentially, a
smaller number of variables in a way that two distinct (composite) polynomials P,Q ∈ C
remain distinct under the map. In particular, this implies that each irreducible polynomial
in fact(C) must be mapped into a non-constant polynomial. Moreover, a pair of non-similar,
irreducible polynomials must be mapped into a pair of non-similar polynomials. And, ideally,
an irreducible polynomial should remain irreducible. Those goals are achieved in [6, 11, 12, 15]
and other works by considering a projection to a random low-dimensional space (i.e a line or
a plane). The purpose of the last two requirements is to ensure that factors from different
images could not be combined together. In other words, there is only one way to interpret a
product of images under the map. As preserving irreducibility deterministically is still an
open question, we introduce a relaxation of the original requirements with the hope that it
would be easier to fulfill. We call it an essential factorization scheme.

Consider a polynomial map {H}n = Ft(n) → Fn with t� n such that for every irreducible
P ∈ fact(C) the composition P (H) might be reducible, yet results in a polynomial that contains
an irreducible “essential” factor ΨH(P) which describes P uniquely. In addition, ΨH(P)
cannot be a factor of any Q(H) when P 6= Q ∈ fact(C). Given that property of H, for any
F ∈ C the polynomial F (H) describes F uniquely. Consequently, for any F,R ∈ C we get
that F ≡ R ⇐⇒ F (H) = R(H). We formalize this notion in Definition 17.

Observe that this reasoning can be extended to handle products of polynomials for C.
That is,

∏k
i=1 F1. Consequently, if we could establish an essential factorization scheme for

sparse polynomials, we would solve the sparse factorization testing problem.
Unfortunately, we are not there yet for the entire set of sparse polynomials. In this

paper, we make a step towards this goal by establishing an essential factorization scheme
for multilinear sparse polynomials. In fact, our scheme has an additional property: given a
factor, we can efficiently decide whether or not it is an essential factor of some polynomial P .
Moreover, we can efficiently compute P from its essential factor ΨH(P). Consequently, in
order to compute the irreducible factors of multilinearly-split polynomial F , we first compute
the irreducible factor of F (H) and then recover the “original” factors of F . We note that
since F (H) is t-variate polynomial with t � n, we can carry out the factorization phase
deterministically by a brute-force derandomization of the best randomized algorithm while
still being efficient. Formally, see Lemma 24

APPROX/RANDOM’15

946 Deterministically Factoring Sparse Polynomials into Multilinears and
∑
Univariates

We show that our essential factorization scheme works for some other classes of multilinear
polynomials as well. Our construction can be seen as another link in the line of works
[14, 25, 19] that connect polynomial factoring and polynomial identity testing.

1.4 Organization
We start by some basic definitions and notation in Section 2. In Section 3, we formally
introduce essential factorization schemes and demonstrate their properties. In that same
section, we also construct such a scheme for classes of multilinear polynomials. In Section 4,
we present our factoring algorithm for sparse multilinearly-split polynomials, thus proving
our main theorem. Finally, in Section 5 we present an algorithm for factoring polynomials
that split into sums of univariate (Theorem 3) and for finding sums of univariate factors of
sparse polynomials (Theorem 4). We conclude the paper with some remarks in Section 6.

2 Preliminaries

Let F denote a field, finite or otherwise, and let F denote its algebraic closure. We assume
that elements of F are represented in binary using some standard encoding.

2.1 Polynomials
A polynomial P ∈ F[x1, x2, . . . , xn] depends on a variable xi if there are two inputs ᾱ, β̄ ∈ Fn

differing only in the ith coordinate for which P (ᾱ) 6= P (β̄). We denote by var(P) the set of
variables that P depends on. We say that P and Q are similar and denote by it P ∼ Q if
P = αQ for some α 6= 0 ∈ F.

For a polynomial P (x1, . . . , xn), a variable xi and a field element α, we denote with
P |xi=α the polynomial resulting from substituting α to xi. Similarly given a subset I ⊆ [n]
and an assignment ā ∈ Fn, we define P |xI=āI

to be the polynomial resulting from substituting
ai to xi for every i ∈ I.

I Definition 5 (Leading Coefficient). Let xi ∈ var(f). We can write: P =
∑d
j=0 Pj · x

j
i

such that ∀j, xi 6∈ var(Pj) and Pd 6≡ 0. The leading coefficient of P w.r.t to xi is defined as
lcxi(P) ∆= Pd. The individual degree of xi in P is defined as degxi

(P) ∆= d.

It easy to see that for every P,Q ∈ F[x1, x2, . . . , xn] and i ∈ [n] we have that: lcxi(P ·Q) =
lcxi

(P) · lcxi
(Q).

I Definition 6. For P,Q ∈ F[x1, x2, . . . , xn] and ` ∈ [n] let D`(P,Q) be the polynomial
defined as follows:

D`(P,Q)(x̄) ∆=
∣∣∣∣(P P |x`=0

Q Q|x`=0

)∣∣∣∣ (x̄) = (P ·Q|x`=0 − P |x`=0 ·Q)(x̄).

Note that D` is a bilinear transformation. The following lemma from [21] gives a useful
property of D` that is easy to verify.

I Lemma 7 ([21]). Let P,Q ∈ F[x1, x2, . . . , xn] be irreducible multilinear polynomials and
let ` ∈ var(P). Then D`(Q,P) ≡ 0 iff P | Q.

The next corollary from [25] shows that a multilinear sparse polynomial can be factored
efficiently. Moreover, all its factors are sparse.

I Lemma 8 (Corollary from [25]). Given a multilinear polynomial P ∈ F[x1, x2, . . . , xn], there
is a poly(n, ‖P‖) time deterministic algorithm that outputs the irreducible factors, h1, . . . , hk
of P . Furthermore, ‖h1‖ · ‖h2‖ · . . . · ‖hk‖ = ‖P‖.

I. Volkovich 947

2.2 Commutator
The Commutator was originally defined in [25] where it was used to devised efficient factoriza-
tion algorithms for classes of multilinear polynomials. Later, it was also used in reconstruction
algorithms [8, 26] for arithmetic formulae. The following definitions are taken from [25].

I Definition 9. Let f ∈ F[x1, x2, . . . , xn] be a polynomial. We say that f is (xi, xj)-
decomposable if f can be written as f = g·h for polynomials g and h such that i ∈ var(g)\var(h)
and j ∈ var(h) \ var(g).

I Definition 10 (Commutator). Let f ∈ F[x1, x2, . . . , xn] be a multilinear polynomial and let
i, j ∈ [n]. We define the commutator between xi and xj as ∆ijf

∆= f |xi=1,xj=1 · f |xi=0,xj=0−
f |xi=1,xj=0 · f |xi=0,xj=1.

The crucial property of the commutator is given by the lemma below.

I Lemma 11 ([25]). Let f ∈ F[x1, x2, . . . , xn] be a multilinear polynomial and let i, j ∈ var(f).
Then f is (xi, xj)-decomposable if and only if ∆ijf ≡ 0.

The following observation connects between ∆ij and Di.

I Observation 12. ∆ij(P) = Di

(
P |xj=1, P |xj=0

)
.

2.3 Maps and Generators for Classes of Polynomials
In this section, we formally define the notion of generators and hitting sets for polynomials
as well as describe a few of their useful properties. For a further discussion see [24, 28, 16].

A map G = (G1, . . . ,Gn) : Fq → Fn is a generator for the polynomial class C if for every
non-zero n-variate polynomial P ∈ C, it holds that P (G) 6≡ 0. The image of the map G is
denoted as Im (G) = G(Fq). Ideally, q should be very small compared to n. A set H ⊆ Fn is
a hitting set for a polynomial class C, if for every non-zero polynomial P ∈ C, there exists
ā ∈ H, such that P (ā) 6= 0. A generator can also be viewed as a map containing a hitting
set for C in its image. That is, for every non-zero P ∈ C, there exists ā ∈ Im (G) such
that P (ā) 6= 0. In identity testing, generators and hitting sets play the same role. Given
a generator one can easily construct a hitting set by evaluating the generator on a large
enough set of points. Conversely in [24], an efficient method of constructing a generator from
a hitting set was given.

I Lemma 13 ([24]). Let |F| > n. Given a set H ⊆ Fn, there is an algorithm that runs in time
poly(|H| , n, log |F|) and constructs a map G(w̄) : Ft → Fn such that G(0̄) = 0̄, H ⊆ Im (G)
with t ∆= dlog n |H|e and the individual degrees of Gi are bounded by n − 1. Moreover, for
each ā ∈ H, its preimage, β̄ ∈ Fq s.t. ā = G(β), can be computed in time poly(|H| , n).

2.4 SV-Generator
The Gn,k generator was defined in [24] where it was shown that for certain values of k the
map Gn,k is generator for read-once polynomials. In [16] this was generalized to multilinear
read-k polynomials2. We will use the Gn,k in our construction.

2 A read-k polynomial is a polynomial computable by a formula where each variable appears at most k
times.

APPROX/RANDOM’15

948 Deterministically Factoring Sparse Polynomials into Multilinears and
∑
Univariates

I Definition 14 (SV-Generator [24]). Let a1, . . . , an denote n distinct elements from a field
F and for i ∈ [n] let Li(x) .=

∏
j 6=i

x−aj

ai−aj
denote the corresponding Lagrange interpolant. For

every k ∈ N, define

Gn,k(y1, . . . , yk, z1, . . . , zk) .=

 k∑
j=1

L1(yj)zj ,
k∑
j=1

L2(yj)zj , . . . ,
k∑
j=1

Ln(yj)zj

 .

Let (Gn,k)i denote the ith component of Gn,k; we refer to ai as the Lagrange constant
associated with this ith component.

For intuition, it is helpful to view the action of Gn,1(y1, z1) on a random element of F2 as
selecting a random variable (via the value of y1) and a random value for that variable (via
the value of z1). This is not completely accurate because for values outside the Lagrange
constants the generator does not uniquely select a component. Since the SV-generator is
a polynomial map, it is natural to define the sum of two copies of the generator by their
component-wise sum and to furthermore view Gn,k as the sum of k independent choices of
variables and values. For this reason, we take the convention that for two generators G1 and
G2 with the same output length that G1 + G2 is the generator obtained by adding a sample
from G1 to an independent sample from G2, and where the seed variables are implicitly
relabelled so as to be disjoint. With this convention in mind, the SV-generator has a number
of useful properties that follow immediately from its definition.

I Proposition 15 ([24, 16]). Let k, k′ be positive integers.
1. Gn,k(ȳ, 0̄) ≡ 0̄.
2. Gn,k(y1, . . . , yk, z1, . . . , zk)|yk=ai

= Gn,k−1(y1, . . . , yk−1, z1, . . . , zk−1) + zk · ēi, where ēi
is the 0-1-vector with a single 1 in position i and ai the ith Lagrange constant.

3. Gn,k(y1, . . . , yk, z1, . . . , zk) +Gn,k′(yk+1, . . . , yk+k′ , zk+1, . . . , zk+k′)
= Gn,k+k′(y1, . . . , yk+k′ , z1, . . . , zk+k′)

The first item states that zero is in the image of the SV-generator. The second item
shows how to make a single output component (and no others) depend on a particular zj .
The final item shows that sums of independent copies of the SV-generator are equivalent to
a single copy of the SV-generator with the appropriate parameter k. The above properties
give rise to the following operator.

I Definition 16 (Reviving). Let P ∈ F[x1, x2, . . . , xn] be a polynomial and
Gn(w̄) ∆=

(
G1
n(w̄), . . . ,Gnn(w̄)

)
be a polynomial map. Let k ≤ n. Consider Hn

∆= Gn(w̄) +
Gn,k(ȳ, z̄). Let i ∈ [n]. We call the operation:

R{xi}(P (Hn)) ∆= P (Hn)|yk=ai,zk=xi−Gi,z1=z2=...=zk−1=0

a revival of xi. By Proposition 15, the result of such a revival equals:

P (G1
n(w̄), . . . ,Gi−1

n (w̄), xi,Gi+1
n (w̄), . . . ,Gnn(w̄))

which can be seen as lifting the polynomial map substituted into xi. Similarly, we can extend
the definition RI to any subset I ⊆ [n] of size |I| ≤ k as reviving all the variables in I.

3 Essential Factorization Scheme

In this section, we formally define the notions of essential factors and essential factorization
schemes. For a class of polynomials C we denote by fact(C) = {P | ∃g 6= 0, P · g ∈ C } the
class of factors of C.

I. Volkovich 949

I Definition 17 (Essential Factorization Scheme). Let C be a class of polynomials over a field
F. We say that a polynomial map {H}n = Ft(n) → Fn is an essential factorization scheme
for C if there exists (another) map ΨH : F[x1, x2, . . . , xn] → F[w1, w2, . . . , wt(n)] such that
given two irreducible polynomials P,Q ∈ fact(C):
1. ΨH(P) is a non-constant, irreducible factor of P (H), called the essential factor of P .
2. ΨH(P) | Q(H) iff P ∼ Q.

Let us discuss the definition. Let P ∈ fact(C) be an irreducible factor of some F ∈ C.
The intuition is that the essential factor of P , i.e. ΨH(P), should contain “all the essential”
information about P and, in addition it cannot appear as a factor of any other polynomial
Q ∈ fact(C). In particular, it follows from the definition that ΨH(P) ∼ ΨH(Q) iff P ∼ Q.
The next lemma shows that our definition is sufficient in achieving our original goal. That
is, ensuring that two distinct (composite) polynomials F,R ∈ C remain distinct under the
mapping.

I Lemma 18 (Uniqueness from essential factorization). Let F,R ∈ C be two polynomials (not
necessarily irreducible) and let H be as in the above definition. Then F ≡ R iff F (H) = R(H).

Proof. The proof is by induction on deg(F) + deg(R). The base case is when both F and
R are constant polynomials and the claim clearly follows. Now suppose wlog that F is
non-constant. By the properties of H, F (H) is also non-constant and since F (H) = R(H),
R must be non-constant as well. Let F = P1 · . . . · Pk and R = Q1 · . . . · Q` denote F ’s
and R’s factorization into irreducible factors (possibly with repetitions), respectfully where
Pi, Qj ∈ fact(C). We have that:

P1(H) · . . . · Pk(H) = F (H) = R(H) = Q1(H) · . . . ·Q`(H).

By definition, ΨH(P1) | P1(H). Therefore, by uniqueness of factorization, there exist j ∈ [`]
such that ΨH(P1) | Qj(H), since ΨH(P1) is an irreducible polynomial. By Property 2, there
exists α 6= 0 ∈ F such that P1 = αQj . Now, consider: F ′ ∆= F

P1
and R′ ∆= R

αQj
. It follows that

F ′(H) = R′(H) when deg(F ′) + deg(R′) < deg(F) + deg(R). By the induction hypothesis
F ′ ≡ R′ and thus F = P ′ · P1 ≡ Q′ · αQj = R. J

3.1 Essential Factorization Schemes for Multilinear Polynomials
In this section, we show how to construct essential factorization schemes for classes of
multilinear polynomials that admit efficient identity testing algorithms. In fact, if we want
to apply our results for a class C, we require algorithms for a somewhat larger class.

Let C be a class of multilinear polynomials over the field F. From Lemma 8, it follows
that fact(C) = C. Gn(w̄) ∆=

(
G1
n(w̄), . . . ,Gnn(w̄)

)
be a generator for polynomials of the form

Di(P,Q) where P,Q ∈ C are irreducible, n-variate polynomials and i ∈ [n]. We show that
the map Hn

∆= Gn(w̄) +Gn,2(y1, y2, z1, z2) is an essential factorization scheme for C. As was
mentioned earlier, this construction demonstrates another connection between polynomial
factorization and polynomial identity testing. We begin by specifying ΨH. To that end, we
require the following definition:

I Definition 19 (Variable-Essential Factor). Let P (Hn) = f1 · f2 · · · fm be the unique factor-
ization of P (Hn) into irreducible factors. We define the variable-essential factor of P , as fe
such that for each xi ∈ var(P), we have that xi ∈ var(R{xi}(fe)). To avoid ambiguity, we
take the monic3fe.

3 The coefficient of the largest monomial according to the lexicographic order in 1.

APPROX/RANDOM’15

950 Deterministically Factoring Sparse Polynomials into Multilinears and
∑
Univariates

Given the above, we define ΨH(P) to be the variable-essential factor of P . Observe that
applying R{xi} on P (Hn) results in applying R{xi} on each factor f`. Therefore, since P is a
multilinear polynomial there can be at most one factor fe that depends on xi, when revived.
Consequently, there can be at most one factor fe with the required property. However, this
still does not guarantee an existence of such a variable-essential factor. We will now show
that in our case such a factor always exists.

I Lemma 20. Let P ∈ fact(C) = C be an irreducible polynomial. Then ΨH(P) is well-defined.

Proof. As previously, let P (Hn) = f1 · f2 · · · fm be the unique factorization of P (Hn) into
irreducible factors. First, we claim that for each xi ∈ var(P) there exists ki ∈ [m] such that
xi ∈ var(R{xi}(fki

)). By definition R{xi}(P (Hn)) = Pi(Gn) ·xi+P0(Gn) when P = Pixi+P0.
Since Pi = Di(P, 1) we get that the map Gn hits Pi which implies that P (Hn) depends
on xi, and the claim follows. To finish the proof, we need to show that ki = kj for all
xj , xi ∈ var(P).

Assume for a contradiction and wlog that k1 = 1, k2 = 2. As P is an irreducible
polynomial, ∆12(P) 6≡ 0 by Lemma 11. By Observation 12, the map Gn hits ∆12(P). In
other words, there exists β̄ ∈ Im (Gn) such that ∆12(P)(β̄) 6= 0 and P (x1, x2, β3, . . . , βn)
depends of xi and xj . Let γ̄ ∈ G−1(β̄). Consider

P̃
∆= R{x1,x2}(P (Hn))|w̄=γ̄ = P (x1, x2,G3

n(γ̄), . . . ,Gnn(γ̄)) = P (x1, x2, β3, . . . , βn).

By the choice of β̄, the LHS depends on both xi and xj . On the other hand,

P (x1, x2, β3, . . . , βn) = f1(x1, x2, β3, . . . , βn) · f2(x1, x2, β3, . . . , βn) · · · fm(x1, x2, β3, . . . , βn)

so xi ∈ var(fi) for i = 1, 2 and by Lemma 11 ∆12(P)(β̄) = 0, thus reaching a contradiction.
J

As was established, ΨH is well-defined and satisfies Property 1 of Definition 17. Note that
given a list of purported factors it is easy to identify the variable-essential ones by reviving
one variable at a time and testing dependence. Since P (H) is a t(n)-variate polynomial of
polynomial degree and typically t(n)� n, testing dependence can be carried out efficiently
by a computing the monomial expansion of P (H). In particular, in light of this uniqueness it
must be the case that ΨH(P) | Q(H) =⇒ ΨH(P) ∼ ΨH(Q). Therefore, in order to show that
ΨH satisfies Property 2 it is sufficient to show ΨH(P) ∼ ΨH(Q) =⇒ P ∼ Q. The intuition
is that ΨH(P) should contain all the information about P since ΨH(P) encapsulates in itself
the information on each single variable of P .

I Lemma 21. Let P,Q ∈ C be two irreducible polynomials. Then ΨH(P) ∼ ΨH(Q) iff
P ∼ Q.

Proof. The first direction is trivial. For the other direction note that since ΨH(P) and
ΨH(Q) are both normalized we actually have that f ∆= ΨH(P) = ΨH(Q). In other words,
P (Hn) = f · P ′ and Q(Hn) = f · Q′. For xi ∈ var(P), we can write: P = Pixi + P0,
Q = Qixi +Q0. Consider the revival of xi in both P (Hn) and Q(Hn). By the definition of
the variable-essential factors, xi ∈ var(R{xi}(f)). Therefore:

R{xi}(P (Hn)) = (Pi(Gn) · xi + P0(Gn)) = (f̂ixi + f̂0) · R{xi}(P
′)

R{xi}(Q(Hn)) = (Qi(Gn) · xi +Q0(Gn)) = (f̂ixi + f̂0) · R{xi}(Q
′)

I. Volkovich 951

where R{xi}(f) = f̂ixi + f̂0. By setting xi = 0 we obtain:

Pi(Gn) = f̂i · R{xi}(P
′) , P0(Gn) = f̂0 · R{xi}(P

′)

Qi(Gn) = f̂i · R{xi}(Q
′) , Q0(Gn) = f̂0 · R{xi}(Q

′).

And hence: Di(P,Q)(Gn) = Pi(Gn) ·Q0(Gn)−Qi(Gn) ·P0(Gn) ≡ 0. Since Gn hits Di(P,Q) we
know that Di(P,Q) ≡ 0 to begin with. As P,Q are both irreducible, P ∼ Q by Lemma 7. J

The following theorem summarizes this section.

I Theorem 22. Let C be a class of multilinear polynomials over the field F and let Gn(w̄) be
a generator for the polynomials of the form Di(P,Q) where P,Q ∈ C are irreducible, n-variate
polynomials and i ∈ [n]. Then Hn

∆= Gn(w̄) +Gn,2(y1, y2, z1, z2) is an essential factorization
scheme for C. And in particular, for all F,R ∈ C: F ≡ R ⇐⇒ F (Hn) = R(Hn).

4 Factoring Sparse Multilinearly-Split Polynomials

In this section we prove our main result - Theorem 2. First, we give the outline of the proof.
We say that a set H is an interpolating set for a class C if for every P ∈ C the evaluations
P |H determine P uniquely. In particular, an interpolating set can serve as a hitting set since
P ≡ 0 ⇐⇒ P |H ≡ 0.

Let H be the interpolating set for sparse polynomials given by Lemma 26. Our plan is to
evaluate each essential factor separately on H and then apply the reconstruction algorithm
of Lemma 26 to recover the original factors. However, there are couple of obstacles that
stand in our way. First of all, how do we get access to every essential factor separately? To
overcome this obstacle, we use H in conjunction with Theorem 22. Observe that H hits
polynomials of the form Di(P,Q) where P and Q are sparse. Therefore, it satisfies the
conditions of Theorem 22 (invoking Lemma 13). We then invoke Lemma 24 to factor our
polynomial. As the new number of variables is small, this step can be carried out efficiently.
This leads us to a second obstacle: we only obtain evaluations of the essential factors rather
than the original factors.

Although by definition the essential factors contain “enough” information, this information
might still be insufficient for the reconstruction algorithm since in order to reconstruct a
sparse polynomial P the algorithm requires the values of P on H while we only have the
values of a factor of P at hand. For the second obstacle, we make our reconstruction algorithm
more “resilient” to information loss by extedning it to handle rational functions (Lemma 25).

We now move to the formal proof. To this end, we require the following results. The
first result states that a multilinear factor of sparse polynomial is itself a sparse polynomial.
Example 1 demonstrates that this is not the case for general sparse polynomials.

I Lemma 23 ([8]). Let 0 6≡ P,Q ∈ F[x1, x2, . . . , xn] be polynomials such that P is multilinear.
Then P | Q =⇒ ‖P‖ ≤ ‖Q‖.

The next result which is implicit in many factorization algorithms, exhibits an efficient
factorization algorithm for certain regime of parameters. In particular, for polynomials with
constantly-many variables and a polynomial degree. We note that this the state-of-the-art
algorithm for this regime of parameters.

I Lemma 24 (Implicit [5, 12]). There exists a deterministic algorithm that given a t-variate,
degree d polynomial P over F outputs its irreducible factors. The running time of the algorithm
is (d, p, `)O(t) when F = Fp` and (d, b)O(t) when F = Q and b is the bit complexity of the
coefficients in P .

APPROX/RANDOM’15

952 Deterministically Factoring Sparse Polynomials into Multilinears and
∑
Univariates

The following result converts a reconstruction algorithm for sparse polynomials into
a reconstruction algorithm for sparse rational functions, introducing only a polynomial
overhead.

I Lemma 25 ([2]). Let A be a deterministic algorithm that can reconstruct a s-sparse
polynomial P ∈ F[x1, x2, . . . , xn] of degree d in time T (n, s, d, |H|) given the evaluations P |H.
Let R,Q ∈ F[x1, x2, . . . , xn] be two coprime s-sparse polynomials of degree d and σ̄ ∈ Fn such
that Q(σ̄) 6= 0. Finally, let V ⊆ F be a subset of size 2d. Then there exists a deterministic
algorithm B that given the evaluations (R/Q)|V ·H+σ̄

4 outputs R′, Q′ such that R′ = cR and
Q′ = cQ for some c 6= 0 ∈ F in time poly(|H| , n, d, T (n, s, d, |H|)) and uses the algorithm A

as an oracle. If Q(σ̄) = 0 the algorithm fails.

We conclude the list with an efficient reconstruction algorithm for sparse polynomials.

I Lemma 26 ([18]). Let n, s, d > 1. There exists a deterministic algorithm that in time
poly(n, s, d) outputs an interpolating set H such that given the evaluations P |H of a s-
sparse polynomial P ∈ F[x1, x2, . . . , xn] of degree d in time poly(n, s, d) the algorithm can
reconstruct P .

We are ready to proceed with the proof of our main theorem (Theorem 2). Our algorithm
combines the above results. The description of the algorithm is given in Algorithm 1.

Input: s-sparse, multilinearly-split polynomial F ∈ F[x1, x2, . . . , xn] of degree d
Output: A list P1, . . . , Pk of the irreducible factors of F . That is, F = P1 · . . . · Pk.

1 Choose a subset {1} ∈ V ⊆ F of size 2d ;
2 Invoke the algorithm in Lemma 26 with n, 2s2, d = 2n to obtain an interpolating set H;
3 Apply Lemma 13 on H′ = V · H to obtain the map G /* note that H ⊆ H′ ⊆ Im (G)

*/
4 Set Hn

∆= G(ū) + G(w̄) +Gn,2(ȳ, z̄) ;
5 Use Lemma 24 to Factor F (Hn). Let S be the set of the irreducible factors ;
6 Initialize E ← ∅ /* The set of all the essential factors */
7 foreach f ∈ S, i ∈ [n] do
8 if xi ∈ var(R{xi}(f)) /* Check by looking at the monomial expansion */
9 then

10 E ← E ∪
{

(R{xi}(f), i)
}

/* Move to the next f ∈ S */
/* Reconstruct the original factors */

11 foreach (f̂ , i) ∈ E, β̄ ∈ G−1(H) do
12 Set: f̂0(ū, w̄) ∆= f̂ |xi=0, f̂i(ū, w̄) ∆= f̂ |xi=1 − f̂0 ;
13 Apply Lemma 25 jointly with the reconstruction algorithm from Lemma 26 on

f̂0(ū, β̄)/f̂i(ū, β̄) to obtain R′, Q′. ;
14 On a success, output P = Q′ · xi +R′ ;

Algorithm 1. Factoring algorithm for sparse multilinearly-split polynomials.

Proof of Theorem 2. We analyze Algorithm 1. For the running time we get (n, s, d, p, `)O(t)

when F = Fp` and (n, s, d, b)O(t) when F = Q. By Lemmas 13 and 26 t = O(log n |H|) =
O(log n(nsd)). Therefore, if all the parameters are poly(n) we get the claimed running time.

4 V · H+ σ̄
∆= {α · ā+ σ̄ | α ∈ V, ā ∈ H}

I. Volkovich 953

We now move to the correctness. Let F = P1 · P2 · . . . · Pm be F ’s factorization into
irreducible factors (possibly with repetitions). By Lemma 23, each Pj above is s-sparse.
First, observe that H (and consequently H′) is a hitting set for Di(P,Q) where P,Q ∈
F[x1, x2, . . . , xn] are s-sparse multilinear polynomials. By Lemma 13, the map G(ū) hits
those polynomials. As G(0̄) = 0̄, the same holds true for G(ū)+G(w̄) as well. By Theorem 22,
Hn is an essential factorization scheme for s-sparse multilinear polynomials. Therefore, by the
properties of Definition 17 each ΨH(Pj) is a non-constant factor of F (H) and ΨH(Pj) ∼ ΨH(Pk)
iff Pj ∼ Pk. Therefore, we can access all ΨH(Pj)-s by factoring F (H) and reviving one
variable at a time to distinguish essential factors from the non-essential ones. Now, let
f = ΨH(Pj) and Pj(Hn) = f · P ′j . By repeating the reasoning in the proof of Lemma 21 we
get:

[Pj]i(G(ū) + G(w̄)) · xi + [Pj]0(G(ū) + G(w̄)) = R{xi}(Pj(Hn)) =

f̂(ū, w̄) · R{xi}(P
′
j) = (f̂i(ū, w̄)xi + f̂0(ū, w̄)) · R{xi}(P

′
j)

and hence
[Pj]i(G(ū) + G(w̄)) = f̂i(ū, w̄) · R{xi}(P

′
j)

[Pj]0(G(ū) + G(w̄)) = f̂0(ū, w̄) · R{xi}(P
′
j).

when Pj = [Pj]i · xi + [Pj]0. Since [Pj]i is a non-zero s-sparse polynomial, there exists σ̄ ∈ H
such that [Pj]i(σ) 6= 0. By Lemma 13 we can efficiently iterate over H to find β̄ ∈ G−1(σ).
Finally observe that

f̂0(ū, β̄)/f̂i(ū, β̄) = [Pj]0(G(ū) + σ̄) / [Pj]i(G(ū) + σ̄).

Therefore given access to f̂0(ū, β̄)/f̂i(ū, β̄) the algorithm can query the polynomial [Pj]0/[Pj]i
on every point of the forms V · H + σ as required by Lemma 25. Consequently, we can
apply Lemma 25 jointly with the reconstruction algorithm from Lemma 26 to obtain
R′ = c[Pj]0, Q′ = c[Pj]i resulting in P = Q′ · xi +R′ = c[Pj]i · xi + c[Pj]0 = cPj and we are
done. J

5 Factoring Products of Sums of Univariates

In this section we prove Theorems 3 and 4. As was mentioned earlier, P is a sum of univariates
if it is of the form P =

∑n
i=1 Ti(xi) Models related to these polynomial were previously

studied in the literature [22, 20, 27]. We begin with a simple observation.

I Observation 27. Let I ⊆ [n] be a set of size |I| ≤ k ≤ n. Then

RI (P (Gn,k)) =
∑
i∈I

Ti(xi) +
∑
j 6∈I

Tj(0).

Next, we require two results from [20].

I Lemma 28 ([20]). There exists a deterministic algorithm that given an s-sparse polynomial
to F ∈ F[x1, x2, . . . , xn] and a sum of univariatess P ∈ F[x1, x2, . . . , xn] both of degree d and
e ≥ 0 checks if P e | F . The running time of the algorithm is poly(n, d, e, s, log p, `) when
F = Fp` and poly(n, d, e, s, b) when F = Q and b is the bit complexity of the coefficients in F .

I Lemma 29 ([20]). Let P ∈ F[x1, x2, . . . , xn] be a polynomial that is a sum of univariates
with |var(P)| ≥ 3. Then either P is irreducible, or P is a p-th power of some polynomial
where p = char(F).

APPROX/RANDOM’15

954 Deterministically Factoring Sparse Polynomials into Multilinears and
∑
Univariates

I Corollary 30. Let P ∈ F[x1, x2, . . . , xn] be an irreducible polynomial that is a sum of
univariates and let xj , xk ∈ var(P) (not necessarily distinct). Then there exists a set
{xj , xk} ⊆ I ⊆ [n] of size |I| ≤ 3 such that P |x̄[n]\I=0̄I

is irreducible as well.

Proof. If |var(P)| ≤ 3, the claim clearly holds. Let P =
n∑
i=1

Ti(xi) and suppose that

|var(P)| ≥ 4. Since P is irreducible, there exists ` ∈ [n] such that T`(x`) is not a perfect p-th
power. Consider the set I = {xj , xk, x`}. If |I| < 3, add arbitrary elements from var(P) to I
so that |I| = 3. By definition, P |x̄[n]\I

is an trivariate polynomial which is not a perfect p-th
power, due to T`(x`), and thus irreducible by Lemma 29. J

We show that the map Hn
∆= Gn,3(ȳ, z̄) is an essential factorization scheme for sum of

univariates. Similarly to Section 3.1, we define ΨH(P) as the (monic) variable-essential factor
of P (Hn). We now show that it satisfies Definition 17.

I Lemma 31. Let P be an irreducible polynomial which can be expressed as sums of
univariates. Then ΨH(P) is well-defined.

Proof. Let P (Hn) = f1 ·f2 · · · fm be the unique factorization of P (Hn) into irreducible factors.
Let xi ∈ var(P). By Observation 27, R{xi}(P (Hn)) = Ti(xi)+

∑
j 6=i Tj(0). Therefore, at least

one of fk-s depends on xi. Now, assume for a contradiction and wlog that xj ∈ var(R{xj}(f1))
and xk ∈ var(R{xk}(f2)). As xj , xk ∈ var(P), let I be the set guaranteed by Corollary 30.
By Observation 27 we have that:

P |x̄[n]\I=0̄I
= RI (P (Hn)) = RI(f1) · RI(f2) · · ·RI(fm)

in contradiction to the irreducibility of P |x̄[n]\I=0̄I
. J

We are ready to proceed with the proof of Theorem 3. The description of the algorithm
is given in Algorithm 2.

Proof of Theorem 3. We analyze Algorithm 2. The claim regarding the running time is
clear. Let F = P1 · P2 · . . . · Pm be F ’s factorization into irreducible factors (possibly with
repetitions). Observe that the algorithm finds all the variable-essential factors f of each
such P . That is, f = ΨH(P) and P (Hn) = f · P ′. We claim that for each Pj the algorithm
outputs αj · Pj for some 0 6= αj ∈ F. Therefore, the correct constant is found in Line 9. By
definition, R{xi}(P ′) ∈ F and hence R{xi}(f) ∼ R{xi}(P (Hn)). We consider three cases:

1. V = {xi} for some i ∈ [n]. Then the algorithm outputs
R{xi} (f)

lcxi

(
R{xi}

) ∼ R{xi}(P (Hn)) = P

(as the first term is 0).
2. V = {xi, xj} for some i 6= j ∈ [n]. Then the algorithm outputs

R{xi,xj} (f)

lcxi

(
R{xi,xj}

) ∼
R{xi}(P (Hn)) = P (as the second term is 0).

3. |V | ≥ 3. By Lemma 29 P must be of the form P =
∑n
m=1 Tm(xm). We get that:

R{xi,xj}(f) =
R{xi,xj}(f)
R{xi,xj}(P ′)

=
R{xi,xj}(f)
R{xi,xj}(P ′)

=
Ti(xi) + Tj(xj) +

∑
m 6=i,j Tm(0)

R{xi,xj}(P ′)

Therefore

lcxi

(
R{xi,xj}(f)

)
= lcxi

(Ti)
R{xi,xj}(P ′)

I. Volkovich 955

Input: A polynomial F ∈ F[x1, x2, . . . , xn] of degree d which splits into sums of
univariate polynomials.

Output: A list P1, . . . , Pk of the irreducible factors of F . That is, F = P1 · . . . · Pk.

1 Set Hn
∆= Gn,3(ȳ, z̄) ;

2 Use Lemma 24 to Factor F (Hn). Let S be the set of the irreducible factors ;
3 foreach f ∈ S do
4 Compute V =

{
i
∣∣ xi ∈ var(R{xi}(f))

}
/* By brufeforce monomial expansion

*/
5 if |V | = 0 then continue to the next f ∈ S;
6 Pick i ∈ V ;
7 Output

P =
∑

j∈V \{i}

R{xi,xj}(f)
lcxi

(
R{xi,xj}

) − (|V | − 2) ·
R{xi}(f)

lcxi

(
R{xi}

)
8 Compute α ∈ F such that F (Hn) = α · P1(Hn) · . . . · Pk(Hn) /* via 6-variate

polynomial interpolation */
9 Set P1 ← α · P1.
Algorithm 2. Factoring algorithm for polynomials that split into sums of univariate
polynomials

and hence
R{xi,xj}(f)

lcxi

(
R{xi,xj}

) =
Ti(xi) + Tj(xj) +

∑
m 6=i,j Tm(0)

lcxi
(Ti)

.

Similarly,

R{xi}(f)
lcxi

(
R{xi}

) =
Ti(xi) +

∑
` 6=i T`(0)

lcxi
(Ti)

.

Consequently, the algorithm outputs
∑n

m=1
Tm(xm)

lcxi
(Ti) ∼ P .

J

We now move to the proof of Theorem 4. The naive approach is to Apply 2 to an arbitrary
sparse polynomial and then use Lemma 28 to get rid of the spurious factors. However, it
might be the case that F (Gn,3) ≡ 0 although F 6≡ 0. We solve this problem by considering
F along the line F (Gn,3 + t · ā) when ā ∈ Fn is such that F (ā) 6= 0. We then set t = 0.
Formally, the description of the algorithm is given in Algorithm 3.

Proof of Theorem 4. We analyze Algorithm 3. The analysis is similar to the analysis of
Algorithm 2 barring two observations. First, observe that F (Hn) 6≡ 0 since
F (Hn)|z1=z2=z3=0,t=1 = F (ā) 6= 0. Second, let P be a sum of univariates such that P | F .
Then ΨH(P) ∈ L. J

6 Conclusions and Remarks

In this paper we give the first efficient deterministic factorization algorithm for sparse
polynomials that split into multilinear factors and sums of univariate polynomials. The

APPROX/RANDOM’15

956 Deterministically Factoring Sparse Polynomials into Multilinears and
∑
Univariates

Input: An s-sparse polynomial F ∈ F[x1, x2, . . . , xn] of degree d
Output: A list P1, . . . , Pk of factors of F such that Pj is a sum of univariates.

1 Find ā ∈ Fn such that F (ā) 6= 0 ;
2 Set Hn

∆= Gn,3(ȳ, z̄) + t · ā ;
3 Use Lemma 24 to Factor F (Hn). Let S be the set of the irreducible factors ;
4 Compute S′ ∆= {f |t=0 | f ∈ S } ;
5 Use Lemma 24 to the polynomials in S′. Let S′′ be the result.;
6 Invoke Algorithm 2 with S′′ instead of S. Let L be the result. ;
7 foreach P ∈ L do
8 Find the largest e ≤ d such that P e | F using Lemma 28. ;
9 if e > 0 then Output P e times.;

Algorithm 3. Computing sums of univariates factors of sparse polynomials.

key ingredient in the algorithm is the Essential Factorization Schemes. We hope that these
schemes could be applied to handle richer classes of sparse polynomials.

A natural question to ask is whether it would possible to extend the algorithm to compute
multilinear factors of an arbitrary sparse polynomial. Another open question is to improve
the dependence on the characteristic from polynomial to polylogarithmic.

On a final note, Example 5.1 in [6] is followed by a question (quote): “Can the output size
for the factoring problem be actually more than quasi-polynomial in the input size?” Our next
example provides a positive answer to this question over fields with super-polylogarithmic
characteristics.

I Example 32. Let p = 2k−1 be an odd prime, F = Fp` and n, ` ≥ 1. Consider the polynomial
f(x̄) = (x1 +x2 + . . .+xn)p+1 which can be written as a square of g(x̄) = (x1 +x2 + . . .+xn)k.
Observe that f(x̄) = (xp1 + xp2 + . . .+ xpn) · (x1 + x2 + . . .+ xn) and therefore ‖f‖ ≤ n2. On
the other hand, ‖g‖ =

(
n+p/2−1

p/2
)

= Ω
(

(n+p
p)p + (n+p

n)n
)
.

Acknowledgments. The author would like to thank the anonymous referees for their
comments.

References
1 M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynominal

interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC), pages 301–309, 1988.

2 A. M. Cuyt and W. Lee. Sparse interpolation of multivariate rational functions. Theor.
Comput. Sci., 412(16):1445–1456, 2011.

3 S. Gao, E. Kaltofen, and A. G. B. Lauder. Deterministic distinct-degree factorization of
polynomials over finite fields. J. Symb. Comput., 38(6):1461–1470, 2004.

4 J. von zur Gathen. Who was who in polynomial factorization:. In ISSAC, page 2, 2006.
5 J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press,

1999.
6 J. von zur Gathen and E. Kaltofen. Factoring sparse multivariate polynomials. Journal of

Computer and System Sciences, 31(2):265–287, 1985.
7 E. Grigorescu, K. Jung, and R. Rubinfeld. A local decision test for sparse polynomials. Inf.

Process. Lett., 110(20):898–901, 2010.

I. Volkovich 957

8 A. Gupta, N. Kayal, and S. V. Lokam. Reconstruction of depth-4 multilinear circuits with
top fanin 2. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing
(STOC), pages 625–642, 2012. Full version at http://eccc.hpi-web.de/report/2011/153.

9 V. Guruswami and M. Sudan. Improved decoding of reed-solomon codes and algebraic-
geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

10 V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

11 E. Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate integral
polynomial factorization. SIAM J. on computing, 14(2):469–489, 1985.

12 E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Micali,
editor, Randomness in Computation, volume 5 of Advances in Computing Research, pages
375–412. JAI Press Inc., Greenwhich, Connecticut, 1989.

13 E. Kaltofen. Polynomial factorization: a success story. In ISSAC, pages 3–4, 2003.
14 E. Kaltofen and P. Koiran. On the complexity of factoring bivariate supersparse (lacunary)

polynomials. In ISSAC, pages 208–215, 2005.
15 E. Kaltofen and B. M. Trager. Computing with polynomials given by black boxes for

their evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. J. of Symbolic Computation, 9(3):301–320, 1990.

16 Z. S. Karnin, P. Mukhopadhyay, A. Shpilka, and I. Volkovich. Deterministic identity testing
of depth 4 multilinear circuits with bounded top fan-in. SIAM J. on Computing, 42(6):2114–
2131, 2013.

17 N. Kayal. Derandomizing some number-theoretic and algebraic algorithms. PhD thesis,
Indian Institute of Technology, Kanpur, India, 2007.

18 A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate poly-
nomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC), pages 216–223, 2001.

19 S. Kopparty, S. Saraf, and A. Shpilka. Equivalence of polynomial identity testing and
deterministic multivariate polynomial factorization. In Proceedings of the 29th Annual
IEEE Conference on Computational Complexity (CCC), pages 169–180, 2014.

20 C. Saha, R. Saptharishi, and N. Saxena. A case of depth-3 identity testing, sparse factor-
ization and duality. Computational Complexity, 22(1):39–69, 2013.

21 S. Saraf and I. Volkovich. Blackbox identity testing for depth-4 multilinear circuits. In
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), pages
421–430, 2011. Full version at http://eccc.hpi-web.de/report/2011/046.

22 N. Saxena. Diagonal circuit identity testing and lower bounds. In Automata, Languages
and Programming, 35th International Colloquium, pages 60–71, 2008. Full version at
http://eccc.hpi-web.de/eccc-reports/2007/TR07-124/index.html.

23 V. Shoup. A fast deterministic algorithm for factoring polynomials over finite fields of small
characteristic. In ISSAC, pages 14–21, 1991.

24 A. Shpilka and I. Volkovich. Improved polynomial identity testing for read-once for-
mulas. In APPROX-RANDOM, pages 700–713, 2009. Full version at http://eccc.hpi-
web.de/report/2010/011.

25 A. Shpilka and I. Volkovich. On the relation between polynomial identity testing and
finding variable disjoint factors. In Automata, Languages and Programming, 37th In-
ternational Colloquium (ICALP), pages 408–419, 2010. Full version at http://eccc.hpi-
web.de/report/2010/036.

26 A. Shpilka and I. Volkovich. On reconstruction and testing of read-once formulas. Theory
of Computing, 10:465–514, 2014.

27 A. Shpilka and I. Volkovich. Read-once polynomial identity testing. Computational Com-
plexity, 2015.

APPROX/RANDOM’15

958 Deterministically Factoring Sparse Polynomials into Multilinears and
∑
Univariates

28 A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

29 M. Sudan. Decoding of reed solomon codes beyond the error-correction bound. Journal of
Complexity, 13(1):180–193, 1997.

30 R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the Interna-
tional Symposium on Symbolic and Algebraic Computation, pages 216–226, 1979.

	Introduction
	Multivariate Polynomial Factorization
	Sparse Polynomials
	Techniques
	Organization

	Preliminaries
	Polynomials
	Commutator
	Maps and Generators for Classes of Polynomials
	SV-Generator

	Essential Factorization Scheme
	Essential Factorization Schemes for Multilinear Polynomials

	Factoring Sparse Multilinearly-Split Polynomials
	Factoring Products of Sums of Univariates
	Conclusions and Remarks

