
Thinking Algorithmically About Impossibility∗

R. Ryan Williams

Computer Science Department, Stanford University
Stanford, CA, USA
rrw@cs.stanford.edu

Abstract
Complexity lower bounds like P 6= NP assert impossibility results for all possible programs of
some restricted form. As there are presently enormous gaps in our lower bound knowledge, a
central question on the minds of today’s complexity theorists is how will we find better ways to
reason about all efficient programs?

I argue that some progress can be made by (very deliberately) thinking algorithmically about
lower bounds. Slightly more precisely, to prove a lower bound against some class C of programs,
we can start by treating C as a set of inputs to another (larger) process, which is intended to
perform some basic analysis of programs in C. By carefully studying the algorithmic “meta-
analysis” of programs in C, we can learn more about the limitations of the programs being
analyzed.

This essay is mostly self-contained; scant knowledge is assumed of the reader.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases satisfiability, derandomization, circuit complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2015.14

Category Invited Talk

1 Introduction

We use the term lower bound to denote an assertion about the computational intractability
of a problem. For example, the assertion “factoring integers of 2048 bits cannot be done with
a Boolean circuit of 106 gates” is a lower bound which we hope is true (or at least, if the
lower bound is false, we hope that parties with sinister motivations have not managed to
find this magical circuit).

The general problem of mathematically proving computational lower bounds is a mystery.
The stability of modern commerce relies on certain lower bounds being true (most prominently
in cryptography and computer security). Yet for practically all of the prominent lower bound
problems, we do not know how to begin proving them true – we do not even know step
zero. (For some major open problems, such as the Permanent versus Determinant problem in
arithmetic complexity [15], we do have good candidates for step zero, and possibly step one.)
Many present lower bound conjectures may simply be false. In spite of our considerable
intuitions about lower bounds, we must admit that our formal understanding of them is
awfully weak. This translates to a lack of understanding about algorithms as well.

∗ Supported in part by NSF CCF-1212372 and a Sloan Fellowship. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

© R. Ryan Williams;
licensed under Creative Commons License CC-BY

24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer; pp. 14–23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2015.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


R. R. Williams 15

1.1 Barriers
Why are lower bounds so difficult to prove? There are formal reasons, which are often
called “complexity barriers.” These are theorems which demonstrate that the usual tools
for reasoning about computability and lower bounds – such as universal simulators – are
simply too abstract to distinguish modes of computation like P and NP. There are three
major classes of barriers known.

Relativization, Algebrization, Natural Proofs. Many ways of reasoning about algorithm
complexity are equally valid when one adds “oracles” to the computational model: that
is, one adds an instruction that can call an arbitrary function O : {0, 1}? → {0, 1} in one
step, as a black box. When a proof of a theorem is true no matter which O is added to
the instruction set, we say that the proof “relativizes.” A relativizing proof is generally a
quite powerful and broadly applicable object. However, relativizing proofs are of limited use
in lower bounds: for instance, P = NP when some oracles O are added to polynomial-time
and nondeterministic-polynomial-time algorithms, but P 6= NP when some other oracles O′

are added (as proved by Baker, Gill, Solovay [3]). Practically all other open lower bound
conjectures exhibit a similar resistance to arbitrary oracles, and a surprisingly large fraction
of theorems in complexity theory do relativize.

The more recent “algebrization” barrier [1] teaches a similar lesson, applied to a broader
set of algebraic techniques that was designed to get around relativization. (Instead of
looking at oracles, they look at a more general algebraic object.) To scale relativization and
algebrization, it is necessary to crack open the guts of programs, and reason more closely
about their behavior relative to their simple instructions.1

The Razborov-Rudich “natural proofs” barrier [19] has a more subtle pedagogical point
compared to the other two: informally, they show that strong lower bound proofs cannot
produce a polynomial-time algorithm for determining whether a given function is hard or
easy to compute – otherwise, such an algorithm would (in a formal sense) refute stronger
lower bounds that we also believe to hold. It turns out that many lower bound proofs from
the 1980s and 1990s have such an algorithm embedded in them.

1.2 Intuition and Counter-Intuition
There are also strong intuitive reasons for why lower bounds are hard to prove. The most
common one is that it seems extraordinarily difficult to reason effectively about the infinite
set of all possible efficient programs, including programs that we will never see or execute,
and argue that none of them can solve an NP-complete problem. Based on this train of
thought, some famous computer scientists such as our colleague Donald Knuth have dubbed
problems like P versus NP to be “unknowable” [11].

But how difficult is it, really, to reason about all possible efficient programs? Let us give
some counter-intuition, which will build up to the point of this article, starting with the
observation that while reasoning about lower bounds appears to be difficult, reasoning about
worst-case algorithms does not suffer from the same appearance. Reasoning computationally
about an infinite number of finite objects is commonplace in the analysis of worst-case
algorithms. There, we have a function f : Σ? → Σ? in mind, and we prove that some
known efficient procedure P outputs f(x) on all possible finite inputs x. That is, often in

1 There are definitely “non-relativizing” and even “non-algebrizing” techniques in complexity theory, but
they are a minority; see Section 3.4 in Arora and Barak [2] for more discussion.

CSL 2015



16 Thinking Algorithmically About Impossibility

algorithm analysis we manage to reason about all possible x, even those x’s we will never
see or encounter in the real world. The idea is that, if we consider computational problems
which
(a) treat their inputs as programs,
(b) determine interesting properties of the function computed by the input program, and
(c) have interesting algorithms,
then we can hope to import ideas from the design and analysis of algorithms into the theory
of complexity lower bounds. (Yes, this is vague, but it is counter-intuition, after all.)

Sanity Check: Computability Theory. We must be careful with this counter-intuition.
Which computational problems actually satisfy those three conditions? Undergraduate
computability theory (namely, Rice’s theorem [20]) tells us that, if x encodes a program
that takes arbitrarily long inputs, it is undecidable to determine non-trivial properties of
the problem solved by x. The source of this undecidability is the “arbitrary length” of
inputs; if x encodes a program that takes only finitely many inputs, say only inputs of a fixed
length, then we can produce the entire function computed by x, and decide some non-trivial
properties of that function. To simplify the discussion (and without significantly losing
generality), we might as well think of x as encoding a Boolean circuit over AND, OR, and
NOT gates, taking some n bits of input and outputting some m bits. Now, x simply encodes
a directed acyclic graph with additional labels on its nodes, and a procedure P operating on
x’s can be said to be reasoning about the finitary behavior of finite computational objects.

However, one of the major lessons of the theory of NP-hardness is that, while reasoning
about arbitrary programs may be undecidable, reasoning about arbitrary circuits is often
decidable but is still likely to be intractable. Probably the simplest possible circuit analysis
problem is: given a Boolean circuit C, does C compute the all-zeroes function? This problem
is already very difficult to solve; it is equivalent to the NP-complete problem Circuit
Satisfiability (which asks if there is some input on which C outputs 1). From this point
of view, the assertion P 6= NP tells us that arbitrary programs are hard to analyze even
over finitely many inputs: we cannot feasibly determine if a given circuit is trivial or not.
As circuit complexity is inherently tied to P versus NP, the assertion P 6= NP appears to
have negative consequences for its own provability; this looks depressing. (This particular
intuition has been proposed many times before; for instance, the Razborov-Rudich work on
“natural proofs” [19] may be viewed as one way to formalize it.)

Slightly Faster SAT Algorithms? The hypothesis P 6= NP only says that very efficient
circuit analysis is impossible. More precisely, for circuits C with k bits of input encoded in n

bits, P 6= NP means there is no kO(1) · nO(1) time algorithm for detecting if C is satisfiable.
There is a giant gap between this sort of bound and the 2k · nO(1) time bound obtained by
simple exhaustive search over all possible inputs to the circuit. What if we simply asked for
a non-trivial running time for detecting the satisfiability of C, something merely faster than
exhaustive search?

I would like to argue that finding any asymptotic improvement over 2k time for Circuit
Satisfiability is already a very interesting problem. This is not an obvious point to argue.
First off, without any further knowledge of its inner workings, a 1.9k time algorithm would
not be terribly more useful in practice than a 2k one: only for small values of k would one
see a difference, and the rest of the instances would remain intractable.2 Work on worst-case

2 This attitude is not shared in cryptography, where any improvement in exhaustive search over all keys
may be considered a “break” in the cryptosystem.



R. R. Williams 17

algorithms for SAT for many years (such as [13, 6, 14, 12, 18, 9, 22, 17, 23, 5], see the
survey [7]) was primarily motivated by the intrinsic interest in understanding whether trivial
exhaustive search is optimal.

The Non-Black-Box-ness of Circuit SAT Algorithms. There is also a deeper reason to
pursue minor improvements in SAT algorithms. Any algorithm for Circuit SAT running
in (say) time 1.9k · nO(1) must necessarily provide a “non-relativizing” analysis of the given
circuit C, an analysis which relies on the structure and encoding of C. If you were asked to
design a Circuit SAT algorithm which could only access C as an oracle, obtaining outputs
from inputs and no other information, then your algorithm would necessarily require at least
2k steps in the worst case. The reason is simple: if you are completely blind to the insides of
the circuit C, then even a small (kO(1) size) circuit could hide a satisfying k-bit input from
you. To thwart you, I may choose a small circuit which only outputs 1 on the “last” input
you will call it on, and since you only see 0-outputs, you will need to call the circuit on all 2k

inputs to determine satisfiability. Therefore, a 1.9k · nO(1) time algorithm for Circuit SAT
must necessarily use the fully-given representation of the circuit in some critical ways, to
work faster than exhaustive search. Even an algorithm running in O(2k/k) time on circuits
of size O(k) would be interesting, for the same reason.3

A Possible Road to Circuit Complexity. The ability to analyze a given circuit more
efficiently than analyzing a black box suggests a further implication: a Circuit SAT
algorithm running faster than exhaustive search could potentially be used to prove a circuit
complexity limitation. At the very least, if the Circuit SAT problem can be solved faster
than exhaustive search on a given collection of circuits C (some of which encode the all-zero
function, and some which do not), then the collection C fails to obfuscate the all-zeroes
function from some algorithm running in less than 2k steps. That is, the assumed Circuit
SAT algorithm can “efficiently” distinguish all circuits encoding the all-zeroes function from
those circuits which do not; these circuit cannot hide satisfying inputs as well as oracles can.
This points to a potential deficiency in C that the Circuit SAT algorithm takes advantage
of. Surprisingly, this intuitive viewpoint can be made formal.

Outline. In the remainder of this article, we first describe some known connections between
circuit satisfiability algorithms and circuit complexity lower bounds (Section 2). Then, we
turn to a more recent example of how algorithms and lower bounds are tied to each other, in
a way that we believe should be of interest to the union of logicians and computer scientists
(Section 3). In particular, we reconsider the basic problem of testing circuit functionality via
input-output examples, define the data complexity as a way of measuring the difficulty of
testing, and describe how circuit complexity lower bounds are equivalent to data complexity
upper bounds. We conclude the article with some hopeful thoughts.

3 Perhaps you do not believe that Circuit SAT can be solved any faster than 2k · nO(1) steps. This belief
turns out to be inessential for the main intuition and the formal theorems that follow. For example, you
may instead believe that we can non-deterministically approximate the fraction of satisfying assignments
to a k-input circuit of size n in 1.9k · nO(1) time; this is also something that oracle access to a circuit
cannot accomplish. Furthermore, if you do not believe even this, then your lack of faith in algorithms
requires you to have strong beliefs in the power of Boolean circuits – they would be powerful enough to
solve nondeterministic exponential-time problems. See [10, 26].

CSL 2015



18 Thinking Algorithmically About Impossibility

2 Circuit SAT versus Circuit Complexity

Let us briefly review some relevant notions from the theory of circuit complexity; for more,
see the textbook of Arora and Barak ([2], Chapter 6).

Circuit Complexity. A Boolean circuit with n inputs and one output is a directed acyclic
graph with n sources and one sink, and labels of AND/OR/NOT on all other nodes. Each
circuit computes some finite function f : {0, 1}n → {0, 1}. To compute infinite languages,
of the form L : {0, 1}? → {0, 1}, we extend our computational model to have an infinite
family of circuits F = {Cn}∞

n=1, where Cn has n inputs and one output. For such a family
F , we say that F computes L if for all x ∈ {0, 1}? we have C|x|(x) = L(x). For a function
s : N → N, a family F has size s(n) if for all n, the number of nodes (i.e., gates) in Cn is
at most s(n). A language L has polynomial-size circuits if there is a polynomial p(n) and
a family C of size p(n) that computes L. The class of all languages having polynomial-size
circuits is denoted by P/poly. One should think of P/poly as the class of computations for
which the minimum “sizes” of computations do not grow considerably with the input length
to those computations.

The class P/poly is poorly understood animal. It could be enormously powerful, or it
could be fairly weak. It is easy to see that every language over the single alphabet symbol 0
is in P/poly; however, a simple counting argument shows there are undecidable subsets over
a single alphabet symbol. Therefore P/poly can “compute” some undecidable languages. In
that sense, P/poly is powerful, but this really stems from the fact that the computational
model defining P/poly can have infinite-length descriptions. (This observation also shows that
traditional thought in computability theory is not going to be very helpful in understanding
the power of P/poly.) However, P/poly also looks obviously limited, in another sense: for
each input length n, only polynomial-in-n resources need to be spent in order to decide
all 2n inputs of that length. A counting argument shows that for every n, some function
f : {0, 1}n → {0, 1} requires circuits of size exponential-in-n; in fact, most functions do.

A prominent question in complexity theory is: How does P/poly relate to the Turing-based
classes of classical complexity theory, like P, NP, PSPACE, etc.? It is pretty easy to see that
P ⊂ P/poly: every “finite segment” of a polynomial-time algorithm can be simulated with
a polynomial-size circuit. It is conjectured that NP 6⊂ P/poly (which would in turn imply
P 6= NP). But it is an open problem to prove that NEXP 6⊂ P/poly! That is, every language
in the exponential-time version of NP could in fact have polynomial-size circuits. It looks
amazing that a problem like this is still open. Fifty years ago, Hartmanis and Stearns [8]
showed that some O(n3)-time computations are more powerful than all O(n)-time ones; how
is it possible that we can’t distinguish exponential time from polynomial size? This open
problem demonstrates how truly difficult it is to prove lower bounds on circuit complexity;
maybe the infinite circuit model is powerful!

2.1 Enter Circuit SAT
Let’s return to thinking about the role of Circuit Satisfiability. We were arguing that a
faster algorithm for satisfiability points to a deficiency in the power of circuits, being unable
to hide satisfying inputs from algorithms running in less than 2k steps. We want to say:



R. R. Williams 19

The existence of a “faster” algorithm A solving Circuit SAT,
for all circuits C from a class of circuits C

=⇒
The existence of a function f : {0, 1}? → {0, 1},

that is not computable by all circuit families from that class C

Written this way, the logical quantifiers match up nicely, and the whole idea of using an
algorithm to prove a circuit complexity lower bound looks less counter-intuitive.

Indeed, we can say a formal statement as described in the above box. Here is one version:

I Theorem 2.1 ([26, 28]). Suppose for all polynomials p, satisfiability of circuits with n

inputs and p(n) size is decidable in O(2n/n10) time. Then NEXP 6⊂ P/poly. That is, there are
functions computable in nondeterministic exponential time that do not have polynomial-size
circuits.

(The polynomial n10 is almost certainly not optimal, but it suffices.) Notice the required
improvement over exhaustive search: it would normally take 2n · p(n) time; in order to solve
satisfiability fast enough, we need to “divide by an arbitrary polynomial” in the running
time. This is a much weaker requirement than bounds like 1.9n time, which had been the
primary focus of researchers.

How Does The Proof Work? In this article, we can only briefly describe the proof of
Theorem 2.1; for more technical details, see the surveys [24, 21, 16]. The informal statement
in the box above says that a Circuit SAT algorithm A implies a hard function f . One might
think that the algorithm A solving Circuit SAT may appear somewhere in the definition
of f . That would be a very interesting property, but the proofs that we know do not do this
explicitly. Instead, the proofs of Theorem 2.1 proceed by contradiction. We assume:
1. there is a Circuit SAT algorithm A running in 2n/n10 time, and
2. every function f ∈ NEXP has polynomial-size circuits. (It is equivalent to assume that

a single function, complete for NEXP under polynomial-time reductions, is computable
with polynomial-size circuits.)

These two assumptions are inherently algorithmic in nature: item (1) asserts that Circuit
SAT can be solved faster, and item (2) asserts that a huge class of decidable problems can
be computed with polynomial-size circuit families. Then we utilize these two assumptions to
construct another algorithm which is provably impossible. Namely, these assumptions imply
every function computable in nondeterministic time 2n is computable in nondeterministic
time 2n/n2, which contradicts the time hierarchy theorem for nondeterminism [29]. At a
very high level, the 2n/n2 time algorithm works by:

nondeterministically guessing small circuits for time 2n computations, asserted to exist
by item (2), and
deterministically verifying the correctness of those circuits, using the Circuit SAT
algorithm asserted by item (1).

The verification step is a subtle process. If a circuit happens to agree with our nondeter-
ministic 2n time function, it is not at all clear how we might use a circuit satisfiability call to
check that circuit. Roughly speaking, we show that one can guess a small circuit C that is
intended to succinctly encode an accepting computation history of the nondeterministic 2n

CSL 2015



20 Thinking Algorithmically About Impossibility

time computation, and set up a larger circuit D (with C embedded in it) which is unsatisfiable
if and only if C does encode an accepting history. This circuit D is carefully constructed so
that its number of inputs is essentially n, logarithmic in the running time of the computation
it is verifying. Then, a faster circuit satisfiability algorithm can check a 2n time computation
in less than 2n steps.

While it yields the desired outcome, this style of proof is indirect and feels lacking.
It is an interesting open problem to find simpler and/or more informative proofs of this
algorithms-to-lower-bounds connection.

Applying the Connections. The framework behind Theorem 2.1 has been generalized so
that circuit satisfiability algorithms for various circuit classes C imply lower bounds for
computing functions in NEXP with circuits from C. So far, through the design of new circuit
satisfiability algorithms, this framework has led to three unconditional circuit lower bound
results:

NEXP does not have so-called ACC0 circuits of polynomial size [28],
NE/1 ∩ coNE/1 (a potentially weaker class) does not have ACC0 circuits of polynomial
size [25], and
NEXP does not have ACC0 circuits of polynomial size, augmented with a layer of neurons
(linear threshold gates) that connect directly to the inputs [27].

The first and third results were obtained by designing explicit circuit satisfiability algo-
rithms for relevant circuit classes; the second was obtained by sharpening the complexity-
theoretic arguments. It is possible that we might prove NEXP 6⊂ P/poly without providing
a new Circuit SAT algorithm: it might be that the assumption NEXP ⊂ P/poly could
imply the existence of algorithms sufficient for proving NEXP 6⊂ P/poly. (It is known that
NEXP ⊂ P/poly implies faster algorithms for solving some NP problems, but Circuit SAT
is not known to be among them.)

3 Circuit Complexity and Testing Circuits With Data

We now turn to a problem related to program verification, and describe an emerging connection
to circuit complexity. In practice, programs are often verified by the quick-and-dirty method
of trial and error: the program is executed on a suite of carefully chosen inputs, and one
checks that the outputs of the program are what is expected. For a given function to compute,
it is natural to ask when trial and error can be efficient: when does it suffice to use a small
number of input-output examples, and determine correctness of the program?

If we had no constraints on what the program could be, then there would not be much to
say about this problem: without any further information, the program is a black box and
one would simply have to try all possible inputs to know for sure. But in testing, we’re never
given a program as a black box; we know something about it, such as its size. Could side
information such as program size be useful for the testing problem?

Recently with Brynmor Chapman [4], we have proposed the general problem of data
design. Suppose we are given a function f : {0, 1}? → {0, 1}, and a class C of size-s circuits.
The task of data design is to select a small suite of input-output test data that can be used
to determine whether a given n-input circuit C from C computes f restricted to n-bit inputs.
More formally, the data complexity of f (as a function of the circuit size s) is defined to be
the minimum number of input-output examples such that, for any n-input circuit C of size
s, one can determine with certainty whether C computes f (on all n-bit inputs), by calling
C on the examples. Every function f that depends on all of its inputs has data complexity



R. R. Williams 21

O(2s): the test suite may contain all possible input-output pairs for f on all input lengths
n = 1, . . . , s. When can test suites be made small?

While the data design problem certainly has practical motivation, we are interested in
the problem due to its intriguing inversion of the roles of program and input. The circuit
computing f is the input to the data design problem; the program for testing the circuit is
the collection of input-output examples. We have uncovered a surprising correspondence
between upper bounds on data design and lower bounds on circuit complexity. Generally
speaking, designing good suites of data for testing whether C-circuits compute f is equivalent
to proving C-circuit lower bounds on computing f . For example:

I Corollary 3.1 ([4]). A function f is in P/poly if and only if for some ε > 0, the data
complexity of testing circuits for f is greater than 2sε for almost every s.

So if we wanted to prove that (for example) that NEXP 6⊂ P/poly, it would be necessary
and sufficient to design test suites of subexponential data complexity for a function in NEXP.

Intuitively, such a correspondence is possible because the circuit design problem and
the data design problems work with similar types of unknowns. The circuit designed must
compute f on all n-bit inputs, and the data designed must test the functionality of f for all
s-size circuits. There are two parts to the equivalence:

If f has an n-input circuit of size at most s, then standard arguments show that our test
suite essentially needs all 2n input-output pairs for f on n bits, to distinguish “good”
circuits computing f from slightly different circuits which give the wrong answer on one
input.
If f does not have an n-input circuit of size s, then arguments from the theory of zero-sum
games show that the test suite only needs poly(s) examples on n-inputs in order to test
all circuits of size at most s/n.

Putting the two items together, one can show that upper bounds on data design for f

are equivalent to lower bounds on the circuit complexity of f . Therefore, reliable exhaustive
circuit testing and proving circuit lower bounds are deeply related tasks, in ways that are not
fully understood yet. Not only would small test suites detect errors efficiently, they would
also be useful for formal verification. Assuming the circuit being tested is in the appropriate
class C, passing a test suite would be a proof of correctness on all inputs. In turn, proving
that a small test suite works is equivalent to proving a limitation on C. This “constructive”
algorithmic viewpoint on lower bounds is still in its early stages of development, and it
remains to be seen how effectively one can prove new (or old!) lower bounds with it.

4 Conclusion

I believe that knowledge from all areas of theoretical computer science could contribute
significantly to the general projects outlined here. Computer scientists will have to develop
new methods of argument in order to make a serious dent in the major lower bound problems,
and it is worth trying every sort of reasonable argument we can think of (at least once).
Perhaps the logic side of computer science will provide some of these new proof methods.

References
1 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.

ACM TOCT, 1, 2009.
2 Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cam-

bridge University Press, 2009.

CSL 2015



22 Thinking Algorithmically About Impossibility

3 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP question.
SIAM J. Comput., 4(4):431–442, 1975.

4 Brynmor Chapman and Ryan Williams. The circuit-input game, natural proofs, and testing
circuits with data. In Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages 263–270, 2015.

5 Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David Zuck-
erman. Mining circuit lower bound proofs for meta-algorithms. Computational Complexity,
24(2):333–392, 2015. See CCC’14.

6 Evgeny Dantsin. Two propositional proof systems based on the splitting method. Zapiski
Nauchnykh Seminarov LOMI, 105:24–44, 1981.

7 Evgeny Dantsin and Edward A. Hirsch. Worst-case upper bounds. In Handbook of Satisfi-
ability, pages 403–424. 2009.

8 Juris Hartmanis and Richard Stearns. On the computational complexity of algorithms.
Trans. Amer. Math. Soc. (AMS), 117:285–306, 1965.

9 Edward A. Hirsch. New worst-case upper bounds for SAT. J. Autom. Reasoning, 24(4):397–
420, 2000.

10 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694,
2002.

11 Donald E. Knuth. Personal communication, 2015.
12 Oliver Kullmann and Horst Luckhardt. Deciding propositional tautologies: Algorithms

and their complexity. Technical report, Fachbereich Mathematik, Johann Wolfgang Goethe
Universität, 1997.

13 Burkhard Monien and Ewald Speckenmeyer. 3-satisfiability is testable in O(1.62r)
steps. Technical Report Bericht Nr. 3/1979, Reihe Theoretische Informatik, Universität-
Gesamthochschule-Paderborn, 1979.

14 Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in less than 2n steps.
Discrete Applied Mathematics, 10(3):287–295, 1985.

15 Ketan Mulmuley. The GCT program toward the P vs. NP problem. Commun. ACM,
55(6):98–107, 2012.

16 Igor Oliveira. Algorithms versus circuit lower bounds. Technical Report TR13-117, ECCC,
September 2013.

17 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. JACM, 52(3):337–364, 2005. (See also FOCS’98).

18 Pavel Pudlák. Satisfiability – algorithms and logic. In Mathematical Foundations of Com-
puter Science 1998, 23rd International Symposium, (MFCS’98), pages 129–141, 1998.

19 Alexander Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997.

20 H. G. Rice. Classes of recursively enumerable sets and their decision problems. Trans.
Amer. Math. Soc.

21 Rahul Santhanam. Ironic complicity: Satisfiability algorithms and circuit lower bounds.
Bulletin of the EATCS, 106:31–52, 2012.

22 Uwe Schöning. A probabilistic algorithm for k-SAT based on limited local search and
restart. Algorithmica, 32(4):615–623, 2002.

23 Magnus Wahlström. Algorithms, Measures, and Upper Bounds for Satisfiability and Related
Problems. PhD thesis, Linköping University, 2007.

24 Ryan Williams. Guest column: a casual tour around a circuit complexity bound. ACM
SIGACT News, 42(3):54–76, 2011.

25 Ryan Williams. Natural proofs versus derandomization. In STOC, pages 21–30, 2013.



R. R. Williams 23

26 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
J. Comput., 42(3):1218–1244, 2013. See also STOC’10.

27 Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
In STOC, pages 194–202, 2014.

28 Ryan Williams. Nonuniform ACC circuit lower bounds. JACM, 61(1):2, 2014. See also
CCC’11.

29 Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science, 26(3):327–
333, 1983.

CSL 2015


	Introduction
	Barriers
	Intuition and Counter-Intuition

	Circuit SAT versus Circuit Complexity
	Enter Circuit SAT

	Circuit Complexity and Testing Circuits With Data
	Conclusion

