A Model Checking Procedure for Interval
Temporal Logics based on Track Representatives

Alberto Molinari', Angelo Montanari', and Adriano Peron?

1 Department of Mathematics and Computer Science
University of Udine, Italy
molinari.alberto@gmail.com; angelo.montanari@uniud.it
2 Department of Electrical Engineering and Information Technology
University of Napoli Federico 11, Italy
adrperon@unina.it

—— Abstract

Model checking is commonly recognized as one of the most effective tools for system verification.
While it has been systematically investigated in the context of classical, point-based temporal
logics, it is still largely unexplored in the interval logic setting. Recently, a non-elementary model
checking algorithm for Halpern and Shoham’s modal logic of time intervals HS, interpreted over
finite Kripke structures, has been proposed, together with a proof of the EXPSPACE-hardness
of the problem. In this paper, we devise an EXPSPACE model checking procedure for two
meaningful HS fragments. It exploits a suitable contraction technique that allows one to replace
sufficiently long tracks of a Kripke structure by equivalent shorter ones.

1998 ACM Subject Classification D.2.4 Software/Program Verification
Keywords and phrases Interval Temporal Logic, Model Checking, Complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2015.193

1 Introduction

Given a formal specification of the desired properties of a system and a model of its behaviour,
model checking algorithms allow one to verify the former against the latter [6]. While the
model checking problem has been systematically investigated in the context of classical,
point-based temporal logics, it is still largely unexplored in the interval logic setting.

Interval temporal logic (ITL) has been proposed as a more expressive formalism for
temporal representation and reasoning than standard point-based one [9, 24]. On the positive
side, expressiveness of ITLs makes them well suited for a number of applications in a variety
of fields, including formal verification, computational linguistics, and planning, e.g., [20, 22].
On the negative side, in most cases their satisfiability problem turns out to be undecidable,
and, in the few cases of decidable ITLs, the standard proof machinery, like Rabin’s theorem,
is usually not applicable.

A prominent position among ITLs is occupied by Halpern and Shoham’s modal logic of
time intervals (HS, for short) [9]. HS features one modality for each of the 13 possible ordering
relations between pairs of intervals (the so-called Allen’s relations [1]), apart from the equality
relation. In [9], it has been shown that the satisfiability problem for HS interpreted over all
relevant (classes of) linear orders is highly undecidable. Since then, a lot of work has been
done on the satisfiability problem for HS fragments, which has shown that undecidability
prevails over them (see [2] for an up-to-date account of undecidable fragments). However,
? Alberto Molinari, Angelo Montana.uri, and Adriano Peron;

5v icensed under Creative Commons License CC-BY
24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer; pp. 193-210

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2015.193
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

194

A Model Checking Procedure for ITL based on Track Representatives

meaningful exceptions exist, including the interval logic of temporal neighbourhood and the
interval logic of sub-intervals [3, 4, 5, 19].

In this paper, we focus our attention on the model checking problem for ITLs. Unlike the
case of satisfiability checking, little work has been done on model checking [13, 14, 16, 18] (it
is worth pointing out that, in contrast to the case of point-based, linear temporal logics, there
is not an easy reduction from the model checking problem to the validity/satisfiability one).
In the classical formulation of the model checking problem [6], systems are usually modelled
as (finite) labelled state-transition graphs (Kripke structures), and point-based temporal
logics are used to analyse, for each path/track in a Kripke structure, how proposition letters
labelling the states change from one state to the next one along the path. To check interval
properties of computations, one needs to collect information about states into computation
stretches. This amounts to interpreting each finite path of a Kripke structure as an interval,
and to suitably defining its labelling on the basis of the labelling of the states that compose
it.

In [13, 14], Lomuscio and Michaliszyn address the model checking problem for epistemic
extensions of some HS fragments. In [13], they focus their attention on the fragment
HS[B, E, D] of Allen’s relations started-by, finished-by, and contains extended with epistemic
modalities. They consider a restricted form of model checking which verifies the given
specification against a single (finite) initial computation interval (not all possible initial
computation intervals), and prove that it is a PSPACE-complete problem. Moreover, they
show that the problem for the purely temporal fragment of the logic is in PTIME. In [14],
they show that the picture drastically changes with other HS fragments that allow one to
access infinitely many tracks/intervals. In particular, they prove that the model checking
problem for the fragment HS[A, B, L] of Allen’s relations meets, starts, and before, extended
with epistemic modalities, is decidable with a non-elementary upper bound.

In [16, 18], Montanari et al. outline a general characterization of the model checking
problem for full HS, interpreted over finite Kripke structures (under the homogeneity assump-
tion [23]). Their semantic assumptions differ from those made in [13], making it difficult
to compare the two research contributions. In both cases, formulas of ITL are evaluated
over finite paths/tracks obtained from the unravelling of a finite Kripke structure. However,
in [18] a proposition letter holds over an interval (track) if and only if it holds over all
its states (homogeneity principle), while in [13] truth of proposition letters is defined over
pairs of states (the endpoints of tracks/intervals). In [18], the authors introduce the basic
elements of the picture, namely, the interpretation of HS formulas over (abstract) interval
models, the mapping of finite Kripke structures into (abstract) interval models, the notion
of track descriptor, and a small model theorem proving (with a non-elementary procedure)
the decidability of the model checking problem for full HS against finite Kripke structures.
However, technical details of the proofs are not fully worked out and no lower bound to the
complexity of the problem, that is, no hardness result, is given. In addition, they outline a
PSPACE model checking procedure for two HS fragments, but it turns out to be flawed. In
[16], Molinari et al. work out the model checking problem for full HS in all its details, and
prove that it is EXPSPACE-hard.

In this paper, we prove that the model checking problem for two large HS fragments,
namely, the fragment HS[A, A, B, B, E] of Allen’s relations meets, met-by, started-by, starts
and finishes, and the fragment HS[A, A, E, B, E] of Allen’s relations meets, met-by, finished-
by, starts and finishes, is in EXPSPACE. Moreover, we prove that it is NEXP-hard, provided
that a succinct encoding of formulas is used (otherwise, we can only give an NP-hardness
result).

A. Molinari, A. Montanari, and A. Peron

Table 1 Allen’s interval relations and corresponding HS modalities.

Allen’s relation HS Definition w.r.t. interval structures Example

re——oY

MEETS (A) [z ylRalv,2] <= y=v ve——ez
BEFORE (LY [z, y]Re]v, 2] <= y<wv ve—ez
STARTED-BY (BY [z,y]RBlv,2] <= z=vAz<y ve——ez
FINISHED-BY (E) [zr,y]Relv, 2] <= y=zAz<v ve——ez
CONTAINS (D) [z,y]Rplv,2] <= z<vAz<y ve—ez
OVERLAPS (O) [z,y|Rov,2] <= z<v<y<z ve——ez

The paper is organized as follows. In Section 2 we provide some background knowledge.

In Section 3 we introduce the key notion of descriptor sequence for a track of a finite Kripke
structure, and we exploit it to define an indistinguishability (equivalence) relation over
tracks. In Section 4 we prove a small model theorem, showing that we can select a track
representative of bounded length from each equivalence class, we outline a model checking
procedure, and we provide a lower bound to the complexity of the problem. Conclusions
give a short assessment of the work done and describe future research directions. Due to
space limitations, all proofs are omitted; they can be found in [17].

2 Background Knowledge

2.1 The interval temporal logic HS

An interval algebra to reason about intervals and their relative order was first proposed by
Allen [1]; then, a systematic logical study of ITLs was done by Halpern and Shoham, who
introduced the logic HS featuring one modality for each Allen’s interval relation [9], except
for equality. Table 1 depicts 6 of the 13 Allen’s relations together with the corresponding HS
(existential) modalities. The other 7 are equality and the 6 inverse relations (given a binary
relation R, the inverse relation ® is such that b®a if and only if a®b).

The language of HS features a set of proposition letters 4P, the Boolean connectives —
and A, and a temporal modality for each of the (non trivial) Allen’s relations, namely, (A),

(L), (B), (E), (D), (O), (A), (L), (B), (E), (D) and (O). HS formulas are defined as follows:
pu=p | | YAV (X)) | (X)$, withpe ap, X € {AL,B,E,D,O0}.

We will make use of the standard abbreviations of propositional logic. Moreover, for
all X, dual universal modalities [X]i) and [X]i are respectively defined as —(X)—¢ and
~({X)—.

We will assume the strict semantics of HS: only intervals made of at least two points
are allowed.? All HS modalities can be expressed in terms of (A), (B), and (E), and the
transposed modalities (A), (B), and (E) as follows: (L)¢ = (A) (A) v, (L) = (A) (A) 9,
(D)t = (B) (E) %, (0) & = (E) (B) v, (D) v = (B) (E) v, and (O) % = (B) (E) .

Given any subset of Allen’s relations { X1, -+, X, }, we denote by HS[X1,- -, X,] the
fragment of HS that features modalities X7, ---, X, only.

1 HS modalities are mutually exclusive and jointly ezhaustive only in the strict semantics, i.e., exactly
one of them holds between any two intervals. However, the strict semantics can easily be “relaxed” to
include point intervals, and all results we are going to prove hold for the non-strict semantics as well.

195

CSL 2015

196

A Model Checking Procedure for ITL based on Track Representatives

Figure 1 The Kripke structure Xequiv-

HS can be viewed as a multi-modal logic with the 6 primitive modalities (A), (B), (E),
(A), (B), and (E). Accordingly, HS semantics can be defined over a multi-modal Kripke
structure, called here an abstract interval model, in which (strict) intervals are treated as

atomic objects and Allen’s relations as simple binary relations between pairs of them.

» Definition 1 ([16]). An abstract interval model is a tuple 4 = (42,1, Ay, By, E1, o), where
AP is a finite set of proposition letters, I is a possibly infinite set of atomic objects (worlds),
Aj, By, Ep are three binary relations over I and o : T — 2 is a (total) labeling function
which assigns a set of proposition letters to each world.

Intuitively, in the interval setting, I is a set of intervals, Ay, By, and Ej are interpreted as
Allen’s interval relations A (meets), B (started-by), and E (finished-by), respectively, and o
assigns to each interval the set of proposition letters that hold over it.

Given an abstract interval model 4 = (42,1, Ay, By, Ep, 0) and an interval I € T, the truth
of an HS formula over I is defined by structural induction on the formula as follows:

(i) 4,1 Epiff p € o(I), for any proposition letter p € 4;
(ii) 4,1 = - iff it is not true that 4,1 = ;
(iii) 2, I EyYA@iff 24,1 =y and 4,1 = ¢;
(iv) 4,1 (X)¢, for X € {A, B, E}, iff there exists J € I such that I X;J and 4, J [;

(v) 4,1 (X)), for X € {A, B, E}, iff there exists J € I such that J X; I and 4,J = 1.

2.2 Kiripke structures and abstract interval models

In this section, we define a mapping from Kripke structures to abstract interval models that
makes it possible to specify properties of systems by means of HS formulas.

» Definition 2. A finite Kripke structure X is a tuple (AP, W, §, 1, wo), where 4P is a set of
proposition letters, W is a finite set of states, § C W x W is a left-total relation between
pairs of states, p: W — 27 is a total labelling function, and wy € W is the initial state.

For all w € W, p(w) is the set of proposition letters which hold at that state, while § is the
transition relation which constrains the evolution of the system over time.

Figure 1 depicts a Kripke structure, Kgquiv, With two states (the initial state is identified
by a double circle). Formally, Kgquiv is defined by the following quintuple:

({pu q}v {7)07”1}7 {(U07U0)7 (U07v1)7 (v1700)7 (U1,’U1)},/},,U0),

where p(vo) = {p} and p(v1) = {q}-

» Definition 3. A track p over a finite Kripke structure X = (4P, W, 0, u, wo) is a finite
sequence of states vg - - - v, with n > 1, such that for all < € {0,--- ,n — 1}, (v;,v;41) € 9.

Let Trkg be the (infinite) set of all tracks over a finite Kripke structure X. For any
track p = vg -+ v, € Trky, we define: |p| =n + 1, p(i) = v, states(p) = {vo, -+ ,v,} CW,
intstates(p) = {v1,--- ,vp—1} C W, fst(p) = v and Ist(p) = v,,; moreover p(i,j) = v; - - v;

A. Molinari, A. Montanari, and A. Peron

is a subtrack of p for 0 < i < j < |p| — 1. Finally, Pref(p) = {p(0,4) | 1 <14 < |p| — 2} is the
set of all proper prefixes of p, and Suff(p) = {p(4, |p| — 1) | 1 < i < |p| — 2} is the set of all
proper suffixes of p. Notice that the length of tracks, prefixes, and suffixes is greater than 1,
as they will be mapped into strict intervals. If fst(p) = wy, p is said to be an initial track. In
the following, we will denote by p- p’ the concatenation of the tracks p and p’, and by p™ the
track obtained by concatenating n copies of p.

An abstract interval model (over Trky) can be naturally associated with a finite Kripke
structure by interpreting every track as an interval bounded by its first and last states.

» Definition 4 ([16]). The abstract interval model induced by a finite Kripke structure
K = (AP, W,0, u,wg) is the abstract interval model 44 = (AP,1, Ay, By, Er,0), where
I = Trky, A1 = {(p,p) € 1 x 1| Ist(p) = f5t(p)}, Br = {(p,p) € 1x 1| p/ € Pref(p)}, Fy =

{(p,p") € IxI|p € Suff(p)}, and o : T+ 2% with 0(p) =, catates(p) H(w) for all p € L.

In Definition 4, relations Ay, By, and Ey are interpreted as Allen’s interval relations A, B, and
E, respectively. Moreover, according to the definition of o, a proposition letter p € 42 holds
over p =g - - vy, if and only if it holds over all the states vy, ..., v, of p. This conforms to
the homogeneity principle, according to which a proposition letter holds over an interval if
and only if it holds over all of its subintervals.

Satisfiability of an HS formula over a finite Kripke structure can be given in terms of
induced abstract interval models.

» Definition 5 (Satisfiability of HS formulas over Kripke structures). Let X be a finite Kripke
structure, p be a track in Trkg, and ¢ be an HS formula. We say that the pair (X, p) satisfies
1, denoted by X, p | v, if and only if it holds that A4, p = .

The model checking problem for HS over finite Kripke structures is the problem of deciding
whether X = .

» Definition 6. Let X be a finite Kripke structure and ¥ be an HS formula. We say that
K models 1, denoted by K = 1, if and only if for all initial tracks p € Trkg., it holds that

K, p .

Some meaningful properties of tracks that are expressible in HS can be found in [16]. For
instance, the formula [B] L can be used to select all and only the tracks of length 2. Indeed,
given any p with |p| = 2, independently of %, it holds that %, p = [B]L, because p has no
(strict) prefixes. On the other hand, it holds that %, p = (B) T if (and only if) |p| > 2. Let
¢(k) be a shorthand for [BJ*=1 L A (BY* 2 T: it holds that X, p = £(k) if and only if |p| = k.

2.3 The notion of Bj-descriptor

For any finite Kripke structure %, one can find a corresponding induced abstract interval
model Ay, featuring one interval for each track of K. Since X has loops (each state must
have at least one successor), the number of its tracks, and thus the number of intervals of
Ay, is infinite. In [16], given a finite Kripke structure and an HS formula ¢, the authors
show how to obtain a finite representation for each (possibly infinite) set of tracks which are
equivalent with respect to satisfiability of HS formulas of the same structural complexity as
. By making use of such a representation, they prove that the model checking problem for
(full) HS is decidable (with a non-elementary upper bound) and it is EXPSPACE-hard if a
suitable encoding of HS formulas is exploited [16]. In this paper, we restrict our attention to
HS[A, A, B, B, E] (and the symmetric HS[A, A, E, B, E]) and we provide a lower complexity
model checking algorithm for it. We start with the definition of some basic notions.

197

CSL 2015

198

A Model Checking Procedure for ITL based on Track Representatives

» Definition 7. Let ¢ be an HS[A, A, B, B, E| formula. The B-nesting depth of 1, denoted
by Nestg (), is defined by induction on the complexity of the formula as follows:
(i) Nestg(p) = 0, for any proposition letter p € 4P;
(ii) Nestp(—1) = Nestp(¢));
(iii) Nestp(® A ¢) = max{Nestp (1)), Nestp(4)};
(iv) Nestg((B)1) =1+ Nestp());
(v) Nestp({X)) = Nestp (1), for X € {A, A, B, E}.

A~~~

Making use of Definition 7, we can introduce a relation of k-equivalence over tracks.

» Definition 8. Let X be a finite Kripke structure and p and p’ be two tracks in Trky. We
say that p and p’ are k-equivalent if and only if, for every HS|[A, A, B, B, E| formula v with
Nestg () = k, K, p |E ¢ if and only if X, p’ | ¢.

It can be easily proved that k-equivalence propagates downwards.

» Proposition 9. Let X be a finite Kripke structure and p and p' be two tracks in Trky. If
p and p' are k-equivalent, then they are h-equivalent, for all 0 < h < k.

We are now ready to define the key notion of descriptor for a track of a Kripke structure.

» Definition 10 ([16]). Let X = (AP, W, 6, u,vg) be a finite Kripke structure, p € Trky, and
k € N. The By-descriptor for p is a labelled tree D = (V, E, \) of depth k, where V is a finite
set of vertices, E C V x V is a set of edges, and X : V = W x 2W x W is a node labelling
function, inductively defined as follows:
for k = 0, the Bg-descriptor for p is the tree © = (root(D), 0, A), where A(root(D)) =
(fst(p), intstates(p), 1st(p));
for k > 0, the By-descriptor for p is the tree D = (V,E,\), where A(root(D)) =
(fst(p), intstates(p), 1st(p)), which satisfies the following conditions:
1. for each prefix p’ of p, there exists v € V such that (root(D),v) € E and the subtree
rooted in v is the Bj_1-descriptor for p';
2. for each vertex v € V such that (root(D),v) € E, there exists a prefix p’ of p such that
the subtree rooted in v is the Bj,_1-descriptor for p';
3. for all pairs of edges (root(D),v’), (root(D),v"”) € E, if the subtree rooted in v’ is
isomorphic to the subtree rooted in v”, then v’ = v” (here and in the following, we
write subtree for maximal subtree).

Condition 3 of Definition 10 simply states that no two subtrees whose roots are siblings
can be isomorphic. A By-descriptor D for a track consists of its root only, which is denoted
by root(D). A label of a node will be referred to as a descriptor element.

Basically, for any k& > 0, the label of the root of the By-descriptor D for p is the triple
(fst(p), intstates(p), Ist(p)). Each prefix p’ of p is associated with some subtree whose root is
labelled with (fst(p’), intstates(p’),lst(p")) and is a child of the root of . Such a construction
is then iteratively applied to the children of the root until either depth k is reached or a
track of length 2 is being considered on a node.

Hereafter, two descriptors will be considered equal up to isomorphism.

As an example, in Figure 2 we show the Bs-descriptor for the track p = vgu1vgvgvovv1
of Kequiw (Figure 1). It is worth noticing that there exist two distinct prefixes of p, that
is, the tracks p’ = vouivguouovy and p” = vouivgugug, which have the same Bi-descriptor.
Since, according to Definition 10, no tree can occur more than once as a subtree of the same
node (in this example, the root), in the By-descriptor for p prefixes p’ and p” are represented

A. Molinari, A. Montanari, and A. Peron

(U07 {UOvvl}’Ul)

T

(v, {vo, v1}, v0) (v, {vo, v1},v0) (vo, {v1},v0) (vo,,v1)

e N

(vo, {vo, v1},v0) (vo, {v1},v0) (vo,0,v1) (vo,{vi},v0) (vo,0,v1) (vo,0,v1)

Figure 2 The Bs-descriptor for the track vovivovovovovr of Keguiv-

by the same tree (the first subtree of the root on the left). In general, it holds that the root
of a descriptor for a track with h proper prefixes does not necessarily have h children.

In general, B-descriptors do not convey enough information to determine which track
they were built from; however, they can be exploited to determine which HS[A, A, B, B, E]
formulas are satisfied by the track from which they were built.

In [16], the authors prove that, for a finite Kripke structure X, there is a finite number
(non-elementary w.r.t. |W| and k) of possible Bj-descriptors; moreover the number of nodes
of a descriptor has a non-elementary upper bound as well. Since the number of tracks of
K is infinite, and for any k € N the set of By-descriptors for its tracks is finite, at least
one Bj-descriptor must be the By-descriptor of infinitely many tracks; thus Bjy-descriptors
naturally induce an equivalence relation of finite index over the set of tracks of a finite Kripke
structure (k-descriptor equivalence relation).

» Definition 11. Let X be a finite Kripke structure, p, p’ € Trky, and k € N. We say that
p and p’ are k-descriptor equivalent (p ~j, p') iff the By-descriptors for p and p’ coincide.

The following lemma holds.

» Lemma 12. Let k € N, X = (4P, W,0,u,vo) be a finite Kripke structure and p1, pj,
p2, ph be tracks in Trky such that (Ist(py), fst(p})) € 0, (Ist(p2), fst(ph)) € &, p1 ~k p2 and
Py ~k Py Then py - p ~ p2 - ph.

The next proposition immediately follows from Lemma 12.

» Proposition 13 (Left and right extensions). Let X = (4P, W, J, i, vp) be a finite Kripke
structure, p, p' be two tracks in Trky such that p ~y p’, and p € Trky. If (Ist(p), fst(p)) € 4,
then p-p~y p' - p, and if (Ist(p),fst(p)) € 8, thenp-p~r p-p'.

The next theorem proves that, for any pair of tracks p, p’ € Trky., if p ~ p’, then p and
p' are k-equivalent (see Definition 8). Since the set of By-descriptors for the tracks of a finite

Kripke structure % is finite (or, in other words, the equivalence relation ~ has a finite index),
there always exists a finite number of By-descriptors that “satisfy” an HS[A, A, B, B, E]

formula ¢ with Nestg(¢) = k (this can be formally proved by a quotient construction [16]).

» Theorem 14 ([16]). Let X be a finite Kripke structure, p and p’ be two tracks in Trky,
Ay be the abstract interval model induced by K, and v be a formula of HS[A, A, B, B, E]

with Nestg(¢) = k. If p ~p p/, then Ag,p E ¢ <= Ay, p' = .

3 Clusters and descriptor element indistinguishability

A By-descriptor provides a finite encoding for a possibly infinite set of tracks (the tracks
associated with that descriptor). Unfortunately, the representation of By-descriptors as trees

199

CSL 2015

200

A Model Checking Procedure for ITL based on Track Representatives

Figure 3 An example of finite Kripke structure.

labelled over descriptor elements is highly redundant. For example, given any pair of subtrees
rooted in some children of the root of a descriptor, it is always the case that one of them
is a subtree of the other: the two subtrees are associated with two (different) prefixes of a
track and one of them is necessarily a prefix of the other. In practice, the size of the tree
representation of By-descriptors prevents their direct use in model checking algorithms, and
makes it difficult to determine the intrinsic complexity of Bj-descriptors.

In this section, we devise a more compact representation of By-descriptors. Each class
of the k-descriptor equivalence relation is a set of k-equivalent tracks. For every such class,
we select a track representative whose length is (exponentially) bounded in both the size
of W (the set of states of the Kripke structure) and k. In order to set such a bound, we
consider suitable ordered sequences (possibly with repetitions) of descriptor elements of a
By.-descriptor. Let us define the descriptor sequence for a track as the ordered sequence of
descriptor elements associated with its prefixes. In a descriptor sequence, descriptor elements
can obviously be repeated: we devise a criterion to avoid such repetitions whenever they
cannot be distinguished by any HS[A, A, B, B, E] formula of B-nesting depth up to .

» Definition 15. Let p = vgv; ... v, be a track of a finite Kripke structure. The descriptor
sequence pgs for p is dy...dn—1, where d; = pgs(i) = (vo,intstates(vg ... viy1),vi41), for
i €{0,...,n —1}. We denote the set of descriptor elements occurring in pgs by DEIm(pas).

For example, let us consider the finite Kripke structure of Figure 3 and the track
P = VgUgVoV1 V21 V2U3V3V0s. The descriptor sequence for p is:
pds = (U07 (Z)a UO) (’U()7 {'UO}7 UO) (’U()7 {'U()}, 'Ul)('l}07 {’UO, Ul}v ’U2)

| (vo, T, 01) (40, T, va) |(v0, T, v3)| (v, A, v) (v, A, v) (v9, A, v) |, (¥)

where T' = {vg, v1,v2}, A = {vg,v1,v2,v3}. DElm(pgs) is the set {(vo, 0, vo), (vo, {vo},vo),
(Uo, {Uo}, Ul), (’UQ, {'UO, ’Ul}, ’Ug), (Uo, F, ’Ul), (Uo, F7 ’UQ), (Uo, F7 ’Ug), (Uo, A, ’1}2)7 (’Uo, A, Ug)}.

To express the relationships between descriptor elements occurring in a descriptor sequence,
we introduce a binary relation, R¢. Intuitively, given two descriptor elements d’ and d”’ of a
descriptor sequence, the relation d’ R; d” holds if d’ and d” are the descriptor elements of
two tracks p’ and p”, respectively, and p’ is a prefix of p”.

» Definition 16. Let pgs be the descriptor sequence for a track p and let d’ = (v;p, 57, v}m)
and d” = (v, S”, v}'m) be two descriptor elements in pgs. Then, d’ Ry d” iff S’U{U}m} cs”.

The relation Ry is transitive: for all descriptor elements d’,d”, d"”’, if d’ Ry d” and d” R d"”,
then S" U {v};,} C 5" and S” U {v,,} C S"; it follows that S U {v},;,} C S, and thus
d' Ry d"”". Ry is neither an equivalence relation nor a quasiorder, since Ry is neither reflexive
(e.g., (vo, {vo},v1) R (vo, {vo},v1)), nor symmetric (e.g., (vo, {vo},v1) Re(vo, {vo,v1},v1) and
(vo, {vo,v1},v1) Bi(vo, {vo},v1)), nor antisymmetric (e.g., (vo, {v1,va},v1) Re(vo, {v1,v2},v2)
and (vg, {v1,v2},v2) Ry (vo, {v1,v2},v1), but the two elements are distinct).

It can be easily shown that R pairs descriptor elements of increasing prefixes of a track.

A. Molinari, A. Montanari, and A. Peron

» Proposition 17. Let pgs be the descriptor sequence for the track p = vouvy - --v,. Then,
pas(8) Re pas(j) for all0 < i< j<mn.

We now introduce a distinction between two types of descriptor elements.

» Definition 18. A descriptor element (vip, S, vfin) is a Type-1 descriptor element if v,y ¢ S,
while it is a Type-2 descriptor element if vy;, € S.

It can be easily checked that a descriptor element d = (viy, S, V) is Type-1 if and only
if Ry is not reflexive in d: (i) if d &, d, then S U {vsi,} € S, and thus vy, ¢ S, and (ii) if
Vgin ¢ S, then d R, d. Tt follows that a Type-1 descriptor element cannot occur more than
once in a descriptor sequence. On the other hand, Type-2 descriptor elements may occur
multiple times in a descriptor sequence, and if a descriptor element occurs more than once,
then it is necessarily of Type-2.

» Proposition 19. If both d' Ry d” and d" Ry d’ for d' = (vip, S, v%,,) and d" = (vin, S”,0%,,)
then vy, € S', v, € 8" and §" = S"; thus both d' and d" are Type-2 descriptor elements.

We are now ready to give a general characterization of the descriptor sequence pgys for
a track p: pgs is composed of some (maximal) subsequences, consisting of occurrences of
Type-2 descriptor elements on which Ry is symmetric, separated by occurrences of Type-1
descriptor elements. This can be formalized by means of the notion of cluster.

» Definition 20. A cluster C of (Type-2) descriptor elements is a maximal set of descriptor
elements {di,...,ds} € DEIm(pgs) such that d; Ry d; and d; Ry d; for all 4,5 € {1,...,s}.

Thanks to maximality, clusters are pairwise disjoint: if ¢ and ¢’ are distinct clusters, d € ¢
and d’' € ', either dR¢d’ and d’ R, d, or d’ Ry d and d R d'.

It can be easily checked that the descriptor elements of a cluster ¢ are contiguous in pgs
(in other words, they form a subsequence of pgs), that is, occurrences of descriptor elements
of C are never shuffled with occurrences of descriptor elements not belonging to C.

» Definition 21. Let pgs be a descriptor sequence and € be one of its clusters. The
subsequence of pgys associated with ¢ is the subsequence pgs(i,7), with i« < 5 < |pasl,
including all and only the occurrences of the descriptor elements in C.

Notice that two subsequences associated with two distinct clusters ¢ and ¢’ in a descriptor
sequence must be separated by at least one occurrence of a Type-1 descriptor element. For
example, with reference to the descriptor sequence (*) for p = vgvgvgv1v2v1V2V3V3V2v2 of the
Kripke structure in Figure 3, the subsequences associated with clusters are enclosed in boxes.

While Ry allows us to order any pair of Type-1 descriptor elements, as well as any Type-1
descriptor element with respect to a Type-2 descriptor element, it does not give any means
to order Type-2 descriptor elements belonging to the same cluster. This, together with the
fact that Type-2 elements may have multiple occurrences in a descriptor sequence, implies
that we need to somehow limit the number of occurrences of Type-2 elements in order to
give a bound on the length of track representatives of By-descriptors.

To this end, we introduce an equivalence relation that allows us to put together indis-
tinguishable occurrences of the same descriptor element in a descriptor sequence, that is,
to detect those occurrences which are associated with prefixes of the track with the same
Bj-descriptor. The idea is that a track representative for a Bj-descriptor should not include
indistinguishable occurrences of the same descriptor element.

201

CSL 2015

202

A Model Checking Procedure for ITL based on Track Representatives

_a/b\ﬁ/b&/
X 1 2
120000 110100 101100 100110 100020 100002 021000 011100 003000 001200 000210 000120
210000 111000 102000 100200 100101 100011 030000 012000 010200 002100 000300 000201 000111

x 1
x 1 2, 3 m 2
N NN "a/@bw\bb@wﬂ/b
3 % 1 1 D) 3 3

Figure 4 The track p = wvov1V2V3V3V2V3V3V2V3V2VU3V3V2V3V2V1 V3V2V3V2V1 V2V1 V3V2VU2V3V2 Of
the finite Kripke structure depicted in Figure 3 generates the descriptor sequence pgs =
(vo, @, v1)(vo, {v1},v2)(vo, {v1,v2}, v3)abaababaababcababcbcabbab, where a,b, and c¢ stand for
(vo, {v1,v2,v3},v3), (vo,{v1,v2,v3},v2), and (vo,{v1,v2,v3},v1), respectively. Here we show the
subsequence pgs(3, |pas| — 1) associated with the cluster ¢ = {a, b, c}. Pairs of k-indistinguishable
consecutive occurrences of descriptor elements are connected by a rounded edge labelled by k. Edges
labelled by x link occurrences which are not 1-indistinguishable. The values of all missing edges can
be derived from the properties established by Proposition 24 and 26. At the bottom of the figure,
for each position, we give the associated configurations: ¢(3) = (2,1,0,0,0,0), ¢(4) = (1,2,0,0,0,0),
and so forth.

» Definition 22. Let pgs be a descriptor sequence and k > 1. We say that two occur-
rences pgs(i) and pgs(j), with 0 < @ < j < |pas|, of the same descriptor element d are
k-indistinguishable if (and only if):

(for k = 1) DEIm(pas(0,i — 1)) = DEIm(pas(0,j —1));

(for k > 2) for all i+ < £ < j — 1, there exists 0 < ¢/ < i — 1 such that pgs(¢) and pgs(¢')

are (k — 1)-indistinguishable.
From Definition 22, it follows that two indistinguishable occurrences pg4s(i) and pgs(j) of the
same descriptor element necessarily belong to the same subsequence of pys associated with
a cluster. In general, it is always the case that DFElm(pgs(0,i — 1)) € DEIm(pas(0,5 — 1))
for i < j; 1-indistinguishability also guarantees DElm(pgqs(0,i — 1)) = DEIm(pqs(0,7 — 1)).
From this, it easily follows that the two first occurrences of a descriptor element are not
1-indistinguishable.

Proposition 23 and 24 state some basic properties of the k-indistinguishability relation.

» Proposition 23. Let k > 2 and pgs(i) and pgs(j), with 0 < @ < j < |pas|, be two
k-indistinguishable occurrences of the same descriptor element in a descriptor sequence pgs.
Then, pas(i) and pgs(j) are also (k — 1)-indistinguishable.

» Proposition 24. Let k > 1 and pqs(i) and pgs(m), with 0 < i < m < |pgs|, be two
k-indistinguishable occurrences of the same descriptor element in a descriptor sequence pgs.
If pas(j) = pas(m), for some i < j < m, then pas(j) and pas(m) are k-indistinguishable.

In Figure 4, we give some examples of k-indistinguishability relations, for k € {1, 2, 3},
for a track of the finite Kripke structure depicted in Figure 3.

The next theorem establishes a fundamental connection between k-indistinguishability of
descriptor elements and k-descriptor equivalence of tracks.

» Theorem 25. Let pys be the descriptor sequence for a track p. Two occurrences pas(i)
and pas(j), with 0 < i < j < |pas|, of the same descriptor element are k-indistinguishable if
and only if p(0,i + 1) ~; p(0,5 + 1).

Notice that k-indistinguishability between occurrences of descriptor elements is defined
only for pairs of prefizes of the same track, while the relation of k-descriptor equivalence can
be applied to pairs of any tracks of a Kripke structure.

The next proposition easily follows from Theorem 25.

A. Molinari, A. Montanari, and A. Peron

» Proposition 26. Let pys(i), pas(j), and pas(m), with 0 < i < j < m < |pas|, be three
occurrences of the same descriptor element. If both the pair pgs(i) and pas(j) and the pair
pas(j) and pas(m) are k-indistinguishable, for some k > 1, then pys(i) and pgas(m) are
k-indistinguishable, as well.

4 A model checking procedure based on track representatives

In this section, we will exploit the k-indistinguishability relation between descriptor elements
in a descriptor sequence pg4s for a track p to possibly replace p by a k-descriptor equivalent,
shorter track p’ of bounded length. This allows us to find, for each By-descriptor Dp,
(witnessed by a track of the considered finite Kripke structure X), a track representative p in
K such that (i) Dp, is the By-descriptor for g and (ii) the length of 5 is bounded. Thanks
to property (ii), we can check all the track representatives of a finite Kripke structure by
simply visiting its unravelling up to a bounded depth.

The notion of track representative can be explained as follows. Let pgs be the descriptor
sequence for a track p. If there are two occurrences of the same descriptor element pgs(7)
and pgs(j), with ¢ < j, which are k-indistinguishable (we let p = p(0,5 + 1) - p, with
p=p(G+2,]p| — 1)), then we can replace p by the k-descriptor equivalent, shorter track
p(0,i+1)-p: by Theorem 25, p(0,i+ 1) and p(0, j + 1) have the same By-descriptor and thus,
by Proposition 13, p = p(0,7+1)-p and p(0,7+ 1) - p have the same By-descriptor. Moreover,
since pgs(i) and pgs(j) are occurrences of the same descriptor element, p(i + 1) = p(j + 1)
and so the track p(0,7 + 1) - p is witnessed in the finite Kripke structure. By iteratively
applying such a contraction method, we can find a track p’ which is k-descriptor equivalent
to p, whose descriptor sequence is devoid of k-indistinguishable occurrences of descriptor
elements. A track representative is a track that fulfils this property.

We now show how to give a bound to the length of track representatives. We start by
stating some technical properties. The next proposition provides a bound to the distance
within which we observe a repeated occurrence of some descriptor element in the descriptor
sequence for a track. We preliminarily observe that, for any track p, |DEIm(pgs)| < [W|*+1,
where W is the set of states of the finite Kripke structure. Indeed, in the descriptor sequence,
the sets of internal states of prefixes of p increase monotonically with respect to the “C”
relation. As a consequence, at most || distinct sets may occur, excluding () which can occur
only in the first descriptor element. Moreover, these sets can be paired with all possible final
states which are at most |[W/|.

» Proposition 27. For each track p of K, associated with a descriptor element d, there exists
a track p' of X, associated with the same descriptor element d, such that |p'| < 2+ |W|2.

Proposition 27 will be used in the unravelling Algorithm 1 as a termination criterion (referred
to as O-termination criterion) for unravelling a finite Kripke structure when it is not necessary
to observe multiple occurrences of the same descriptor element: to get a track representative
for all descriptor elements, witnessed in a finite Kripke structure with set of states W and
initial state v, we can avoid considering tracks longer than 2 + |W|?, while exploring the
unravelling of the Kripke structure from v.

Let us now consider the problem of establishing a bound for tracks devoid of pairs of
k-indistinguishable occurrences of descriptor elements. We first notice that, in a descriptor
sequence pgs for a track p, there are at most |W| occurrences of Type-1 descriptor elements.
On the contrary, Type-2 descriptor elements can occur multiple times and thus, to bound
the length of pys, one has to constrain the number and the length of the subsequences of pgs

203

CSL 2015

204

A Model Checking Procedure for ITL based on Track Representatives

associated with clusters. As for their number, it suffices to observe that they are separated
by Type-1 descriptor elements, and hence at most |W| of them, related to distinct clusters,
can occur in a descriptor sequence.

As for their length, we can proceed as follows. First, for any cluster C, it holds that
|c| < |W]| as all (Type-2) descriptor elements of ¢ share the same set S of internal states
and their final states vf;, must belong to S. In the following, we consider the (maximal)
subsequence pgs(u, v) of pgs associated with a specific cluster ¢, for some 0 < u < v < |pgs|—1,
and when we mention an index i, we implicitly assume that v < i < v, that is, ¢ refers to a
position in the subsequence. We sequentially scan such a subsequence suitably recording
the multiplicity of occurrences of descriptor elements into an auxiliary structure. To detect
indistinguishable occurrences of descriptor elements up to indistinguishability s > 1, we
use s+ 3 arrays Q_2(), @-1(), Qo(), @1(), ..., @s(). Array elements are sets of descriptor
elements of ¢. Given an index i, the sets at position i, Q_2(7), Q_1(4), Qo(%), Q1(%), ...,
Qs (1), store information about indistinguishabilty for multiple occurrences of descriptor
elements in the subsequence up to position ¢ > u. To exemplify, if the scan function finds an
occurrence of the descriptor element d € C at position 4, that is, pgs(i) = d, we have that:
1. Q_2(i) contains all descriptor elements of ¢ which have never occurred in pgs(u,);

2. d € Q_1(4) if d has never occurred in pgs(u,i — 1) and pgs(i) = d, that is, pgs(¢) is the
first occurrence of d in pgs(u,);
3. d € Qo) if d occurs at least twice in pgs(u,i) and the occurrence pgs(i) of d is not

1-indistinguishable from the last occurrence of d in pgs(u,i — 1);

4. d € @Qi(i) (for some t > 1) if the occurrence pgs(i) of d is t-indistinguishable, but not

(t 4+ 1)-indistinguishable, from the last occurrence of d in pgs(u,i — 1).

In particular, at position w (the first of the subsequence), @_1(u) contains only the
descriptor element d = pgs(u), Q_2(u) is the set €\ {d}, and Qo(u), Q1 (u), ... are empty
sets.

In general, arrays Q_2(), @-1(), Qo(), @1(), ..., @s() satisfy the following constraints:
for all 4, |J,__, Qm(i) = C and, for all i and all m # m’, @, (4) N Qpy (i) = 0.

Intuitively, at every position i, Q_2(2), @—-1(7), Qo(7), @1(%), ..., Qs(i) describe a state of
the scanning process of the subsequence. The change of the state produced by the transition
from position ¢ — 1 to position ¢ while scanning the sequence is formally defined by the
function f, reported in Figure 5, which maps the descriptor sequence pgs and a position 4 to
the tuple of sets (Q_2(i), @—1(7), Qo(), Q1(3), ..., Qs(i)).

Notice that, whenever a descriptor element pys(i) = d is such that d € Q,(i — 1) and
d € Q. (i), with z < 2’ (cases (a), (b) and (d) of the definition of f), all Q.- (i), with 2" > 2/,
are empty sets and, for all 2"/ > 2/, all elements in Q. (i — 1) belong to Q./(i). Consider,
for instance, the following scenario: in a subsequence of pgs, associated with some cluster C,
pas(h) = pas(i) = d € € and pgs(h') = pas(i’) = d’ € ¢, for some h < h' <i<i and d # d,
and there are not other occurrences of d and d’ in pgs(h,i'). If pgs(h) and pgs(i) are exactly
z'-indistinguishable, by definition of the indistinguishability relation, pgqs(h') and pgs(i') can
be no more than (2’ + 1)-indistinguishable. Thus, if d’ is in Q,~ (i — 1), for some 2" > 2/,
we can safely “downgrade” it to @,/ (), because we know that, when we meet the next
occurrence of d' (pgs(i')), pas(h') and pgs(i’) will be no more than (2’ + 1)-indistinguishable.

In the following, we will make use of an abstract characterisation of the state of the arrays
at a given position i, as determined by the scan function f, called configuration, that only
considers the cardinality of the sets of arrays. Theorem 29 states that, when a descriptor
subsequence is scanned, configurations never repeat since the sequence of configurations is

A. Molinari, A. Montanari, and A. Peron

f(pd57u) = (C\ {d}v {d},@, T :Q)) with pdS(u) =d;
For all i > w: f(pas,) = (Q—Q(i),Q—l(i)yQO(i)a .. -7Qs(i)) =

(Q,Q(i -\ {d} {&yulJ _ , Qm(i—1),0,.. .,(Z)) if pgs (1) is the first occurrence of d in
pas(u,); (a)

(Q,g(i —1),Q-1(i — 1)\ {d}, {d} UlJ;,_, @m(i — 1),0,.. .,(Z)) if pas(i) =d, d € Q-1(i — 1),
and paqs(?) is at least the second occurrence of d in pas(u,i) and it is not 1-indistinguishable
from the immediately preceding occurrence of d; (b)

(@—2(i — 1), Q-1 — 1), {d} UQo(i — 1),Q1(—)\ {d},..., Qi — 1)\ {d}) if pas(i) = d,
de Ufn:O Qm(i—1), and pas(2) is at least the second occurrence of d in pgs(u,) and it is not
1-indistinguishable from the immediately preceding occurrence of d; (c)

(@26 =)\ {d},..., Qea (i = D\ A{d} A} UU;,_, @ (i = 1),0,...,0) if pas(i) = d, pas(i)
is t-indistinguishable (for some ¢ > 1), but not (¢t + 1)-indistinguishable, to the immediately
preceding occurrence of d, and d € U:ii2 Qm(i—1); (d)

(Q-2(i—=1),+, Qe-1(i = 1), {d} UQu(i = 1), Qura(i = D)\ {d}, .., Qs(i = 1)\ {d}) if pas(i) =
d, pas(i) is t-indistinguishable (for some ¢ > 1), but not (¢ + 1)-indistinguishable, to the
immediately preceding occurrence of d, and d € | J], _, Qm (i —1). (e)

Figure 5 Definition of the scan function f.

strictly decreasing according to the lexicographical order >;.,. This property will allow us
to establish the desired bound to the length of track representatives.

» Definition 28. Let pgs be the descriptor sequence for a track p and i be a position
in the subsequence of pgs associated with a given cluster. The configuration at position
i, written c(i), is the tuple (i) = (IQ-2(8)l: |Q—1(0)],|Qo()], [Q1(0)],- - ,|Qu(0)]), where
f(pd57 Z) = (Q—Q(i)a Q—l(i)v QO(i)v Ql(i)’ T st(Z))

An example of a configuration sequence is given in Figure 4.

» Theorem 29. Let pys be the descriptor sequence for a track p and pgs(u,v), for some
u < v, be the subsequence associated with a cluster C. For all u < i <w, if pgs(i) = d, then
it holds that d € Q¢(i — 1), d € Qu+1(7), and c(i — 1) >jey (i), for some t € {—2,—1} UN.

We show now how to select all and only those tracks which do not feature any pair of
k-indistinguishable occurrences of descriptor elements. To this end, we make use of a scan
function f which exploits k+3 arrays (the value k+ 3 derives from the k of descriptor element
indistinguishability, plus the three arrays Q_2(), @—1(), Qo()). Theorem 29 guarantees that,
while scanning a subsequence, configurations are never repeated. This allows us to set an
upper bound to the length of a track such that, whenever exceeded, the descriptor sequence

for the track features at least a pair of k-indistinguishable occurrences of a descriptor element.

The bound is essentially given by the number of possible configurations for k + 3 arrays.
By an easy combinatorial argument, we can prove the following proposition.

» Proposition 30. For all n,t € N*, the number of distinct t-tuples of natural numbers
whose sum equals n is e(n,t) = ("1 = ("'7Y).

Proposition 30 provides two upper bounds for £(n,t): e(n,t) < (n+1)!=1 and e(n,t) < t".

205

CSL 2015

206

A Model Checking Procedure for ITL based on Track Representatives

Since a configuration c(¢) of a cluster C is a (k 4 3)-tuple whose elements add up to |C|,
Proposition 30 allows us to conclude that there are at most (|C|, k + 3) = (lclg'f;Q) distinct
configurations of size (k + 3), whose integers add up to |C|. Moreover, since configurations
never repeat while scanning a subsequence associated with a cluster ¢, (|C|, k + 3) is an
upper bound to the length of such a subsequence.

Now, for any track p, pgs has at most |W| subsequences associated with distinct clusters
C1,Co, ..., and thus if the following upper bound to the length of p is exceeded, then
there is at least one pair of k-indistinguishable occurrences of a descriptor element in pgs:
lpl <1+ (Jal+ D)2+ (|G| + D)2+ + (|G| + 1)F2 4+ W], where s < |[W| and the
last addend is to count occurrences of Type-1 descriptor elements. Since clusters are disjoint
and their union is a subset of DEIlm(pgs), and |[DEIm(pas)| < 1+ |[W|?, we get two upper
bounds:

ol <1+ (Gl + Gl +- -+ G+ W) + W] < 1+ (IDEIm(pas)| + [W])*2 + W] <
L+ 1+ WP+ W2 W <14 (14 W) 4w,

and, analogously,

lp| <1+ (k+3)1Gl 4 (k+3)I1¢ 4. 4 (k+3)I61 W] < 14 (k4 3)lalFHlGH+al | <
1+ (k+ 3)\DEZM(M5)I + W] <1+ (k+ 3)\W|2+1 + W]

The upper bound for |p| is then the least of the two given upper bounds:
(W, k) = min {1+ (1 + [WNZ* + W, 1+ (k+3)WF+ 4w

» Theorem 31. Let X be a finite Kripke structure and p be a track in Trkg. If |p| > T(|W], k),
there exists another track in Trkg, whose length is less than or equal to T(|W|, k), which has
the same By, -descriptor as p.

Theorem 31 allows us to define a termination criterion to bound the depth of the
unravelling of a finite Kripke structure ((k > 1)-termination criterion), while searching for
track representatives for witnessed By-descriptors: for any k > 1, to get a track representative
for every By-descriptor with initial state v and witnessed in a finite Kripke structure with
set of states W, we can avoid taking into consideration tracks longer than T(|W|, k) while
exploring the unravelling of the structure from v.

Algorithm 1 (the unravelling algorithm) explores the unravelling of the input Kripke
structure X to find the track representatives for all witnessed Bj-descriptors. The upper
bound 7(|W|, k) on the maximum depth of the unravelling ensures the termination of the
algorithm, which never returns a track p if there exist k-indistinguishable occurrences of a
descriptor element in pgs.

The next theorem proves soundness and completeness of Algorithm 1.

» Theorem 32. Let X be a finite Kripke structure, v be a state in W, and k € N. For every
track p of K, with fst(p) = v and |p| > 2, the unravelling algorithm returns a track p’ of X,
with fst(p') = v, such that p and p' have the same By-descriptor and |p'| < 7(|W|, k).

As an example, p/ = vyU1V2V3V3V2VU3V3V2V3V2V3V2V1 V3 V2 U3V V1 U2V V3 V2 1S Teturned by
Algorithm 1 in place of the track p of Figure 4; it can be checked that p/,, does not contain
any pair of 3-indistinguishable occurrences of a descriptor element and that p and p’ have
the same Bjs-descriptor.

A. Molinari, A. Montanari, and A. Peron

Algorithm 1 Unrav(X,v, k, direction)
1: if direction = FORW then
2: Unravel X starting from v according to < > “<” is an arbitrary order of the nodes of X
3: For every new node of the unravelling met during the visit, return the track p from v to the
current node only if:

4: if k=0 then

5: Apply the O-termination criterion

6: else

7 if The last descriptor element d of (the descriptor sequence of) the current track p is
k-indistinguishable from a previous occurrence of d then

8: do not return p and backtrack to p(0, |p| — 2) - U, where T is the minimum state (w.r.t.

<) greater than p(|p| — 1) such that (p(]p| — 2),7) is an edge of X.

9: else if direction = BACKW then
10: Unravel X starting from v according to < > K is K with transposed edges
11: For every new node of the unravelling met during the visit, consider the track p from the
current node to v, and recalculate descriptor elements indistinguishability from scratch (left to
right); return the track only if:
12: if k =0 then

13: Apply the O-termination criterion

14: else

15: if There exist two k-indistinguishable occurrences of a descriptor element d in (the descriptor
sequence of) the current track p then

16: do not return p

17: Do not visit tracks of length greater than 7(|W|, k)

Algorithm 2 ModCheck(%X,)
1: k < Nestg(v)

2: u + New (Unrav(X, wo, k, FORW))
3: while u.hasMoreTracks() do

4: p <+ u.getNextTrack()
5
6
7

if Check(X, k,v,p) =0 then
return 0: “K,p ¢
: return 1: “K =7

In the forward mode of Algorithm 1 (used to deal with (A) and (B) modalities), the
direction of track exploration and that of indistinguishability checking are the same, so we
can stop extending a track as soon as the first pair of k-indistinguishable occurrences of
a descriptor element is found in the descriptor sequence, suggesting an easy termination
criterion for stopping the unravelling of tracks. In the backward mode (exploited in the case of
(A) and (E) modalities), such a straightforward criterion cannot be adopted, because tracks
are explored right to left (the opposite direction with respect to the edges of the Kripke
structure), while the indistinguishability relation over descriptor elements is computed left
to right. In general, changing the prefix of a considered track requires recomputing from

scratch the descriptor sequence and the indistinguishability relation over descriptor elements.

In particular, k-indistinguishable occurrences of descriptor elements can be detected in the
middle of a subsequence, and not necessarily at the end.

Building on Algorithm 1 we can easily define the model checking procedure ModCheck(%X, 1)
(Algorithm 2). ModCheck(X,) exploits the procedure Check(X, k, v, p) (Algorithm 3) which

checks a formula 1 of B-nesting depth k against a track p of the Kripke structure .

Check(X, k,v, p) basically calls itself recursively on the subformulas of ¢, and uses the
unravelling Algorithm 1 to deal with (A), (A), (B), and (E) modalities.

207

CSL 2015

208

A Model Checking Procedure for ITL based on Track Representatives

Algorithm 3 Check(X, k, %, p)

1: if ¢ = T then 29: else if 1 = (B) ¢ then
2 return 1 30: for each p prefix of g do
3: else if ¢ = L then 31: if Check(X,k —1,¢,p) =1 then
4: return 0 32: return 1
5: else if ¢y = p € 4P then 33: return 0
6: ifpe ﬂsEStateS(ﬁ) 1(s) then 34: else if) = (B) ¢ then
7: return 1 else return 0 35: for each v € W s.t. (Ist(p),v) € 6 do
8: else if ¢ = —p then 36: if Check(%X,k,¢,p-v) =1 then
9: return 1 — Check(X,k, v,) 37: return 1
10: else if ¥ = 1 A @2 then 38: u < New (Unrav(X, v, k, FORW))
11: if Check(X,k,p1,p) =0 then 39: while u.hasMoreTracks() do
12: return 0 40: p < u.getNextTrack()
13: else 41: if Check(X, k,¢,p-p) =1 then
14: return Check(X, k, @2, p) 42: return 1
15: else if ¢ = (A) ¢ then 43: return 0
16: u <+ New (Unrav(X,lst(p), k, FORW)) 44: else if ¢ = (E) ¢ then
17: while uw.hasMoreTracks () do 45: for each v € W s.t. (v,f5t(p)) € 6 do
18: p < u.getNextTrack() 46: if Check(X,k,¢,v-p) =1 then
19: if Check(X, k, ¢, p) =1 then 4T return 1
20: return 1 48: u < New (Unrav(X, v, k, BACKW))
21: return 0 49: while u.hasMoreTracks() do
22: else if 1) = (A) ¢ then 50: p + u.getNextTrack()
23: u < New (Unrav(X, fst(p), k, BACKW)) 51: if Check(X, k,¢,p-p) =1 then
24: while u.hasMoreTracks() do 52: return 1
25: p < u.getNextTrack() 53: return0
26: if Check(X, k, ¢, p) =1 then
27: return 1

28: return 0

The model checking algorithm ModCheck requires exponential working space, as it uses an
instance of the unravelling algorithm and some additional space for a track p. Analogously,
every recursive call to Check needs an instance of the unravelling algorithm and space for
a track. There are at most |¢| simultaneously active calls to Check, so the total space
needed by the considered algorithms is (|¢)| + 1) - O(|W| + Nestp(¢))) - 7(|W], Nestg()))
bits overall, where 7(|W|, Nestg(¢)) is the maximum length of track representatives, and
O(|W]| + Nestp(v)) bits are needed to represent a state of X, a descriptor element, and a
counter for k-indistinguishability.

Notice that formulas v of the fragment HS[A, A, B, E] can be checked in polynomial
space, as for these formulas Nestg (1)) = 0.

We conclude this section by proving that the model checking problem for formulas of
HS[A, A, B, B, E], interpreted over finite Kripke structures, is NEXP-hard when a suitable
encoding of formulas is exploited. Such an encoding is succinct in the sense that the following
binary-encoded shorthands are exploited: <B)k 1 stands for k repetitions of (B) before 1,
where k is represented in binary (the same for all the other HS modalities); moreover,
/\i:lw, - (i) denotes a conjunction of formulas which contain some occurrences of the index
i as exponents (I and r are binary encoded naturals), e.g., A,_; .. 5 (B)' T. Finally, we
denote by expand() the expanded form of ¢, where all exponents k are removed from v, by
explicitly repeating k times each HS modality with such an exponent, and big conjunctions
are replaced by conjunctions of formulas without indexes.

A. Molinari, A. Montanari, and A. Peron

» Theorem 33. The model checking problem for HS[A, A, B, B, E| formulas against finite
Kripke structures is NEXP-hard, if formulas are succinctly encoded; otherwise, it is NP-hard.

This result is obtained by means of a reduction from the acceptance problem for a language
L decided by a non-deterministic one-tape Turing machine M (w.l.o.g.) that halts in O(Q"k)
computation steps on any input of size n, where k£ > 0 is a constant.

Finally, it is not difficult to show that there exists a constant ¢ > 0 such that, for
all succinct HS[A, A, B, B, E] formulas 1, | expand(¢)| < 2!¥I°. Thus the model checking
algorithm still runs in exponential space with respect to the succinct input formula ¥—Dby
preliminarily expanding ¢ to expand(y)—as 7(|W|, Nestg(expand(t)))) is exponential in
|[W| and [¢|. This allows us to conclude that the model checking problem for succinct
HS[A, A, B, B, E] formulas is between NEXP and EXPSPACE.

5 Conclusion and future work

In this paper, we devised an EXPSPACE model checking algorithm for the HS fragments
HS[A,A,B,B,E] and HS[A, A, E, B, E] (the known bound for full HS is non-elementary
[18]). The algorithm rests on a contraction method that allows us to restrict the verification
of the input formula to a finite subset of tracks of bounded size, called track representatives.
We also proved that the problem is NEXP-hard, provided that a succinct encoding of formulas
is used; otherwise, we can only prove that it is NP-hard (we conjecture that, in this latter
case, HS[A, A, B, B, E] is PSPACE-hard). As for the other HS fragments, we showed that
HS[A, A, B, E] is in PSPACE, and we conjecture that it is PSPACE-complete. Another
interesting fragment is HS[A, A] (the logic of temporal neighbourhood): it can be easily
shown that it is coNP-hard, but we can only think of PSPACE model checking algorithms.

As for future work, it is worth exploring the model checking problem for full HS and its
fragments under other semantic interpretations, relaxing the homogeneity assumption. In
this respect, existing work on Duration Calculus (DC) model checking seems to be relevant

[7, 8, 10, 12, 15, 21]. DC extends interval temporal logic with an explicit notion of state.

States are denoted by state expressions and characterized by a duration (the time period
during which the system remains in a given state). Recent results on DC model checking as
well as an account of related work can be found in [11].

Acknowledgements. The work by Adriano Peron has been supported by the SHERPA
collaborative project, which has received funding from the European Community 7-th
Framework Programme (FP7/2007-2013) under grant agreements ICT-600958. He is solely
responsible for its content. The paper does not represent the opinion of the European
Community and the Community is not responsible for any use that might be made of the
information contained therein. The work by Angelo Montanari has been supported by the
GNCS project Algorithms to model check and synthesize safety-critical systems. We would
like to thank the reviewers for their useful comments and suggestions.

—— References

1 J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11):832-843, 1983.

2 D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. The dark side
of interval temporal logic: marking the undecidability border. Annals of Mathematics and
Artificial Intelligence, 71(1-3):41-83, 2014.

209

CSL 2015

210

A Model Checking Procedure for ITL based on Track Representatives

3

10

11

12

13

14

15

16

17

18

19

20

21
22

23
24

D. Bresolin, V. Goranko, A. Montanari, and P. Sala. Tableau-based decision procedures for
the logics of subinterval structures over dense orderings. Journal of Logic and Computation,
20(1):133-166, 2010.

D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighbor-
hood logics: Expressiveness, decidability, and undecidable extensions. Annals of Pure and
Applied Logic, 161(3):289-304, 2009.

D. Bresolin, A. Montanari, P. Sala, and G. Sciavicco. What’s decidable about Halpern and
Shoham'’s interval logic? The maximal fragment ABBL. In LICS, pages 387-396, 2011.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2002.

M. Fréanzle. Model-checking dense-time Duration Calculus. Formal Aspects of Computing,
16(2):121-139, 2004.

M. Franzle and M. R. Hansen. Efficient model checking for Duration Calculus? Interna-
tional Journal of Software and Informatics, 3(2-3):171-196, 20009.

J. Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal of
the ACM, 38(4):935-962, 1991.

M. R. Hansen. Model-checking discrete Duration Calculus. Formal Aspects of Computing,
6(6A):826-845, 1994.

M. R. Hansen, A. D. Phan, and A. W. Brekling. A practical approach to model checking
Duration Calculus using Presburger Arithmetic. Annals of Mathematics and Artificial
Intelligence, 71(1-3):251-278, 2014.

K. Lodaya. A language-theoretic view of verification. In Modern Applications of Automata
Theory, pages 149-170, 2012.

A. R. Lomuscio and J. Michaliszyn. An epistemic Halpern-Shoham logic. In IJCAI, pages
1010-1016, 2013.

A. R. Lomuscio and J. Michaliszyn. Decidability of model checking multi-agent systems
against a class of EHS specifications. In ECAI pages 543-548, 2014.

R. Meyer, J. Faber, J. Hoenicke, and A. Rybalchenko. Model checking Duration Calculus:
a practical approach. Formal Aspects of Computing, 20(4-5):481-505, 2008.

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking Interval Prop-
erties of Computations. Technical Report 2015/01, Dept. of Math. and CS, University of
Udine, 2015. https://www.dimi.uniud.it/assets/preprints/1-2015-montanari.pdf.
A. Molinari, A. Montanari, and A. Peron. A Model Checking Procedure for Interval Tem-
poral Logics based on Track Representatives. Technical Report 2015/02, Dept. of Math.
and CS, University of Udine, 2015. https://www.dimi.uniud.it/assets/preprints/
2-2015-montanari.pdf.

A. Montanari, A. Murano, G. Perelli, and A Peron. Checking interval properties of com-
putations. In TIME, pages 59-68, 2014.

A. Montanari, G. Puppis, and P. Sala. Maximal decidable fragments of Halpern and
Shoham’s modal logic of intervals. In ICALP (2), LNCS 6199, pages 345-356, 2010.

B. Moszkowski. Reasoning About Digital Circuits. PhD thesis, Dept. of Computer Science,
Stanford University, Stanford, CA, 1983.

P. K. Pandya. Model checking CTL*[DC]. In TACAS, LNCS 2031, pages 559-573, 2001.
I. Pratt-Hartmann. Temporal prepositions and their logic. Artificial Intelligence, 166(1-
2):1-36, 2005.

P. Roeper. Intervals and tenses. Journal of Philosophical Logic, 9:451-469, 1980.

Y. Venema. Expressiveness and completeness of an interval tense logic. Notre Dame Journal
of Formal Logic, 31(4):529-547, 1990.

https://www.dimi.uniud.it/assets/preprints/1-2015-montanari.pdf
https://www.dimi.uniud.it/assets/preprints/2-2015-montanari.pdf
https://www.dimi.uniud.it/assets/preprints/2-2015-montanari.pdf

	Introduction
	Background Knowledge
	The interval temporal logic HS
	Kripke structures and abstract interval models
	The notion of Bk-descriptor

	Clusters and descriptor element indistinguishability
	A model checking procedure based on track representatives
	Conclusion and future work

