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Abstract
Aiming to pinpoint the reasons behind the decidability of some complex extensions of modal logic,
we propose a new classification criterion for sentences of first-order logic, which is based on the
kind of binding forms admitted in their expressions, i.e., on the way the arguments of a relation
can be bound to a variable. In particular, we describe a hierarchy of four fragments focused
on the Boolean combinations of these forms, showing that the less expressive one is already
incomparable with several first-order restrictions proposed in the literature, as the guarded and
unary negation fragments. We also prove, via a novel model-theoretic technique, that our logic
enjoys the finite-model property, Craig’s interpolation, and Beth’s definability. Furthermore, the
associated model-checking and satisfiability problems are solvable in PTime and ΣP

3 , respectively.
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1 Introduction

Since from the revolutionary negative solutions owed to Church and Turing, Hilbert’s original
“Entscheidungsproblem” [27] turned into a vast classification process looking for all those
classes of first-order sentences having a decidable satisfiability [10]. Depending upon the
syntactic criteria used to identify the particular classes of interest [23], this process was
declined into several research programs, among which we can mention, on one side, those
limiting relation arities [35] or the total number of variables [40, 24] and, on the other one,
those classifying sentences in prenex normal form based on their prefix vocabulary [11].

The research in this field has had a considerable impact, from both a theoretical and
practical point of view, in a variety of areas on the edge between mathematics and computer
science, e.g., reverse mathematics [48], descriptive complexity [33], database theory [51, 1],
and formal verification, just to mention a few. However, Vardi observed that almost all of
the classic approaches did not shed any satisfactory light on why modal logic and derived
frameworks, like the ones featuring fixpoint constructs, are so robustly decidable [57, 21].

Trying to find a plausible answer, Andréka, van Benthem, and Németi introduced the
guarded fragment of first-order logic [3], which generalizes the modal framework by essentially
retaining several of its model-theoretic and algorithmic properties. This work started a
completely new research program based on the way quantifications can be relativised to
atoms, avoiding the usual syntactic restrictions on quantifier patterns, number of variables,
and relation arities. Pushing forward the idea that robust fragments of first-order logic
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owe their nice properties to some sort of guarded quantification, several extensions along
this line of research were proposed in the literature, such as the loosely guarded [52], the
clique guarded [19, 22], the action guarded [53, 18], and the guarded fixpoint logic [25]. This
classification program has also important applications in database theory and description
logic, where it is relevant to evaluate a query against guarded first-order theories [5].

Only recently, ten Cate and Segoufin observed that the first-order translation of modal
logic presents, besides the guarded nature of quantifications, another important peculiarity:
negation is only applied to sentences or monadic formulas, i.e., formulas with a single free
variable. Exploiting this observation, they introduced a new robust fragment of first-order
logic, called unary negation [49, 50], which extends modal logic, as well as other formalisms,
like Boolean conjunctive queries, that cannot be expressed in terms of guarded quantifications.
Since this new restriction is incomparable with the guarded fragments, right after the original
work, another formalism was proposed, called guarded negation [7], which unifies the two
approaches. Syntactically, there is no primary universal quantifier and the use of negation is
only allowed if guarded by an atom. In terms of expressive power, this fragment forms a
strict extension of both the logics on which it is based, while preserving the same desirable
properties of the modal framework. However, it has to be noted that it is still incomparable
with more complex extensions of the guarded fragment, such as the clique guarded one. This
way of analysing formulas focusing on the guarded nature of negation has also important
applications to database theory, where it is well-known that the operation of complementation
makes queries hard to evaluate [6].

Although these two innovative classification programs really succeeded in the original task
to explain the nice properties enjoyed by modal logic, we cannot consider them completely
satisfactory with respect to the more general intent of identifying the reasons why some
of its complex extensions are so well-behaved. In particular, based only on the resulting
model-theoretic and algorithmic features, we are not able to answer the question about
the decidability of several multi-agent logics for strategic abilities, such as the Alternating
Temporal Logics [2] ATL [58, 47] and ATL? [46] and the one-goal fragment SL[1g] [37] of
Strategy Logic [12, 39, 38], which do not intrinsically embed such kinds of relativisation.
For example, consider the ATL? formula [[a, b, c]]¬ψ over a game structure with a, b, c,
and d as the only agents. Intuitively, it asserts that agent d has a strategy, which depends
upon those chosen by the other ones, ensuring that the LTL property ψ does not hold.
Now, observe that the underlying strategic reasoning can be represented by the first-order
sentence ∀a∀b∀c∃d¬rψ(a, b, c, d) having a prefix of the form ∀3∃ coupled with the quaternary
atomic relation rψ in place of the temporal requirement ψ, which absorbs and hides the
intrinsic second-order flavour of the original ATL? formula. It is evident that this sentence
belongs neither to a decidable prefix-vocabulary class nor to the two-variable fragment.
Moreover, quantifications are not guarded and negation is applied to a formula that is
neither monadic nor guarded. Another explicit example is given by the SL[1g] sentence
[[x]]〈〈y〉〉[[z]](a, x)(b, x)(c, y)(d, z)ψ asserting that, once a and b have chosen the common
strategy x, agent c can select its better response y to ensure ψ, in a way that is independent
of the behaviour z of d. In this case, the associated first-order sentence ∀ab∃c∀drψ(ab, ab, c, d)
has a prefix of the form ∀∃∀ coupled with the atomic relation rψ, whose first two arguments
are bound to the same variable. Again, we cannot cast this sentence in any of the decidable
restrictions previously described. In particular, it is neither unary negation nor guarded
negation, since universal quantifications are used as primary construct, which is not allowed
in either of them.
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Table 1 Notable algorithmic and model-theoretic properties for some fragments of FOL (m:
monadic, 2var: 2-variables, gf: guarded fragment, cg: clique guarded, un: unary negation, gn:
guarded negation, fl: fluted logic, uf1: uniform one-dimensional fragment, 1b: one binding, cb:
conjunctive binding, db: disjunctive binding, bb: Boolean binding).

MC SAT FMP CI BD

FOL[m] PSpace-C NExpTime-C [11] X [11] X X

FOL[2var] PTime [56] NExpTime-C [24] X [40] × [45] × [45]
FOL[gf] PTime-C [9] 2ExpTime-C [20] X [20] × [29] X [29]
FOL[cg] PSpace-C [9] 2ExpTime-C [19] X [28] × [29] X [29]
FOL[un] ∆P

2 (O(log2 n))-C [50] 2ExpTime-C [50] X [50] X [50] X [50]
FOL[gn] ∆P

2 (O(log2 n))-C [7] 2ExpTime-C [7] X [7] X [4] X [4]
FOL[fl] PSpace NExpTime-C [42] X [42] X [42] X [42]
FOL[uf1] ? NExpTime-C [34] X [26] ? ?

FOL[1b] PTime [Thm.3.12] ΣP
3 -C [Thm.3.13] X [Thm.3.11] X [Thm.3.11] X [Thm.3.11]

FOL[cb] PSpace-C [Thm.3.8] ? [Con.3.10] ? [Con.3.10] ? ?
FOL[db] PSpace-C [Thm.3.8] Undecidable [Thm.3.9] × [Thm.3.9] ? ?
FOL[bb] PSpace-C [Cor.3.6] Undecidable [Cor.3.6] × [Cor.3.6] X [Cor.3.6] X [Cor.3.6]

At this point, a question naturally arises: what are the syntactic constraints on the
first-order representations of these logics of strategies that ensure their decidability? After a
careful analysis, one can observe that such representations are always composed by a Boolean
combination of sentences in prenex normal form, whose matrices are Boolean combinations
of relations over the same arguments, which denote the agents of the game under analysis.

In this paper, trying to lay the foundation for a more thorough understanding of these
decidability questions, we exploit the above observation to devise a new classification program
based on the binding forms admitted in a sentence, i.e., on the way the arguments of a
relation can be bound to a variable. Indeed, inspired by the decoupling between agents and
variables in SL, we define a syntactic variant of first-order logic in which arguments are bound
to variables by means of an appropriate binding construct. To support this, similarly to the
treatment of the attributes of a table in database theory [16], we describe a generalization of
standard notions of language signature and relational structure in which arguments are explicit.
With more detail, every relation r is associated with a set of arguments {a1, . . . , an}, which
are bound to the variables via a binding form (a1, x1) · · · (an, xn)r that replaces the standard
writing r(x1, . . . , xn). So, for instance, a formula like r1(x1, x2) ∧ r2(x2, x3) → r3(x1, x3)
would be written as (a1, x1)(a2, x2)(a3, x3)(r1 ∧ r2 → r3), assuming {a1, a2}, {a2, a3}, and
{a1, a3} as the arguments of r1, r2, and r3, respectively. Our notation, although perfectly
equivalent to the classic one, allows to introduce and analyse, in a natural way, a hierarchy
of four fragments of first-order logic based on the Boolean combinations of these forms. In
particular, the simplest one, called one binding, is already incomparable with the clique
guarded and guarded negation restrictions, as well as, with the fluted logic introduced by
Quine [44] and the uniform one-dimensional fragment recently proposed by Hella, Kieron-
ski, and Kuusisto [26, 34]. Examples of one-binding sentences result from the translation
of the game properties described above, namely ∀x∀y∀z∃w(a, x)(b, y)(c, z)(d, w)¬rψ and
∀x∃y∀z(a, x)(b, x)(c, y)(d, z)rψ, where we assume that the relation rψ has the agents a, b,
c, and d as arguments. Via a novel model-theoretic technique exploiting the peculiarity of
binding forms, we prove that our logic enjoys the finite-model property, both Craig’s inter-
polation and Beth’s definability, a PTime model checking and a ΣP

3 -complete satisfiability.
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In Table 1, we summarize results and open problems about classic and new fragments, from
which we can immediately observe that the one-binding restriction is the simplest one with
respect to the algorithmic point of view.

The main aim of this work is to describe a new criterion to classify formulas in order to
better explore the boundary between nice/non-nice [3], tame/untamed [42], easy/hard [56],
and decidable/undecidable [11] fragments of FOL, which is probably quite wider, but hopefully
less irregular, than it was considered before. In particular, thanks to the introduced syntax,
it is easier to discover connections with other languages, as those derived from algebras [13]
and calculi [14] for relational databases. Moreover, we think it can help in the quest for
the ultimate reasons behind tractability and decidability of a logic. Last but not least, we
provide model-theoretic results that may be used as technical tools in other contexts, as well.
Indeed, going back to the logics for strategic abilities, we claim that the bounded-tree model
property of ATL [47], ATL? [46], and SL[1g] [37], shown to be crucial for their decidability,
can be proved by means of the finite-model property of the one-binding fragment. This result
is the focus of a dedicated work [36].

2 Signatures and Structures

Since from Codd’s pioneering work on the definition of relational databases [13], several kinds
of first-order languages have been used to describe databases queries [14]. In particular,
first-order logic (FOL, for short) has been established as the main theoretical framework in
which to prove results about properties of query languages [31, 55, 32]. In such a context, a
table is usually represented as a mathematical relation between elements of a given domain,
where its attributes are mapped to the indexes of that relation in a predetermined fixed way.
Hence, attributes do not have any explicit matching element in the syntax of the language.

To introduce the binding-form fragments of FOL, we need to reformulate, instead, both
the syntax and semantics of the logic in a way that is much closer to database theory. In
particular, we explicitly associate a finite non-empty set of arguments to each relation [16],
which are handled in the syntax via corresponding symbols. To do this, in the following, we
introduce an alternative version of classic language signatures and relational structures.

Language Signatures. A language signature is a mathematical object describing the form
of all non-logical symbols composing a formula. The typology we introduce here is purely
relational, since we do not make use of constant or function symbols. Also, in our reasonings,
we do not explicitly consider distinguished relations as equivalences, orders, or the equality.

I Definition 2.1 (Language Signature). A language signature (LS, for short) is a tuple
L , 〈Ar,Rl, ar〉, where Ar and Rl are the finite non-empty sets of argument and relation
symbols and ar : Rl→ 2Ar \ {∅} is the argument function mapping every relation r ∈ Rl to
its non-empty set of arguments rL , ar(r) ⊆ Ar.

Suppose we want to describe the schema of a genealogy database containing the relations
isFather(father, child), isMother(mother, child), and areParents(father, mother, child). We
can do this by means of the simple LS LG =〈Ar,Rl, ar〉, whose elements are set as follows:
Ar = {c : child, f : father , m : mother}; Rl = {Ft : isFather , Mt : isMother , Pr : areParents};
FtLG={c, f}, MtLG={c, m}, and PrLG=Ar. From now on, we may put a superscript on a
relation containing a list of its argument, e.g., Prcfm, to help the reader to keep track of them.

Relational Structures. Given a language signature, we define the interpretation of all
symbols by means of a relational structure, i.e., a carrier domain together with an association
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of each relation with a set of suitable tuples assuming values in that domain. Since relations
with the same arity may have different arguments, it is not sufficient to work with elements
of a Cartesian product as components of their interpretation. Therefore, we assign to every
relation a set of tuple functions mapping arguments in their support to values of the carrier
domain. Note that, under this definition, an order among arguments is not required.

I Definition 2.2 (Relational Structure). A relational structure over an LS L = 〈Ar,Rl, ar〉
(L-RS, for short) is a tuple R ,〈Dm, rl〉, where Dm is the non-empty set of arbitrary objects
named domain and rl : Rl→r 2ar(r)→Dm is the relation function mapping every relation r ∈ Rl
to the set rR , rl(r) ⊆ ar(r)→ Dm of tuple functions t ∈ rl(r) from the arguments a ∈ ar(r)
of r to values t(a) ∈ Dm of the domain.
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Figure 1 A relational structure.

The order (resp., size) of an L-RS R is given by the
cardinality |R| , |Dm| (resp., ‖R‖ , |

⋃
r∈Rl r

R|) of its
domain set (resp., relation function). A relational struc-
ture is finite if it has finite order and, so, a finite size.

Consider the LS LG previously described. In Figure 1,
we depict an LG-RS RG containing part of Simpson Fam-
ily’s genealogy tree, where the two binary relations Ftcf

and Mtcm are indicated through the edges labelled by their
own names, while the ternary relation Prcfm is described
via the three hyperedges represented by the gray areas.

3 First-Order Logic

We start by describing a slightly different but equivalent
formalization of both syntax and semantics of FOL ac-
cording to the explained alternatives of the language signature and relational structure. Then,
we introduce a new family of fragments based on the kinds of binding forms allowed in a
formula, i.e., on the ways arguments can be bound to variables.

From now on, unless stated otherwise, we use L = 〈Ar,Rl, ar〉 to denote an a priori
fixed LS. Also, Vr represents an enumerable non-empty set of variables. For the sake of
succinctness, to indicate the extension of L with Vr, we adopt the composed symbol L(Vr).

Syntax. As far as the syntax of FOL is concerned, the novelty of our setting resides in the
decoupling between variables and arguments, which implies an explicit occurrence of the
latter as atomic components of a formula. Indeed, a variables x is not directly applied to the
index associated with an argument a of a relation r, as in the usual writing r(. . . , x, . . .), but
an appropriate construct (a, x)ϕ, called binding, is required to bind a to x in the formula ϕ.

I Definition 3.1 (FOL Syntax). FOL formulas over L(Vr) are built by means of the following
context-free grammar, where a ∈ Ar, r ∈ Rl, and x ∈ Vr:

ϕ := ⊥ | > | r | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃x.ϕ | ∀x.ϕ | (a, x)ϕ.

L(Vr)-FOL denotes the set of all formulas over L(Vr) generated by the above grammar.

Consider again the LS LG of Section 2 and suppose we want to formalize the fact that
father and mother of a person are her parents and vice versa. This can be done via the
LG({x, y, z})-FOL formula ϕ1 = ∀x∀y∀z(f, x)(m, y)(c, z)((Ftcf ∧ Mtcm) ↔ Prcfm), where by
ϕ1 ↔ ϕ2 we denote, as usual, the conjunction (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) with ϕi → ϕj in
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place of ¬ϕi ∨ ϕj . Now, imagine we need to determine which people have a father. To this
aim, we can employ the formula ϕ2 = ∃x(f, x)Ftcf, whose argument c is associated with
the result. Finally, to query all pairs (x, y) of grandfather and grandchild, we can use the
formula ϕ3 = ∃z((f, x)(c, z)Ftcf ∧ (c, y)((f, z)Ftcf ∨ (m, z)Mtcm)). By fixing a linear order on
the arguments, it is possible to rewrite every statement in the classic syntax. For instance,
ϕ1 can be expressed by ∀x∀y∀z((Ft(x, z) ∧ Mt(y, z))↔ Pr(x, y, z)), once it is assumed that
f < m < c. Conversely, every formula in the standard syntax can be translated into our
syntax, by means of numeric arguments representing the positions in the relations. For
example, the transitivity property ∀x∀y∀z((R(x, y) ∧ R(y, z))→ R(x, z)) can be rewritten as
∀x∀y∀z(((1, x)(2, y)R12 ∧ (1, y)(2, z)R12)→ (1, x)(2, z)R12).

Usually, predicative logics, i.e., languages having explicit quantifiers, need a concept of free
or bound placeholder to formally evaluate the meaning of their formulas. The placeholders
are used, in fact, to identify particular positions in a syntactic expression that are crucial
for the definition of its semantics. Classic formalizations of FOL just require one kind of
placeholder represented by the variables on which the formulas are built. In our new setting,
instead, also the arguments have this fundamental role, as they are used to decouple variables
from their association with a relation. As a consequence, we need a way to check whether a
variable is quantified or an argument is bound. To do this, for every formula ϕ, we compute
its set of free arguments/variables free(ϕ), as the subset of Ar ∪Vr containing all arguments
that are free from binding together with all variables occurring in some binding that are not
quantified. Formally, we have the following definition.

I Definition 3.2 (Free Placeholders). The set of free arguments/variables of an L(Vr)-FOL
formula can be computed via the function free : L(Vr)-FOL→ 2Ar∪Vr defined as follows:
1. free(⊥) = free(>) , ∅;
2. free(r) , ar(r), where r ∈ Rl;
3. free(¬ϕ) , free(ϕ);
4. free(ϕ1Opϕ2) , free(ϕ1) ∪ free(ϕ2), where Op ∈ {∧,∨};
5. free(Qnx.ϕ) , free(ϕ) \ {x}, where Qn ∈ {∃,∀};

6. free((a, x)ϕ) ,
{

(free(ϕ) \ {a}) ∪ {x}, if a ∈ free(ϕ);
free(ϕ), otherwise.

A formula ϕ without free arguments (resp., variables), i.e., ar(ϕ) , free(ϕ)∩Ar = ∅ (resp.,
vr(ϕ) , free(ϕ) ∩Vr = ∅), is named argument (resp., variable) closed. If ϕ is both argument
and variable closed, it is referred to as a sentence. Consider the three formulas ϕ1, ϕ2, and ϕ3
given above. We have that free(ϕ1)=∅, free(ϕ2)=ar(ϕ2)={c}, and free(ϕ3)=vr(ϕ3)={x, y}.
Thus, ϕ1 is a sentence, ϕ2 is variable closed, and ϕ3 is argument closed.

One may observe that the proposed syntax has some similarities with the relational
calculus introduced by Codd [14, 16] as a logic counterpart of standard relational algebra [13],
since in this language the attributes may be identified by name rather than position. However,
its notation is tuple-centric, thus, it necessarily requires the use of the equality relation even
to express very simple properties that do not intrinsically need it. For example, to describe
in that calculus the left-totality of a binary relation r over the arguments a and b, we have to
write ∀t∃t′(t[b] = t′[a]∧r(t′)) (unrestricted semantics) or ∀t(r(t)→ ∃t′(t[b] = t′[a]∧r(t′)))
(active-domain semantics). In our syntax, instead, we just write ∀x∃y(a, x)(b, y)r (unrestricted
semantics) or ∀z∀x((a, z)(b, x)r→ ∃y(a, x)(b, y)r) (active-domain semantics).

Semantics. The semantics of FOL described here is defined, as usual, w.r.t. an RS. As
a matter of fact, the peculiarities of our setting only concern the interpretation of binding
constructs and the non-standard evaluation of relations.
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In order to formalize the meaning of a formula, we first need to describe the concept of
assignment, i.e., a partial function χ ∈ AsgD , (Ar ∪Vr) ⇀ D mapping each placeholder in
its domain to a value of an arbitrary set D, which is used to define a valuation of all the
free arguments and variables. For a given placeholder p ∈ Ar ∪ Vr and a value d ∈ D, the
notation χ[p 7→ d] represents the assignment defined on dom(χ[p 7→ d]) , dom(χ) ∪ {p} that
returns d on p and is equal to χ on the remaining part of its domain, i.e., χ[p 7→ d](p) , d
and χ[p 7→ d](p′) , χ(p′), for all p′ ∈ dom(χ) \ {p}.

I Definition 3.3 (FOL Semantics). Let R be an L-RS and ϕ an L(Vr)-FOL formula. Then,
for all assignments χ ∈ AsgDm with free(ϕ) ⊆ dom(χ), the relation R, χ |= ϕ is inductively
defined on the structure of ϕ as follows.
1. Boolean values and connectives are interpreted as usual.
2. R, χ |= r if χ�rL ∈ rR, for every relation r ∈ Rl.
3. For each variable x ∈ Vr, it is set that:

a. R, χ |= ∃x.ϕ if there exists a value d ∈ Dm such that R, χ[x 7→ d] |= ϕ;
b. R, χ |= ∀x.ϕ if, for all values d ∈ Dm, it holds that R, χ[x 7→ d] |= ϕ.

4. R, χ |= (a, x)ϕ if R, χ[a 7→ χ(x)] |= ϕ, for each argument a ∈ Ar and variable x ∈ Vr.

Intuitively, Condition 2 states that a relation r is satisfied by an assignment χ whenever
the tuple function χ�rL obtained by the restriction of χ to the arguments rL of r is included
in the interpretation rR. Condition 4, instead, interprets the binding construct (a, x) by
associating the argument a with the value of the variable x contained inside the assignment.

Consider again the formulas ϕ1, ϕ2, and ϕ3 and the LG-RS RG of Figure 1. We have that
RG,∅ |= ϕ1. Moreover, RG,∅[c 7→ Lisa] |= ϕ2 and RG,∅[x 7→ Homer, y 7→ Bart] 6|= ϕ3.

To complete the description of the semantics, we give the notions of model and satisfiability.
For an L-RS R and an L(Vr)-FOL sentence ϕ, we say that R is a model of ϕ, in symbols
R |= ϕ, iff R,∅ |= ϕ, where ∅ ∈ AsgDm simply denotes the empty assignment. We also say
that ϕ is satisfiable iff there exists a model for it. Given two L(Vr)-FOL formulas ϕ1 and
ϕ2, we say that ϕ1 implies ϕ2, in symbols ϕ1 ⇒ ϕ2, iff R, χ |= ϕ1 implies R, χ |= ϕ2, for
each L-RS R and assignment χ ∈ AsgDm with free(ϕ1), free(ϕ2) ⊆ dom(χ). Moreover, we
say that ϕ1 is equivalent to ϕ2, in symbols ϕ1 ≡ ϕ2, iff both ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1 hold.

Fragments. We now introduce a family of syntactic fragments of FOL by means of a special
normal form, where relations over the same set of arguments may be clustered together by a
unique sequence of bindings. With more detail, we consider Boolean combinations of sentences
in prenex normal form in which quantification prefixes are coupled with Boolean combinations
of these relation clusters called binding forms. Each fragment is then characterized by a
specific constraint on the possible combinations of these forms.

A quantification prefix ℘ ∈ Qn ⊆ {∃x, ∀x : x ∈ Vr}∗ is a finite sequence of quantifiers,
in which each variable occurs at most once. Similarly, a binding prefix [ ∈ Bn ⊆ {(a, x)
: a ∈ Ar ∧ x ∈ Vr}∗ is a finite sequence of bindings, in which each argument occurs at
most once. For example, ℘= ∀x∀y∀z and [= (f, x)(m, y)(c, z) are the quantification and
binding prefixes occurring in the formula ϕ1 = ℘[((Ftcf∧Mtcm)↔ Prcfm) previously described.
Finally, a derived relation r̂ ∈ R̂l is a Boolean combination of relations in Rl all having the
same arguments, while a binding form [r̂ ∈ BF is an argument-closed formula obtained by
the juxtaposition of a binding prefix to a derived relation. Note that [((Ftcf ∧ Mtcm)↔ Prcfm)
is not a binding form, as the three relations have different arguments.

I Definition 3.4 (Binding-Form Fragments). Boolean-binding formulas over L(Vr) are built
by means of the following context-free grammar, where ℘ ∈ Qn and [r̂ ∈ BF:
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ϕ := ⊥ | > | ℘ψ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ); ψ := [r̂ | (ψ ∧ ψ) | (ψ ∨ ψ).

L(Vr)-FOL[bb] denotes the enumerable set of all formulas over L(Vr) generated by the
principal rule ϕ. Moreover, the conjunctive, disjunctive, and one binding fragments of FOL
(FOL[cb], FOL[db], and FOL[1b], for short) are obtained, respectively, by weakening the
secondary rule ψ as follows: ψ := [r̂ | (ψ ∧ ψ), ψ := [r̂ | (ψ ∨ ψ), and ψ := [r̂.

As an example, consider the FOL[bb] sentence ∀x∀y∀z(((c, x)(f, y)Ftcf∧(c, x)(m, z)Mtcm)↔
(c, x)(f, y)(m, z)Prcfm). It is easy to see that this is equivalent to the formula ϕ1 given above.
In general, by applying a simple generalization of the classic procedure used to obtain a
prenex normal form, which further pushes the bindings inside as much as possible, we can
always transform a FOL formula into an equivalent FOL[bb] one, with only a linear blow-up.

I Theorem 3.5 (Binding Normal Form). For each L(Vr)-FOL formula, there exists an
equivalent L(Vr)-FOL[bb] one.

An immediate consequence of the previous theorem is that FOL[bb] inherits all computa-
tional and model-theoretic properties of FOL. Therefore, the following holds.

I Corollary 3.6 (FOL[bb] Properties). FOL[bb] does enjoy both Craig’s interpolation and
Beth’s definability, but not the finite-model property. Also, it has a PSpace-complete
model-checking problem and an undecidable satisfiability problem.

At this point, we describe some meaningful example to illustrate the expressive power of
the other binding-form fragments. First extend the LS LG of Section 2, by adding the two ar-
guments p1 and p2, standing for “person”, and the three binary relations Sb, Mr, and Lv with
SbLG =MrLG =LvLG ={p1, p2}, in place of “Sibling”, “Married”, and “inLove”, respectively.
By definition, two siblings share the same parents. This can be expressed by the FOL[db] sen-
tence ∀x∀y∀z∀w(((p1, x)(p2, y)Sbp1p2∧(c, x)(f, z)(m, w)Prcfm)→(c, y)(f, z)(m, w)Prcfm), where,
for the sake of readability, we use the form (ψ1∧ψ2)→ ψ3 to represent ¬ψ1∨¬ψ2∨ψ3. In the
romantic literature it is common to find an unrequited love, whose scenario may be represented
with the FOL[cb] sentence ∃x∃y∃z((p1, x)(p2, y)Lvp1p2 ∧ (p1, y)(p2, x)¬Lvp1p2 ∧ (p1, y)(p2, z)
Lvp1p2)). Usually, two married people cannot be sibling and should be in love. The FOL[1b]
sentence ∀x∀y(p1, x)(p2, y)(Mrp1p2 → ¬Sbp1p2 ∧ Lvp1p2) precisely expresses this fact. To
conclude, consider the FOL[db] sentence ∀x∀y((p1, x)(p2, y)Mrp1p2 → (p1, y)(p2, x)Mrp1p2)
stating that the relation Mr is symmetric. The only reason why we cannot express it in
FOL[1b] is that the two bindings are permutations of each other. Therefore, if we al-
low the use of permutations in the definition of derived relations, we obtain a strictly
more expressive FOL[1b] fragment able to describe the symmetric property as follows:
∀x∀y(p1, x)(p2, y)(Mrp1p2 → {p1p2 7→ p2p1}Mrp1p2). By using techniques similar to those
developed for FOL[1b], one can prove that such an extension retains exactly the same
model-theoretic and algorithmic properties. However, for the sake of simplicity, we prefer to
postpone this study to the extended version of the paper.

Before continuing, we want to point out an interesting connection between FOL[1b] and
the language par excellence for relational databases. Indeed, without considering negation, it
is not hard to see that sentences of our logic correspond to expressions of relational algebra
of the form unions/natural joins of projections/divisions of positive Boolean combinations of
atomic relations. The connection is still valid in the presence of negation, but it requires a
deeper analysis, as observed in Section 4. Unfortunately, this correspondence is not helpful
in the derivation of the model-theoretic and satisfiability results described in the following.

An expert reader might also have noticed a significant similarity between the concept
of binding form and the notion of uniformity formalized in [26], which is used to introduce
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the uniform one-dimensional fragment of FOL. Nevertheless, the syntax of the four binding
fragments does not comply with the further required one-dimensional restriction. Therefore,
these logics should be orthogonal w.r.t. the expressive power. However, a further analysis of
connections and differences is in order.

Results. The negative features concerning FOL[bb] have spurred us to investigate the three
simpler fragments FOL[cb], FOL[db], and FOL[1b], to which we devote the remaining part
of this section by giving an overview of the obtained model-theoretic and algorithmic results.

As far as the expressiveness is concerned, we show that FOL[1b] is strictly less expressive
than FOL[cb] and FOL[db]. This is done by means of a suitable concept of bisimulation
under which the first fragment is proved to be invariant. Also, FOL[1b] is incomparable with
other logics studied in the literature. Indeed, on the one hand, by means of the sentence
∀x∀y∀z(a1, x)(a2, y)(a3, z)ra1a2a3 , we can state the completeness of a ternary relation r,
which is not possible to express in any of the fragments FOL[2var], FOL[cg], and FOL[gn].
Moreover, FOL[fl] cannot express the reflexivity of a binary relation r [43], which is easily
described by the FOL[1b] sentence ∀x(a1, x)(a2, x)ra1a2 . On the other hand, due to the
invariance under the particular bisimulation referred to above, we have shown that the simple
modal logic formula 23p, does not have an equivalent formulation in FOL[1b]. Finally, it is
possible to observe that both FOL[cb] and FOL[db] are not closed under negation and the
former, differently from the latter, strictly subsumes the conjunctive query fragment of FOL.

I Theorem 3.7 (Expressiveness). FOL[1b] is strictly less expressive than FOL[cb] and
FOL[db] and incomparable with FOL[2var], FOL[cg], FOL[gn], FOL[fl].

Although FOL[cb] and FOL[db] have a more constrained syntax than FOL[bb], they
do not have an easier model-checking problem. We can prove this by employing the classic
reduction from the satisfiability problem of QBF, which is known to be PSpace-complete.

I Theorem 3.8 (FOL[cb] & FOL[db] MC). Both FOL[cb] and FOL[db] have a PSpace-
complete model-checking problem.

For FOL[db], the situation is even worse. In fact, it is not hard to see that this fragment
does not enjoy the finite-model property, as we can express the existence of an unbounded
strict partial order [15]. Moreover, we can show that it is a conservative reduction class [11].

I Theorem 3.9 (FOL[db] FMP & SAT). FOL[db] does not enjoy the finite-model property
and has an undecidable satisfiability problem.

Once observed that the negation of a FOL[cb] formula is equivalent to a FOL[db] one
and vice versa, we immediately derive that the validity problem for FOL[cb] is undecidable.
Nevertheless, we conjecture that this logic is model-theoretically and algorithmically well-
behaved, as we think that the techniques developed for FOL[1b] can be suitably adapted to
work with the more expressive fragment as well.

I Conjecture 3.10 (FOL[cb] FMP & SAT). FOL[cb] does enjoy the finite-model property
and has a decidable satisfiability problem.

We now focus on FOL[1b]. First of all, we prove that it is model-theoretically well-
behaved, as it enjoys the finite-model property and both Craig’s interpolation and Beth’s
definability, which are considered as mandatory properties for a “nice” FOL fragment [3].
To do this, we devise a novel technique that allows us to determine which subsentences of a
given sentence might prevent its satisfiability. In other words, we propose a criterion that
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identifies a set of templates of a formula, i.e., pairs of quantification and binding prefixes
of its subformulas, that may enforce inconsistent requirements on part of the underlying
model. Such a set of templates is said to be overlapping. For example, consider the
sentence ∀x∀y(a1, x)(a2, y)ra1a2 ∧ ∃x(a1, x)(a2, x)¬ra1a2 . It is immediate to see that it is
not satisfiable, as there is an assignment of the arguments a1 and a2, shared by both the
templates (∀x∀y, (a1, x)(a2, y)) and (∃x, (a1, x)(a2, x)), which leads to the inconsistent formula
ra1a2 ∧¬ra1a2 . These templates are, in fact, overlapping. By exploiting this criterion, we are
able to build a particular kind of a finite Herbrand structure [8, 54] that satisfies the formula iff
the overlapping templates only require consistent properties on the shared assignments. This
is the basis for the finite-model property. The same tool is also used to find a particular normal
form for FOL[1b] that allows us to prove Craig’s interpolation, from which Beth’s definability
immediately follows. With more detail, we reduce the search for an interpolant between two
FOL[1b] sentences ϕ1 and ϕ2 to the same problem between two propositional formulas η1
and η2 suitably obtained from the derived relations composing the matrices of the former.
As for the standard syntax, in the new one, an interpolant is a sentence ϕ over the signature
common to ϕ1 and ϕ2 such that ϕ1 ⇒ ϕ⇒ ϕ2 holds. For instance, consider the implication
∃x∀y[(p ∧ (q → r)) ∧ ∀x∃y[(p ∧ (r → q)) ⇒ ∃x∃y[(s → (q ↔ r)), where [ = (x, a1)(y, a2).
Now, it is not hard to see that ∃x∃y[(q↔ r) is the associated FOL[1b] interpolant, where
q↔ r is obtained as the propositional one for (p∧ (q→ r))∧ (p∧ (r→ q))⇒ (s→ (q↔ r)).

I Theorem 3.11 (FOL[1b] FMP, CI & BD). FOL[1b] does enjoy the finite-model property
and both Craig’s interpolation and Beth’s definability.

FOL[1b] is very well-behaved from the algorithmic point of view too. Indeed, we can
provide a PTime model-checking procedure w.r.t. the combined complexity, which is based
on a linear reduction to a two-player reachability game, whose solution is known to be in
PTime [30]. It remains open whether the problem is also hard for this class.

I Theorem 3.12 (FOL[1b] MC). FOL[1b] has a PTime model-checking problem.

We finally discuss the satisfiability problem for FOL[1b], which we prove to be complete
for the third level of the polynomial hierarchy, i.e., ΣP

3 = NPTime CoNPTime NPTime . In
other words, it is solvable by an NPTime Turing machine having access to a CoNPTime
oracle that, in turn, can exploit an NPTime advice. For the upper bound, thanks to the
characterization of satisfiability via the overlapping templates mentioned above, we are
able to reduce the problem to a three-round two-player game, in which each player has
either NPTime or CoNPTime computational power. The lower bound follows from a
reduction from the satisfiability problem of QBF sentences with alternation 2. Intuitively,
we transform a formula of the form ∃∗∀∗∃∗ψ into an equisatisfiable conjunction ϕ∃∧ϕ∀∧ϕψ
of FOL[1b] sentences such that the first two take care of the initial existential and universal
quantifications, while the last handles the matrix. Observe that, since FOL[1b] is closed
under negation, its validity and implication problems inherit the same complexity.

I Theorem 3.13 (FOL[1b] SAT). FOL[1b] has aΣP
3 -complete satisfiability problem.

For the sake of space, we exclusively devote the remaining part of this work to sketching
the proofs of the two algorithmic results concerning FOL[1b].

4 Model Checking

We now describe a PTime model-checking procedure for FOL[1b] sentences of unbounded
width based on a reduction to a reachability game [30] over a tree arena, whose depth and
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size are bound by, respectively, the number of quantifiers in the sentence and the size of the
underlying RS. It is worth noting that the verification of a sentence ϕ can be reduced to a
linear number of checks of its subsentences of the form ℘[r̂. Thus, we just focus on the latter.

Matrix Normalization. Before starting, we need to introduce the concept of restricted
Boolean combination, i.e., a Boolean formula in which the negation is replaced by the
difference connective \, whose semantics is set as follows: φ1 \ φ2 , φ1 ∧ ¬φ2. Now, we can
show that, for each derived relation r̂, there exists a restricted Boolean combination r̂? with
|r̂?| = O(|r̂|) such that either r̂ ≡ r̂? or r̂ ≡ ¬r̂?. This can be proved by induction via De
Morgan’s laws and the substitutions of ϕ1 ∧ ¬ϕ2 and ϕ1 ∨ ¬ϕ2 with ϕ1 \ ϕ2 and ¬(ϕ2 \ ϕ1),
respectively. In case r̂ ≡ r̂?, it holds that ℘[r̂ ≡ ℘[r̂?. If r̂ ≡ ¬r̂?, instead, we have that
℘[r̂ ≡ ¬℘[r̂?, where the quantification prefix ℘ is the dual of ℘, i.e., every existential (resp.,
universal) quantifier in ℘ is replaced by a universal (resp., existential) one in ℘. Hence,
w.l.o.g., we can assume r̂ to be a restricted Boolean combination of relations.

Model-Checking Procedure. The first step in our procedure is to transform the restricted
derived relation r̂ into a fresh atomic relation r? containing all and only the assignments
satisfying r̂. From the original LS L=〈Ar,Rl, ar〉 and L-RS R=〈Dm, rl〉, we build the new
LS L?,〈ar(r̂), {r?}, ar?〉 with ar?(r?),ar(r̂) and the L?-RS R?,〈Dm, rl?〉 with rl?(r?),v(r̂),
where the valuation function v is set as follows: (i) v(r) , rl(r); (ii) v(φ1∧φ2) , v(φ1)∩v(φ2);
(iii) v(φ1 ∨ φ2) , v(φ1) ∪ v(φ2); (iv) v(φ1 \ φ2) , v(φ1) \ v(φ2). It is easy to observe that
R |= ℘[r̂ iff R? |= ℘[r?. Moreover, such a construction can be done in time O(|r̂| · ‖R‖).
Note that, in this step, we are just employing the classic set operations of relational algebra.

The second step is devoted to the transformation of the binding form [r? into an injective
one [\r\ having [\ ,

∏
x∈free([r?)(x, x), i.e., a formula in which every argument is bound

to a different variable. From the previous LS L? and L?-RS R?, we build the new LS
L\ , 〈free([r?), {r\}, ar\〉, where ar\(r\) , free([r?), and the L\-RS R\ , 〈Dm, rl\〉 with
rl\(r\) , {χ ∈ AsgDm : R?, χ |= [r?}. Now, we immediately obtain that R? |= ℘[r? iff
R\ |= ℘[\r\. Moreover, the construction can be done in time O(|[| · ‖R‖). In this case, we are
making use of the three relational algebra operations of selection, projection, and renaming.

x

⊥y y

zz z ⊥ z

>⊥ ⊥ > ⊥ > ⊥ >

1 3 

1 2 3 3 

1 3 2 3 

Figure 2 A prefix-tree reachability game arena.

With the third and final step, we reduce
the verification of R\ |= ℘[\r\ to the win
of the first player in a suitably constructed
reachability game. Firstly, fix an ordering
<⊆ Dm×Dm among the values of the carrier
domain Dm. Then, let<℘ be the ordering on
variables induced by the quantification prefix
℘. Now, we can sort in the lexicographic
order (<,<℘) all tuple functions contained
into the interpretation rl\(r\) of the relation
r\. At this point, from these tuples, we can
construct a prefix-tree data structure, a.k.a. trie [17], taking values in the set {⊥,>}. In
particular, to each tuple in rl\(r\) we assign >, while to every minimal partial tuple that
does not have an extension in the interpretation we assign ⊥. As an example, in Figure 2,
we depict the trie corresponding to Dm = {1, 2, 3}, ar\(r\) = {x, y, z}, x<℘y<℘z, and
rl\(r\) = {xyz 7→ 111, xyz 7→ 123, xyz 7→ 132, xyz 7→ 333}. Note that, as there are no tuple
functions in rl\(r\) having the variable x set to 2, it follows that the corresponding node of
the tree has a ⊥-child. Similarly, the second node corresponding to y has a ⊥-child, since
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there are no tuples in the interpretation of r\ mapping x to 3 and y to 1 or 2. To complete
the construction of the arena we only need to assign the nodes to the players. If a variable
x is existentially (resp., universally) quantified in ℘, the corresponding node of the tree is
assigned to the first (resp., second) player. Now, it is not hard to prove that R\ |= ℘[\r\ iff
the first player wins the reachability game to > on this trie. For instance, consider again
the above arena and suppose that ℘ = ∃x∀y∃z. Then, R\ |= ℘[\r\, as the first player has a
winning strategy on the nodes x and z. On the contrary, assume ℘ = ∀x∃y∃z. In this case
R\ 6|= ℘[\r\, since the second player can choose to reach the ⊥-child of x.

Summing up, since the problem of determining the winner of a turn-based reachability
game is solvable in PTime [30], the complexity of our procedure immediately follows.

5 Satisfiability

We finally come to the more technical part of the paper, in which we provide the satisfiability
procedure for FOL[1b]. In addition we describe the key model-theoretic tool at its basis. As
mentioned before, this is focused on the concept of overlapping templates, i.e., intuitively, a
set {(℘i, [i)} of quantification and binding prefixes for which (i) there is a strict total order
between the arguments that agrees, via [i, with the functional dependences of all ℘i and
(ii) each argument is bound to at most one existential variable. For the sake of space, here
we just give the basic definitions that are necessary to formalize this concept and state the
main characterization theorem. All proofs together with further notions and details will be
reported in the extended version of this work.

In order to have a deeper intuition on the novel model-theoretic tool, we first describe four
examples, built on the LS L=〈{a, b, c}, {q, r}, ar〉 with ar(q)=ar(r)={a, b, c}, which cover
some interesting cases of correlation between the satisfiability of a sentence and the overlapping
property of its templates. Consider the sentence ϕ1 =℘1[1q ∧ ℘2[2¬r ∧ ℘3[3(q↔ r), where
℘1 =∀x∃y∀z, ℘2 =∀y∃z∀x, ℘3 =∀x∀y∀z, and [1 = [2 = [3 = (a, x)(b, y)(c, z). It is not hard
to see that ϕ1 is unsatisfiable, since it requires the inconsistent derived relations q, ¬r, and
q↔ r to hold on the same tuple function t. Indeed, ℘1[1q forces q to hold on all tuples t1
satisfying the constraint t1(b)= f1(t1(a)), where f1 is a Skolem function for y in ℘1. Similarly,
℘2[2¬r demands ¬r on all tuples t2 with t2(c)= f2(t2(b)), where f2 is a Skolem function for
z in ℘2. Finally, ℘3[3(q↔ r) enforces q↔ r on every possible tuple. Hence, the sentence ϕ1
requires ψ=q ∧ ¬r ∧ (q ↔ r) on all tuples t with t(b)= f1(t(a)) and t(c)= f2(t(b)), which
leads to an inconsistency. Observe that we can find such tuples because of the dependency
order a b c among the arguments, which is compatible with the functional dependences
of ℘1 and ℘2 via the bindings [1 and [2. Also, there are no arguments associated to more
than one existential variable. Consequently the set of templates {(℘1, [1), (℘2, [2), (℘3, [3)}
is said to be overlapping. Now, let ϕ2 be the sentence obtained from ϕ1 by replacing the
prefixes ℘3 and [3 with ∀x∀y and (a, x)(b, y)(c, y). We show that ϕ2 is satisfiable on an
RS of order |Dm| = 2. First note that ℘3[3(q↔ r) enforces q↔ r only on tuples t3 with
t3(b) = t3(c). Moreover, choose a Skolem function f2 for z in ℘2 such that f2(α) 6= α, for
every α ∈ Dm, and suppose that ϕ2 requires ψ on a tuple t. In this case, we have that
t(c)= f2(t(b)) and t(b)= t(c), i.e., t(c)= f2(t(c)), which is impossible. Observe that there
are no such tuples t because of a cyclic dependence c c caused by the second and third
sentence. Therefore, the set of templates {(℘2, [2), (℘3, [3)} is not overlapping. Similarly,
consider the sentence ϕ3 drawn from ϕ1 by substituting ∀z∃x∀y for the prefix ℘3. Also in
this case, ϕ3 is satisfiable on an RS of order 2. Indeed, suppose it requires ψ on a tuple t.
Then, we have that t(b)= f1(t(a)), t(c)= f2(t(b)), and t(a)= f3(t(c)), where f3 is a Skolem
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function for x in ℘3. Thus, t(a)= f3(f2(f1(t(a)))). Now, it is not hard to find f1, f2, and f3 in
such a way that f3(f2(f1(α))) 6=α, for every α ∈ Dm. So, the tuple t cannot exist, due to the
cyclic dependence a b c a. Here, {(℘1, [1), (℘2, [2), (℘3, [3)} is a set of non overlapping
templates. Finally, derive the sentence ϕ4 from ϕ1, by setting the prefix ℘3 to ∃z∀x∀y.
Again, ϕ4 is satisfiable, as the argument c is existential in both (℘2, [2) and (℘3, [3). So, one
can find a Skolem constant for z in ℘3 that is different from all possible values assumed by
the Skolem function f2 for z in ℘2.

Satisfiability Characterization. In this technical subsection, we state the fundamental
characterization theorem connecting the satisfiability of a sentence with the overlapping
property of its templates. To do this, we first give the formalization of the latter concept
together with some auxiliary definition. Then, we introduce two suitable graphs defined
on the structural features of a sets of templates, which are used to define the notion of
overlapping.

A template τ , (℘, [) ∈ Tem is a pair of a quantification and a binding prefix on the set of
arguments ar(τ) ⊆ Ar and variables vr(τ) ⊆ Vr. By Tem(A) we denote the subset of templates
having argument set A⊆Ar. For a given template τ = (℘, [), by ∃(τ) (resp., ∀(τ)) we denote
the set of arguments that are associated with an existential (resp., universal) variable in ℘ via
[. Moreover, ∼=τ ⊆ ar(τ)× ar(τ) and  τ ⊆ ∀(τ)×∃(τ) represent, respectively, the collapsing
equivalence and the functional dependence induced by τ , i.e., for all a1, a2 ∈ ar(τ), a1∼=τa2
iff [(a1) = [(a2) and, for all a1 ∈ ∀(τ) and a2 ∈ ∃(τ), a1 τa2 iff the variable [(a1) occurs
before the variable [(a2) in ℘. For instance, for the template τ=(∀x∃y, (a, x)(b, y)(c, x)), it
holds that ∃(τ)={b}, ∀(τ)={a, c}, a τb, c τb, and a∼=τc.

As set of vertexes of the above mentioned graphs, we use the set ArA
S ⊆ S × Ar of

extended arguments e = (τ, a), i.e., pairs of a template τ(e) = τ and one of its arguments
a(e) = a ∈ ar(τ) ∩A. Also, ∃A

S (resp., ∀A
S ) represents the set of existential (resp., universal)

extended arguments, i.e., the elements e such that a(e) ∈ ∃(τ(e)) (resp., a(e) ∈ ∀(τ(e))).

a b c

τ1

τ2

τ3

• • •

• • •

• • •

Figure 3 Collapsing
graphs C1, C3, and C4.

a b c

τ1

τ2

τ3

• • •

• • •

• • •

Figure 4 Collapsing
graph C2.

The collapsing graph for S over A
is the symmetric directed graph CA

S ,
〈ArA

S ,
∼=A

S 〉 with the extended arguments
as vertexes and the edge relation given
by ∼=A

S ,{(e1, e2)∈ArA
S×ArA

S : (τ(e1) =
τ(e2) ⇒ a(e1)∼=τ(e1)a(e2)) ∧ (τ(e1) 6=
τ(e2) ⇒ a(e1) = a(e2))}+. Intuitively,
∼=A

S is the least equivalence relation on
ArA

S that identifies the arguments bound to the same variable in some template. This graph
is used to take into account the multiple possible associations of an argument with the
existential variables, in order to formalize the property (ii) described at the beginning of
the section. In Figure 3, we depict the collapsing graphs Ci=CA

Si
for the set of templates

Si = {τ1= (℘1, [1), τ2= (℘2, [2), τ3= (℘3, [3)} and arguments A = {a, b, c} associated with
every single sentences ϕi given above, where i ∈ {1, 3, 4}. The dots simply represent the
extended arguments obtained by intersecting rows and columns. In Figure 4, we report the
collapsing graph C2=CA

S2
for the sentence ϕ2, where the edge between the vertexes (τ3, b)

and (τ3, c) is due to the binding [3. Note that, since ∼=A
S is an equivalence relation, we are

omitting the transitive closure from the graphs.
We can now define a property describing the case in which two existential arguments

are forced to assume the same value. A collapsing graph CA
S is conflicting iff there are two

existential extended arguments e1, e2 ∈ ∃A
S such that e1∼=A

S e2 and, if τ(e1) = τ(e2) then
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a(e1) 6∼=τ(e1)a(e2). Intuitively, this property ensures the existence of two arguments that, at
the same time, need to assume the same value, due to the collapsing equivalence on some
template, and are both existentially quantified in possibly different templates. As an example,
the collapsing graph C2 of ϕ2 is conflicting, since (τ1, b)∼=A

S (τ2, c). The same holds for the
collapsing graph C4 of ϕ4, since (τ2, c)∼=A

S (τ3, c).

a b c

τ1

τ2

τ3

• • •

• • •

• • •

Figure 5
Dependence graph
D1.

a b c

τ1

τ2

τ3

• • •

• • •

• • •

Figure 6
Dependence graph
D2.

a b c

τ1

τ2

τ3

• • •

• • •

• • •

Figure 7
Dependence graph
D3.

The second graph we
introduce keeps track of
the functional dependences
between arguments that
cross all the templates. This
property has been inform-
ally described in point (i) at
the beginning of this section.
The dependence graph for S
over A is the directed graph
DA

S ,〈ArA
S , 

A
S 〉 with the extended arguments as vertexes and the edge relation given by

 A
S ,
∼=A

S ◦ {(e1, e2)∈ ArA
S ×ArA

S : τ(e1)=τ(e2) ∧ a(e1) τ(e1)a(e2)}. In Figures 5, 6, and 7,
we report the dependence graphs Di=DA

Si
corresponding to the sentences ϕ1, ϕ2, and ϕ3,

respectively. The black arrows represent the functional dependences inside a single template,
while the gray ones are obtained by the composition with the collapsing relation. Note that
D1 is acyclic, so, we can build an order among the extended arguments that agrees with all
functional dependences of the templates. In D2, instead, there is a loop on (τ2, c) due to the
structures of τ2 and τ3. Finally, D3 contains a cycle among (τ3, a), (τ1, b), and (τ2, c).

I Definition 5.1 (Overlapping Templates). A set of templates S ⊆ Tem(A) over a set of
arguments A ⊆ Ar is overlapping iff the collapsing graph CA

S is not conflicting and the
dependence graph DA

S is acyclic.

Observe that there are similarities between the introduced concept of overlapping tem-
plates and notion of weakly acyclic dependencies of TGDs [41], which is known to be a
sufficient property for the termination of the chase algorithm [1], one of the most useful tools
in database theory to test query containment under constraints. This connection will be
analysed in the journal version of this article.

We can finally state the characterization theorem. To do this, we first recall that, for a
given set X and a Boolean formula η over X, we denote by wit(η) ⊆ 2X the set of witnesses
of η, i.e., the set of all possible subsets of X satisfying η.

I Theorem 5.2 (Satisfiability Characterization). A given FOL[1b] sentence ϕ is satisfiable iff
there exists a witness F ∈ wit(ϕ) such that, for all overlapping templates S ⊆ dom(fr)∩Tem(A)
with A ⊆ Ar, it holds that

∧
τ∈S fr(τ) is a satisfiable Boolean combination of relations, where

fr = {(℘, [) ∈ Tem 7→ r̂ ∈ R̂l : ℘[r̂ ∈ F} is the function associating each template with the
corresponding derived relation in F 1.

Satisfiability Procedure. We finally provide an algorithm for the solution of the satisfiability
problem for FOL[1b], which can be interpreted as a satisfiability-modulo-theory procedure.

1 Recall that a FOL[1b] sentence can be seen as a Boolean combination of sentences of the form ℘[r̂.
Moreover, we are assuming that each quantification/binding prefix ℘[ in ϕ occurs only once, thus, fr is
indeed a function (this can be ensured by a standard renaming of the variables).
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Indeed, by means of a syntactic preprocessing based on the concept of overlapping templates,
the search for a model of a FOL[1b] sentence is reduced to that of a sequence of Boolean
formulas over the set of derived relations. The correctness of such an approach is crucially
based on the fundamental characterization of Theorem 5.2. It is also interesting to observe
that the procedure is independent from the size of the finite model derived in the proof of
Theorem 3.11.

Algorithm 1: FOL[1b] Satisfiability Checker.
signature sat : L(Vr)-FOL[1b]→ {>,⊥}
function sat(ϕ)

1 foreach F ∈ wit(ϕ) do
2 fr← {(℘, [) ∈ Tem 7→ r̂ ∈ R̂l : ℘[r̂ ∈ F}
3 i← ⊥
4 foreach S⊆dom(fr)∩Tem(A) with A⊆Ar do
5 if S is-overlapping-over A then
6 if wit(

∧
τ∈S fr(τ)) = ∅ then

7 i← >

8 if i = ⊥ then
9 return >

10 return ⊥

To understand the main idea
behind the algorithm, it is use-
ful to describe it through a
simple three-round two-player
turn-based game between the
existential player, called Eloise,
willing to show that a sentence
ϕ is satisfiable, and the univer-
sal player, called Abelard, try-
ing to do exactly the oppos-
ite. First, Eloise chooses a wit-
ness F ∈ wit(ϕ) for ϕ seen as a
Boolean combination of simpler
subsentences of the form ℘[r̂. In
this way, she identifies a formula
function fr={(℘, [)∈Tem 7→ r̂∈
R̂l : ℘[r̂∈F} that describes F by
associating each derived relation with the corresponding template. Then, Abelard chooses
a subset of overlapping templates S ⊆ dom(fr)∩Tem(A) over a set of arguments A ⊆ Ar.
At this point, Eloise wins the play iff the Boolean formula ψ=

∧
τ∈S fr(τ), obtained as the

conjunction of all the derived relations associated with the templates in S, is satisfiable. If
this is not the case, Abelard has spotted a subset {℘[fr(τ) : τ = (℘, [)∈S} of the witness F
that requires to verify the unsatisfiable property ψ on a certain valuation of arguments in A.
Thus, F cannot have a model. Consequently, ϕ is satisfiable iff Eloise has a winning strategy
for this game.

We can now describe the pseudo-code of Algorithm 1. The deterministic counterpart of
Eloise’s choice is the selection of a witness F∈wit(ϕ) in the loop at Line 1, which is followed
by the computation of the corresponding formula function fr. At each iteration, a flag i is
also set to ⊥, with the aim to indicate that F is not inconsistent (a witness is consistent
until proven otherwise). After this, we find the deterministic counterpart of Abelard’s choice,
implemented by the combination of a loop and a conditional statement at Lines 4 and 5,
where a subset of overlapping templates S⊆dom(fr)∩Tem(A) over a set of arguments A⊆Ar
is selected. This is done in order to verify the inconsistency of the conjunction

∧
τ∈S fr(τ) at

Line 6. If this check is positive then the flag i is switched to >. Once all choices for Abelard
are analysed, the computation reaches Line 8, where it is verified whether an inconsistency
was previously found. In the negative case, the algorithm terminates by returning >, with
the aim to indicate that a good guess for Eloise is possible. In the case all witnesses are
analysed, finding for each of them an inconsistency, Eloise has no winning strategy. Thus,
the algorithm ends by returning ⊥.

It remains to evaluate the complexity of the algorithm w.r.t. the length of the sentence ϕ.
The verification at Lines 5-7 of Abelard’s universal guess of Line 4 can be done in PTime with
an NPTime advice for the Boolean satisfiability problem of Line 6. Thus, the check at Lines 2-
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9 of Eloise’s existential guess of Line 1 can be done in PTime with a CoNPTimeNPTime

advice for Line 4. Hence, the overall complexity is ΣP
3 = NPTime CoNPTimeNPTime, i.e., the

problem belongs to the third level of the polynomial hierarchy.

6 Discussion

Trying to understand the reasons why some powerful extensions of modal logic are decidable,
we introduced and studied a new family of FOL fragments based on the combinations of
binding forms admitted in their formulas. In other words, we provided a novel criterion to
classify FOL sentences focused on the associations between arguments and variables. A main
features of this classification is to avoid the usual syntactic restrictions on quantifier patterns,
number of variables, relation arities, and relativisation of quantifiers or negations. Therefore, it
represents a suitable framework in which to study model-theoretic and algorithmic properties
of extensions of modal logic, such as ATL? and SL[1g]. We analysed the expressiveness of
the introduced fragments, showing that the simplest one, called one binding (FOL[1b]), is
already incomparable with other important restrictions of FOL, such as the clique guarded
(FOL[cg]) [19, 22], the guarded negation (FOL[gn]) [7], and the fluted logic (FOL[fl]) [44].
Moreover, we proved that it enjoys the finite-model property, a PTime model checking, a ΣP

3 -
complete satisfiability, and a constructive version of both Craig’s interpolation and Beth’s
definability, which are indirectly derived from the same properties of propositional logic. As
future work, besides a deeper study of the conjunctive and disjunctive fragments (FOL[cb]
and FOL[db]), it is important to verify which of the stated results lift to the extensions of
the introduced logics that comprise distinguished relations representing equivalences, orders,
or the equality. Finally, it would be interesting to come up with a wider framework, which
can accommodate the incomparable languages FOL[cg], FOL[gn], FOL[fl], and FOL[1b].
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