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Abstract
Compositional reasoning over probabilistic systems wrt. behavioral metric semantics requires
the language operators to be uniformly continuous. We study which SOS specifications define
uniformly continuous operators wrt. bisimulation metric semantics. We propose an expressive spe-
cification format that allows us to specify operators of any given modulus of continuity. Moreover,
we provide a method that allows to derive from any given specification the modulus of continuity
of its operators.
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1 Introduction

Probabilistic programming languages are languages that incorporate probabilistic choice
as a primitive. They allow us to describe probabilistic concurrent communicating systems.
The operational semantics of those languages is usually described by Structural Operational
Semantics (SOS) specifications. A SOS specification assigns to each language expression a
transition system with transitions inductively defined by means of SOS rules [19, 7].

As behavioral semantics we consider bisimulation metric [9, 22], which is the quantitative
analogue of bisimulation equivalence [17] and assigns to each pair of processes a distance
which measures the proximity of their quantitative properties. Compositional reasoning over
probabilistic processes and probabilistic programs requires that the language operators are
uniformly continuous [12]. Uniform continuity ensures that a small variance in the behavior
of the parts leads to a bounded small variance in the behavior of the composed processes.

A successful approach to study systematically compositionality properties is the struc-
tural analysis of SOS language specifications [1, 19]. In this approach one analyses SOS
specifications that satisfy desired compositionality properties and proposes syntactic SOS
rule and specification templates that ensure by construction the compositionality property.

In this paper we develop an expressive SOS specification format guaranteeing that the
specified operators are uniformly continuous. The format allows us to specify for each operator
its respective modulus of continuity. Our fundamental insight is that an operator is uniformly
continuous if it is Lipschitz continuous for each finite projection. The SOS specification
format derives then from the definition of Lipschitz factors of the finite projections the
guarantee that the specified operator is uniformly continuous. Furthermore, we develop a
method to derive from any modulus of continuity the respective syntactic requirements on
the specifications ensuring that the specified operators satisfy this modulus of continuity.
Moreover, we develop a novel method to derive from any SOS specification the modulus of
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continuity of its operators. The Lipschitz factor of some operator wrt. the k-th projection,
i.e., wrt. the up-to-k bisimulation metric, is determined by the replication of processes in
the first k steps, the probabilistic choices in those steps, and the (step) discount of the
bisimulation metric. Hence, our analysis provides further insights in the interplay between
those determining factors. Our key contributions are:
1. We develop an expressive SOS specification format guaranteeing that all specified operators

are uniformly continuous (Thm. 28).
2. We provide a method that allows us to derive for any uniformly continuous operator its

respective modulus of continuity from its specification rules (Thms. 27 and 28).
3. We provide a method that, given any modulus of continuity, determines sufficient syntactic

requirements s.t. any specification satisfying these requirements defines an operator with
that modulus of continuity (Thm. 32).

4. We show by appropriate examples that our SOS specification formats and syntactic
requirements cannot be relaxed in any obvious way (Exs. 10–13).

5. We apply those results and derive an upper bound on the distance between language
expressions from the syntactic properties of the operators (Thm. 35). This enables metric
compositional reasoning over partial program specification [12].

The paper is organized as follows. In Section 2 we recall the necessary technical definitions.
In Section 3 we prove that an operator is uniformly continuous if it is Lipschitz continuous for
each finite projection. In Section 4 we discuss which structural patterns of SOS rules define
uniformly continuous operators. In Section 5 we present our format for uniformly continuous
operators. In Section 6 we develop our method to derive from any modulus of continuity the
respective syntactic requirements on the specifications ensuring that the specified operators
satisfy this modulus of continuity. In Section 7 we show how to apply our results to derive
an upper bound on the distance between language expressions from the syntactic properties
of the operators. We conclude in Section 8 and discuss possible future work.

2 Preliminaries

The operational semantics of programming languages and process algebras is usually given
as a transition system with language expressions (terms) as states and a transition relation
inductively defined by means of SOS rules.

Probabilistic Transition Systems. A signature is a structure Σ = (F, r), where F is a
countable set of operators, and r : F → N is a rank function. We will use n for r(f) if it
is clear from the context. By f ∈ Σ we mean f ∈ F . We assume an infinite set of state
variables Vs. The set of state terms over a signature Σ and a set of state variables V ⊆ Vs,
notation T(Σ, V ), is defined as usual. The set of closed state terms T(Σ, ∅) is abbreviated as
T(Σ). The set of open state terms T(Σ,Vs) is abbreviated as T(Σ).

Probabilistic transition systems extend transition systems by allowing for probabilistic
choices in the transitions. We consider probabilistic nondeterministic labelled transition
systems [20]. As state space we take the set of all closed terms T(Σ). Probability distributions
over this space are mappings π : T(Σ) → [0, 1] with

∑
t∈T(Σ) π(t) = 1 that assign to each

term t ∈ T(Σ) its respective probability π(t). By ∆(T(Σ)) we denote the set of all probability
distributions on T(Σ). We let π, π′ range over ∆(T(Σ)).

I Definition 1 (PTS [20]). A probabilistic nondeterministic labeled transition system (PTS)
is given by a triple (T(Σ), A,−→), where Σ is a signature, A is a countable set of actions, and
−→ ⊆ T(Σ)×A×∆(T(Σ)) is a transition relation.
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We write t a−→ π for (t, a, π) ∈ −→. Let der(t, a) = {π ∈ ∆(T(Σ)) | t a−→ π}.

Bisimulation metric. Bisimulation metrics are the quantitative analogue to bisimulation
equivalences. Let ([0, 1]T(Σ)×T(Σ),v) be the complete lattice of functions d, d′ : T(Σ)×T(Σ)→
[0, 1] ordered by d v d′ iff d(t, t′) ≤ d′(t, t′) for all terms t, t′ ∈ T(Σ). The bottom element
0 is the constant zero function 0(t, t′) = 0. A function d : T(Σ) × T(Σ) → [0, 1] is a 1-
bounded pseudometric if d(t, t) = 0, d(t, t′) = d(t′, t) and d(t, t′′) ≤ d(t, t′) + d(t′, t′′) for all
t, t′, t′′ ∈ T(Σ). Intuitively, the bisimilarity metric will be a 1-bounded pseudometric d with
d(t, t′) measuring the maximal distance of quantitative properties between t and t′.

We define now the bisimilarity metric as least fixed point of a monotone function
over ([0, 1]T(Σ)×T(Σ),v) [8]. A pseudometric on terms T(Σ) is lifted to a pseudometric on
distributions ∆(T(Σ)) by the Kantorovich pseudometric. This lifting corresponds to the
lifting of bisimulation equivalence relations on terms to bisimulation equivalence relations on
distributions [22]. A matching for a pair of distributions (π, π′) ∈ ∆(T(Σ))×∆(T(Σ)) is a
distribution over the product state space ω ∈ ∆(T(Σ)×T(Σ)) with π and π′ as left and right
marginal, i.e.,

∑
t′∈T(Σ) ω(t, t′) = π(t) and

∑
t∈T(Σ) ω(t, t′) = π′(t′) for all terms t, t′ ∈ T(Σ).

Let Ω(π, π′) denote the set of all matchings for (π, π′). The Kantorovich pseudometric
K(d) : ∆(T(Σ))×∆(T(Σ))→ [0, 1] of pseudometric d : T(Σ)×T(Σ)→ [0, 1] is defined for all
distributions π, π′ ∈ ∆(T(Σ)) by

K(d)(π, π′) = min
ω∈Ω(π,π′)

∑
t,t′∈T(Σ)

d(t, t′) · ω(t, t′).

In order to capture nondeterministic choices, we need to lift pseudometrics on distributions
to pseudometrics on sets of distributions. The Hausdorff pseudometric H(d̂) : P (∆(T(Σ)))×
P (∆(T(Σ)))→ [0, 1] is defined for Π1,Π2 ⊆ ∆(T(Σ)) and d̂ : ∆(T(Σ))×∆(T(Σ))→ [0, 1] by

H(d̂)(Π1,Π2) = max
{

sup
π1∈Π1

inf
π2∈Π2

d̂(π1, π2), sup
π2∈Π2

inf
π1∈Π1

d̂(π2, π1)
}

with inf ∅ = 1, sup ∅ = 0.
Now we define B : [0, 1]T(Σ)×T(Σ) → [0, 1]T(Σ)×T(Σ) by

B(d)(t, t′) = sup
a∈A
{H(λ ·K(d))(der(t, a), der(t′, a))}

for d : T(Σ)×T(Σ)→ [0, 1], t, t′ ∈ T(Σ), λ ∈ (0, 1] a discount factor1, and (λ ·K(d))(π, π′) =
λ ·K(d)(π, π′). B is a monotone function over ([0, 1]T(Σ)×T(Σ),v). Prefixed points B(d) v d
are pseudometrics satisfying the bisimulation transfer condition (for all pairs t and t′ each
transition from t can be mimicked by an equally labelled transition from t′ s.t. the distance
between the accessible distributions does not exceed the distance between t and t′). By the
Knaster-Tarski theorem B has a least fixed point, which forms the bisimilarity metric.

I Definition 2 (Bisimilarity metric [9, 8]). We call dk = Bk(0) the up-to-k bisimilarity metric,
and d = limk→∞ dk the bisimilarity metric.

By bisimulation distance between t and t′ we mean d(t, t′). Bisimulation equivalence [20]
is the kernel of the bisimilarity metric [9].

1 By means of the discount factor λ ∈ (0, 1] we allow to specify how much the behavioral distance of
future transitions is taken into account.
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I Example 3. Consider the probabilistic CCS [23, 15, 12] terms s = a.aω and te = a.([1−
e]aω ⊕ [e]0), with e ∈ (0, 1). Process aw performs a forever. The transitions s a−→ πs, with
πs(aω) = 1, and te

a−→ πt, with πt(aω) = 1−e and πt(0) = e, are derivable. Then d(aω, aω) =
0 and d(aω, 0) = 1. Hence K(d)(πs, πt) = e. Thus, d0(s, te) = 0 and dk(s, te) = λe if k ≥ 1.
Finally, we get d(s, te) = λe.

Algebra of probability distributions. By δ(t) with t ∈ T(Σ) we denote the Dirac distri-
bution defined by (δ(t))(t) = 1. The convex combination

∑
i∈I piπi of a family {πi}i∈I of

distributions πi ∈ ∆(T(Σ)) with pi ∈ (0, 1] and
∑
i∈I pi = 1 is defined by (

∑
i∈I piπi)(t) =∑

i∈I(piπi(t)) for all t ∈ T(Σ). The expression f(π1, . . . , πn) with f ∈ Σ and πi ∈ ∆(T(Σ))
denotes the product distribution defined by f(π1, . . . , πn)(f(t1, . . . , tn)) =

∏n
i=1 πi(ti).

In order to describe probabilistic behavior, we need syntactic expressions that denote
probability distributions. We assume an infinite set of distribution variables Vd. We let µ, ν
range over Vd. We denote by V the set of state and distribution variables V = Vs ∪Vd. We let
ζ, ζ ′ range over V . The set of distribution terms over a set of state variables Vs ⊆ Vs and a set
of distribution variables Vd ⊆ Vd, notation DT(Σ, Vs, Vd), is the least set satisfying [6]:
(i) Vd ⊆ DT(Σ, Vs, Vd),
(ii) {δ(t) | t ∈ T(Σ, Vs)} ⊆ DT(Σ, Vs, Vd),
(iii)

∑
i∈I piθi ∈ DT(Σ, Vs, Vd) whenever θi ∈ DT(Σ, Vs, Vd) and pi ∈ (0, 1] with

∑
i∈I pi = 1,

and
(iv) f(θ1, . . . , θn) ∈ DT(Σ, Vs, Vd) whenever f ∈ Σ and θi ∈ DT(Σ, Vs, Vd).
We write θ1⊕p θ2 for

∑2
i=1 piθi with p1 = p and p2 = 1−p. Furthermore, we write θ1 f θ2 for

f(θ1, θ2). We write DT(Σ) for DT(Σ,Vs,Vd) (set of all open distribution terms), and DT(Σ)
for DT(Σ, ∅, ∅) (set of all closed distribution terms).

Distribution terms have the following meaning. A distribution variable µ ∈ Vd is a variable
that takes values from ∆(T(Σ)). An instantiable Dirac distribution δ(t) instantiates to δ(t′)
if t instantiates to t′. Case (iii) allows to construct convex combinations of distributions.
Case (iv) lifts the structural inductive construction of state terms to distribution terms.
Substitutions are defined as usual [7].

SOS specification. We specify the operational semantics of operators by SOS rules. SOS
rules are syntax-driven inference rules that define the behavior of complex expressions in
terms of the behavior of their components. We employ SOS rules of the probabilistic GSOS
format [4, 7, 18, 6]. This format uses triples of the form t

a−→ θ that specify in a single
literal all probabilistic choices of a transition. Earlier formats [3, 16, 21] used the old
fashion quadruple t a,p−−→ t′ that decorates the transitions with both the action label and
the probability in order to partially specify a probabilistic jump. However, this approach
required complicated consistency conditions on the set of all rules to ensure that the partially
specified probabilistic jumps define in total probabilistic choices.

I Definition 4 (SOS rule). A SOS rule r has the form:

{xi
ai,k−−−→ µi,k | i ∈ I, k ∈ Ki} {xi

bi,l−−→6 | i ∈ I, l ∈ Li}
f(x1, . . . , xn) a−→ θ

with n the rank of operator f ∈ Σ, I = {1, . . . , n} the indices of the arguments of f , Ki, Li
finite index sets, ai,k, bi,l, a ∈ A actions, xi ∈ Vs state variables, µi,k ∈ Vd distribution
variables, and θ ∈ DT(Σ) a distribution term. Furthermore, all µi,k for i ∈ I, k ∈ Ki

are pairwise different, all x1, . . . , xn are pairwise different, and all variables in θ are from
{µi,k | i ∈ I, k ∈ Ki} ∪ {x1 . . . , xn}.
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The expressions xi
ai,k−−−→ µi,k, xi

bi,l−−→6 and f(x1, . . . , xn) a−→ θ are called, resp., positive
premises, negative premises and conclusion. The set of all premises is denoted by prem(r).
The term f(x1, . . . , xn) is called the source, the variables x1, . . . , xn are called source variables,
and the distribution term θ is called the target (notation trgt(r)). Let der(r, xi) = {µi,k |
xi

ai,k−−−→ µi,k ∈ prem(r)}. We call µ ∈ der(r, xi) a derivative of source variable xi.
A probabilistic transition system specification (PTSS) is a triple P = (Σ, A,R), where Σ is

a signature, A is a countable set of actions and R is a countable set of SOS rules. We denote
by Rf the set of rules specifying operator f , i.e., all rules of R with source f(x1, . . . , xn).
The unique model of P is a PTS (T(Σ), A,−→), with transitions in −→ all and only those for
which P offers a justification [7].

Intuitively, a term f(t1, . . . , tn) represents the composition of terms t1, . . . , tn by operator
f . A rule r specifies some transition f(t1, . . . , tn) a−→ π that represents the evolution of
the composed term f(t1, . . . , tn) by action a to the distribution π. We say that a rule with
conclusion f(x1, . . . , xn) a−→ θ delays the evolution of the source term xi if xi appears in
θ, and that the source term xi evolves to µ ∈ der(r, xi) if µ appears in θ. We say that r
replicates a source variable xi if multiple instances of either xi or xi-derivatives in der(r, xi)
appear in the target θ of rule r.

3 Uniform continuity

In order to specify and reason about probabilistic systems in a compositional manner, it
is necessary that the operators describing these systems are uniformly continuous [12]. A
uniformly continuous operator ensures that a small variance in the behavior of a system
component leads to a bounded small variance in the behavior of the composed system. We
assume some fixed PTSS P = (Σ, A,R).

I Definition 5 (Modulus of continuity). Let f ∈ Σ be some n-ary operator and d be any
1-bounded pseudometric on T(Σ). A mapping ω : [0, 1]n → [0, 1] is an upper bound on the
distance between f -composed terms wrt. d if for all terms si, ti ∈ T(Σ)

d(f(s1, . . . , sn), f(t1, . . . , tn)) ≤ ω(d(s1, t1), . . . , d(sn, tn)).

An upper bound ω of f wrt. d is a modulus of continuity of f wrt. d if ω is continuous at
(0, . . . , 0), i.e., lim(ε1,...,εn)→(0,...,0) ω(ε1, . . . , εn) = ω(0, . . . , 0), and ω(0, . . . , 0) = 0.

I Definition 6 (Uniformly continuous operator). Let d be any 1-bounded pseudometric on
T(Σ). An operator f ∈ Σ is
1. uniformly continuous wrt. d if f admits some modulus of continuity wrt. d,
2. L-Lipschitz continuous wrt. d with L ∈ R≥0 if ω(ε1, . . . , εn) = L

∑n
i=1 εi is a modulus of

continuity of f wrt. d, and
3. Lipschitz continuous wrt. d if f is L-Lipschitz continuous wrt. d for some L ∈ R≥0.

I Example 7. Consider the synchronous parallel composition operator specified by

x
a−→ µ y

a−→ ν

x | y a−→ µ | ν

and terms s and te as in Ex. 3. Recall that d(s, te) = λe. The transitions s | s a−→ πs,
with πs = δ(aω | aω), and te1 | te2

a−→ πt, with πt = (1 − e1)(1 − e2)δ(aω | aω) + e1(1 −
e2)δ(0 | aω) + (1 − e1)e2δ(aω | 0) + e1e2δ(0 | 0), are derivable. Then, d(s | s, te1 | te2) =

CONCUR’15



160 Uniformly Continuous SOS Specifications of Probabilistic Systems

λK(d)(πs, πt) = λ(1− (1− e1)(1− e2)) ≤ λe1 + λe2 = d(s, te1) + d(s, te2). Thm. 27 below
will confirm that ω(ε1, ε2) = ε1 + ε2 is a modulus of continuity of the synchronous parallel
composition operator wrt. d. Hence, this operator is 1-Lipschitz continuous.

The behavioral distance between two arbitrary terms s and t can be divided in the
distance observable by the first k steps and the distance observable after step k. The distance
observable after step k is bounded by λk.

I Proposition 8. Let s, t ∈ T(Σ). Then d(s, t) ≤ dk(s, t) + λk for all k ∈ N.

A fundamental insight that we will use later to define the SOS specification format is that
an operator is uniformly continuous wrt. the bisimilarity metric if this operator is Lipschitz
continuous wrt. all up-to-k bisimilarity metrics.

I Theorem 9. Assume λ < 1. If an operator f ∈ Σ is Lipschitz continuous wrt. dk for each
k ∈ N, then f is uniformly continuous wrt. d.

Hence, we assume now a strictly discounting bisimulation metric with λ < 1.

4 Analysis of uniformly continuous operators

We analyze now the structural patterns of SOS rules that define uniformly continuous
operators and give representative examples of rules that specify operators that are not
uniformly continuous. Moreover, we derive from the structural properties of the rules the
moduli of continuity of the specified operators.

I Example 10 (Non-recurring process replication). Consider the rules

x
a−→ µ

f(x) a−→ θ

x
a−→ µ y

a−→ ν

x | y a−→ µ | ν

with θ ∈ DT(Σ) some distribution term. We analyze for various distribution terms θ the
modulus of continuity of the specified operator f . We use again the terms s and te from
Ex. 3. Recall that d(s, te) = λe.

Consider θ = δ(x | x). The operator f replicates the source process x, delays both
instances, and lets them evolve in parallel. The transitions f(s) a−→ δ(s | s) and f(te)

a−→
δ(te | te) are derivable. It follows that d(f(s), f(te)) = λK(d)(δ(s | s), δ(te | te)) = λd(s |
s, te | te) ≤ 2λd(s, te) (c.f. Ex. 7). Thm. 27 below will confirm that ω(ε) = (2λ)ε is a modulus
of continuity of this specification of f .

Consider θ = (δ(x | x)⊕r δ(0)) for some r ∈ (0, 1). The operator f replicates and delays
now only with probability r the source process x. The transitions f(s) a−→ rδ(s | s)+(1−r)δ(0)
and f(te)

a−→ rδ(te | te) + (1 − r)δ(0) are derivable. Hence, d(f(s), f(te)) = λrd(s | s, te |
te) ≤ 2rλd(s, te). Thm. 27 below will confirm that ω(ε) = (2rλ)ε is a modulus of continuity
of this specification of f .

Consider θ = (µ | µ) ⊕r δ(0). The operator f replicates (but does not delay) with
probability r the source process x. The evolved instances proceed in parallel. The transitions
f(s) a−→ rδ(aω | aω) + (1− r)δ(0) and f(te)

a−→ r((1− e)2δ(aω | aω) + e(1− e)δ(0 | aω) + (1−
e)eδ(aω | 0) + e2δ(0 | 0)) + (1− r)δ(0) are derivable. Now d(f(s), f(te)) ≤ 2rλe = 2rd(s, te).
Thm. 27 below will confirm that ω(ε) = (2r)ε is a modulus of continuity of this specification
of f .
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In essence, Ex. 10 shows that the number of non-recurring process replications, weighted
by the probability of their realization, and weighted by the discount factor if processes are
delayed, determines the Lipschitz factor of the operator.

I Example 11 (Linear process replication). We proceed with the analysis of Ex. 10 and
analyze the specification of recursive replication behavior.

Consider θ = δ(f(x)) | µ. Note that this specification of f is precisely the π-calculus
bang operator. The transitions f(s) a−→ πs, with πs = δ(f(s) | aω), and f(te)

a−→ πt, with
πt = (1 − e)δ(f(te) | aω) + eδ(f(te) | 0) are derivable. Then d(f(s), f(te)) = λe + λ(1 −
e)d(f(s) | aω, f(te) | aω)) = λe+ λ(1− e)d(f(s), f(te)). Hence, d(f(s), f(te)) = λe

1−λ+λe ≤
λe

1−λ = 1
1−λd(s, te). Intuitively, the operator f spawns and delays in each computation step a

new instance of the source process x. Thus, the total number of spawned (resp. discounted)
process copies is

∑∞
k=0 λ

k = 1/(1 − λ). Hence, ω(ε) = 1
1−λε (formally shown below by

Thm. 27) is a modulus of continuity of this specification of f .
Consider θ = δ(f(x)) | µ | δ(x). The specified operator f has the modulus of continuity

ω(ε) = 1+λ
1−λε. Similarly, if θ = δ(f(x)) | µ | δ(x) | δ(x), then ω(ε) = 1+2λ

1−λ ε is a modulus of
continuity of the specified operator f .

In essence, Ex. 11 shows that if the number of recurring process replications is finitely
bounded, then the specified operator is Lipschitz continuous.

I Example 12 (Non-linear process replication). We analyze now the fork operation of operating
systems specified by the copy operator of [5, 11] with the rules

x
a−→ µ

cp(x) a−→ µ
(a 6∈ {l, r}) x

l−→ µ x
r−→ ν

cp(x) s−→ cp(µ) | cp(ν)

Actions l and r are the left and right forking actions, and s is the resulting split action.
The fork of t is the process cp(t) evolving by t to the parallel composition of the left fork
(l-derivative of t) and the right fork (r-derivative of t). For all other actions a 6∈ {l, r} the
process cp(t) mimics the behavior of t.

First, we show that the copy operator is not Lipschitz continuous. Formally, for any
L ∈ R≥0, we show that d(cp(s), cp(t)) > Ld(s, t) for some CCS processes s, t. Let s1 =
l.([1 − e]a ⊕ [e]0) + r.([1 − e]a ⊕ [e]0) and t1 = l.a + r.a, and sk+1 = l.sk + r.sk and
tk+1 = l.tk+r.tk. Clearly d(sk, tk) = λke. Then d(cp(sk), cp(tk)) = λk(1− (1−e)2k ). Hence,
for any k with 2k > L, d(cp(s), cp(t))/d(s, t) = (1− (1− e)2k )/e > L holds for s = sk, t = tk
and all 0 < e < (2k −L)/(2k−1(2k − 1)). Thus, the copy operator is not Lipschitz continuous.

However, Thm. 27 below will confirm that ω(ε) = infk∈N(2kε + λk) is a (non-linear)
modulus of continuity of the copy operator. Intuitively, the copy operator creates in k steps
at most 2k copies of the source process x, i.e., the copy operator is 2k-Lipschitz continuous
for the up-to-k bisimilarity metric. Then, by Prop. 8 we derive the modulus of continuity
wrt. bisimilarity metric from the moduli of continuity of the up-to-k bisimilarity metrics.

In essence, Ex. 12 shows that an operator is uniformly continuous if in each step only finitely
many process copies are spawned.

I Example 13 (Non-uniformly continuous operators). Consider the unary operators f and g
specified by the following rules for all k ∈ N:

x
a−→ µ

f(x) a−→ µ | . . . | µ︸ ︷︷ ︸
k−times

g(x) a−→ δ(h(. . . h(︸ ︷︷ ︸
k−times

x)))
x

a−→ µ

h(x) a−→ µ | µ

CONCUR’15



162 Uniformly Continuous SOS Specifications of Probabilistic Systems

We start with operator f . We get d(f(s), f(te)) = supk∈N λ(1− (1− e)k) = λ. The least
upper bound on the distance between f -composed processes is ω(ε) = λ if ε > 0 and ω(0) = 0.
However, ω is not a modulus of continuity since it is not continuous at 0. Hence, operator f
is not uniformly continuous.

We proceed with operator g. We get d(g(s), g(te)) = supk∈N λ2(1 − (1 − e)2k ) = λ2.
Following the same line of reasoning as with operator f we conclude that operator g is not
uniformly continuous.

In essence, Ex. 13 shows that an operator may be not uniformly continuous if there is no
bound on the number of process copies it can spawn in a single step.

5 Specification of uniformly continuous operators

We develop now a specification format that allows us to specify uniformly continuous operators.
We exploit Thm. 9 and specify uniformly continuous operators by defining suitable Lipschitz
factors wrt. all up-to-k bisimilarity metrics.

5.1 Finite projection Lipschitz continuous operators
I Definition 14 (Lipschitz factor assignment). We call a mapping2 L : (N × Σ) → R∞≥0 a
Lipschitz factor assignment (LFA, for short) for operators in Σ. Let LΣ be the set of all
LFAs for Σ, with L,M ∈ LΣ ordered L vM iff Lk(f) ≤Mk(f) for all k ∈ N and f ∈ Σ.

Intuitively, Lk(f) is either the Lipschitz factor of operator f ∈ Σ wrt. dk, or ∞ if f is
not Lipschitz continuous wrt. dk.

I Proposition 15. (LΣ,v) is a complete lattice.

It is clear that the bottom element of the lattice (LΣ,v) is the LFA 0 ∈ LΣ given by
0k(f) = 0 for all k ∈ N and f ∈ Σ.

I Definition 16 (Semantic consistency). Let L ∈ LΣ be a LFA and k ∈ N. We call L
consistent with the up-to-k bisimilarity metric dk if

dk(f(s1, . . . , sn), f(t1, . . . , tn)) ≤ Lk(f)
n∑
i=1

dk(si, ti)

for all operators f ∈ Σ and terms si, ti ∈ T(Σ). Furthermore, we call L consistent with the
bisimilarity metric d if L is consistent with dk for all k ∈ N.

Hence L ∈ LΣ is consistent with dk if each operator f with Lk(f) <∞ is Lk(f)-Lipschitz
continuous wrt. dk. We proceed by lifting LFAs from operators to terms.

I Definition 17 (LFA on terms). Let L ∈ LΣ be a LFA. The lifting of L is a Lipschitz factor
assignment on terms given as the mapping L : (N× (T(Σ) ∪ DT(Σ))× V)→ R∞≥0 defined by:

Lk(t, ζ) =


1 if t = ζ

Lk(f)
n∑
i=1

Lk(ti, ζ) if t = f(t1, . . . , tn)

0 otherwise

2 We will write the first argument of L as subscript, i.e., Lk(f) for L(k, f), to align with the notation dk

of up-to-k-bisimilarity metric.
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Lk(θ, ζ) =



1 if θ = ζ

Lk(t, ζ) if θ = δ(t)∑
i∈I

pi · Lk(θi, ζ) if θ =
∑
i∈I

piθi

Lk(f)
n∑
i=1

Lk(θi, ζ) if θ = f(θ1, . . . , θn) and ζ ∈ Vs

Lk(f)
n∑
i=1

Lk(θi, ζ) if θ = f(θ1, . . . , θn) and ζ ∈ Vd

0 otherwise

with Lk(f) = max(Lk(f), 1).

The Lipschitz factor of a state term arises from the functional composition of the Lipschitz
moduli of continuity of the operators in the state term. Similarly, also for distribution terms
except for operators with Lk(f) < 1 (case 5 of Lk(θ, ζ)). As shown in [13, Sec. 4.2], if f has
a modulus of continuity on state terms below 1-Lipschitz continuity, then the modulus of
continuity of f on distribution terms is 1-Lipschitz continuity (but not smaller).

The lifting of a LFA preserves consistency.

I Proposition 18. Let L ∈ LΣ be a LFA and k ∈ N. If L is consistent with dk, then for any
term t ∈ T(Σ) we have

dk(σ1(t), σ2(t)) ≤
∑
x∈Vs

Lk(t, x) · dk(σ1(x), σ2(x))

for all closed substitutions σ1, σ2 : V → T(Σ).

The set of SOS rules R gives rise to a mapping R : LΣ → LΣ with R(L) defined as the
LFA obtained by applying the rules of R to L.

I Definition 19 (R-extension). The R-extension of LFAs is the mapping3 R : LΣ → LΣ
defined by

R(L)0(f) = 0

R(L)k+1(f) = sup
r∈Rf

r(f)
max
i=1

λ · Lk(trgt(r), xi) +
∑

µ∈der(r,xi)

Lk(trgt(r), µ)


for all L ∈ LΣ and f ∈ Σ.

Intuitively, the lifted LFA on terms (Def. 17) is obtained by structural induction over
terms, while the R-extended LFA (Def. 19) is obtained by operational induction over rules.
The R-extension of Lipschitz factor assignments preserves semantic consistency.

I Proposition 20. Let L ∈ LΣ be a LFA and k ∈ N. If L is consistent with dk, then R(L)
is consistent with dk+1.

I Corollary 21. If L is consistent with d, then R(L) is consistent with d.

3 The symbol R denotes both the set of rules of some specification and the R-extension mapping of LFAs
induced by a set of rules R. The meaning of symbol R will always be clear from the application context.
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The R-extension mapping allows us to specify a canonical LFA given as the least fixed-
point of R. Existence and uniqueness follow by the Knaster-Tarski theorem using that
(LΣ,v) is a complete lattice (Prop. 15) and that R is monotone (Prop. 22). Since the bottom
LFA 0 ∈ LΣ is consistent with d0 and R preserves consistency of LFAs (Prop. 20), we get
that the canonical LFA is consistent with d. The canonical LFA provides the least restricting
syntactic requirements for the specified operators.

I Proposition 22. R is order-preserving on (LΣ,v).

I Definition 23 (Canonical LFA). Let P = (Σ, A,R) be a PTSS. We call LP = limn→∞Rn(0)
the canonical LFA of P .

Dual to the notion of semantic consistency of LFAs (Def. 16) we introduce now the notion
of syntactic consistency of LFAs. Intuitively, a syntactically consistent LFA ensures that the
Lipschitz factors are compatible with the rules.

I Definition 24 (Syntactic consistency). Let P = (Σ, A,R) be a PTSS and L ∈ LΣ some
LFA. We call L consistent with P (or alternatively L is P -consistent) if R(L) v L.

In other words, all prefixed points of R are consistent with P . In particular, the canonical
LFA LP is consistent with P . Moreover, LP is the least LFA consistent with P . The syntactic
consistency condition R(L) v L of LFA L with a specification P = (Σ, A,R) is a syntactical
invariance condition on P that mimics the semantical bisimulation invariance condition
B(d) v d on the induced model (T(Σ), A,−→).

Semantic consistency of a LFA L (Def. 16) means consistency of L with the bisimilarity
metric d on the induced model (T(Σ), A,−→), whereas syntactic consistency of L (Def. 24)
means consistency of L with the specification P = (Σ, A,R) from which the model is derived.
As expected, syntactic consistency implies semantic consistency.

I Proposition 25 (Syntactic consistency implies semantic consistency). Let P = (Σ, A,R) be
a PTSS and L ∈ LΣ a LFA. If L is consistent with P then L is also consistent with d.

5.2 Uniformly continuous operators
A P -consistent LFA allows for deriving for each operator f an upper bound on the distance
between f -composed terms.

I Definition 26 (Upper bound induced by a LFA). Let P = (Σ, A,R) be a PTSS and L ∈ LΣ a
LFA. We define for any n-ary operator f ∈ Σ the upper bound on the distance of f -composed
processes induced by L as the mapping ωL,f : (R≥0)n → R∞≥0 defined by

ωL,f (ε1, . . . , εn) = inf
k∈N

(
Lk(f)

n∑
i=1

εi + λk

)

If L is consistent with P , then ωL,f is an upper bound on the distance between f -composed
terms wrt. d.

I Theorem 27. Let P = (Σ, A,R) be a PTSS and L ∈ LΣ a LFA consistent with P . Then

d(f(s1, . . . , sn), f(t1, . . . , tn)) ≤ ωL,f (d(s1, t1), . . . ,d(sn, tn)).

Moreover, if L is consistent with P , then ωL,f is a modulus of continuity of f wrt. d if
all Lipschitz factors Lk(f) of f are finite.
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I Theorem 28. Let P = (Σ, A,R) be a PTSS and L ∈ LΣ a LFA consistent with P . An
operator f ∈ Σ is
1. uniformly continuous if Lk(f) <∞ for all k ∈ N,
2. Lipschitz continuous if supk∈N Lk(f) <∞, and
3. K-Lipschitz continuous if Lk(f) ≤ K for all k ∈ N.

Hence, if f is Lipschitz continuous, then supk∈N Lk(f) is a Lipschitz factor of f . Since
the canonical LFA LP is the least LFA consistent with P it suffices to verify the conditions
of Thm. 28 on the canonical LFA.

We provide now an example that shows how to derive the canonical LFA, how to compute
the modulus of continuity, and how to determine the resp. compositionality property.

I Example 29. Let P = (Σ, A,R) be the PTSS specifying the synchronous parallel com-
position operator (Ex. 7) and the copy operator (Ex. 12). Let L ∈ LΣ be defined as
L0(|) = 0 and L0(cp) = 0, and Lk(|) = 1 and Lk(cp) = 2k for any k ∈ N>0. First
we show that L is the canonical LFA LP = limn→∞Rn(0) (Def. 23). Observe that
Rn+1(0)k = Rn(0)k for all k ≤ n. By induction over n. Base case R0(0)0 = 0 =
L0(|) and R0(cp)0 = 0 = L0(cp) is obvious. The induction step is Rn+1(0)n+1(|) =
max(λ · Rn(0)n(µ | ν, x) + Rn(0)n(µ | ν, µ), λ · Rn(0)n(µ | ν, y) + Rn(0)n(µ | ν, ν)) =
(inductive hypthesis) max(λ · Ln(µ | ν, x) + Ln(µ | ν, µ), λ · Ln(µ | ν, y) + Ln(µ | ν, ν)) =

max(0 + 1, 0 + 1) = 1 = Ln+1(|) and Rn+1(0)n+1(cp) = max(Rn(0)n(µ, µ), Rn(0)n(cp(µ) |
cp(ν), µ) + Rn(0)n(cp(µ) | cp(ν), ν)) = (inductive hypthesis) max(Ln(µ, µ), Ln(cp(µ) |
cp(ν), µ) + Ln(cp(µ) | cp(ν), ν)) = max(1, 2n + 2n) = 2n+1 = Ln+1(cp). Hence by Thm. 27
we get that ω(L,|)(ε1, ε2) = ε1 + ε2, ω(L,cp)(ε) = infk∈N(2kε+ λk) are upper bounds for | and
cp wrt. d. By Thm. 28 get that the operator | is 1-Lipschitz continuous and that the operator
cp is uniformly continuous. Moreover, the upper bounds are indeed moduli of continuity.

6 From modulus of continuity to operator specifications

In reverse, we derive now from any modulus of continuity ω a LFA L s.t. any PTSS P

consistent with L specifies an operator that has ω as modulus of continuity.. The derived
LFA depends on ω and the underlying model of process replication. The model of process
replication is given as a mapping χ : R≥0 × N → R≥0 assigning to each step k an upper
bound on the number of spawned process instances. The first argument is a fixed growth
factor.

I Definition 30 (Growth function). We define the following growth functions χ : R≥0 × N→
R≥0:
1. χ(c, k) = c (constant),
2. χ(c, k) = c · k (linear growth),
3. χ(c, k) = ck (exponential growth).

The constant growth function expresses that at most c process instances are spawned
irrespective of the number of steps performed by the combined process (cf. non-recurring
process replication, Ex. 10). The linear growth function will be used to model operators
with bounded stepwise replication (cf. recurring step-bounded process replication, Ex. 11).
Similarly, the exponential growth function allows us to model continuously replicating
operators (cf. recurring step-unbounded process replication, Ex. 12).
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166 Uniformly Continuous SOS Specifications of Probabilistic Systems

I Definition 31 (LFA induced by ω and χ). Assume a function ω : [0, 1]n → [0, 1] s.t.
ω(0, . . . , 0) = 0 and lim(ε1,...,εn)→(0,...,0) ω(ε1, . . . , εn) = ω(0, . . . , 0), a growth function χ and
an operator f ∈ Σ. The LFA Lfω,χ induced by ω and χ for f is defined by

Lfω,χ,k(g) =
{
χ(C, k) if g = f

∞ if g 6= f

with C = sup{c ∈ R≥0 | ∀L ∈ LΣ. ((∀k ∈ N.Lk(f) = χ(c, k))⇒ ωL,f ≤ ω)}.

The LFA induced by the exponential growth function is the LFA arising from maximal
recurring process replications. The recurring process replication factor C is the maximal
process replication per single transition step (possibly repeated along the evolution of the
combined process).

I Theorem 32. Let P = (Σ, A,R) be a PTSS and Lfω,χ the LFA induced by ω and χ for f .
If there exists a P -consistent LFA L ∈ LΣ with L v Lfω,χ, then P specifies f s.t. f admits ω
as modulus of continuity.

I Example 33. To define an operator that may not increase the behavioral distance of its
argument, assume the modulus of continuity ω(ε) = ε (1-Lipschitz continuity). The LFA
Lfω,χ induced by ω and χ(1, k) = 1 for f (Def. 30.1, Def. 31, Def. 26) gives Lfω,χ,k(f) = 1.
Let the operator f be specified by the rule (with θ ∈ DT(Σ) be any distribution term):

x
a−→ µ

f(x) a−→ θ
.

Clearly, θ = µ specifies operator f s.t. Lfω,χ is consistent with P (Def. 24) and that operator
f admits ω as modulus of continuity (Thm. 32). Let t ∈ T(Σ) be any closed term describing
some alternative process behavior. With the same argument, also θ = δ(µ | µ) ⊕p δ(t)
with p ≤ 1/2 (2 instances proceed with probability at most 1/2), θ = δ(x | x)⊕p δ(t) with
p ≤ 1/(2λ) (2 instances proceed with one step delay with probability at most 1/(2λ)), and
θ = δ(an.(x | x)) ⊕p δ(t) with p ≤ 1/(2λn+1) (an._ is action prefix operator performing
n-times action a followed by the argument process) specify each operator f admitting ω as
modulus of continuity (Thm. 32).

We conclude by observing that θ = f(µ) | µ specifies operator f s.t. P is consistent with
Lfω,χ whereby Lfω,χ,k(f) = 2k is obtained from the linear growth function χ(2, k) = 2k and the
modulus of continuity ω(ε) = infk∈N(2kε+λk). In the same way we can derive that θ = f(µ) |
f(µ) specifies operator f s.t. P is consistent with Lfω,χ,k = 2k obtained from exponential
growth function χ(2, k) = 2k and the modulus of continuity ω(ε) = infk∈N(2kε+ λk).

7 Syntactic and semantic compositionality

LFAs induced by moduli of continuity and growth functions (Def. 31) are compositional.
This allows us to determine the LFA for multiple operators separately, and then to specify
those operators simultaneously in a specification consistent with the composed LFAs.

I Theorem 34. Let P = (Σ, A,R) be a PTSS and G ⊆ Σ be a set of operators. For each
g ∈ G let Lgωg,χg

be the LFA induced by some ωg and χg for g. If for each g ∈ G the LFA
Lgωg,χg

is consistent with P , then also the LFA infg∈G Lgωg,χg
is consistent with P .
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Upper bounds of operators (Def. 5) are compositional. Hence, we define now an upper
bound on the distance between two closed instances of a term by composing the moduli of
continuity of the operators of that term. In essence, the following theorem lifts Thm. 27 to
terms.

I Theorem 35. Let P = (Σ, A,R) be a PTSS, L ∈ LΣ a LFA consistent with P and t ∈ T(Σ)
any open term. For all closed substitutions σ1, σ2 : V → T(Σ) we get

d(σ1(t), σ2(t)) ≤ inf
k∈N

(∑
x∈Vs

Lk(t, x) · d(σ1(x), σ2(x)) + λk

)
.

I Example 36. We start by exemplifying Thm. 34. We consider the specification P =
(Σ, A,R) of operators G = {_ | _, cp(_)}. As shown in Ex. 29 the LFAs L|ω|,χ|,k

(|) = 1,
L
|
ω|,χ|,k

(cp) = ∞ and Lcp
ωcp,χcp,k

(cp) = 2k, Lcp
ωcp,χcp,k

(|) = ∞ (Def. 31) are consistent with P .
Then by Thm. 34 L = infg∈G Lgωg,χg

with Lk(|) = 1 and Lk(cp) = 2k is consistent with P .
We proceed by exemplifying Thm. 35. Consider terms t = cp(x | x). By using Lk(|) = 1

and Lk(cp) = 2k (Ex. 29), we get Lk(cp(x | x), x) = Lk(cp) · Lk(x | x, x) = 2k · (Lk(|) ·
(Lk(x, x) + Lk(x, x)) = 2k+1 and Lk(cp(x) | cp(x), x) = 2k+1. Hence, by Thm. 35 we get
d(σ1(t), σ2(t)) ≤ infk∈N(2k+1 · d(σ1(x), σ2(x)) + λk) for all closed substitutions σ1, σ2 : V →
T(Σ). Equally, for t = cp(x) | cp(x) we get Lk(cp(x) | cp(x), x) = 2k+1 and d(σ1(t), σ2(t)) ≤
infk∈N(2k+1 · d(σ1(x), σ2(x)) + λk). The nesting of the copy operator cp(cp(x)) induces
Lk(cp(cp(x)), x) = 22k with distance bound d(σ1(cp(cp(x))), σ2(cp(cp(x)))) ≤ infk∈N(22k ·
d(σ1(x), σ2(x)) + λk).

8 Conclusion

We developed a SOS specification format that allows us to specify simultaneously uniformly
continuous operators of arbitrary (and possibly different) moduli of continuity. Our format
and results pave the way for a robust and modular approach to specify and verify probabilistic
systems using probabilistic process algebras and probabilistic programming languages [9, 14].

We will continue this line of research by developing SOS specification formats for uniformly
continuous operators wrt. weak metric semantics [10] and metric variants of branching
bisimulation equivalence [2]. Our case studies (partially published in [12]) indicated that
concepts such as encapsulation and abstraction are fundamental to perform the metric
compositional analysis of systems described by probabilistic process algebras in a scalable
manner. A second research direction we plan to investigate is the distance between operators
(instead of terms) to describe the behavioral distance whenever one operator needs to
be replaced or approximated by another. Intuitively, if an operator becomes unavailable,
the distance between operators will suggest an optimal replacement operator to build an
alternative system which is closest to the original system.
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