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Abstract
We study the problems of reaching a specific control state, or converging to a set of target states,
in networks with a parameterized number of identical processes communicating via broadcast.
To reflect the distributed aspect of such networks, we restrict our attention to executions in
which all the processes must follow the same local strategy that, given their past performed
actions and received messages, provides the next action to be performed. We show that the
reachability and target problems under such local strategies are NP-complete, assuming that the
set of receivers is chosen non-deterministically at each step. On the other hand, these problems
become undecidable when the communication topology is a clique. However, decidability can be
regained for reachability under the additional assumption that all processes are bound to receive
the broadcast messages.
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1 Introduction

Parameterized models for distributed systems. Distributed systems are nowadays ubiquitous
and distribution is one of the main paradigms in the conception of computing systems.
Conceiving, analyzing, debugging and verifying such systems are tedious tasks which lately
received an increased interest from the formal methods community. Considering parametric
models with an unknown number of identical processes is a possible approach to tame
distributed systems in which all processes share the same code. It has the advantages to allow
one to establish the correctness of a system independently of the number of participants,
and to ease bugs detection by the possibility to adapt the number of processes on demand.

In their seminal paper on distributed models with many identical entities [14], German and
Sistla represent the behavior of a network by finite state machines interacting via ‘rendezvous’
communications. Variants have then been proposed, to handle different communication
means, like broadcast communication [11], token-passing [6, 2], message passing [5] or shared
memory [12]. In his nice survey on such parameterized models [10], Esparza shows that
minor changes, such as the presence or absence of a controller in the system, can drastically
modify the complexity of the verification problems. Another perspective for parametric
systems has been proposed by Bollig who studied their expressive power with respect to
logics over Message Sequence Charts [4].
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Broadcast protocols. Among the various parametric models of networks, broadcast protocols,
originally studied by Esparza et al. [11], have later been analyzed under a new viewpoint,
leading to new insights on the verification problems. Specifically, a low level model to
represent the main characteristics of ad-hoc networks has been proposed [8]: the network
is equipped with a communication topology and processes communicate via broadcast to
their neighbors. It was shown that, given a protocol represented by a finite state machine
performing internal actions, broadcasts and receptions of messages, the problem of deciding
whether there exists an initial communication topology from which one of the processes can
reach a specific control state is undecidable. The same holds for the target problem, which
asks whether all processes can converge to a set of target states. For both the reachability
and the target problems, decidability can however be regained, by considering communication
topologies that can change non-deterministically at any moment [7]. Another option to
recover decidability of the reachability problem is to restrict the topologies to clique graphs [9],
yielding a model equivalent to broadcast protocols.
Local distributed strategies. In this paper, we consider the reachability and target problems
under a new perspective, which we believe could also be interesting for other ‘many identical
processes’ models. In such models, the protocol executed by each process is often described
by a finite state machine that can be non-deterministic. Therefore it may happen that two
processes behave differently, even if they have the same information on what has happened
so far in an execution. To forbid such non-truly distributed behaviors, we constrain processes
to take the same decisions in case they fired the same sequence of transitions so far. We
thus study the reachability and target problems in broadcast protocols restricted to local
strategies. Interestingly, the notably difficult distributed controller synthesis problem [15]
is relatively close to the problem of existence of a local strategy. Indeed a local strategy
corresponds to a local controller for the processes executing the protocol and whose role is to
resolve the non-deterministic choices.
Our contributions. First we show that the reachability and target problems under local
strategies in reconfigurable broadcast networks are NP-complete. To obtain the upper bound,
we prove that local strategies can be succinctly represented by a finite tree of polynomial
size in the size of the input protocol. This result is particularly interesting, because deciding
the existence of a local strategy is intrinsically difficult. Indeed, even with a fixed number of
processes, the locality constraint cannot be simply tested on the induced transition system,
and a priori local strategies may need unbounded memory. From our decidability proofs,
we derive an upper bound on the memory needed to implement the local strategies. We
also give cutoffs, i.e. upper bounds on the minimal number of processes needed to reach or
converge to target states. Second we show the two problems to be undecidable when the
communication topology is a clique. Moreover, the undecidability proof of the target problem
holds even if the locality assumption is dropped. However, the reachability problem under
local strategies in clique is decidable (yet non-primitive recursive) for complete protocols, i.e.
when receptions are always possible from every state.

Due to lack of space, omitted details and proofs can be found in the companion research
report [3].

2 Networks of reconfigurable broadcast protocols

In this paper, given i, j ∈ N such that i ≤ j, we let [i..j] = {k | i ≤ k ≤ j}. For a set E and
a natural ` > 0, let E` be the set of vectors v of size ` over E. For a vector v ∈ E` and
i ∈ [1..`], v[i] is the i-th component of v and |v| = ` its size. The notation VE stands for the
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infinite set
⋃
`∈N\{0}E

` of all vectors over E. We will use the notationM(E) to denote the
set of multi-sets over E.

2.1 Syntax and semantics

We begin by presenting our model for networks of broadcast protocols. Following [8, 9, 7],
we assume that each process in the network executes the same (non-deterministic) broadcast
protocol given by a finite state machine where the actions are of three kinds: broadcast of a
message m (denoted by !!m), reception of a message m (denoted by ??m) and internal action
(denoted by ε).

I Definition 1. A broadcast protocol is a tuple P = (Q, q0,Σ,∆) with Q a finite set of control
states; q0 ∈ Q the initial control state; Σ a finite message alphabet and ∆ ⊆ Q× ({!!m, ??m |
m ∈ Σ} ∪ {ε})×Q a finite set of edges.

We denote by A(q) the set {(q, ε, q′) ∈ ∆} ∪ {(q, !!m, q′) ∈ ∆} containing broadcasts
and internal actions (called active actions) of P that start from state q. Furthermore, for
each message m ∈ Σ, we denote by Rm(q) the set {(q, ??m, q′) ∈ ∆} containing the edges
that start in state q and can be taken on reception of message m. We say that a broadcast
protocol is complete if for every q ∈ Q and every m ∈ Σ, Rm(q) 6= ∅. Whether protocols
are complete or not may change the decidability status of the problems we consider (see
Section 4).

We now define the semantics associated with such a protocol. It is common to represent
the network topology by an undirected graph describing the communication links [7]. Since
the topology may change at any time (such an operation is called reconfiguration), we decide
here to simplify the notations by specifying, for each broadcast, a set of possible receivers that
is chosen non-deterministically. The semantics of a network built over a broadcast protocol
P = (Q, q0,Σ,∆) is given by a transition system TP = (Γ,Γ0,→) where Γ = VQ is the set of
configurations (represented by vectors over Q); Γ0 = V{q0} is the set of initial configurations
and →⊆ Γ× N×∆× 2N × Γ is the transition relation defined as follows: (γ, p, δ, R, γ′) ∈→
(also denoted by γ p,δ,R−−−→ γ′) iff |γ| = |γ′| and p ∈ [1..|γ|] and R ⊆ [1..|γ|] \ {p} and one of
the following conditions holds:
Internal action: δ = (γ[p], ε, γ′[p]) and γ′[p′] = γ[p′] for all p′ ∈ [1..|γ|]\{p} (the p-th process

performs an internal action).
Communication: δ = (γ[p], !!m, γ′[p]) and (γ[p′], ??m, γ′[p′]) ∈ ∆ for all p′ ∈ R such that

Rm(γ[p′]) 6= ∅ , and γ′[p′′] = γ[p′′] for all p′′ ∈ [1..|γ|] \ (R ∪ {p}) and for all p′′ ∈ R such
that Rm(γ[p′′]) = ∅ (the p-th process broadcasts m to all the processes in the reception set
R).

Obviously, when an internal action is performed, the reception set R is not taken into
account. We point out the fact that the hypothesis |γ| = |γ′| implies that the number of
processes remains constant during an execution (there is no creation or deletion of processes).
Yet, TP is an infinite state transition system since the number of possible initial configurations
is infinite. An execution of P is then a finite sequence of consecutive transitions in TP of
the form θ = γ0

p0,δ0,R0−−−−−→ γ1 . . .
p`,δ`,R`−−−−−→ γ`+1 and we denote by Θ[P] (or simply Θ when P

is clear from context) the set of all executions of P . Furthermore, we use nbproc(θ) = |γ0| to
represent the number of processes involved in the execution θ.
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2.2 Local strategies and clique executions
Our goal is to analyze executions of broadcast protocols under local strategies, where each
process performs the same choices of edges according to its past history (i.e. according to
the edges of the protocol it has fired so far).

A finite path in P is either the empty path, denoted by ε, or a non-empty finite sequence
of edges δ0 · · · δ` such that δ0 starts in q0 and for all i ∈ [1..`], δi starts in the state in which
δi−1 ends. For convenience, we say that ε ends in state q0. We write Path(P) for the set of
all finite paths in P.

For an execution θ ∈ Θ[P], we define, for every p ∈ [1..nbproc(θ)], the past of process p
in θ (also referred to as its history), written πp(θ), as the finite path in P that stores the
sequences of edges of P taken by p along θ. We can now define local strategies which allow
us to focus on the executions in which each process performs the same choice according to
its past. A local strategy σ for P is a pair (σa, σr) of functions specifying, given a history,
the next active action to be taken, and the reception edge to choose when receiving a
message, respectively. Formally σa : Path(P)→ (Q× ({!!m | m ∈ Σ} ∪ {ε})×Q) satisfies,
for every ρ ∈ Path(P) ending in q ∈ Q, either A(q) = ∅ or σa(ρ) ∈ A(q). Whereas
σr : Path(P) × Σ → (Q × {??m | m ∈ Σ} × Q) satisfies, for every ρ ∈ Path(P) ending in
q ∈ Q and every m ∈ Σ, either Rm(q) = ∅ or σr(ρ,m) ∈ Rm(q).

Since our aim is to analyze executions where each process behaves according to the same
local strategy, we now provide the formal definition of such executions. Given a local strategy
σ, we say that a path δ0 · · · δ` respects σ if for all i ∈ [0..`− 1], we have δi+1 = σa(δ0 . . . δi)
or δi+1 = σr(δ0 · · · δi,m) for some m ∈ Σ. Following this, an execution θ respects σ if for
all p ∈ [1..nbproc(θ)], we have that πp(θ) respects σ (i.e. we have that each process behaves
as dictated by σ). Finally we define ΘL ⊆ Θ as the set of local executions (also called local
semantics), that is executions θ respecting a local strategy.

We also consider another set of executions where we assume that every message is broadcast
to all the processes of the network (apart from the emitter). Formally, an execution θ =
γ0

p0,δ0,R0−−−−−→ . . .
p`,δ`,R`−−−−−→ γ`+1 is said to be a clique execution if Rk = [1, . . . ,nbproc(θ)] \ {pk}

for every k ∈ [0..`]. We denote by ΘC the set of clique executions (also called clique semantics).
Note that clique executions of broadcast networks have been studied in [9] and that such
networks correspond to broadcast protocols with no rendez-vous [11]. We will also consider
the intersection of these subsets of executions and write ΘLC for the set ΘL ∩ΘC of clique
executions which respect a local strategy.

2.3 Verification problems
In this work we study the parameterized verification of the reachability and target properties
for broadcast protocols restricted to local strategies. The first one asks whether there exists
an execution respecting some local strategy and that eventually reaches a configuration where
a given control state appears, whereas the latter problem seeks for an execution respecting
some local strategy and that ends in a configuration where all the control states belong to a
given target set. We consider several variants of these problems depending on whether we
restrict to clique executions or not and to complete protocols or not.

For an execution θ = γ0
p0,δ0,R0−−−−−→ γ1 . . .

p`,δ`,R`−−−−−→ γ`+1, we denote by End(θ) = {γ`+1[p] |
p ∈ [1..nbproc(θ)]} the set of states that appear in the last configuration of θ. Reach[S], the
parameterized reachability problem for executions restricted to S ∈ {L, C,LC} is defined as
follows:
Input: A broadcast protocol P = (Q, q0,Σ,∆) and a control state qF ∈ Q.
Output: Does there exist an execution θ ∈ ΘS such that qF ∈ End(θ)?
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q0 q1 qFq2q′F

q3 q4 qT

!!mε

??m ??m

??m??m

??m !!m

??m??m

ε

ε

ε

Figure 1 Example of a broadcast protocol.

In previous works, the parameterized reachability problem has been studied without the
restriction to local strategies; in particular the reachability problem on unconstrained
executions is in PTIME [7] and Reach[C] is decidable and Non-Primitive Recursive (NPR) [9,
11] (it is in fact Ackermann-complete [16]).

Target[S], the parameterized target problem for executions restricted to S ∈ {L, C,LC}
is defined as follows:
Input: A broadcast protocol P = (Q, q0,Σ,∆) and a set of control states T ⊆ Q.
Output: Does there exist an execution θ ∈ ΘS such that End(θ) ⊆ T?
It has been shown that a generalization of the target problem, without restriction to local
strategies, can be solved in NP [7]. In this work, we focus on executions under local strategies
and we obtain the results presented in the following table:

Reach[L] Reach[LC] Target[L] Target[LC]

NP-complete
[Thm. 3]

Undecidable [Thm. 5]
NP-complete

[Thm. 4]
Undecidable [Thm.

5]Decidable and NPR for complete
protocols [Thm. 7]

Most of the problems listed in the above table are monotone: if, in a network of a given size,
an execution satisfying the reachability or target property exists, then, in any bigger network,
there also exists an execution satisfying the same property. Let θ be an execution in ΘL [resp.
ΘLC ]. For every N ≥ nbproc(θ), there exists θ′ in ΘL [resp. ΘLC ] such that nbproc(θ′) = N

and End(θ) = End(θ′) [resp. End(θ) ⊆ End(θ′)]. This monotonicity property allows us
to look for cutoffs, i.e. minimal number of processes such that a local execution with a
given property exists. In this work, we provide upper-bounds on these cutoffs for Reach[L]
(Proposition 3.1) and Target[L] (Theorem 4.2). For Reach[LC] restricted to complete
protocols, given the complexity of the problem, such an upper-bound would be non-primitive
recursive and thus would not be of any practical use.

2.4 Illustrative example
To illustrate the notions of local strategies and clique executions, we provide an example
of a broadcast protocol in Fig. 1. On this protocol no clique execution can reach state
qF : as soon as a process in q0 sends message m, all the other processes in q0 receive this
message, and move to q3, because of the clique topology. An example of a clique execution
is: (q0, q0, q0, q0)→ (q1, q3, q3, q3) (where we omit the labels over →). However, there exists
a local execution reaching qF : (q0, q0)→ (q1, q0)→ (qF , q1). This execution respects a local
strategy since, from q0 with empty past, the first process chooses the edge broadcasting m
with empty reception set and in the next step the second process, also with empty past,
performs the same action, broadcasting the message m to the first process. On the other
hand, no local strategy permits to reach q′F . Indeed, intuitively, to reach q′F , in state q0
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n0

n1 n2

n3

n4 n6 n8

n5

n7(q0, !!m, q1)

(q0, ??m, q3)
(q3, ??m, q4)

(q1, ε, q1) (q1, ??m, qF )

(q3, ε, q3) (q3, ??m, q4) (q4, !!m, qT)

Figure 2 A strategy pattern for the broadcast protocol depicted Fig. 1.

one process with empty past needs to go to q1 and another one to q2, which is forbidden
by locality. Finally (q0, q0, q0)→ (q1, q0, q3)→ (q1, q1, q4)→ (qT, qT, qT) is a local execution
that targets the set T = {qT}.

3 Verification problems for local executions

We begin with studying the parameterized reachability and target problems under local
executions, i.e. we seek for a local strategy ensuring either to reach a specific control state,
or to reach a configuration in which all the control states belong to a given set.

3.1 Solving Reach[L]
To obtain an NP-algorithm for Reach[L], we prove that there exists a local strategy to reach
a specific control state if and only if there is a local strategy which can be represented thanks
to a finite tree of polynomial size; the idea behind such a tree being that the paths in the tree
represent past histories and the edges outgoing a specific node represent the decisions of the
local strategy. The NP-algorithm will then consist in guessing such finite tree of polynomial
size and verifying if it satisfies some conditions needed to reach the specified control state.

Representing strategies with trees. We now define our tree representation of strategies
called strategy patterns, which are standard labelled trees with labels on the edges. Intuitively
a strategy pattern defines, for some of the paths in the associated protocol, the active action
and receptions to perform.

A strategy pattern for a broadcast protocol P = (Q, q0,Σ,∆) is a labelled tree T =
(N,n0, E,∆, lab) with N a finite set of nodes, n0 ∈ N the root, E ⊆ N ×N the edge relation
and lab : E → ∆ the edge-labelling function. Moreover T is such that if e1 · · · e` is a path in
T , then lab(e1) · · · lab(e`) ∈ Path(P), and for every node n ∈ N : there is at most one edge
e = (n, n′) ∈ E such that lab(e) is an active action; and, for each message m, there is at
most one edge e = (n, n′) ∈ E such that lab(e) is a reception of m.

Since all labels of edges outgoing a node share a common source state (due to the
hypothesis on labelling of paths), the labelling function lab can be consistently extended to
nodes by letting lab(n0) = q0 and lab(n) = q for any (n′, n) ∈ E with lab((n′, n)) = (q′, a, q).

The strategy pattern represented in Fig. 2, for the broadcast protocol from Fig. 1,
illustrates that strategy patterns somehow correspond to under-specified local strategies. For
example, from node n1 (labelled by q1) no reception of message m is specified, and from
node n5 (labelled by q4) no reception and no active action are specified.

More generally, given P a broadcast protocol, and T a strategy pattern for P with
edge-labelling function lab, a local strategy σ = (σa, σr) for P is said to follow T if for every
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path e1 · · · e` in T , the path ρ = lab(e1) · · · lab(e`) in P respects σ. Notice that any strategy
pattern admits at least one local strategy that follows it.

Reasoning on strategy patterns. We now show that one can test directly on a strategy
pattern whether the local strategies following it can yield an execution reaching a specific
control state. An admissible strategy pattern for P = (Q, q0,Σ,∆) is a pair (T,≺) where
T = (N,n0, E,∆, lab) is a strategy pattern for P and ≺⊆ N ×N is a strict total order on
the nodes of T such that:
(1) for all (n, n′) ∈ E we have n ≺ n′;
(2) for all e = (n, n′) ∈ E, if lab(e) = (lab(n), ??m, lab(n′)) for some m ∈ Σ, then there

exists e1 = (n1, n
′
1) in E such that n′1 ≺ n′ and lab(e1) = (lab(n1), !!m, lab(n′1)).

In words, (1) states that ≺ respects the natural order on the tree and (2) that every node
corresponding to a reception of m should be preceded by a node corresponding to a broadcast
of m.

The example of strategy pattern on Fig. 2 is admissible with the order ni ≺ nj if i < j,
whereas for any order including n3 ≺ n1 it is not admissible (a broadcast of m should precede
n3). In general, given a strategy pattern T and a strict total order ≺, checking whether
(T,≺) is admissible can be done in polynomial time (in the size of the pattern).

In order to state the relation between admissible strategy patterns and local strategies,
we define lab(T ) = {lab(n) | n ∈ N} as the set of control states labelling nodes of T and
Occur(θ) = {γi[p] | i ∈ [0..`+ 1] and p ∈ [1..nbproc(θ)]} as the set of states that appear along
an execution θ = γ0 → · · · → γ`+1. The next proposition tells us that admissible strategy
patterns are necessary and sufficient to represent the sets of states that can be reached under
local strategies. For all Q′ ⊆ Q, there exists an admissible strategy pattern (T,≺) such that
lab(T ) = Q′ iff there exists a local strategy σ and an execution θ such that θ respects σ and
Q′ = Occur(θ), furthermore σ follows T .

Minimizing admissible strategy patterns. For (T,≺) an admissible strategy pattern, we
denote by last(T,≺) the maximal node w.r.t. ≺ and we say that (T,≺) is qF -admissible if
lab(last(T,≺)) = qF . We now show that there exist polynomial size witnesses of qF -admissible
strategy patterns. The idea is to keep only relevant edges that either lead to a node labelled
by qF or that permit a broadcast of a new message. Intuitively, a minimal strategy pattern
guarantees that (1) there is a unique node labelled with qF , (2) in every subtree there is
either a node labelled by qF or a broadcast of a new message (i.e. a broadcast of a message
that has not been seen previously with respect to the order ≺), and (3) a path starting and
ending in two different nodes labelled by the same state, cannot be compressed without
losing a new broadcast or a path towards qF (by compressing we mean replacing the first
node on the path by the last one). These hypotheses allow us to seek only for qF -admissible
strategy patterns of polynomial size.

If there exists a qF -admissible strategy pattern for P, then there is one of size at most
(2|Σ|+ 1) · (|Q| − 1) and of height at most (|Σ|+ 1) · |Q|.

By Proposition 3.1, there exists an execution θ ∈ ΘL such that qF ∈ Occur(θ) iff there
exists a qF -admissible strategy pattern and thanks to Proposition 3.1 it suffices to look
only for qF -admissible strategy patterns of size polynomial in the size of the broadcast
protocol. A non-deterministic polynomial time algorithm for Reach[L] consists then in
guessing a strategy pattern of polynomial size and an order and then verifying whether it is
qF -admissible.

I Theorem 2. Reach[L] is in NP.
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q0q′1q′2· · ·q′r+1 q1 · · · qk
ε!!x1

!!¬x1
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??`k1
??`k2

??`k3

Figure 3 Encoding a 3-SAT formula into a broadcast protocol.

We can furthermore provide bounds on the minimal number of processes and on the
memory needed to implement local strategies. Given a qF -admissible strategy pattern one
can define an execution following the pattern such that each reception edge of the pattern is
taken exactly once and active actions may be taken multiple times but in a row. Such an
execution needs at most one process per reception edge. Together with the bound on the size
of the minimal strategy patterns (see Proposition 3.1), this yields a cutoff property on the
minimal size of network to reach the final state. Moreover the past history of every process
in this execution is bounded by the depth of the tree, hence we obtain an upper bound on
the size of the memory needed by each process for Reach[L].

If there exists an execution θ ∈ ΘL such that qF ∈ Occur(θ), then there exists an
execution θ′ ∈ ΘL such that qF ∈ Occur(θ′) and nbproc(θ′) ≤ (2|Σ| + 1) · (|Q| − 1) and
|πp(θ′)| ≤ (|Σ|+ 1) · |Q| for every p ∈ [1..nbproc(θ′)].

By reducing 3-SAT, one can furthermore show Reach[L] to be NP-hard. Let φ =∧
1≤i≤k(`i1∨`i2∨`i3) be a 3-SAT formula such that `ij ∈ {x1,¬x1, . . . , xr,¬xr} for all i ∈ [1..k]

and j ∈ {1, 2, 3}. We build from φ the broadcast protocol P depicted at Fig. 3. Under
this construction, φ is satisfiable iff there is an execution θ ∈ ΘL such that qk ∈ Occur(θ).
The local strategy hypothesis ensures that even if several processes broadcast a message
corresponding to the same variable, all of them must take the same decision so that there
cannot be any execution during which both xi and ¬xi are broadcast. It is then clear that
control state qk can be reached if and only if each clause is satisfied by the set of broadcast
messages. Together with Theorem 2, we obtain the precise complexity of Reach[L].

I Theorem 3. Reach[L] is NP-complete.

3.2 Solving Target[L]
Admissible strategy patterns can also be used to obtain an NP-algorithm for Target[L].
As we have seen, given an admissible strategy pattern, one can build an execution where
the processes visit all the control states present in the pattern. When considering the target
problem, one also needs to ensure that the processes can afterwards be directed to the target
set. To guarantee this, it is possible to extend admissible strategy patterns with another
order on the nodes which ensures that (a) from any node there exists a path leading to the
target set and (b) whenever on this path a reception is performed, the corresponding message
can be broadcast by a process that will only later on be able to reach the target.

We formalize now this idea. For T ⊆ Q a set of states, a T-coadmissible strategy pattern
for P = (Q, q0,Σ,∆) is a pair (T,C) where T = (N,n0, E,∆, lab) is a strategy pattern for P
and C ⊆ N ×N is a strict total order on the nodes T such that for every node n ∈ N with
lab(n) /∈ T there exists an edge e = (n, n′) ∈ E with nC n′ and either:

lab(e) = (lab(n), ε, lab(n′)) or,
lab(e) = (lab(n), !!m, lab(n′)) or,
lab(e) = (lab(n), ??m, lab(n′)) and there exists an edge e1 = (n1, n

′
1) ∈ E such that nCn1,

nC n′1 and lab(e1) = (q1, !!m, q′1).
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n0

n1

n2

n5 n6

n3 n4

(q0, ??m, q3)

(q0, !!m, q1)

(q3, ??m, q4) (q4, !!m, qT)

(q1, ε, q1) (q1, ??m, qT)

Figure 4 A T-coadmissible strategy pattern on the example protocol of Fig. 1.

Intuitively the order C in a T-coadmissible strategy pattern corresponds to the order in
which processes must move along the tree towards the target; the conditions express that
any node with label not in T has an outgoing edge that is feasible. In particular, a reception
of m is only feasible before all edges carrying the corresponding broadcast are disabled.

A strategy pattern T equipped with two orderings ≺ and C is said to be T-biadmissible
whenever (T,≺) is admissible and (T,C) is T-coadmissible.

To illustrate the construction of T-coadmissble patterns, we give in Fig. 4 an example
pattern, that, equipped with the natural order ni C nj iff i < j, is T-coadmissible for
T = {qT}. Indeed all leaves are labelled with a target state, and the broadcast edge
n5

(q4,!!m,qT)−−−−−−−→ n6 allows all processes to take the corresponding reception edges. This T-
coadmissible pattern is in particular obtained from the execution (q0, q0, q0)→ (q1, q3, q0)→
(q1, q3, q0) → (qT, q4, q1) → (qT, q4, q1) → (qT, qT, qT). Notice that C is not an admissible
order, because n1 C n2, however there are admissible orders for this pattern, for example the
order n0 ≺ n2 ≺ n3 ≺ n4 ≺ n1 ≺ n5 ≺ n6.

As for Reach[L], one can show polynomial size witnesses of T-biadmissible strategy
patterns exist, yielding an NP-algorithm for Target[L]. Also, the size of minimal T-
biadmissible strategy patterns gives here also a cutoff on the number of processes needed to
satisfy the target condition, as well as an upper bound on the memory size.

I Theorem 4.
1. Target[L] is NP-complete.
2. If there exists an execution θ ∈ ΘL such that End(θ) ⊆ T, then there exists an execution

θ′ ∈ ΘL such that End(θ′) ⊆ T and nbproc(θ′) ≤ 16|Σ| · |Q|+ 4|Σ| · (|Q| − |T|+ 1) and
|πp(θ′)| ≤ 4|Σ| · |Q|+ 2(|Q| − |T|) + 1 for every p ≤ nbproc(θ′).

I Remark. The NP-hardness derives from the fact that the target problem is harder than
the reachability problem. To reduce Reach[L] to Target[L], one can add the broadcast of
a new message from qF , and its reception from any state to qF .

Another consequence of this simple reduction is that Target[L] in NP yields another
proof that Reach[L] is in NP, yet the two proofs of NP-membership allowed us to give an
incremental presentation, starting with admissible strategy patterns, and proceeding with
co-admissible strategy patterns.

4 Verification problems for local clique executions

4.1 Undecidability of Reach[LC] and Target[LC]
Reach[LC] and Target[LC] happen to be undecidable and for the latter, even in the case
of complete protocols. The proofs of these two results are based on a reduction from the
halting problem of a two counter Minsky machine (a finite program equipped with two
integer variables which can be incremented, decremented and tested to zero). The main idea
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consists in both cases in isolating some processes to simulate the behavior of the machine
while the other processes encode the values of the counters.

Thanks to the clique semantics we can in fact isolate one process. This is achieved by
setting the first transition to be the broadcast of a message start whose reception makes all
the other process change their state. Hence, thanks to the clique semantics, there is only one
process that sends the message start, such process, called the controller, will be in charge
of simulating the transitions of the Minsky machine. The clique semantics is also used to
correctly simulate the increment and decrement of counters. For instance to increment a
counter, the controller asks whether a process simulating the counter can be moved from
state 0 to state 1 and if it is possible, relying on the clique topology only one such process
changes its state (the value of the counter is then the number of processes in state 1). In
fact, all the processes will receive the request, but the first one answering it, will force the
other processes to come back to their original state, ensuring that only one process will move
from state 0 to 1.

The main difficulty is that broadcast protocols (even under the clique semantics) cannot
test the absence of processes in a certain state (which would be needed to simulate a test to
0 of one of the counters). Here is how we overcome this issue for Target[LC]: the controller,
when simulating a zero-test, sends all the processes with value 1 into a sink error state and
the target problem allows to check for the reachability of a configuration with no process
in this error state (and thus to test whether the controller has ‘cheated’, i.e. has taken a
zero-test transition whereas the value of the associated counter was not 0). We point out
that in this case, restricting to local executions is not necessary, we get in fact as well that
Target[C] is undecidable.

For Reach[LC], the reduction is more tricky since we cannot rely on a target set of states
to check that zero-test were faithfully simulated. Here in fact we will use two controllers.
Basically, before sending a start message, some processes will be able to go to a waiting state
(thanks to an internal transition) from which they can become controller and in which they
will not receive any messages (this is where the protocol needs to be incomplete). Then we
will use the locality hypothesis to ensure that two different controllers will simulate exactly
the same run of the Minsky machine twice and with exactly the same number of processes
encoding the counters. Restricting to local strategies guarantees the two runs to be identical,
and the correctness derives from the fact that if in the first simulation the controller ‘cheats’
while performing a zero-test (and sending as before some processes encoding a counter value
into a sink state), then in the second simulation, the number of processes encoding the
counters will be smaller (due to the processes blocked in the sink state), so that the simulation
will fail (because there will not be enough processes to simulate faithfully the counter values).

I Theorem 5. Reach[LC] is undecidable and Target[LC] restricted to complete protocol
is undecidable.

The undecidability proof for Reach[LC] strongly relies on the protocol being incomplete.
Indeed, in the absence of specified receptions, the processes ignore broadcast messages
and keep the same history, thus allowing to perform twice the same simulation of the run.
In contrast, for complete protocols, all the processes are aware of all broadcast messages,
therefore one cannot force the two runs to be identical. In fact, the reachability problem is
decidable for complete protocols, as we shall see in the next section.

4.2 Decidability of Reach[LC] for complete protocols
To prove the decidability of Reach[LC] for complete protocols, we abstract the behavior of
a protocol under local clique semantics by counting the possible number of different histories
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in each control state.
We identify two cases when the history of processes can differ (under local clique se-

mantics):
(1) When a process p performs a broadcast, its history is unique for ever (since all the other

processes must receive the emitted message);
(2) A set of processes sharing the same history can be split when some of them perform a

sequence of internal actions and the others perform only a prefix of that sequence.
From a complete broadcast protocol P = (Q, q0,Σ,∆) we build an abstract transition

system T LCP = (Λ, λ0,⇒) where configurations count the number of different histories in
each control state. More precisely the set of abstract configurations is Λ =M(Q× {m, s} ×
{!!ok, !!no}) × {ε, !!}. Abstract configurations are thus pairs where the first element is a
multiset and the second element is a flag in {ε, !!}. The latter indicates the type of the next
actions to be simulated (sequence of internal actions or broadcast): it prevents to simulate
consecutively two incoherent sequences of internal actions (with respect to the local strategy
hypothesis). For the former, an element (q, s, !!ok) in the multiset represents a single process
(flag s) in state q with a unique history which is allowed to perform a broadcast (flag !!ok).
An element (q,m, !!no) represents many processes (flag m) in state q, all sharing the same
unique history and none of them is allowed to perform a broadcast (flag !!no). The initial
abstract configuration λ0 is then ({{(q0,m, !!ok)}}, ε). In the sequel we will write HM for
the set M(Q × {m, s} × {!!ok, !!no}) of history multisets, so that Λ = HM × {ε, !!}, and
typical elements of HM are denoted M, M′, etc.

In order to provide the definition of the abstract transition relation ⇒, we need to
introduce new notions, and notations. An ε-path ρ in P from q to q′ is either the empty
path (and in that case q = q′) or it is a non-empty finite path δ0 · · · δn that starts in q, ends
in q′ and such that all the δi’s are internal transitions.

An ε-path ρ in P is said to be a prefix of an ε-path ρ′ if ρ 6= ρ′ and either ρ is the empty
path or ρ = δ0 · · · δn and ρ′ = δ0 · · · δnδn+1 . . . δn+m for some m > 0. Since we will handle
multisets, let us give some convenient notations. Given E a set, and M a multiset over E, we
write M(e) for the number of occurrences of element e ∈ E in M. Moreover, card(M) stands
for the cardinality of M: card(M) =

∑
e∈EM(e). Last, we will write ⊕ for the addition on

multisets: M⊕M′ is such that for all e ∈ E, (M⊕M′)(e) = M(e) + M′(e).
The abstract transition relation ⇒∈ Λ× Λ is composed of two transitions relations: one

simulates the broadcast of messages and the other one sequences of internal transitions.
This will guarantee an alternation between abstract configurations flagged with ε and the
ones flagged with !!. Let us first define ⇒!!⊆ (HM× {!!})× (HM× {ε}) which simulates a
broadcast. We have (M, !!)⇒!! (M′, ε) iff there exists (q1, !!m, q2) ∈ ∆ and fl1 ∈ {s,m} such
that
1. M(q1,fl1, !!ok) > 0
2. there exists a family of functions G indexed by (q,fl, b) ∈ Q× {m, s} × {!!ok, !!no}, such

that G(q,fl,b) : [1..M(q,fl, b)]→ HM, and:

M′ = {{q2, s, !!ok}} ⊕
⊕

{(q,fl,b)|M(q,fl,b) 6=0}

⊕
i∈[1..M(q,fl,b)]

G(q,fl,b)(i)

and such that for each (q,fl, b) verifying M(q,fl, b) 6= 0, for all i ∈ [1..M(q,fl, b)], the
following conditions are satisfied:
a. if fl1 = s, card(G(q1,fl1,!!ok)(1)) = 0 and if fl1 = m, then there exists q′ ∈ Q such that
G(q1,fl1,!!ok)(1) = {{(q′,fl1, !!ok)}} and such that (q, ??m, q′) ∈ ∆;

b. if (q,fl, b) 6= (q1,fl1, !!ok) or i 6= 1, then there exists q′ ∈ Q such that G(q,fl,b)(i) =
{{(q′,fl, !!ok)}} and such that (q, ??m, q′) ∈ ∆.
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Intuitively to provide the broadcast, we need to find a process which is ‘allowed’ to perform
a broadcast and which is hence associated with an element (q1,fl1, !!ok) in M. The transition
(q1, !!m, q2) tells us which broadcast is simulated. Then the functions G(q,fl,b) associate with
each element of the multiset M of the form (q,fl, b) a single element which can be reached
thanks to a reception of the message m. Of course this might not hold for an element of
the shape (q1, s, !!ok) if it is the one chosen to do the broadcast since it represents a single
process, and hence this element moves to q2. Note however that if fl1 = m, then (q1,m, !!ok)
represents many processes, hence the one which performs the broadcast is isolated, but the
many other ones have to be treated for reception of the message. Note also that we use here
the fact that since an element (q,m, b) represents many processes with the same history, all
these processes will behave the same way on reception of the message m.

We now define ⇒ε⊆ (HM× {ε})× (HM× {!!}) which simulates the firing of sequences
of ε-transitions. We have (M, ε)⇒ε (M′, !!) iff there exists a family of functions F indexed
by (q,fl, b) ∈ Q× {m, s} × {!!ok, !!no}, such that F(q,fl,b) : [1..M(q,fl, b)]→ HM, and

M′ =
⊕

{(q,fl,b)|M(q,fl,b)6=0}

⊕
i∈[1..M(q,fl,b)]

F(q,fl,b)(i)

and such that for each (q,fl, b) verifying M(q,fl, b) 6= 0, for all i ∈ [1..M(q,fl, b)], we have:
1. card(F(q,fl,b)(i)) ≥ 1 and if fl = s, card(F(q,fl,b)(i)) = 1;
2. If F(q,fl,b)(i)(q′,fl ′, b′) 6= 0, then fl ′ = fl;
3. There exists a pair (q!!,fl !!) ∈ Q× {m, s} such that:

F(q,fl,b)(i)(q!!,fl !!, !!ok) = 1
for all (q′,fl ′) 6= (q!!,fl !!) F(q,fl,b)(i)(q′,fl ′, !!ok) = 0;
There exists a ε-path ρ!! from q to q!!.

4. For all (q′,fl ′) such that F(q,fl,b)(i)(q′,fl ′, !!no) = k > 0, there exists k different ε-paths
(strict) prefix of ρ!! from q to q′.

Intuitively the functions F(q,fl,b) associate with each element (q,fl, b) of the multiset M a set
of elements that can be reached via internal transitions. We recall that each such element
represents a set (or a singleton if fl = s) of processes sharing the same history. Condition 1.
states that if there are multiple processes (fl = m) then they can be matched to more states
in the protocol, but if it is single (fl = s) it should be matched by an unique state. Condition
2. expresses that if an element in M represents many processes, then all its images represent
as well many processes. Conditions 3. and 4. deal with the locality assumption. Precisely,
condition 3. states that among all the elements of M′ associated with an element of M, one
and only one should be at the end of a ε-path, and only one process associated with this
element will be allowed to perform a broadcast. This justifies the use of the flag !!ok. Last,
condition 4. concerns all the other elements associated to this element of M: their flag is set
to !!no (they cannot perform a broadcast, because the local strategy will force them to take
an internal transition), and their state should be on the previously mentioned ε-path.

As announced, we define the abstract transitive relation by ⇒=⇒ε ∪ ⇒!!. Note that
by definition we have a strict alternation of transitions of the type ⇒ε and of the type ⇒!!.
An abstract local clique execution of P is then a finite sequence of consecutive transitions in
T LCP of the shape ξ = λ0 ⇒ λ1 · · · ⇒ λ`+1. As for concrete executions, if λ`+1 = (M`+1, t`+1)
we denote by End(ξ) = {q | ∃fl ∈ {m, s}.∃b ∈ {!!ok, !!no}.M`+1(q,fl, b) > 0} the set of states
that appear in the end configuration of ξ.

As an example, a possible abstract execution of the broadcast protocol from Fig. 1
is: ({{(q0,m, !!ok)}}, ε) ⇒ ({{(q0,m, !!no), (q2,m, !!no), (q2,m, !!ok)}}, !!). This single-step
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execution represents that among the processes in q0, some processes will take an internal
action to q2 and loop there with another internal action (they are represented by the
element (q2,m, !!ok)), others will only move to q2 taking a single internal action (they are
represented by (q2,m, !!no)), and finally some processes will stay in q0 (they are represented
by (q0,m, !!no)); note that these processes cannot perform a broadcast, because due to the
local strategy hypothesis, they committed to firing the internal action leading to q2.

Another example of an abstract execution is: ({{(q0,m, !!ok)}}, ε)⇒ ({{(q0,m, !!ok)}}, !!)
⇒ ({{(q1, s, !!ok), (q3,m, !!ok)}}, ε) ⇒ ({{(q1, s, !!ok), (q3,m, !!no), (q3,m, !!ok)}}, ε). Here in
the first step, no process performs internal actions, in the second step one of the processes in
q0 broadcasts m, moves to q1 and we know that no other process will ever share the same
history, it is hence represented by (q1, s, !!ok); then all the other processes with the same
history represented by (q0,m, !!ok) must receive m and move to q3, they are hence represented
by (q3,m, !!ok). The last step represents that some processes perform the internal action
loop on q3.

The definition of the abstract transition system T LCP ensures a correspondence between
abstract local clique executions and local clique executions in P. Formally:

I Lemma 6. Let qF ∈ Q. There exists an abstract local clique execution ξ of P such that
qF ∈ End(ξ) iff there exists a local clique execution θ ∈ ΘLC such that qF ∈ End(θ).

Given the abstract transition system T LCP , in order to show that Reach[LC] is decidable,
we then rely on the theory of well-structured transition systems [1, 13]. Indeed, the natural
order on abstract configurations is a well-quasi-order compatible with the transition relation
⇒ of T LCP (bigger abstract configurations simulate smaller ones) and one can compute
predecessors of upward-closed sets of configurations. This allows us to conclude that, in T LCP ,
the set of all predecessors of a configuration where qF appears is effectively computable, so
that we can decide whether qF is reachable in T LCP , hence, thanks to the previous lemma,
in P.

We also show that Reach[LC] is non-primitive recursive thanks to a PTIME reduction
from Reach[C] (which is Ackermann-complete [16]) to Reach[LC]. We exploit the fact that
the only difference between the semantics C and LC is that in the latter, processes with the
same history take the same decision. We simulate this in C with a gadget which assigns a
different history to each individual process at the beginning of the protocol making hence
the reachability problem for C equivalent to the one with LC semantics.

I Theorem 7. Reach[LC] restricted to complete protocols is decidable and NPR.

5 Conclusion

We considered reconfigurable broadcast networks under local strategies that rule out execu-
tions in which processes with identical local history behave differently. Under this natural
assumption for distributed protocols, the reachability and target problems are NP-complete.
Moreover, we gave polynomial bounds on the cutoff and on the memory needed by strategies.
When the communication topology is a clique, both problems become undecidable. Decidab-
ility is recovered for reachability if we further assume that protocols are complete.

To the best of our knowledge, this is the first attempt to take into account the local
viewpoint of the processes in parameterized distributed systems. It could be interesting to
study how the method we propose in this work can be adapted to parameterized networks
equipped with other means of communication (such as rendez-vous [14] or shared memory
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[12]). In the future we also plan to deal with properties beyond simple reachability objectives,
as for example linear or branching time properties.
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