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Preface

This volume contains the proceedings of the 26th Conference on Concurrency Theory
(CONCUR 2015), which was held in Madrid, Spain, in the period 1–4 September, 2015.
CONCUR 2015 was organized by the Universidad Complutense de Madrid.

The purpose of the CONCUR conferences is to bring together researchers, developers
and students in order to contribute to the development and dissemination of the theory of
concurrency and its applications. Twenty five years after our first meeting in 1990, it is still
the reference annual event for researchers in this field.

The principal topics include basic models of concurrency such as abstract machines,
domain theoretic models, game theoretic models, process algebras, and Petri nets; logics
for concurrency such as modal logics, probabilistic and stochastic logics, temporal logics,
and resource logics; models of specialized systems such as biology-inspired systems, circuits,
hybrid systems, mobile and collaborative systems, multi-core processors, probabilistic systems,
real-time systems, service-oriented computing, and synchronous systems; verification and
analysis techniques for concurrent systems such as abstract interpretation, atomicity checking,
model checking, race detection, pre-order and equivalence checking, run-time verification,
state-space exploration, static analysis, synthesis, testing, theorem proving, and type systems;
related programming models such as distributed, component-based, object-oriented, and web
services.

This edition of the conference attracted 93 full paper submissions. We would like to
thank all their authors for their interest in CONCUR 2015. After careful reviewing and
discussions, the Program Committee selected 33 papers for presentation at the conference.
Each submission was reviewed by at least three reviewers, who wrote detailed evaluations
and gave insightful comments. The Conference Chairs warmly thank all the members of the
Program Committee and all the additional reviewers for their excellent work, as well as for
the constructive discussions.

The conference program was further greatly enriched by the invited talks by Gianluigi
Zavattaro (joint invited speaker with TGC 2015), James Worrell (plenary speaker at Madrid
meet 2015), Mohammad Reza Mousavi, and Alexandra Silva. We had also a second plenary
talk to celebrate the 25th anniversary of CONCUR. To mark this special occasion, it was
really a pleasure and a great honour to host a keynote address by Matthew Hennessy, who
was one of the invited speakers at the first CONCUR, and is a researcher who has had a big
influence on the development of the Theory of Concurrency as a whole, and, in particular,
on the professional trajectory of the two PC chairs of this edition of the conference. We are
grateful to all the invited speakers for having accepted our invitation.

This year the conference was jointly organized with the 12th International Conference
on Quantitative Evaluation of Systems (QEST 2015), the 13h International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS 2015), the 10th International
Symposium on Trustworthy Global Computing (TGC 2015), and the International Symposium
on Web Services, Formal Methods and Behavioural Types (WS-FM/BEAT 2015). In
addition, ‘Madrid meet 2015’ included seven more satellite events: EPEW 2015: the 12th
European Workshop on Performance Engineering; FOCLASA 2015: the 14th International
Workshop on Foundations of Coordination Languages and Self-Adaptation; EXPRESS/SOS
2015: Combined 22nd International Workshop on Expressiveness in Concurrency and 12th
Workshop on Structured Operational Semantics; HSB 2015: the 4th International Workshop
of Hybrid Systems and Biology; TRENDS 2015: the 4th IFIP WG 1.8 Workshop on Trends
26th International Conference on Concurrency Theory (CONCUR 2015).
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x Preface

in Concurrency Theory; PV 2015: the 2nd Workshop on Parameterized Verification; and
finally, YR-CONCUR 2015: the Young Researchers Workshop on Concurrency Theory.

For the first time this year CONCUR has an open-access publication of its proceedings,
initiating a new collection in LIPIcs. In this way, the Proceedings will be available to
everybody, thus giving a greater dissemination to the works presented at the Conference. We
are sure that the open publication of the Proceedings will bring a new profitable age to our
Conference, as desired by its Steering Committee when leaning toward this new publication
outlet. However, we also want to thank Springer Verlag for its great work publishing the
Proceedings of the Conference during all these years.
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Automatic Application Deployment in the Cloud:
from Practice to Theory and Back∗

Roberto Di Cosmo2, Michael Lienhardt1, Jacopo Mauro1,
Stefano Zacchiroli2, Gianluigi Zavattaro1, and Jakub Zwolakowski2

1 University of Bologna/INRIA, Italy
2 Université Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126 CNRS,

F-75205 Paris, France

Abstract
The problem of deploying a complex software application has been formally investigated in pre-
vious work by means of the abstract component model named Aeolus. As the problem turned
out to be undecidable, simplified versions of the model were investigated in which decidability
was restored by introducing limitations on the ways components are described.

In this paper, we take an opposite approach, and investigate the possibility to address a
relaxed version of the deployment problem without limiting the expressiveness of the component
model. We identify three problems to be solved in sequence: (i) the verification of the existence of
a final configuration in which all the constraints imposed by the single components are satisfied,
(ii) the generation of a concrete configuration satisfying such constraints, and (iii) the synthesis
of a plan to reach such a configuration possibly going through intermediary configurations that
violate the non-functional constraints.

1998 ACM Subject Classification D.2.9 Management, F.2.2 Nonnumerical Algorithms and Prob-
lems

Keywords and phrases Automatic deployment, Planning, DevOps, Constraint Programming

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2015.1

Category Invited Paper

1 Introduction

Modern software systems are based on a large number of interconnected software components
(e.g., packages or services) that must be deployed on (possibly virtual) machines that can
be created and connected on-the-fly by exploiting currently available cloud computing
technologies. The configuration and management of such applications is a challenging task,
and several tools and technologies are under development to support application architects
and managers in this complex activity. The mainstream approach is to exploit pre-configured
virtual machines images, which contain all the needed software packages and services, and that
just need to be run on the target cloud system (e.g., Bento Boxes [10], Cloud Blueprints [2], or
AWS CloudFormation [1], to name just a few options). The main drawback of this approach
is that pre-configured images do not support customization and often force users to run
their applications on specific cloud providers, inducing an undesirable vendor lock-in effect.

∗ Partly funded by the EU project FP7-610582 ENVISAGE. Work partially performed at IRILL, center
for Free Software Research and Innovation in Paris, France, http://www.irill.org. Unless noted
otherwise, all URLs in the text have been retrieved on July 1st, 2015.

© Roberto Di Cosmo, Michael Lienhardt, Jacopo Mauro, Stefano Zacchiroli, Gianluigi Zavattaro,
and Jakub Zwolakowski;
licensed under Creative Commons License CC-BY
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2 Automatic Application Deployment in the Cloud: from Practice to Theory and Back

More advanced techniques, on the contrary, would allow application architects to design
their own software architectures by using high level description languages, like the graphical
drag-and-drop approach of Juju [12] or the declarative deployment languages ConfSolve [11]
and Engage [9].

In previous work [7, 6, 5] we have investigated this deployment problem from a foundational
point of view, trying to capture its most relevant aspects, and identifying among them those
that contribute to the difficulty of the problem. We have defined a formal model called Aeolus,
in which the classical notion of component, seen as a black-box that exposes provide and
require-ports, is extended with a finite state automaton describing the component life-cycle.
The automaton states correspond to different configuration modalities, like uninstalled,
installed, running, stopped, etc, and the transitions represent configuration actions like install,
run, stop, etc. Depending on the internal state, the ports on the interface can be either
active or inactive. For instance, an uninstalled component usually does not activate any
require-port, while it can activate require-ports when it is in the installed state, and finally
activate some provide-port when it actually enters the running state. Another specific feature
of the Aeolus model is that capacity constraints can be associated to the ports: a provide-port
could have a maximal number of connected require-ports, a require-port can ask for multiple
providers offering a given functionality (used to model replication requirements) or even
impose that no other component can provide a given functionality (used to model the notion
of conflict among components).

The deployment problem is then formalized as the problem of verifying the possibility to
configure at least one component of a given type in a given target state, by performing a
sequence of actions like component creation/deletion, component binding/unbinding, and
component internal state change.

In [7] we have proved that the deployment problem is, in general, undecidable. To
overcome this negative result, we have considered in [6, 5] various simplifications of the
Aeolus model for which deployment turns out to be decidable. In particular, we have proved
that deployment is polynomial when capacity constraints and conflicts are not considered,
while it is Ackermann-hard for the fragment without capacity constraints but with conflicts.

In this paper we take a different and more pragmatic approach by relaxing the deployment
problem. Conceptually, we break the deployment problem in two independent subtasks to
be executed one after the other. The first subtask abstracts away from component states,
and considers the problem of computing a final correct configuration in which the target
component is present and all the capacity and conflict constraints are satisfied. The second
subtask abstracts away from the capacity constraints and the conflicts, and verifies the
possibility to reach in this simplified scenario that desired target configuration.

We formalize these subtasks and discuss their complexity. In particular, for the first
subtask, we consider two subproblems: the Configuration problem, consisting of checking
whether it is possible to satisfy all the constraints directly or indirectly imposed by the target
component on the final configuration, and the Generation problem addressing the concrete
production of a configuration that actually satisfies these constraints. The Configuration
problem is proved to be NP-complete, while the Generation problem is EXP-time. It is
important to highlight that from a pragmatic point of view, the Configuration problem is
much more challenging because the Generation problem has a more standard solution and
has a higher theoretical complexity simply because there could be cases (that we consider
rare in practice) in which the configuration to be generated is of exponential size. Finally, in
a third phase called Planning we synthesize, if there exists, a sequence of deployment action
to reach the desired final configuration. This problem is poly-time but, but as explained
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above the intermediary configurations traversed during the execution of the plan could not
satisfy capacity constraints or conflicts because we have decided to loose correctness to favor
tractability.

The split of the deployment problem in two subtasks is reflected also by two tools that
we have implemented. On the one hand, Zephyrus [4] addresses the problem of generating a
final configuration that besides satisfying all the constraints that can be expressed in the
Aeolus model, also considers the problem of the optimal distribution of the components to be
deployed on available virtual machines. The second tool is called Metis [13] and it solves the
deployment problem, but only for the simplified Aeolus model without capacity constraints
and conflicts.

2 The Aeolus model

In this section we give a recap of the Aeolus component model following [14]. This formalization
differs from other definitions of the Aeolus model reported in [7, 5] due to the absence of the
so-called multiple state change actions. These actions are of interest when components are
used to represent mutually dependent packages that must be contemporaneously installed, but
are less relevant when components are used to model service deployment and configuration.
We have opted for the formalization without multiple state changes as our focus in this paper
is mainly on services and not on packages.

In the Aeolus model, components are represented as grey boxes offering services via
provide-ports and requiring service through require-ports. They are grey boxes because
the component configuration life-cycle is exposed in terms of a finite state automaton
indicating the different internal configuration states, and the corresponding configuration
actions changing such states. When a component changes state, the sets of ports it requires or
provides might also change; in other words, the component interface depends on its internal
configuration state.

As an example, let us consider Figure 1 depicting the installation of a WordPress blog
service according to the Aeolus model. Three services are modeled, viz. wordpress, mysql,
and the HTTP daemon service apache2. Each service can be in the uninstalled, installed,
or running state. Depending on the current state, the require and provide-ports could be
active or inactive. For instance, the wordpress component in the installed state activates
the require-port httpd, but does not activate the require-port mysql_up and the provide-
port wordpress. The httpd require-ports activated by wordpress can be connected to the
provide-port offered by apache2 when it is installed or running. Similarly, to be running,
it also requires an active mysql service. This is represented by the requirement of the port
mysql_up provided by mysql in its running state. The wordpress component in its running
state is finally able to provide the wordpress functionality.

We now move to the formal definition of the Aeolus component model. Let us assume
given the following disjoint sets: I for interfaces and Z for components. We use N to denote
natural numbers and N+

∞ for N \ {0} ∪ {∞}.

I Definition 1 (Component type). The set Γ of component types of the Aeolus model, ranged
over by T1, T2, . . . contains 5-ples 〈Q, q0, T, P,D〉 where:

Q is a finite set of states;
q0 ∈ Q is the initial state and T ⊆ Q×Q is the set of transitions;
P = 〈P,R〉, with P,R ⊆ I, is a pair composed of the set of provide and the set of
require-ports, respectively;
D is a function from Q to pairs in (P 7→ N+

∞)× (R 7→ N).

CONCUR’15
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Figure 1 WordPress installation in Aeolus.

Figure 2 Redundancy and capacity constraints for a complex WordPress installation (internal
state machines are omitted for simplicity).

Given a state q ∈ Q, D(q) returns two partial functions (P 7→ N+
∞) and (R 7→ N) that

indicate respectively the provide and require-ports that q activates. The functions associate
to the activate ports a numerical constraint indicating:

for provide-ports, the maximum number of bindings the port can satisfy,
for require-ports, the minimum number of required bindings to distinct components,

as a special case: if the number is 0 this indicates a conflict, meaning that there should
be no other active port, in any other component, with the same name.

When the numerical constraint is not explicitly indicated, we assume as default value ∞ for
provide-ports (i.e., they can satisfy an unlimited amount of requires) and 1 for require (i.e.,
one provide is enough to satisfy the requirement). We also assume that the initial state q0
makes no demands (i.e., the second function of D(q0) has an empty domain).

As an example of the use of numerical constraints, Figure 2 shows the modeling of a
WordPress hosting scenario where we want to offer high availability by putting the Varnish
reverse proxy/load balancer in front of several WordPress instances, all connected to a cluster
of MySQL databases.1 For a configuration to be correct, the model requires that Varnish is
connected to at least 3 (active and distinct) WordPress back-ends, and that each MySQL
instance does not serve more than 2 clients.

We now define configurations that describe systems composed by component instances
and bindings that interconnect them. A configuration, ranged over by C1, C2, . . ., is given by

1 All WordPress instances run within distinct Apache instances, which have been omitted for simplicity.
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a set of component types, a set of deployed components with a type and an actual state, and
a set of bindings. Formally:

I Definition 2 (Configuration). A configuration C is a quadruple 〈U,Z, S,B〉 where:
U ⊆ Γ is the finite universe of all available component types;
Z ⊆ Z is the set of the currently deployed components;
S is the component state description, i.e., a function that associates to components in Z
a pair 〈T , q〉 where T ∈ U is a component type 〈Q, q0, T, P,D〉, and q ∈ Q is the current
component state;
B ⊆ I × Z × Z is the set of bindings, namely 3-ples composed by an interface, the
component that requires that interface, and the component that provides it; we assume
that the two components are distinct.

In the following we will use a notion of configuration equivalence that relate configurations
having the same instances up to renaming. This is used to abstract away from component
identifiers and bindings.

I Definition 3 (Configuration equivalence). A configuration 〈U,Z, S,B〉 is equivalent to
〈U,Z ′, S′, B′〉, noted 〈U,Z, S,B〉 ≡ 〈U,Z ′, S′, B′〉, iff there exists a bijective function ρ from
Z to Z ′ s.t.:
1. S(z) = S′(ρ(z)) for every z ∈ Z; and
2. 〈r, z1, z2〉 ∈ B iff 〈r, ρ(z1), ρ(z2)〉 ∈ B′.

Notation: we write C[z] as a lookup operation that retrieves the pair 〈T , q〉 = S(z), where
C = 〈U,Z, S,B〉. On such a pair we then use the postfix projection operators .type and .state

to retrieve T and q, respectively. Similarly, given a component type 〈Q, q0, T, 〈P,R〉, D〉,
we use projections to (recursively) decompose it: .states, .init, and .trans return the first
three elements; .prov, .req return P and R; .P(q) and .R(q) return the two elements of the
D(q) tuple. When there is no ambiguity we take the liberty to apply the component type
projections to 〈T , q〉 pairs. For example, C[z].R(q) stands for the partial function indicating
the active require-ports (and their arities) of component z in configuration C when it is in
state q.

We are now ready to formalize the notion of configuration correctness:

I Definition 4 (Configuration correctness). Let us consider the configuration C = 〈U,Z, S,B〉.
We write C |=req (z, r, n) to indicate that the require-port of component z, with interface
r, and associated number n is satisfied. Formally, if n = 0 all components other than z

cannot have an active provide-port with interface r, namely for each z′ ∈ Z \ {z} such that
C[z′] = 〈T ′, q′〉 we have that r is not in the domain of T ′.P(q′). If n > 0 then the port is
bound to at least n active ports, i.e., there exist n distinct components z1, . . . , zn ∈ Z \ {z}
such that for every 1 ≤ i ≤ n we have that 〈r, z, zi〉 ∈ B, C[zi] = 〈T i, qi〉 and r is in the
domain of T i.P(qi).

Similarly for provides, we write C |=prov (z, p, n) to indicate that the provide-port of
component z, with interface p, and associated number n is not bound to more than n active
ports. Formally, there exist no m distinct components z1, . . . , zm ∈ Z \ {z}, with m > n,
such that for every 1 ≤ i ≤ m we have that 〈p, zi, z〉 ∈ B, S(zi) = 〈T i, qi〉 and p is in the
domain of T i.R(qi).

The configuration C is correct if for each component z ∈ Z, given S(z) = 〈T , q〉 with
T = 〈Q, q0, T, P,D〉 andD(q) = 〈P,R〉, we have that (p 7→ np) ∈ P implies C |=prov (z, p, np),
and (r 7→ nr) ∈ R implies C |=req (z, r, nr).

CONCUR’15
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We now formalize how configurations evolve from one state to another, by means of
atomic actions:

I Definition 5 (Actions). The set A contains the following actions:
stateChange(z, q1, q2) where z ∈ Z: change the state of the component z from q1 to q2;
bind(r, z1, z2) where z1, z2 ∈ Z and r ∈ I: add a binding between z1 and z2 on port r;
unbind(r, z1, z2) where z1, z2 ∈ Z and r ∈ I: remove the specified binding;
new(z : T ) where z ∈ Z and T is a component type: add a new component z of type T ;
del(z) where z ∈ Z: remove the component z from the configuration.

The execution of actions can now be formalized using a labeled transition systems on
configurations, which uses actions as labels.

I Definition 6 (Reconfigurations). Reconfigurations are denoted by transitions C α−→ C′
meaning that the execution of α ∈ A on the configuration C produces a new configuration C′.
The transitions from a configuration C = 〈U,Z, S,B〉 are defined as follows:

C stateChange(z,q1,q2)−−−−−−−−−−−−−→ 〈U,Z, S′, B〉
if C[z].state = q1
and (q1, q2) ∈ C[z].trans

and S′(z′) =
{
〈C[z].type, q2〉 if z′ = z

C[z′] otherwise

C bind(r,z1,z2)−−−−−−−−→ 〈U,Z, S,B ∪ 〈r, z1, z2〉〉
if 〈r, z1, z2〉 6∈ B
and r ∈ C[z1].req ∩ C[z2].prov

C unbind(r,z1,z2)−−−−−−−−−−→ 〈U,Z, S,B \ 〈r, z1, z2〉〉 if 〈r, z1, z2〉 ∈ B

C new(z:T )−−−−−−→ 〈U,Z ∪ {z}, S′, B〉
if z 6∈ Z, T ∈ U

and S′(z′) =
{
〈T , T .init〉 if z′ = z

C[z′] otherwise

C del(z)−−−−→ 〈U,Z \ {z}, S′, B′〉

if S′(z′) =
{
⊥ if z′ = z

C[z′] otherwise
and B′ = {〈r, z1, z2〉 ∈ B | z 6∈ {z1, z2}}

We can now define a deployment run, which is a sequence of actions that transform an
initial configuration into a final correct one without violating correctness along the way. A
deployment run is the output we expect from a planner, when it is asked how to reach a
desired target configuration.

I Definition 7 (Deployment run). A deployment run is a sequence α1 . . . αm of actions
such that there exist Ci correct configurations such that C = C0, Cj−1

αj−→ Cj for every
j ∈ {1, . . . ,m}.
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As an example, the following is a deployment run allowing to reach the configuration
depicted in Figure 1 starting from an empty configuration (we use z1, z2, and z3 to identify
the wordpress, apache2 and mysql components, respectively):

new(z1 : wordpress),new(z2 : apache2), stateChange(z2, uninstalled, installed),
bind(httpd, z1, z2), stateChange(z1, uninstalled, installed),
new(z3 : mysql), stateChange(z3, uninstalled, installed), stateChange(z3, installed, running),
bind(mysql_up, z1, z3)

We now have all the ingredients to define the notion of achievability, that is our main
concern: given a universe of component types, we want to know whether it is possible to
deploy at least one component of a given component type T in a given state q.

I Definition 8 (Achievability problem). The achievability problem has as input a universe U
of component types, a component type T ∈ U , and a target state q. It returns as output
true if there exists a deployment run α1 . . . αm such that 〈U, ∅, ∅, ∅〉 α1−→ C1

α2−→ · · · αm−−→ Cm
and Cm[z] = 〈T , q〉, for some component z in Cm. Otherwise, it returns false.

In our running example, if we consider the wordpress component in the active state as
target, we have that such target is achievable by the deployment run obtained by adding the
action stateChange(z1, installed, running) to the deployment run described above.

Notice that the restriction in this decision problem to one target component in a given
state is not limiting. One can easily encode any given final configuration by adding a
dummy provide-port enabled only by the required final states and a dummy component with
requirements on all such provides.

In [5] we have proved that the achievability problem is undecidable. In this paper we
present a way to relax the achievability problem in order to restore decidability. In particular,
we require correctness only for the final configuration, while numerical constraints and
conflicts are ignored for the intermediary states traversed during the deployment run. In
many cases dealing with service deployment, violating capacity constraints during installation
and configuration is not problematic because the services become publicly available only at
the end. More precisely, we split the achievability problem in three separate phases: the
verification of the existence of a final correct configuration that includes the target component
(Configuration problem), the synthesis of such a configuration (Generation problem), and the
computation of a deployment run reaching such a configuration (Planning problem). In this
last phase, we exploit the efficient poly-time algorithm developed for the simplified Aeolus
model without numerical constraints and conflicts. For this reason, it could indeed happen
that such constraints are violated during the execution of the deployment run.

3 Configuration problem

In this section we deal with the Configuration problem, consisting in checking the existence
of a correct component configuration including at least one instance of the target component.

The Configuration problem can be viewed as a Constraint Satisfaction Problem (CSP). A
CSP consists of a finite set of variables, each of which associated with a domain of possible
values that it could take, and a set of constraints that defines all the admissible assignments
of values to the variables [15]. Given a CSP the goal is normally to find a solution – that is
an assignment to the variables that satisfies all the constraints of the problem – through one
suitable constraint solver.

CONCUR’15
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For the encoding of the Configuration problem into a CSP, we can focus on an abstract
representation of a configuration where components of the same type and state are grouped
together. Also the specific port bindings are abstracted away: we only capture how many
bindings connect the provide-ports with interface p of the components of type T in state q
to require-ports of components of type T ′ in state q′. Formally:

I Definition 9 (Abstract Configuration). An abstract configuration B is a pair of mappings
〈comp, bind〉 such that:

comp : (Γ×Q)→ N associates to every component type T and one state in T .states a
natural number;
bind : I × (Γ × Q) × (Γ × Q) → N that associates to every port p and couple of
component-state pairs a natural number.

I Definition 10 (Concretization). Given an abstract configuration B = 〈comp, bind〉 we say
that a correct configuration C = 〈U,Z, S,B〉 is one concretization of B if

the number of components of type T in state q in the configuration C is equal to
comp(〈T , q〉) for every type-state pair 〈T , q〉
the number of bindings between the port p provided by components of type T in state q
and required by components of type T ′ in state q′ is bind(p, 〈T , q〉, 〈T ′, q′〉).

We write γ(B) for the set of concretizations of B.

An abstract configuration B is correct if it has at least one concretization (formally
γ(B) 6= ∅).

Not all possible abstract configurations have concretizations since the number of bind-
ings may violate the capacity constraints and the number of components may violate the
conflicts. It is however possible to characterize abstract configurations that always admit a
concretization. This can be done by means of the following set of constraints.∧

p∈I

∧
〈T ,q〉

T .R(q)(p)× comp(〈T , q〉) ≤
∑

〈T ′,q′〉

bind(p, 〈T ′, q′〉, 〈T , q〉) (1a)

∧
p∈I

∧
〈T ,q〉 . T .P(q)(p)<∞

T .P(q)(p)× comp(〈T , q〉) ≥
∑

〈T ′,q′〉

bind(p, 〈T , q〉, 〈T ′, q′〉) (1b)

∧
p∈I

∧
〈T ,q〉 . T .P(q)(p)=∞

comp(〈T , q〉) = 0 ⇒
∑

〈T ′,q′〉

bind(p, 〈T , q〉, 〈T ′, q′〉) = 0 (1c)

∧
p∈I

∧
〈T ,q〉 . T .R(q)(p)=0 ∧

T .P(q)(p)>0)

comp(〈T , q〉) ≤ 1 (1d)

∧
p∈I

∧
〈T ,q〉.

T .R(q)(p)=0

∧
〈T ′,q′〉6=〈T ,q〉 .

T ′.P(q′)(p)>0

comp(〈T , q〉) > 0 ⇒ comp(〈T ′, q′〉) = 0 (1e)

∧
p∈I

∧
〈T ,q〉

∧
〈T ′,q′〉6=〈T ,q〉

bind(p, 〈T , q〉, 〈T ′, q′〉) ≤ comp(〈T , q〉)× comp(〈T ′, q′〉) (1f)

∧
p∈I

∧
〈T ,q〉

bind(p, 〈T , q〉, 〈T , q〉) ≤ comp(〈T , q〉)× (comp(〈T , q〉)− 1) (1g)

Constraint 1a enforces the fact that the number of bindings connected to the require-ports p of
components of type-state pair 〈T , q〉 cannot be smaller than the total requirements computed
as the sum of the single requirements of each instance of type-state 〈T , q〉. Symmetrically,
constraint 1b guarantees that the number of bindings connected to the provide-ports p of
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components of type-state pair 〈T , q〉 cannot be greater than the total available capacity
computed as the sum of the single capacities of each instance of type-state 〈T , q〉. In case
the port capacity is unbounded (i.e., ∞), it is sufficient to have at least one instance that
activates such port to support any possible requirement (see constraint 1c). Constraints 1d
and 1e deal with conflicts. In particular the constraint 1d limits to at most one the instances
of component type-state pairs that can simultaneously provide and being in conflict with
a given port. Constraint 1e enforces instead that when a conflict is active, then no other
instance providing the same port exists. Finally, the constraints 1f and 1g guarantee that
there are enough pairs of distinct instances to establish all the necessary bindings. Two
distinct constraints are used: the first one deals with bindings between components of two
different type-state pair, the second one considers those bindings that are established between
two components of the same type-state pair.

I Lemma 11. An abstract configuration B satisfies the constraints 1 iff it is correct.

Proof. Suppose that C is a concretization of the abstract configuration B. Now suppose that
one among constraints 1 is violated.

If 1a is violated, in C there exists a component of type T in state q requiring port p and
having less than T .R(q)(p) bindings. By the correctness of C this is impossible.
If 1b is violated, in C there exists a component of type T in state q that has more than
T .P(q)(p) bindings to port p. This is impossible since by definition C is correct.
If 1c is violated, in C there should be bindings connected to components of type-state
pairs that do not appear in the configuration. By the correctness of C this is impossible.
If 1d is violated, then there are two instances of a component of type T in state q that
simultaneously provide and are in conflict with the port p. By the correctness of C this is
impossible.
If 1e is violated, then there is an instance of a component that is in conflict with a port p
and a different instance that provides p. By the correctness of C this is impossible.
If 1f is violated, then there exist a port p and two components of different type-state
pair such that there exists two bindings connecting the port p between them. By the
correctness of C this is impossible.
If 1g is violated, then there exist a port p and either a component activating a provide
and a require-port p which are connected, or two components of the same type-state pair
with two bindings connecting the port p between them. By the correctness of C this is
impossible.

Therefore, if B is correct then all of constraints 1 are satisfied.
Now let us suppose that there exists an abstract configuration B〈comp, bind〉 that satisfies

the constraints 1. We show the existence of a concretization C, such that for every component
type-state pair 〈T , q〉 it has comp(〈T , q〉) different instances of type T in state q. Conflicts
cannot happen between the components, otherwise constraints 1d or 1e would be violated.
We now discuss the bindings in C. From constraint 1f we have that it is possible to have a
number of bindings bind(p, 〈T , q〉, 〈T ′, q′〉) between distinct pairs of instances of type-state
〈T , q〉 and 〈T ′, q′〉 respectively providing and requiring port p; moreover, from constraint
1g we have that it is possible to have a number of bindings bind(p, 〈T , q〉, 〈T , q〉) between
distinct instances of type-state 〈T , q〉 providing and requiring port p. It remains to show that
there exists at least one distribution of these bindings that satisfies the capacity constraints
on all the provide and require-ports.

Assume, by contraposition, that there exists no distribution of bindings that satisfies
the capacity constraints. This means that for every possible distribution there are always

CONCUR’15
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Figure 3 3-SAT encoding into Aeolus.

provide-ports with a number of bindings greater than the capacity, or require-ports with a
number of bindings smaller than those that are required. We call discrepancy the overall
number of excessive bindings connected to provide-ports plus the number of missing bindings
in require-ports. We consider one of the binding distributions with minimal discrepancy.
It is not restrictive to assume that there is a component r1 of type-state 〈T , q〉 with a
provide-port p having an excessive number of bindings. This assumption is not restrictive
because if this is not the case, there is at least one require-port with an insufficient number of
bindings, and the following reasoning can be symmetrically applied. By constraint 1b there
is another instance r2 of type-state 〈T , q〉 that can host at least one additional binding on
its provide-port p without exceeding its capacity. The idea is to rebind one of the bindings
on the provide-port p of r1 to the provide-port p of r2. This can be done because there exist
at least two components connected to the port p of r1 which are not already connected to r2
(the port of r1 strictly exceeds its capacity while that of r2 can host at least one additional
binding). Among these two components, at least one component (let us call it r) is different
from r2. It is safe to rebind the require-port p of r from r1 to r2 because r 6= r2 and r is not
already connected to r2. Upon rebinding, in the new configuration, discrepancy is strictly
reduced thus contradicting minimality. J

In the light of Lemma 11, in order to check if there is a correct configuration containing
the target component type-state pair 〈Tt, qt〉, we can simply check if there is a correct abstract
configuration where comp(〈Tt, qt〉) > 0. This can be done by solving a CSP problem where
the functions comp and bind are defined by means of a set of variables having as domain N
and by enforcing the constraints 1 (besides the constraint comp(〈Tt, qt〉) > 0).

Thanks to this encoding it is possible to prove that the Configuration problem is NP-
complete.

I Theorem 12. The Configuration problem is NP-complete.

Proof. To prove the NP-hardness we reduce the 3-SAT Problem into Configuration.
As depicted in Figure 3 a literal l of a 3-SAT formula ϕ is encoded into a component type

Tl having, beyond an initial state, a final state ql that provides a port l, is in conflict with the
same port l and with its negation ¬l. A clause ci = l1 ∨ l2 ∨ l3 is encoded into a component
type Tci

having, beyond an initial state, three states lj that require the corresponding port
lj , provide the port ci and are in conflict with it. The target component type Tt is a two
state component where the final state qt requires for every clause ci the port ci.

The conflict ports impose that every correct configuration has at most one instance of
type Tl or T¬l. Similarly, at most one instance of Tci

could be present. It is easy to see that
a formula ϕ is satisfiable iff there exists a configuration where an instance of Tt is present in
the state qt. Indeed, if ϕ is satisfiable then it is possible to consider a configuration having
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an instance of Tl for every literal l assigned to true. By validity of ϕ under the considered
literal assignments, it is also possible to bind all the clause components Tci

to at least one
corresponding literal, and then all the Tci

instances to the target component Tt in state qt.
Similarly, if there exists a configuration where Tt in state qt is present we can assign to true
every literal li such that an instance of Tl is present in the configuration and the remaining
literals to false. This assignment satisfies the formula ϕ.

We now have to prove that Configuration is in NP. To this aim we encode Configuration
into an Integer Linear Programming (ILP) problem, a well-known problem in NP [17].

The first problem to resort to ILP is that the constraints 1f and 1g are not linear since
there are multiplications between two variables: comp(〈T , q〉)× comp(〈T ′, q′〉) in constraint
1f and comp(〈T , q〉)× (comp(〈T , q〉)− 1) in constraint 1g. Luckily, these constraints can be
reformulated into a polynomial number of linear constraints. We descrive in details how to
reformulate constraint 1f; constraint 1g can be translated similarly.

The basic observation is that in a correct configuration there is no need to have more
bindings than those strictly needed to satisfy the require-ports. In the light of this ob-
servation, it is safe to assume that the number of bindings bind(p, 〈T , q〉, 〈T ′, q′〉) is less
than comp(〈T ′, q′〉) × T ′.R(q′)(p) which is the number of bindings required to satisfy the
require-ports p of the instances of type-state 〈T ′, q′〉. Hence we can consider the dise-
quation bind(p, 〈T , q〉, 〈T ′, q′〉) ≤ comp(〈T , q〉) × comp(〈T ′, q′〉) in 1f only in those cases
in which comp(〈T , q〉) < T ′.R(q′)(p), and for all the other cases consider the disequation
bind(p, 〈T , q〉, 〈T ′, q′〉) ≤ T ′.R(q′)(p)× comp(〈T ′, q′〉) without variable multiplication.

We now discuss how to transform bind(p, 〈T , q〉, 〈T ′, q′〉) ≤ comp(〈T , q〉)× comp(〈T ′, q′〉)
under the assumption that comp(〈T , q〉) < T ′.R(q′)(p). Let n = blog(T ′.R(q′)(p))c. We
can consider 2n variables: x1, · · · , xn which are the n digits of the binary representation
of comp(〈T , q〉), and y1, · · · , yn which coincides with 0 for those indexes i for which xi is 0,
and 2i × comp(〈T ′, q′〉) for those indexes i for which xi is 1. In this way, the sum of all the
variables y1, · · · , yn coincides with comp(〈T , q〉)× comp(〈T ′, q′〉), and this value is obtained
without exploiting variable multiplication, at the price of adding only a polynomial number
of variables.

Summarizing, the new constraints replacing the constraint 1f are as follows:
bind(p, 〈T , q〉, 〈T ′, q′〉) ≤ T ′.R(q′)(p)× comp(〈T ′, q′〉) (2a)
∀i ∈ [1, n] . 0 ≤ xi ≤ 1 ∀i ∈ [1, n] . 0 ≤ yi ≤ 1 (2b)

comp(〈T , q〉) < T ′.R(q′)(p)⇒
n∑

i=0

2ixi = comp(〈T , q〉) (2c)

∀i ∈ [1, n] . xi = 1⇒ yi = 2i × comp(〈T ′, q′〉) ∀i ∈ [1, n] . xi = 0⇒ yi = 0 (2d)

comp(〈T , q〉) < T ′.R(q′)(p)⇒ bind(p, 〈T , q〉, 〈T ′, q′〉) ≤
n∑

i=0

yi (2e)

The first constraint binds the number of bindings to satisfy all the require-ports as
explained before. The remaining constraints encode precisely the constraint 1f for the cases
when comp(〈T , q〉) is smaller than T ′.R(q′)(p). To do so, 5n+ 2 linear constraints are used
introducing 2n fresh variables (i.e., xi and yi) which are used to compute comp(〈T , q〉) ×
comp(〈T ′, q′〉) without variable multiplication as described above.

Applying this transformation, the Configuration problem can be checked solving a
polynomial number of linear constraints. However, some of these constraints are logical
implication that have to be compiled into the linear (dis)equations of an ILP problem.
This is possible exploiting a result from disjunctive programming [18] that indicates how
to encode with the addition of a polynomial amount of variable and (dis)equations the
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Figure 4 Example of max-flow graph.

requirement that at least one in a set of (dis)equations holds. For instance, the logical
implication in the constraint 2c holds if at least one of comp(〈T , q〉) ≥ T ′.R(q′)(p) or∑n
i=0 2ixi = comp(〈T , q〉) holds. The Configuration problem can be therefore mapped into

an ILP with a polynomial number of constraints and variables. Since ILP is in NP [17] this
also holds for Configuration. J

4 Configuration generation

As previously shown, by using a constraint solver it is possible to compute an abstract
configuration such that its concretizations have an instance of the target component type in
the target state. Thanks to the fact that the Configuration problem is NP-complete, we have
that the size of a representation of the abstract configuration, if any, is polynomially bounded.
But, in the worst case, the generation of a concretization could require an exponential
amount of time since the number of the components could be exponential w.r.t. the size of the
abstract configuration representation. For instance, an abstract configuration of O(log(n))
space could require the creation of n components but, to concretely represent the n instances,
O(n) space is needed.

In the proof of the following theorem we show how to generate, starting from the target
abstract configuration, a correct configuration which is equivalent to one of its concretization.
Hence, this configuration will contain the target component in the target state. If we denote
with Generation the problem of computing a configuration equivalent to a concretization of
the target abstract configuration, we have the following theorem.

I Theorem 13. The Generation problem is EXP-time.

Proof. The first step to solve the problem is to solve the Configuration problem to obtain
an abstract configuration and then to compute one configuration that is equivalent to one of
its concretizations. Solving a Configuration problem is NP-complete and therefore can be
done in EXP-time.

Starting from the abstract configuration B = 〈comp, bind〉 it is possible to generate for
every component-type/state pair 〈T , q〉 exactly comp(〈T , q〉) component of type T in state
q. This can take an exponential time w.r.t. the size of the input since comp(〈T , q〉) can be
stored in space O(log(comp(〈T , q〉)).

The binding generation can be done solving a maximal flow problem. Given a port p it is
possible to consider the graph where the nodes represent the component instances providing
p (provider) and the component instances requiring p (requirer), and an edge with capacity 1
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exists from every provider to every distinct requirer. Every provider node representing an
instance of type T in state q has an incoming edge from an auxiliary node with capacity
equal to its provide numerical constraint T .P(q)(p). This auxiliary node is connected to a
source node with an edge that has a capacity equal to the sum of the bindings connected to
the provide-port p on all the components of any type

∑
〈T ,q〉,〈T ′,q′〉 bind(p, 〈T , q〉, 〈T ′, q′〉)).

On the other hand, every requirer node is connected to a sink node with an edge having
capacity equal to its require numerical constraint T .R(q)(p).

As an example, Figure 4 shows the max-flow graph obtained when there are two kinds of
provider of type-state 〈Ta, qa〉 and 〈Tb, qb〉, and two kinds of requirer of type-state 〈Ta, qa〉
and 〈Tc, qc〉. Assuming that two instances of type-state 〈Ta, qa〉 are in the configuration, and
one instance for the other two type-states, three nodes a, a′ and b are considered as provider
and a, a′ and c as requirer. Components Ta in state qa provide the port p with a constraint
of 2, while components of type Tb in state qb provide p with a numerical constraint of 3.
Components Ta in state qa requires at least 2 bindings on its p port, while those of type Tc
in state qc requires 3 bindings. The solution depicted in the Figure shows the graph when it
is required that 7 bindings on ports p should be established.

The maximal flow of this graph is
∑
〈T ,q〉,〈T ′,q′〉 bind(p, 〈T ′, q′〉, 〈T , q〉) and the edges

between the provider and requirer selected by the maximal flow algorithm correspond to the
bindings to create in the configuration. The configuration that can be obtained in this way
is equivalent to any of the concretizations of the given abstract configuration.

Since the maximal flow can be computed by the Ford–Fulkerson algorithm [3] in O(Ef),
where E is the number of edges and f is the flow, and the number of components is exponential
on the size of the input we have that the generation of the bindings is in EXP-time. J

5 Plan generation

In [14] we have presented an algorithm for solving the achievability problem under the
assumption that the numerical constraints associated to require-ports are always equal to 1,
and those associated to provide-ports are always ∞. This means that no conflicts can be
expressed, as well as redundancy requirements on require-ports or maximal capacities on
provide-ports. The algorithm runs in polynomial time, and is also capable of returning
a corresponding deployment run when it exists (or an empty sequence when it does not).
We have also realized a prototype called Metis [13] that implements this algorithm: in
the following we call Metis(U, 〈Tt, qt〉) the deployment run returned by our algorithm when
executed on the universe of components U and target component type-state 〈Tt, qt〉.

Given a target configuration C, we show how to exploit Metis in order to generate a
sequence of action that reaches the final configuration C. As Metis does not take into
account the numerical constraints on component ports, it could happen that the intermediary
configurations traversed during the execution of the returned sequence of action are not
correct. Nevertheless, we guarantee that the finally reached configuration C is correct. We
call Planning this specific problem of generating a sequence of actions that reaches the target
configuration C.

The idea is to start from the configuration C and generate a universe of component types
UC , that extends the original universe U with new component types Tz – one for each instance
z in C – plus a specific target type TC with a target state qC , such that the sequence of actions
computed by Metis(UC , 〈TC , qC〉) can be post-processed to obtain the desired solution to the
Planning problem.

We start by presenting the generation of UC . For every component z of type T in state q
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in the configuration C, a new type of component Tz is added to the original universe. The
new type Tz is equal to T with the following exceptions:

every port p provided by T in state q is replaced by pz;
every port r required by T in state q is replaced with ports {rz′ | 〈r, z′, z〉 ∈ B} where B
is the set of bindings of C (i.e., every require-port is replaced by ports depending on the
component that provides that port);
the state q provides the port z.

The universe will include also the new target component type TC: it has two states, the
initial one and a connected state qC that requires the port z for every component z in C.

Given these definitions, it is immediate to see that Metis(UC , 〈TC , qC〉) will return either
an empty sequence or a sequence of actions leading to a configuration that includes the
components and bindings in C plus other components, like the target dummy components
of type TC or other temporary components. By temporary components, we mean instances
of components necessary during the execution of the deployment actions (e.g., to satisfy
some requirements in intermediary states to be traversed to reach the final ones) but not
present in the desired configuration C. These temporary components are easily identifiable
in the configuration reached by the synthesized plan because are not connected to the target
component of type TC . These additional components can be removed by adding to the plan
the corresponding del actions.

We now discuss how to post-process the plan possibly generated by Metis. First of all,
it is necessary to replace the bind actions bind(rx, z1, z2) with bind(r, z1, z2) and deleting
all the actions involving components of type TC , to obtain a sequence of actions reaching a
configuration equivalent to C up-to the additional temporary components (the target TC is
not created). Then del actions are added to the plan for all the temporary components as
described above.

I Theorem 14. The Planning problem can be solved in polynomial time.

Proof. The polynomiality of the algorithm described above derives directly from the polyno-
miality of Metis [14]. Indeed, the extended universe U ′ contains only ad additional linear
number of component types w.r.t. the size of the input, and the post-processing of the
sequence of actions performs a scan of the plan generated by Metis and add some del action.
This scan as well as the addition of del actions can be done in polynomial time since the
polynomiality of Metis bounds the plan and the reached configuration to be polynomial. J

As a consequence of this result we have that the chain of algorithms solving in sequence
the Configuration, Generation, and Planning problems, compute a sequence of deployment
actions to reach the desired target configuration in EXP-Time. From the practical point of
view this complexity is however reached only when there are components that require a large
number of other components to satisfy their needs. Indeed, in this case the space needed to
store the port capacity may take O(n) space requiring O(2n) deployment action to generate
the providers.

6 Related work

With the current popularity of cloud computing, the problem of automating application
deployment has recently attracted a lot of attention. As of today most industrial products
offered by big companies, such as Amazon, HP and IBM, rely on holistic approaches where
a complete model for the entire application is defined and the deployment plan is derived
in a top-down manner. In this context, one prominent work is represented by the TOSCA
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(Topology and Orchestration Specification for Cloud Applications) standard [16], promoted
by the OASIS consortium for open standards. TOSCA proposes an XML-like (or YAML)
rich language to describe an application. Deployment plans are usually BPEL notations, i.e.,
work-flow defined in the context of business process modeling.

Using these approaches the burden of specifying what components should be deployed
and how to interconnect them is left to system administrators or cloud engineers. On the
contrary, Zephyrus [4] and ConfSolve [11] automatize also this task starting from a high-level
declarative specification of the desired configuration. As previously mentioned, Zephyrus is
grounded on the Aeolus model and takes into account also packages, repositories, as well as
the optimality of the proposed solution. ConfSolve relies on constraint solving techniques to
propose an optimal allocation of virtual machines to servers, and of applications to virtual
machines. An object-oriented declarative language is used to describe the entities (e.g.,
machines and services), the constraints, and the optimization criteria. Similarly to Zephyrus,
but differently from Metis, ConfSolve does not consider the problem of synthesizing a low-level
plan to reach the final configuration.

Two recent efforts, Feinerer’s work on UML [8] and Engage [9], are more similar to our
approach as they both rely on a solver to plan deployments. Feinerer’s work is based on the
UML component model, which includes conflicts and dependencies, but lacks the aspects
concerning virtual machines and deployment. Engage, on the other hand, offers no support
for conflicts in the specification language. Neither Feinerer’s work nor Engage allows to find
a deployment that uses resources in an optimal way, minimizing the number and cost of
needed components as can be obtained by Zephyrus. Furthermore, no other tool that we
are aware of allows to declare capacity or replication constraints, which are essential non
functional constraints for any non-trivial, scalable application.

7 Conclusion

In this article we have studied the problem of reconfiguration using the abstract compo-
nent model named Aeolus, with all its expressive power. This model allows to describe
complex component systems with functional constraints, and non-functional constraints like
redundancy, capacity and conflicts.

We have carefully decomposed the reconfiguration problem into three steps, Configuration,
Generation and Planning, and we showed how to recover decidability by imposing restrictions
only on the transient states of the Planning phase.

These restrictions correspond to the realistic deployment conditions of many current
distributed applications, thus paving the way to a new generation of smarter deployment
tools that will help automate a larger part of the work that today requires significant human
intervention. A research prototype, described in [4], has been developed to show the viability
of this approach.
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Abstract
It is well understood that the interaction between discrete and continuous dynamics makes hybrid
automata difficult to analyse algorithmically. However it is already the case that many natural
verification questions concerning only the continuous dynamics of such systems are extremely
challenging. This remains so even for linear dynamical systems, such as linear hybrid automata
and continuous-time Markov chains, whose evolution is detemined by linear differential equations.
For example, one can ask to decide whether it is possible to escape a particular location of a linear
hybrid automaton, given initial values of the continuous variables. Likewise one can ask whether a
given set of probability distributions is reachable during the evolution of continuous-time Markov
chain.

This talk focusses on reachability problems for solutions of linear differential equations. A
central decision problem in this area is the Continuous Skolem Problem, which asks whether a
real-valued function satisfying an ordinary linear differential equation has a zero. This can be
seen as a continuous analog of the Skolem Problem for linear recurrence sequences, which asks
whether the sequence satisfying a given recurrence has a zero term. For both the discrete and
continuous versions of the Skolem Problem, decidability is open.

We show that the Continuous Skolem Problem lies at the heart of many natural verification
questions on linear dynamical systems. We describe some recent work, done in collaboration with
Chonev and Ouaknine, that uses results in transcendence theory and real algebraic geometry to
obtain decidability for certain variants of the problem. In particular, we consider a bounded ver-
sion of the Continuous Skolem Problem, corresponding to time-bounded reachability. We prove
decidability of the bounded problem assuming Schanuel’s conjecture, one of the main conjectures
in transcendence theory. We describe some partial decidability results in the unbounded case
and discuss mathematical obstacles to proving decidability of the Continuous Skolem Problem
in full generality.
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Abstract
We review and compare three notions of conformance testing for cyber-physical systems. We
begin with a review of their underlying semantic models and present conformance-preserving
translations between them. We identify the differences in the underlying semantic models and
the various design decisions that lead to these substantially different notions of conformance
testing. Learning from this exercise, we reflect upon the challenges in designing an “ideal” notion
of conformance for cyber-physical systems and sketch a roadmap of future research in this domain.
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1 Introduction

Cyber-physical systems (CPSs) are the result of the massive and tight interaction of computer
systems with physical components and with each other. CPSs have gained importance due
to the opportunities that they provide and the criticality of the applications in which they
are used. Concerning this importance, model-based approaches are being studied and
extended for cyber-physical systems, in order to lay a rigorous foundation for their design and
engineering. One typical feature of models used for cyber-physical systems is the integration
of discrete behavioral descriptions (often stemming from the “cyber” side), with continuous
behavioral descriptions (often stemming from the “physical” side). This combination is
well-known in the formal modeling literature and is often referred to as hybrid-systems
modeling.1
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Hybrid Labeled Transition Systems

MetricTransition Systems Hybrid-Timed State Sequence Systems

Hybrid Input-Output Conformance

(τ ,ε)-ConformanceApproximate Simulation

Figure 1 An overview of the semantic models and their mutual translations.

Myriad pieces of research work have been devoted to formal verification of cyber-physical
systems and their hybrid-systems models; we refer to [8] for an overview. Model-based
conformance testing is a lightweight verification technique, which aims at detecting faults
or establishing a level of quality by generating test-cases from a model and applying it to
the system under test [16, 38]. Conformance testing based on hybrid-systems models is a
relatively recent subject matter [3, 4, 6, 7, 11, 14, 22, 23, 27, 32, 33, 34, 41, 59, 63, 64] and
as we demonstrate in the remainder of this paper, still calls for more mature foundations
and practical implementations.

A typical feature of hybrid systems research is the reliance on different approaches to
system modeling and analysis that stem from different disciplines such as computer science
(e.g., finite automata, process algebra, and Petri nets) and control theory (e.g., switching
systems and bond graphs). Subsequently, existing approaches to conformance testing are
based on different semantic models and assume different semantic properties of the model and
the system under test. In this paper, we review the notions proposed in [3, 4, 22, 23, 33, 41, 59],
which are, to our knowledge, the main existing proposals for a formal notion of conformance
based on behavioral models. We compare these notions and reflect upon the results of this
comparison. A summary of the semantic models studied in this paper, their corresponding
notions of conformance and the devised translation relations are depicted in Figure 1. The
three corners of the triangle denote the semantic models. The self-loops on the corners
denote the notions of conformance. The solid lines on the sides of the triangle represent the
translations that are presented in this paper. The dashed line is a missing translation; we
refer to [46] for a related attempt in this context. We conclude the paper by describing some
theoretical and practical challenges in model-based testing of cyber-physical systems.

Structure of the Paper

In Section 2, we give an overview of the three studied semantic models. In Section 3,
we present mutual translations between the semantic models as outlined in Figure 1. In
Section 4, we present the notions of conformance defined for these semantic models in the
literature. Using these notions, in Section 5, we present full abstraction results regarding
our translations; namely, we show that conforming models in the source semantic domain
are projected into and reflected from conforming models in the target semantic domain. In
Section 6, we reflect upon the results of our translations and comparisons and present several
challenges for future research.
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2 Semantic Models

Several behavioral semantic models exist for hybrid systems of which [18, Chapter2] and
[19, 36] provide an overview. In this section, we review the following three of such fundamental
semantic models:

Hybrid labeled transition systems,
Metric transition systems, and
Hybrid-timed state sequence systems.

The choice of these models is motivated by the fact that they have been used in the context
of the notions of conformance that are presented in Section 4.

2.1 Basic Definitions
The continuous behavior of a hybrid system is captured by the valuation of a set V of
continuous variables. We assume that V is partitioned into disjoint sets of input variables,
denoted by VI , and output variables, denoted by VO. A valuation of V is a function that
assigns a value to each variable v ∈ V ; here, only variables of type R (the set of real numbers)
are considered. The set of all valuations of V is denoted by Val(V ) and is defined as the
set of all functions V → R. To describe the piece-wise evolution of the system, we use the
following notion of trajectory [43] (called activity in [9]).

I Definition 1 (Trajectory). Let D be the set {(0, t] | t ∈ R>0} of all left-open right-closed
intervals.2 A trajectory φ is a function of type D → Val(V ), which maps each element in an
interval in D to a valuation. The set of all trajectories for V is denoted by Trajs(V ).

Furthermore, we define the restriction operator on valuations and trajectories as follows.

I Definition 2 (Valuation and Trajectory Restriction). Consider a valuation val ∈ Val(V ) and
a set V ′ ⊆ V of variables; the restriction of val to V ′, denoted by val ↓ V ′, is a valuation in
Val(V ′) such that for all v′ ∈ V ′, (val ↓ V ′)(v′) = val(v′) .

Consider a trajectory φ : D → Val(V ); the restriction of φ to V ′ ⊆ V , denoted by
(reusing the notation) φ ↓ V ′, is the function of type D → Val(V ′), such that for each d ∈ D,
(φ ↓ V ′)(d) = φ(d) ↓ V ′.

2.2 Hybrid Labeled Transition System
A hybrid labeled transition system [19, 59] consists of a set of states with discrete (action)
and continuous (trajectory) transitions between them. It is formally defined as follows:

I Definition 3 (Hybrid Labeled Transition System (HLTS)). Let A be the union of disjoint
sets of input actions AI and output actions AO. Assume that V is the union of disjoint sets
of input variables VI and output variables VO. A hybrid labeled transition system T is a
5-tuple (S, s0, V, L,→), where

S is a (possibly infinite) set of states;
s0 ∈ S is the initial state;
V is a set of continuous variables;
L = A ] Trajs(V ) is a set of (resp. action or trajectory) labels;

2 The choice of “left-open right-closed” is arbitrary; we could just as well have chosen “left-closed
right-open” intervals. The developments to come will be only slightly different in that case.
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→ ⊆ S × (L ∪ {ξ}) × S specifies the transition relation, where ξ denotes the internal
action.3

We may write s l→ s′ to mean (s, l, s′) ∈ →. We also write s a→ (respectively, s φ
 ) to mean

that there exists an s′ ∈ S such that s a→ s′ (and φ ∈ Trajs(V )).

I Definition 4 (Concrete HLTS). An HLTS is concrete if it does not have any ξ-labeled
transition emanating from its reachable states.

Next, we define the notion of generalized transition relation for an HLTS, which allows us
to “jump over” internal actions and to concatenate actions and trajectories to form traces.

I Definition 5 (Generalized Transition Relation). Consider an HLTS T = (S, s0, V, L,→).
The generalized transition relation for T is defined as the smallest relation ⇒⊆ S × L∗ × S
where

s
ε⇒ s, where ε denotes the empty sequence of labels;

if s ξ→ s′, then s ε⇒ s′,
∀l ∈ L, if s l→ s′, then s l⇒ s′;
∀α, β ∈ L∗, if s α⇒ s′′ and s′′ β⇒ s′, then s αβ⇒ s′;

We write s α⇒ to denote that there exists an s′ ∈ S such that s α⇒ s′. The behavior of a
system is specified by its set of traces, which are finite sequences of actions and trajectories.

I Definition 6 (Trace). For HLTS T , a trace is a finite sequence α ∈ L∗ such that s0
α⇒,

where s0 is the initial state of T .

The length of a trace α is defined as the number of elements of the sequence and is represented
by |α|. We denote the set of all traces of T by Traces(T ). The restriction of a trace σ to
a set V ′ ⊆ V of variables, denoted by α ↓ V ′, is defined by point-wise restriction of the
trajectories in α while keeping the actions intact.

Let δ ∈ AO be a special symbol to denote that a state has at least one emanating
trajectory. We assume that HLTSs are normalized, i.e., for s ∈ S, if there exists a ∈ Trajs(V )
such that s a

 , then s δ−→ s. This assumption is motivated by the notion of conformance on
HLTSs.4

I Definition 7 (Active Trajectory of a Trace). Consider an HLTS T = (S, s0, V, L,→), a trace
α ∈ Traces(T ), and a point t ∈ R>0 denoting time; the active trajectory of α at t, denoted
by active(α, t) is defined to be a trajectory φi ∈ Trajs(V ) when for each j ≤ i there exist
φj ∈ Trajs(V ), αj ∈ A∗, and α′ ∈ (A ∪Trajs(V ))∗ such that the domain of each φj is (0, tj ],
α = α1φ1...αiφiα

′ and
∑i−1
j=1 tj < t ≤

∑i
j=1 tj . In that case the elapsed time of the active

trajectory at t, denoted by elapsed(α, t), is defined as t−
∑i−1
j=1 tj .

Moreover, we assume that HLTSs have the following three properties A1-A3 [59]; we
refer to [20] for some consequences of these assumptions:

A1 if s φ
 s′ and s φ

 s′′, then s′ = s′′.
A2 if s φ′_φ′′

 s′, then there exists s′′ such that s φ′

 s′′ and s′′
φ′′

 s′, where φ′ _ φ′′

denotes concatenation of trajectories after shifting the domain of φ′′.
A3 if s φ′

 s′′ and s′′ φ
′′

 s′, then s φ
′_φ′′

 s′.

3 In the literature of concurrency theory, internal (unobservable) transitions are labeled by τ ; in our
context, however, τ denotes the conformance time bound and hence, we use ξ instead.

4 We deviate from the notation commonly used in the literature in order to avoid clashing with the other
notations used for conformance. In the literature, δ is used for lack of discrete output actions and ε for
lack of trajectories.
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Input-enabledness, defined below, is another constraint, which we in general do not require
for all HLTSs. However, our full abstraction result does depend on input-enabledness, as we
demonstrate in Section 5.1.

I Definition 8 (Input-enabled HLTS). An HLTS T = (S, s0, V, L,→) is input-enabled if
∀s ∈ S,∀a ∈ AI : s a⇒ and ∀φ ∈ Trajs(VI) : ∃φ′ ∈ Trajs(V ) such that φ′ ↓ VI = φ ∧ s φ′

⇒.

Finally, we define the notion of determinism, which again plays a role in our full abstraction
results.

IDefinition 9 (Determinism). An HLTS T = (S, s0, V, L,→) is deterministic when ∀s, s′, s′′ ∈
S,

∀a ∈ A : if s a→ s′ and s a→ s′′, then s′ = s′′, and
∀φ′, φ′′ ∈ Trajs(VI) if φ′ ↓ VI = φ′′ ↓ VI , if s

φ′

→ s′ and s φ′

→ s′′, then φ′ = φ′′ and s′ = s′′.

2.3 Metric Transition System
A metric is a function that defines the distance between different elements of a set:

I Definition 10 (Metric). A metric on a set E is a function d : E × E → R≥0 ∪ {∞} such
that for all e1, e2, e3 ∈ E the following properties hold:

d(e1, e3) ≤ d(e1, e2) + d(e2, e3),
e1 = e2 ⇔ d(e1, e2) = 0, and
d(e1, e2) = d(e2, e1).

Metric transition systems [31, 33, 56] are transition systems that are equipped with an
observation function and one or more metrics. They are a generic formalism that can be
used for specifying different sorts of dynamic behavior, such as discrete, continuous, and
hybrid systems. In this paper, we use the metric transition systems whose metric is defined
over observations on states [33], as quoted below.

I Definition 11 (Metric Transition System (MTS)). A metric transition systemM is a 7-tuple
(Q,Q0, I,→, O,B, d), where:

Q is a set of states,
Q0 ⊆ Q is a set of initial states,
I is the set of inputs,
→⊆ Q× I ×Q is the transition relation,
O is a set of outputs,
B : Q→ O is an observation function, and
d = (d1, d2) is a pair of metrics where d1 is defined over O and d2 is defined over I.

Intuitively, the inputs in an MTS capture both continuous (system dynamics) and discrete
behavior of the system.

2.4 Hybrid-Timed State Sequence System
Hybrid-timed state sequence systems (HSSs) [3, 4, 58] are another semantic model that
assumes a discrete sampling of input and output variables.5 The formal definition of HSS is
quoted below.

5 In [3, 4], Hybrid-Timed State Sequence Systems (HSSs) are simply called “hybrid systems”; we use the
former term to be more specific and differentiate between different semantic models for hybrid systems.
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I Definition 12 (Hybrid-Timed State Sequence (TSS)). Consider N ∈ N, T = R≥0 × N, and
a set of variables V . A hybrid-timed state sequence (TSS) is defined as pair (x,σ), where
x ∈ (Val(V ))N and σ ∈ TN . The i’th element of a TSS (x,σ) is denoted by (xi,σi), where
σi=(ti, ji) ∈ T.

We denote the set of all TSSs defined over the set of variables V , considering a specific
sample size N ∈ N, by TSS(V,N). The set of all TSSs over v regardless of sample size,
denoted by TSS(V ), is defined as

⋃
N∈∈N TSS(V,N).

The time domain T = R≥0 × N is often called the “super-dense” time domain in the
literature [44]. The ordering < on the super-dense time domain is the lexicographical ordering
by lifting the ordering on real and natural numbers.

Consider x ∈ (Val(V ))N and σx ∈ TN ; we refer to the i’th element of x and σx,
respectively, by xi and σx,i. Moreover for t ∈ T, we write t1 for the first (the real-valued)
component of t and t2 for the second (the natural-number-valued) component of t.

We assume for all (x,σ) ∈ TSS(V,N), σ : N → T is a strictly monotonic function with
respect to the lexicographic ordering on T. In other words, for each two consecutive points
in σ, the real-valued component does not decrease and if the real-valued component remains
the same, the natural-number-valued component increases.

I Definition 13 (Hybrid-Timed State Sequence System (HSS)). A hybrid-timed state sequence
system (HSS) H is a function H : H×TSS(VI , N)→ TSS(VO, N), where H ⊆ Val(VI ∪VO).

HSSs are assumed to be input enabled; this constraint is captured by the following formal
definition:

I Definition 14 (Input-enabled HSS). An HSS H : H × TSS(VI , N) → TSS(VO, N) is
input-enabled, if it satisfies the following constraint:
∀h0 ∈ H,∀(x, σx) ∈ TSS(VI , N) : ∃(y, σy) ∈ TSS(VO, N) such that (y, σy) = H(h0, (x, σx)).

2.5 Informal Comparison of Semantic Models
The following list summarizes some of the fundamental differences among the three semantic
models reviewed in this section.

(Non-)Determinism: HLTSs and MTSs offer natural support for non-determinism. HSSs,
to the contrary, are defined as a function and hence, do not provide support for non-
determinism. Non-determinism is often useful in modeling abstraction from details that
are either unavailable or irrelevant at the time of modeling.
Dense-time or sampled trajectories: HLTSs explicitly assume dense-timed trajectories
while HSSs assume a fixed sample size. MTSs are oblivious to this choice and can be
used to model both dense- and sampled-time trajectories.
Explicit discrete interactions: HLTSs provide an explicit means for modeling discrete
observable actions that can be further used for synchronization between models and with
the environment; these represent message passing synchronization among concurrent
processes [10]. HSSs inherently lack this means; they could be exploited though to code
discrete actions as changes in auxiliary variables’ valuations. MTSs stay at a very abstract
level and can be used to naturally model discrete actions as inputs.
Input-enabledness: HLTSs and MTSs are not required to be input-enabled. HSSs as
a semantic model may not be input-enabled, but the authors seem to have put it as a
requirement on the semantic domain.

CONCUR’15



24 Notions of Conformance Testing for Cyber-Physical Systems: Overview and Roadmap

Observations on states or transitions: HLTSs suggest that the observations should be
placed on transitions and states do not carry any observable information. For HSSs the
notions of states and transitions are a bit blurred; if one takes states to be valuations of
variables and transitions to be labeled by the difference of super-dense time points, then
HSSs carry observable information both on states and transitions [50]. Likewise, MTSs
carry observable information both in states and transitions.
Partial valuations: HLTSs assume that the valuation of all variables are defined by
trajectories; HSSs, however, do not make such an assumption and allow for different
sampling of input and output variable valuations. Similar to the previous cases MTSs
are oblivious to this choice and can be used to model either of the two types of systems.

3 Translations among Semantic Models

In this section, we present translations between the semantic models introduced in Section 2,
as illustrated in Figure 1.

3.1 From HLTS to MTS

The translation from HLTS to MTS defines as the states of the target MTS: the triples
comprising (discrete) states, input trajectories leading to the state (or ⊥ if none), and
valuations of variables in the source HLTS. The transitions are then the union of discrete
transitions and time transitions. Discrete transitions only update the discrete part of the
state. In the case of trajectories, we update both the discrete state and the valuation with
the state and the valuation at the upper bound of their domain.

I Definition 15 (Translation from HLTS to MTS). Consider an HLTS T = (S, s0, V, L,→);
an MTS M = (Q,Q0, I,→, O,B, d) is a translation of T when it satisfies the following
constraints:

Q = S × (Trajs(VI) ∪ {⊥})×Val(V ),
Q0 = {〈s0, φ, x〉 | φ ∈ Trajs(VI) ∪ {⊥}, x ∈ Val(V )},
I = A ∪ R≥0,
for each generalized transition s α⇒ s′ of T , and for all x ∈ Val(V ),

if α ∈ A, then 〈s, φ, x〉 α−→ 〈s′,⊥, x〉,
if α ∈ Trajs(V ), then 〈s, φ⊥, x〉

t−→ 〈s′, α ↓ VI , α(t)〉, where dom(α) = (0, t] and
φ⊥ ∈ Trajs(VI) ∪ {⊥},

O ⊆ Trajs(VI)×Val(V ),
B(〈s, φ, x〉) = (φ, x), for all 〈s, φ, x〉 ∈ Q,
d = (d1, d2), where

d1((φ⊥, x), (φ′⊥, y)) =


||x− y|| if φ⊥ = φ′⊥ = ⊥ or

∀t ∈ dom(φ⊥) ∩ dom(φ′⊥) :
φ⊥(t) ↓ VI = φ′⊥(t) ↓ VI

∞ otherwise

d2(t, t′) = |t− t′|
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3.2 From HSS to MTS
In the translation from HSS to MTS, we define as the state of the target MTS: the initial
condition, the input TSS, the output TSS and the current moment of time (in the super-dense
time domain). (The initial state is an exception; it is denoted by ⊥ and does not assume any
initial state, input- or output TSS.) We define two types of transitions:

initial transitions that define an initial condition and an input TSS for a state, and
timed transitions that are labeled by relative time (a real number) denoting the amount
of time need to reach a different output valuation in the past or in the future.

The metric on states compares the current valuations of output TSSs and the metric on
transitions takes the difference in the amount of time passed.

I Definition 16 (Translation from HSS to MTS). Consider HSS H : H0 × TSS(VI , N)
→ TSS(VO, N); MTSM = (Q,Q0, I,→, O,B, d) is a translation of H with respect to initial
condition h ∈ H0, if it satisfies the following constraints:

Q = {⊥}∪
{〈h0, (x, σx), (y, σy), σy,i〉 |

h0 ∈ H0,

(x, σ(x)) ∈ TSS(VI , N),
(y, σ(y)) ∈ TSS(VO, N),
(y, σy) = H(h0, (x, σx)),
i ∈ [1, N ]}

,

Q0 = {⊥},
I = R,
⊥ 0−→〈h0, (x, σx), (y, σy), σy,1〉, for each 〈h0, (x, σx), (y, σy), σy,1〉 ∈ Q, and

〈h0, (x, σx), (y, σy), σy,i〉
σ1

y,j−σ
1
y,i−→ 〈h0, (x, σx), (y, σy), σy,j〉.

Moreover, the transition relation −→ is closed under the following deduction rule:

q0
t0−→ q1 q1

t1−→ q2

q0
t0+t1−→ q2

O = {⊥} ∪H × TSS(VI , N)×Val(VO),
B(⊥) = ⊥,
B(〈h0, (x, σx), (y, σy), σy,i〉) = (h0, (x, σx), valO) if and only if yi = valO,
d = (d1, d2), where

d1(a, b) =



0 a = b = ⊥

||valO − val ′O|| a = (h0, (x, σx), valO)
b = (h0, (x, σx), val ′O)

∞ otherwise

d2(t, t′) = |t− t′|

Next, we informally explain the definition of the metrics and the transition relation in
the above-given translation.

Concerning metric d1, the first case is self-explanatory. The second case compares the
current valuations of output variables only in cases where the initial conditions and input
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TSSs are identical. The last case covers both comparing the initial state with the rest and
also comparing those states that have different initial conditions or input TSSs. Metric d2 is
also straightforward and only concerns the difference in relative time to reach a state.

Regarding the transition relation, the initial state is connected by a 0-labeled transition to
all states in which a valid initial condition and an output produces an output TSS; moreover,
in the target state the current time is set to the time of the first element in the output
TSS. The time transitions are straightforward, once the initial condition and input and
output TSSs are fixed, a time transition moves back and forth between the points of time
(in the super-dense time domain) when outputs are produced. The last deduction rule in
the definition of t−→ is only needed to connect the initial state by a single transition to all
reachable states. This is a technical requirement that pops up in the forthcoming proof of
full abstraction.

4 Notions of Conformance

In this section, we review the different notions of conformance testing defined for the semantic
models presented in Section 2.

4.1 Hybrid Input-Output Conformance (HIOCO)
We start with reviewing the notion of hybrid input-output conformance (HIOCO) [59, 60].
To this end, we first give some preliminary definitions. To avoid repetition, we assume in the
remainder of this section that HLTS T is a 5-tuple (S, s0, V, L,→).

I Definition 17 (after Operator). For HLTS T and trace α ∈ Traces(T ), we define T after
α =

{
s
∣∣∣s0

α⇒ s
}

I Definition 18 (Trajectories of a State). Consider HLTS T and state s ∈ S, then trj(s)
is defined as trj(s) =

{
σ ∈ Trajs(V ) | s σ⇒

}
. This definition is extended to a set of states

S′ ⊆ S as trj(S′) =
⋃
s∈S′ trj(s).

I Definition 19 (Trajectory Infiltration). Consider ΣI ,ΣS ⊆ Trajs(V ) and VI ⊆ V as the
input partition of V ;

infilter(ΣI ,ΣS) = {σ ∈ ΣI | ∃σ′ ∈ ΣS . σ ↓ VI = σ′ ↓ VI}

Informally, infilter(ΣI ,ΣS) is the set of all trajectories σ ∈ ΣI such that they find a
counterpart in ΣS that agrees with σ on input variables. In this definition I and S typically
denote the implementation and the specification, respectively.

I Definition 20 (State Output). Consider s ∈ S; the output of s, denoted by out(s) ⊆ AO,
is defined as out(s) = {a ∈ AO|s

a−→}, where AO is assumed to contain δ. This definition is
extended to a set of states C ⊆ S as out(C) =

⋃
s∈C out(s).

Using the above-given definitions, we are now ready to define the notion of HIOCO.

I Definition 21 (Hybrid I/O Conformance). Consider an HLTS S; an input-enabled HLTS I
is said to be hybrid input-output conforming to S, denoted by I hioco S, if and only if for
all traces α ∈ Traces(S):

out (I after α) ⊆ out (S after α)∧
infilter (trj(I after α), trj (S after α)) ⊆ trj (S after α)
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Informally, this notion states that for all traces α of specification S, the discrete outputs
of the implementation I after α must be a subset of that of the specification. Moreover
after each trace α of specification S, the set of trajectories in the implementation, with a
corresponding trajectory in the specification (with equal input valuations), must be a subset
of the trajectories of the specification.

4.2 Approximate Simulation
Approximate simulation [33, 32, 34, 52] is a notion of conformance that describes how well a
system is approximated by another system in terms of its observable behavior. We assume
below that MTSs Mi are defined as (Q,Q0i, I,→, O,B, d), i.e., have all components in
common apart from the initial state.

I Definition 22 (Approximate Simulation). Consider two MTSs M1 and M2; a relation
Rε,τ ⊆ Q×Q is an approximate simulation relation with precision (ε, τ), for ε ≥ 0, τ ≥ 0,
when for all (q1, q2) ∈ Rε,τ ,

d1(B(q1),B(q2)) ≤ ε,
if q1

i1−→ q′1, then there exists a transition q2
i2−→ q′2 such that d2(i1, i2) ≤ τ and (q′1, q′2) ∈

Rε,τ .

M2 approximately simulates M1 with precision (ε, τ), denoted byM1 �ε,τ M2, when
there exists a relation Rε,τ , such that for all q1 ∈ Q01, there exists q2 ∈ Q02 such that
(q1, q2) ∈ Rε,τ .
M1 andM2 are approximately bisimilar with precision (ε, τ), denoted byM1 ≡ε,τ M2,

when there exists a symmetric simulation relation relating their sets of initial states.

4.3 (τ, ε)-Conformance
The notion of (τ, ε)-conformance relates two HSSs when for each sampled input, the sampled
output of related pairs differ in time with the maximum value of τ and differ in valuations
with the maximum value of ε.

I Definition 23 ((τ, ε)-Conformance). Consider a test duration T ∈ T and τ, ε > 0 and TSSs
(y, σy) ∈ TSS(V,N) and (y′, σy′) ∈ TSS(V,N ′); then (τ, ε)-conforms to (y′, σy′), denoted by
(y, σy) ≈τ,ε (y′, σy′), if and only if
1. for all i ∈ [1, N ] such that ti ≤ T there exists k ∈ [1, N ′] such that tk ≤ T , |t1i − t′1k | ≤ τ

and ||yi − y′k|| ≤ ε, and
2. for all i ∈ [1, N ′] such that t′i ≤ T , there exists k ∈ [1, N ] such that tk ≤ T , |t′1i − t1k| ≤ τ

and ||y′i − yk|| ≤ ε.

HSS H (τ, ε)-conforms to HSS H′ (both with the same sets of input and output variables),
denoted by H ≈τ,ε H′, when for each initial condition h0 and each TSS (x, σx) on the
common input variables VI , H(h0, (x, σx)) ≈τ,ε,VO

H′(h0, (x, σx)).

We have made two slight modifications with respect to the original definition of (τ, ε)-
conformance in [3, 4]: firstly, the original notion requires the number of discrete jumps (the
natural-number-valued part of time) for related states to be identical. The main purpose for
this choice is to be sensitive to Zeno behavior, but we consider this a too strong constraint
for the purpose and hence, we removed this it. (We expect our results to hold in the original
setting, as well.) Secondly, the original definition requires the difference of the timing and

CONCUR’15



28 Notions of Conformance Testing for Cyber-Physical Systems: Overview and Roadmap

valuations to be strictly less than the conformance bounds τ and ε, respectively. We have
changed this to less than or equal to be consistent with the earlier definition of approximate
simulation.

5 Full Abstraction for Translations

In this section, we show that the translations introduced in Section 3 preserve the notions
of conformance for a designated subset of the source semantic domain. We also give some
suggestions as to how to generalize these results to all semantic models.

5.1 Full Abstraction for the HLTS-MTS Translation
We start with proving that our translation from HLTS to MTS projects and reflects HIOCO-
conforming pairs of models to approximately similar models with approximation bounds set
to 0. To obtain this result, we need to focus on a very restricted subset of HLTSs, namely
concrete input-enabled deterministic ones. After we present the proof, we sketch some initial
ideas as to how to relax these restrictive assumptions. To avoid repetition, we assume that
the HLTSs in the remainder of this section are of the form (ST , s0T , V, L,→), where T is
the HLTS at hand. Note that we do not subscript the transition relation because it is always
clear from the context and we do not subscript the set of variables and labels, because they
are assumed to be the same throughout this section.

I Theorem 24. Consider two concrete input-enabled HLTSs I and S, where S is determinis-
tic; assume that trans(I) and trans(S) denote the MTS translations of I and S, respectively.
Then, the following statement holds:

I hioco S ⇒ trans(I) �0,0 trans(S).

Proof. We start with proving the following lemma. This lemma makes sure that the
simulation relation between the states of trans(I) and trans(S) (given in the remainder of
the proof) is well-defined.

I Lemma 25. Consider concrete input-enabled and deterministic HLTSs I and S and an
arbitrary trace α ∈ Traces(S); I hioco S implies that for all s1 ∈ I after α, there exits
s2 ∈ S after α such that Is1 hioco Ss2 , where for an HLTS T and state s, Ts denotes the
same HLTS with the initial state s.

Proof. We prove the lemma by induction on the length of α.
Since both I and S are concrete (i.e., s0I after ε = s0I and s0S after ε = s0S) and

Is0I = I and Ss0S = S, the base case follows immediately.
Assume that for all αn ∈ Traces(S) with |αn| ≤ n and all s1 ∈ I after αn, there exists

s2 ∈ S after αn, such that Is1 hioco Ss2 .
Consider a trace αn+1 ∈ Traces(S); if I after αn+1 = ∅, then the thesis follows vacuously.
For the case that I after αn+1 6= ∅, let l be the last element of αn+1. Hence, there is an

l-labeled transition s1
l−→ s′1, where s1 ∈ I after αn and s′1 ∈ I after αn+1. It follows from

the induction hypothesis that there exists a state s2 ∈ S after αn such that Is1 hioco Ss2 .
If l is an input, since S is input-enabled, there exists a transition s2

l−→ s′2. If l is an output,
it follows from the first condition of Definition 21 that s2

l−→ s′2. If l is a trajectory, it follows
from input-enabledness of S that I affords an l′ trajectory such that l ↓ VI = l′ ↓ VI . Then,
it follows from the second condition of Definition 21 that that s2

l−→ s′2.
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Hence, it remains only to prove that Is′
1
hioco Ss′

2
; we proceed with a proof by contradic-

tion. Suppose there exists α′ ∈ Traces(Ss′
2
) such that one of the two conditions of Definition 21

does not hold for Is′
1
and Ss′

2
. It follows from α′ ∈ Traces(Ss′

2
) that αn+1α

′ ∈ Traces(S) and
hence, the same condition is violated for I and S, which contradicts the assumption of the
lemma. Hence, we conclude that Is′

1
hioco Ss′

2
. J

We define the following relation R and then prove that R is a witnessing approximate
simulation relation for trans(I) �0,0 trans(S):

R = {(〈s1, φ, x〉, 〈s2, φ, x〉) | Is1 hioco Ss2 , φ ∈ Trajs(VI) ∪ {⊥}, x ∈ Val(V )}

It follows from Definitions 10 and 15 (particularly, the definition of B in the latter) that
for each two related states in R, d1(B(〈s1, φ, x〉),B(〈s2, φ, x〉)) = d1((φ, x), (φ, x)) = 0.

From I hioco S, it follows that (〈s0,I ,⊥, x〉, 〈s0,S ,⊥, x〉) ∈ R.
Hence, it only remains to show that if 〈s1, φ, x〉

α→ 〈s′1, φ′, x′〉, for some α ∈ L, then there
exists s′2 such that 〈s2, φ, x〉

α→ 〈s′2, φ′, x′〉 and (〈s′1, φ′, x′〉, 〈s′2, φ′, x′〉) ∈ R.
We distinguish the following cases based on whether α is an input action, output action,

or a trajectory:
α ∈ AI : Since S is input-enabled, α ∈ Traces(Ss1). Hence, s2 affords an α-labeled transi-
tion to some state s′2. Since S is deterministic, this is the only α-labeled transition afforded
by s1. Hence, it follows from Is1 hioco Ss2 and Lemma 25 that Is′

1
hioco Ss′

2
. Finally, it

follows from the latter statement and the construction of R that (〈s′1,⊥, x′〉, 〈s′2,⊥, x′〉) ∈
R, which was to be shown.
α ∈ AO: It follows from Is1 hioco Ss2 and Definition 21. Hence, s2 affords an α-labeled
transition to some state s′2. With a similar reasoning as in the above item, we obtain
that (〈s′1,⊥, x′〉, 〈s′2,⊥, x′〉) ∈ R.
α ∈ Trajs(V ): Then, Since S is input-enabled, there exists some φ′ ∈ Traces(Ss1) such
that φ′ ↓ VI = α ↓ VI . It follows from Is1 hioco Ss2 that s2 affords an α′ labeled
trajectory to some state s′2. With a similar reasoning as in the first item, we obtain that
(〈s′1, φ′ ↓ VI , x′〉, 〈s′2, φ′ ↓ VI , x′〉) ∈ R. J

The assumptions that both HLTSs are concrete and input-enabled and that the specifica-
tion is deterministic are very restrictive. We envisage that concreteness and determinism
assumptions can be relaxed. A possible proof technique could require a slightly modified
translation that is reminiscent of the subset construction for transforming non-deterministic
finite automata to determinstic ones; a similar transformation has been proposed in the
setting of IOCO, see, e.g., [49, Definition 8]. For non-input-enabled HLTSs, we believe that
a slightly different notion than approximate bisimulation needs to be employed; this notion
should be similar to XY-bisimulation [2].

I Theorem 26. Consider two concrete deterministic HLTSs I and S, where S is also input-
enabled, and assume that trans(I) and trans(S) denote their MTS translations, respectively.
Then, the following statement holds:

trans(I) �0,0 trans(S)⇒ I hioco S

Proof. Consider the approximate bisimilarity relation �0,0 (i.e., the largest approximate
bisimulation relation). We proceed with proving the following lemma.
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I Lemma 27. Consider two states 〈s1, φ1, x1〉 and 〈s2, φ2, x2〉, respectively, of trans(I) and
trans(S) such that 〈s1, φ1, x2〉 �0,0 〈s2, φ2, x2〉 ; the following statements hold:

out (s1) ⊆ out (s2) (1)

and

trj(s1) ⊆ trj (s2) (2)

Proof. We next proceed with the proofs of the two statements in the thesis:
In order to prove that out (s1) ⊆ out (s2), consider an arbitrary action a ∈ out (s1).
This can only be due to a transition s1

a−→ s′1 in I. It follows from Definition 15 that
〈s1, φ1, x1〉

a−→ 〈s′1,⊥, x2〉. Due to 〈s1, φ1, x2〉 �0,0 〈s2, φ2, x2〉, we obtain 〈s2, φ2, x2〉
a−→ 〈s′2, φ2, x2〉 for some 〈s′2, φ2, x2〉 such that 〈s′1,⊥, x2〉 �0,0 〈s′2, φ2, x2〉. It then follows

from Definition 15 that φ2 = ⊥ and x1 = x2. It also follows from Definition 15 that the
transition of 〈s2, φ2, x2〉 is due to a transition s2

a−→ s′2 in S. Hence, a ∈ out (s2), which
was to be shown.
In order to prove that trj(s1) ⊆ trj (s2) consider an arbitrary trajectory φ ∈ trj(s1).
This statement can only be due to a transition s1

φ−→ s′1 in I. It follows from Definition 15
that 〈s1, φ1, x1〉

t−→ 〈s′1, φ ↓ VI , φ(t)〉. Due to 〈s1, φ1, x1〉 �0,0 〈s2, φ2, x2〉, we obtain
〈s2, φ2, x2〉

t−→ 〈s′2, φ ↓ VI , φ(t)〉 for some s′2 such that 〈s′1, φ ↓ VI , φ(t)〉 �0,0 〈s′2, φ ↓
VI , φ(t)〉. Hence, it follows from Definition 15 that s2 affords a trajectory φ′ such that
s2

φ′

−→ s′2, dom(φ′) = (0, t], φ′(t) = φ(t), and φ′ ↓ VI = φ ↓ VI . We claim that for each
t′ ∈ (0, t] it holds that φ′(t′) = φ(t′).
Take an arbitrary t′ ∈ (0, t], it follows from assumption A2 that 〈s1, φ1, x1〉

t′−→ 〈s′′1 , φ3 ↓
VI , φ(t′)〉 and 〈s′′1 , φ3 ↓ VI , φ(t′)〉 t−t′−→ 〈s′′′1 , φ4 ↓ VI , φ(t)〉 for some φ3, φ4 ∈ Traj(V ) such
that φ = φ3 _ φ4. Since φ = φ3 _ φ4, it follows from Definition 9 and assumption A1
that s′′′1 = s′1.
It follows from 〈s1, φ1, x1〉 �0,0 〈s2, φ2, x2〉 that 〈s2, φ2, x2〉

t′−→ 〈s′′2 , φ′3 ↓ VI , φ′3(t′)〉 for
some 〈s′′2 , φ′3 ↓ VI , φ′3(t′)〉 such that 〈s′′1 , φ3 ↓ VI , φ(t′)〉 �0,0 〈s′′2 , φ′3 ↓ VI , φ′3(t′)〉 and
φ3 ↓ VI = φ′3 ↓ VI . Also, from 〈s′′1 , φ3 ↓ VI , φ(t′)〉 �0,0 〈s′′2 , φ′3 ↓ VI , φ′3(t′)〉, we obtain
that φ(t′) = φ′3(t′). Likewise, we obtain from 〈s′′1 , φ3 ↓ VI , φ(t′)〉 �0,0 〈s′′2 , φ′3 ↓ VI , φ(t′)〉
that 〈s′′2 , φ′3 ↓ VI , φ(t′)〉 t−t′−→ 〈s′′′2 , φ

′
4 ↓ VI , φ(t)〉 for some 〈s′′′2 , φ

′
4 ↓ VI , φ(t)〉 such that

〈s′′′1 , φ4 ↓ VI , φ(t)〉 �0,0 〈s′′′2 , φ
′
4 ↓ VI , φ(t)〉 and φ4 ↓ VI = φ′4 ↓ VI . We have that

φ = φ3 _ φ4, φ3 ↓ VI = φ′3 ↓ VI , φ4 ↓ VI = φ′4 ↓ VI and φ ↓ VI = φ′ ↓ VI ; hence, due
to A1, we obtain that φ′ = φ′3 _ φ′4. We already had that φ(t′) = φ′3(t′) and from
φ′ = φ′3 _ φ′4, we obtain that φ(t′) = φ′(t′), which was to be shown. J

In order to prove the theorem, we prove the following claim:
Consider a trace αn ∈ Traces(S) with length n; for all s1 ∈ I after αn, there exists

s2 ∈ S after αn such that 〈s1, φ, x〉 �0,0 〈s2, φ, x〉 for all φ ∈ TrajV , x ∈ V al(V ).
Once we prove the claim, by considering Lemma 27 the theorem follows.
We prove the claim by induction on n. For the base case, we have that s0Iafterε = s0I

and s0Safterε = s0S and it follows from Definition 15 and 〈s0I , φ, x〉 �0,0 〈s0S ,⊥, x〉 and s2
is s0S .

Assume that for all k ≤ n, αk ∈ Traces(S) and all s1 ∈ I after αk, there exists
s2 ∈ S after αk such that 〈s1, φ, x〉 �0,0 〈s2, φ, x〉.

Consider a trace αn+1 ∈ Traces(S); if I after αn+1 = ∅, then the claim follows. For the
case that I after αn+1 6= ∅, consider l ∈ L to be the last element of αn+1 and assume that
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s1 ∈ I after αn. According to the induction hypothesis, there exists s2 ∈ S after αn such
that 〈s1, φ, x〉 �0,0 〈s2, φ, x〉. We distinguish the following cases based on the type of the last
element l in αn+1:

l ∈ A: Since s1
a−→ s′1, then 〈s1, φ, x〉

a−→ 〈s′1,⊥, x〉 based on Definition 15. Considering
〈s1,⊥, x〉 �0,0 〈s2,⊥, x〉, 〈s1, φ, x〉

a−→ 〈s′1,⊥, x〉 and Definition 22, it follows that there
exists a state s′2 such that 〈s2, φ, x〉

a−→ 〈s′2,⊥, x〉 and 〈s′1,⊥, x〉 �0,0 〈s′2,⊥, x〉.
In order to show that 〈s′1, φ, x〉 �0,0 〈s′2, φ, x〉, we prove the following more general claim:

I Lemma 28. If 〈s′1, φ, x〉 �0,0 〈s′2, φ, x〉, then 〈s′1, φ′, x′〉 �0,0 〈s′2, φ′, x′〉 for any φ′ ∈
Trajs(V ) and x′ ∈ Val(V ).

Proof. Consider the witnessing approximate simulation relation R such that (〈s′1, φ, x〉 ,
〈s′2, φ, x〉) ∈ R; consider the extension R′ of R with all pairs (〈s, φ′, x′〉, 〈s′, φ′, x′〉) such that
for some φ′ and x′, (〈s, φ′′, x′′〉, 〈s′, φ′′, x′′〉) ∈ R. It is straightforward to check that R′ is an
approximate simulation relation. J

Therefore, due to Lemma 28, 〈s′2,⊥, x〉 is the state that is approximately bisimilar to
〈s′1,⊥, x〉 where s′2 ∈ S after αn+1, which was to be shown.

l ∈ Trajs(V ): since l ∈ trj(s1) and 〈s1, φ, x〉 �0,0 〈s2, φ, x〉, due to Lemma 27, we obtain
that l ∈ trj(s2). It follows from Definition 15 that 〈s1, φ, x〉

t−→ 〈s′1, l ↓ VI , l(t)〉, where
dom(l) = (0, t]. Since S is deterministic and l ∈ trj(s2), the only possibility for 〈s2, φ, x〉
to mimic this transition is the transition: 〈s2, φ, x〉

t−→ 〈s′2, l ↓ VI , l(t)〉, for some s′2 such
that 〈s′1, l ↓ VI , l(t)〉 �0,0 〈s′2, l ↓ VI , l(t)〉. It follows from Lemma 28 that 〈s′1, φ′, x′〉 �0,0
〈s′2, φ′, x′〉, for each φ′ ∈ Trajs(V ) and x′ ∈ Val(V ), which concludes the proof of this
item and the theorem. J

Similar to Theorem 24, we conjecture that Theorem 26 also holds for non-deterministic
HLTSs.

5.2 Full Abstraction for HSS-MTS Translation
In this section, we prove full abstraction results for the translation from HSS to MTS. In
both the projection and the reflection theorems, we need to double the original conformance
time bound τ . We need to stretch the conformance time bound, because the notion of
(τ, ε)-conformance allows for matching valuations within τ time bounds both in the past and
in the future, which is a neighborhood of width 2τ .

I Theorem 29. Consider two HSSs I and S and ε > 0; assume that MTSs MTS(I) and
MTS(S) are translations of I and S, respectively. Then, the following statement holds:

I ≈τ,ε S⇒MTS(I) ≡ε,2τ MTS(S).

Proof. Consider the following relation between the states of MTS(I) and MTS(S):

Rε,2τ = {(⊥,⊥),
(〈h0, (x, σx), (y, σy), σy,i〉, 〈h0, (x, σx), (y′, σy′), σy′,j〉 |

(y, σy) ≈τ,ε (y′, σy′)∧
|σ1
y,i − σ1

y′,j | ≤ τ
||yi − y′j || ≤ ε}

CONCUR’15



32 Notions of Conformance Testing for Cyber-Physical Systems: Overview and Roadmap

The relation is symmetric and hence, once we prove that this relation is an approximate
bisimulation relation, the theorem follows, because the initial states of MTS(I) and MTS(S)
are related by Rε,2τ .

The fact that for each (q0, q1) ∈ Rε,2τ , d1(B(q0),B(q1)) ≤ ε follows from the construction
of Rε,2τ and Definition 16.

It remains to prove the transfer conditions of Definition 22.
Regarding the transfer condition for ⊥, assume that in MTS(I), ⊥ t−→ 〈h0, (x, σx),

(y, σy), σy,i〉; we immediately have that t = σy,i − σy,1. It follows from I ≈τ,ε S that there
exists (y′, σy′) = S(h0, (x, σx)) such that (y, σy) ≈τ,ε (y′, σy′). In particular, it holds that
there exists a σy′,j such that |σ1

y,i − σ1
y′,j | ≤ τ and ||yi − y′j || ≤ ε. It hence, follows from

Definition 16 that in MTS(S), ⊥ t′−→〈h0, (x, σx), (y′, σy′), σy′,j〉, where t′ = σy′,j − σy′,1.
We note that |σy,1 − σy′,1| ≤ τ , because otherwise, one of the two points does not find
a counter part (within the time range of τ) in the other sequence. Hence, we obtain
that and we have that d2(t, t′) = |(σy,i − σy′,j) − (σy,1 − σy′,1)| ≤ 2τ . We also have that
(〈h0, (x, σx), (y, σy), σy,i〉, 〈h0, (x, σx), (y′, σy′), σy′,j〉) ∈ Rε,2τ and this concludes the transfer
condition for ⊥.

Take arbitrary states (〈h0, (x, σx), (y, σy), σy,i〉, 〈h0, (x, σx), (y′, σy′), σy′,j〉) ∈ Rε,2τ . Con-
sider a transition 〈h0, (x, σx), (y, σy), σy,i〉

t−→ 〈h0, (x, σx), (y, σy), σy,k〉; we have that t =
σy,k − σy,i. It follows from (y, σy) ≈τ,ε (y′, σy′) that there exists m ∈ N such that |σ1

y,k −
σ1
y′,m| ≤ τ and ||yk− y′m|| ≤ ε. Due to Definition 16, we have that 〈h0, (x, σx), (y′, σy′), σy′,j〉
t′−→ 〈h0, (x, σx), (y′, σy′), σy′,m〉 and t′ = σ1

y′,j − σ1
y′,m. It also follows from |σ1

y,i − σ1
y′,j | ≤ τ

and |σ1
y,k − σ1

y′,m| ≤ τ that d2(t, t′) = |(σy,i − σy′,j) − (σy,1 − σy′,1)| ≤ 2τ . We also have
that (〈h0, (x, σx), (y, σy), σy,k〉, 〈h0, (x, σx), (y′, σy′), σy′,m〉) ∈ Rε,2τ and this concludes the
only remaining part of the transfer condition and the proof. J

I Theorem 30. Consider two HSSs I and S, and two approximation bounds τ ≥ 0 and
ε ≥ 0; assume that MTSs MTS(I) and MTS(S) are translations of I and S, respectively.
Then, the following statement holds:

MTS(I) ≡τ,ε MTS(S)⇒ I ≈ε,2τ S.

Proof. In the proof to follow, we assume that I and S are of the form I : H × TSS(VI , N)
→ TSS(VO, NI) and S : H × TSS(VI , N) → TSS(VO, NS), respectively.

Consider h0 ∈ H0, (x, σx) ∈ TSS(VI , N), and (y, σy) ∈ TSS(VO, N) such that (y, σy) =
I(h0, (x, σx)); in order to prove the theorem, we need to find a TSS (y′, σy′) ∈ TSS(VO, NI)
such that (y′, σy′) = I(h0, (x, σx)) and (y, σy) ≈ε,2τ (y′, σy′).

It follows from Definition 16 that in MTS(I), we have ⊥ t−→ 〈h0, (x, σx), (y, σy), σy,i〉,
for each i < NI. It also follows from MTS(I) ≡τ,ε MTS(S) that there exists an approximate
bisimulation relation Rε,τ such that ({⊥}, {⊥}) ∈ Rε,τ . Due to the latter statement and the t-
labeled transition of ⊥ in MTS(I), we obtain in MTS(S) that for some (y′, σy′) ∈ TSS(VO, NS)
and j ≤ NS, ⊥

t′−→ 〈h0, (x, σx), (y′, σ′y), σy′,j〉 such that |σ1
y,i − σ1

y′,j | ≤ τ , ||yi − y′j || ≤ ε,
and (〈h0, (x, σx), (y, σy), σy,i〉, 〈h0, (x, σx), (y′, σy′), σy′,j〉) ∈ Rε,τ . In the remainder of the
proof, without loss of generality, we assume that σ1

y,i − σ1
y′,j is non-negative; the proof for

the case where σ1
y,i − σ1

y′,j is negative is symmetric and is hence, dispensed with. We claim
that for any such (y′, σ′y), it holds that (y, σy) ≈ε,τ (y′, σy′).

To see why this claim holds, take an arbitrary point σy′,k for k < NS. We have in

MTS(S) that 〈h0, (x, σx), (y′, σ′y), σy′,j〉
σ1

y′,k
−σ1

y′,j−→ 〈h0, (x, σx), (y′, σ′y), σy′,k〉. We have
that (〈h0, (x, σx), (y, σy), σy,i〉, 〈h0, (x, σx), (y′, σy′), σy′,j〉) ∈ Rε,τ and hence, we obtain in
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MTS(I) that for some m ≤ NI, 〈h0, (x, σx), (y, σy), σy,i〉
σ1

y,m−σ
1
y,i−→ 〈h0, (x, σx), (y, σy),

σy,m〉 such that |(σ1
y,m − σ1

y,i) − (σ1
y′,k − σ1

y′,j)| ≤ τ and ||yk − y′m|| ≤ ε. We only need to
show that |σ1

y,k − σ1
y′,m| ≤ 2tau. We distinguish the following two cases based on whether

σ1
y,m − σ1

y,i is negative or not.

(σ1
y,m − σ1

y,i)− (σ1
y′,k − σ1

y′,j) ≤ 0, then we have:

(σ1
y,m − σ1

y′,k) + τ ≤
(σ1
y,m − σ1

y′,k) + (σ1
y′,j − σ1

y,i) =
(σ1
y,m − σ1

y,i)− (σ1
y′,k − σ1

y′,j) ≤
0

To conclude (σ1
y,m − σ1

y′,k) + τ < 0, that is |σ1
y,m − σ1

y′,k| < τ < 2tau, which was to be
shown.
(σ1
y,m − σ1

y,i)− (σ1
y′,k − σ1

y′,j) > 0, then we have:

(σ1
y,m − σ1

y′,k) =
(σ1
y,m − σ1

y′,k)− (σ1
y′,j − σ1

y,i) + (σ1
y′,j − σ1

y,i) =
((σ1

y,m − σ1
y,i)− (σ1

y′,k − σ1
y′,j)) + (σ1

y′,j − σ1
y,i) ≤

τ + tau =
2τ

To summarize, (σ1
y,m − σ1

y′,k) ≤ 2τ , and this concludes the proof. J

6 Challenges

6.1 Notions of Conformance
Partial models

Practical models are typically incomplete: firstly, they do not specify what the consequence of
applying each and every intput at each and every state is (i.e., they may not be input-enabled).
Secondly, they may not specify / allow to inspect the values of all variables at every state.
Also, another aspects of partiality that may come in handy is to allow for different sets of
variables in the specification and implementation: implementations tend to be defined in
terms of far more variables than the specification and an abstraction mechanism should
relate the implementation variables to the abstract variables in the specification.

HIOCO supports partiality in terms of non-input-enabled specifications, but other aspects
of partiality are still missing in the theory. The notion of (τ, ε)-conformance does not support
partial models and hence, its extension in this direction can be useful. Establishing a model
of partiality for MTSs requires a generic framework for defining observations and metrics.

Partial models pose a further theoretical challenge for defining a notion of conformance
that is a pre-order and pre-congruence; these aspects are discussed in the remainder of this
section.

Non-determinism

At a high level of abstraction, many choices cannot be made or are irrelevant. Hence, non-
deterministic models are natural phenomena at high levels of abstraction. It turns out that
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testing based on non-deterministic models is significantly more complex and computationally
more demanding than testing based on deterministic models. There are several proposals to
allow for a restricted form of non-determinism [47, 62], which could be employed to reconcile
non-determinism, e.g., with (τ, ε)-conformance.

It should also be noted that abstraction from internal actions is not supported by the
current definitions of (τ, ε)-conformance and approximate simulation, which is useful when
abstraction into internal actions is introduced in modeling and the design trajectory.

Pre-order (or Equivalence)

The notions of HIOCO and (τ, ε)-conformance are known not to be transitive for different
reasons. Namely, HIOCO allows for partial models and hence, the set of traces tested in
two pairs of conforming models may be different. (This is a straightforward extension of the
original counter-example of transitivity for ioco [53].) For (τ, ε)-conformance the “conformance
bounds” (τ and ε) add up when comparing two pairs of related models and hence, transitivity
breaks. Finding reasonable conditions for establishing a pre-order conformance relation for
partial models may help in exploiting such a notion in top-down design trajectory. Also
regarding conformance bounds, calculating new bounds on the compositions of conformance
relations is an interesting research direction.

Pre-congruence (compositionality)

Coming up with a notion of conformance testing that supports partial models and / or
approximate comparison of behaviors and is also compositional is another non-trivial challenge.
In addition to [57], there seems to be renewed interest in addressing this challenge in the
context of IOCO [12, 21]. Also the authors of [13] suggest that it may be possible to achieve
new results through the meta-theory of structural operational semantics.

Logical characterization

The notions of testing developed in concurrency theory are often motivated by a notion
observer that can perform certain interactions with the system [5, 26]. This type of theoretical
connection between the extensional and intensional notions seems to be open for the notion
of conformance studied in this paper. Along the same lines, it is unclear what the logical
characterization of these notions are, i.e., what class of properties (e.g., in extensions of modal
µ-calculus or temporal logic [24, 25, 29]) are preserved under these notion of conformance.
We refer to [4, 28] for some related results in this direction.

Distributed systems / testers

Conformance testing of asynchronous and distributed systems has been extensively studied;
examples of recent work in adapting different notions of conformance to asynchronous
and distributed settings are [37, 48, 51, 55, 61]. Distributed testing introduces several
issues regarding nondeterminism and controllability in test-case generation, as well as re-
constructing observation from partial distributed observations when checking conformance.
This combination is known to be notoriously difficult and becomes even more challenging in
the setting of cyber-physical systems.
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Quiescence, agility, and Zeno behavior

Observing quiescence, i.e., lack of outputs and internal actions, has been a key aspect of the
original IOCO theory [53], but it has been left out of HIOCO. In HIOCO, quiescence has
been replaced with the agility observation which serves a different purpose, namely to note
when time may or may not pass. A careful analysis of these two observations (i.e., quiescence
and agility) and the different possible combinations of choices concerning them remains to
be done.

Zeno behavior and chattering [42, 65] are modeling phenomenon, which bear resemblance
to the divergence issue in the traditional notions of conformance testing. An ideal notion
of conformance should be sensitive to these issues and distinguish systems featuring and
lacking Zeno behavior. The notion of (τ, ε)-conformance counts the number of discrete steps
in order to distinguish Zeno- and non-Zeno behavior, which is in our view somewhat ad-hoc.
It is also contrary to the intuition that discrete jumps should be visible only through their
observable effects. We believe, hence, that a more thorough treatment of Zeno behavior in
the notions of conformance for cyber-physical systems is due.

6.2 Test-Case Generation
Robustness

In [35], a notion of robustness in test-case generation has been introduced for (τ, ε)-
conformance. Robustness ensures the generated test-cases remain within the (τ, ε) boundaries
of guard conditions (for transitions) and invariants of state space. This ensures that off-line
test case can always be applied to the implementation without forcing it into an unintended
state or violating the invariant. However, this turns out to be very challenging for generic
hybrid systems, which requires solutions to Ordinary Differential Equations (ODEs) or
Differential Algebraic Equations (DAEs). Finding a practical subset of hybrid system models
for which robustness can be decided efficiently and building a test-case generation algorithm
around it is a practical challenge.

Currently the notion of (τ, ε)-conformance assumes a single conformance bound for
all variables; this needs to be further detailed, perhaps into a vector-valued conformance
bound. Moreover, the useful notion of “conformance degree” [4], which determines the least
conformance bounds can be adapted to this vector-valued setting, allowing for a Pareto
analysis of conformance.

Coverage

Defining a model-based notion of coverage is still a relevant research question. In [15, 17, 40],
some recent attempts have been made in consolidating traditional notions of coverage such
as regularity and uniformity [30]; these notions are formalizations of category-partition
techniques. Regarding continuous dynamics, various notions of coverage have been studied in
[22, 23, 27, 41]. A combination of these ideas need to be considered for defining a satisfactory
notion of coverage for hybrid systems.

Sampling

The choice of sampling in [4] is left unspecified and is mentioned as future work. This is a
non-trivial problem and an appropriate choice of sampling requires knowing the solutions to
the systems dynamics equations. Coverage-based choice of sampling is a possible solution to
this issue [22, 23, 27, 41], which requires further investigation in the case of (τ, ε)-conformance.
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6.3 Practical challenges
Tooling

We are aware of only few academic tools for conformance testing of cyber-physical systems,
namely, HTG [22] and S-TaLiRo [39]. Also in [35] a prototype Matlab-based tool is reported
which implements a test-case generation and conformance checking algorithm based on the
notion of (τ, ε)-conformance. Developing tools and benchmarks for conformance testing of
cyber-physical systems is certainly a challenge for the years to come.

Rigorous Models

Formal models are the starting point of model-based testing and yet, they often do not exist
for industrial systems. This makes bars wide application of model-based testing in industrial
practice. We see two possible solutions to this problem. In some domains, (domain-specific)
languages are common in the design trajectory. For example, Matlab Simulink models are
common, among others, in the automotive domain. Hence, building model-based testing
tools that use such domain-specific models as their input language can be very beneficial.
(Reactis and S-TaLiRo, respectively, are examples of commercial and academic model-based
testing tools with such an input language.)

Model-learning techniques (see, e.g., [1, 2]) (also called learning-based testing [45] and
test-based modeling [54]) may provide an alternative path to building or updating models
for model-based testing.

Online testing

Applying on-line testing techniques to cyber-physical systems requires predictable real-time
performance of test-case generation, test-case execution and conformance checking algorithms,
none of which is trivial. Moreover, in the presence of non-determinism, conformance checking
requires calculating the set of current states in a huge state-space, which becomes intractable in
concurrent systems; employing on-the-fly reduction techniques in such a setting is inevitable.

Acknowledgments. We thank Pieter Cuijpers, Eugenio Moggi, Wojciech Mostowski, Michel
A. Reniers, and Walid Taha for providing insightful comments on earlier drafts of this paper.

References
1 Fides Aarts, Bengt Jonsson, Johan Uijen, and Frits W. Vaandrager. Generating models

of infinite-state communication protocols using regular inference with abstraction. Formal
Methods in System Design, 46(1):1–41, 2015.

2 Fides Aarts and Frits W. Vaandrager. Learning I/O automata. In Proceedings of the 21th
International Conference on Concurrency Theory (CONCUR 2010), volume 6269 of Lecture
Notes in Computer Science, pages 71–85. Springer, 2010.

3 Houssam Abbas, Bardh Hoxha, Georgios E. Fainekos, J. V. Deshmukh, James Kapin-
ski, and Koichi Ueda. WiP abstract: Conformance testing as falsification for cyber-
physical systems. In Proceedings of the ACM/IEEE 5th International Conference on
Cyber-Physical Systems (ICCPS 2014), page 211. IEEE CS, 2014. Available online:
http://arxiv.org/abs/1401.5200.

4 Houssam Abbas, Hans Mittelmann, and Georgios E. Fainekos. Formal property verification
in a conformance testing framework. In 12th ACM-IEEE International Conference on



N. Khakpour and M.R. Mousavi 37

Formal Methods and Models for System Design (MEMOCODE 2014), pages 155–164. IEEE,
2014.

5 Samson Abramsky. Observation equivalence as a testing equivalence. Theoretical Computer
Science, 53(2-3):225–241, 1987.

6 Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, andWillibald Krenn. Model-based
mutation testing of hybrid systems. In Revised Selected Papers from the 8th International
Symposium on Formal Methods for Components and Objects (FMCO 2009), volume 6286
of Lecture Notes in Computer Science, pages 228–249. Springer, 2010.

7 Bernhard K. Aichernig, Harald Brandl, and Franz Wotawa. Conformance testing of hybrid
systems with qualitative reasoning models. Electronic Notes in Theoretical Computer Sci-
ence, 253(2):53–69, 2009. Proceedings of Fifth Workshop on Model Based Testing (MBT
2009).

8 Rajeev Alur. Formal verification of hybrid systems. In Proceedings of the 11th International
Conference on Embedded Software (EMSOFT 2011), pages 273–278. ACM, 2011.

9 Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-Hsin
Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138(1):3–34, 1995.

10 Jos C. M. Baeten. A brief history of process algebra. Theoretical Computer Science, 335(2-
3):131–146, 2005.

11 Klaus Bender, Manfred Broy, István Péter, Alexander Pretschner, and Thomas Stauner.
Model based development of hybrid systems: Specification, simulation, test case generation.
In Modelling, Analysis, and Design of Hybrid Systems, volume 279 of Lecture Notes in
Control and Information Sciences, pages 37–51. Springer, 2002.

12 Nikola Benes, Przemyslaw Daca, Thomas A. Henzinger, Jan Kretínský, and Dejan Nickovic.
Complete composition operators for IOCO-testing theory. In Proceedings of the 18th Inter-
national ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE
2015), pages 101–110. ACM, 2015.

13 Harsh Beohar and Mohammad Reza Mousavi. A pre-congruence format for XY-simulation.
In Proceedings of the 6th International Conference on Fundamentals of Software Engineer-
ing (FSEN 2015), Lecture Notes in Computer Science, 2015.

14 Harald Brandl, Martin Weiglhofer, and Bernhard K. Aichernig. Automated conformance
verification of hybrid systems. In Proceedings of the 10th International Conference on
Quality Software (QSIC 2010), pages 3–12. IEEE CS, 2010.

15 Cécile Braunstein, Anne Elisabeth Haxthausen, Wen-ling Huang, Felix Hübner, Jan Pe-
leska, Uwe Schulze, and Linh Vu Hong. Complete model-based equivalence class testing for
the ETCS ceiling speed monitor. In Proceedings of the 16th International Conference on
Formal Engineering Methods on Formal Methods and Software Engineering (ICFEM 2014),
volume 8829 of Lecture Notes in Computer Science, pages 380–395. Springer, 2014.

16 Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner. Model-Based Testing of Reactive Systems: Advanced Lectures, volume 3472
of Lecture Notes in Computer Science. Springer, 2005.

17 Ana Cavalcanti and Marie-Claude Gaudel. Data flow coverage for circus-based testing.
In Proceedings 17th International Conference of the Fundamental Approaches to Software
Engineering (FASE 2014), volume 8411 of Lecture Notes in Computer Science, pages 415–
429. Springer, 2014.

18 Pieter Cuijpers. Hybrid Process Algebra. PhD thesis, Department of Computer Science,
Eindhoven University of Technology, 2004.

19 Pieter Cuijpers, Michel Reniers, and Maurice Heemels. Hybrid transition systems. Tech-
nical Report CSR-02-12, Department of Computer Science, Eindhoven University of Tech-
nology, 2002.

CONCUR’15



38 Notions of Conformance Testing for Cyber-Physical Systems: Overview and Roadmap

20 Pieter J. L. Cuijpers and Michel A. Reniers. Lost in translation: Hybrid-time flows vs. real-
time transitions. In Proceedings of the 11th International Workshop on Hybrid Systems:
Computation and Control (HSCC 2008), volume 4981 of Lecture Notes in Computer Science,
pages 116–129. Springer, 2008.

21 Przemyslaw Daca, Thomas A. Henzinger, Willibald Krenn, and Dejan Nickovic. Com-
positional specifications for ioco testing. In Proceedings of the 7th IEEE International
Conference on Software Testing, Verification and Validation (ICST 2014), pages 373–382.
IEEE CS, 2014.

22 Thao Dang. Model-based testing of hybrid systems. In Justyna Zander, Ina Schieferdecker,
and Pieter J. Mosterman, editors, Model-based Testing for Embedded Systems, pages 383–
424. CRC Press, 2011.

23 Thao Dang and Tarik Nahhal. Coverage-guided test generation for continuous and hybrid
systems. Formal Methods in System Design, 34(2):183–213, 2009.

24 Jennifer M. Davoren. On hybrid systems and the modal µ-calculus. In Hybrid Systems V,
volume 1567 of Lecture Notes in Computer Science, pages 38–69. Springer, 1999.

25 Jennifer M. Davoren, Vaughan Coulthard, Nicolas Markey, and Thomas Moor. Non-
deterministic temporal logics for general flow systems. In Proceedings of the 7th Inter-
national Workshop on Hybrid Systems: Computation and Control (HSCC 2004), volume
2993 of Lecture Notes in Computer Science, pages 280–295. Springer, 2004.

26 Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984.

27 Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Xiaoqing Jin, and Jy-
otirmoy V. Deshmukh. Efficient guiding strategies for testing of temporal properties of
hybrid systems. In Proceedings of the 7th International NASA Formal Methods Symposium
(NFM 2015), volume 9058 of Lecture Notes in Computer Science, pages 127–142. Springer,
2015.

28 Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifications
for continuous-time signals. Theoretical Computer Science, 410(42):4262–4291, 2009.

29 Carlo A. Furia and Matteo Rossi. On the expressiveness of MTL variants over dense time.
In Proceedings of the 5th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS 2007), volume 4763 of Lecture Notes in Computer Science,
pages 163–178. Springer, 2007.

30 Marie-Claude Gaudel. Testing can be formal, too. In Proceedings of the 6th International
Joint Conference on Theory and Practice of Software Development (TAPSOFT 1995), vol-
ume 915 of Lecture Notes in Computer Science, pages 82–96. Springer, 1995.

31 Alessandro Giacalone, Chi-Chang Jou, and Scott A Smolka. Algebraic reasoning for prob-
abilistic concurrent systems. In Proceedings of the IFIP TC2 Working Conference on
Programming Concepts and Methods (PROCOMET 1990), pages 443–458. North-Holland,
1990.

32 Antoine Girard, A. Agung Julius, and George J. Pappas. Approximate simulation relations
for hybrid systems. Discrete Event Dynamic Systems, 18(2):163–179, 2008.

33 Antoine Girard and George J. Pappas. Approximation metrics for discrete and continuous
systems. Technical Report MS-CIS-05-10, Dept. of CIS, University of Pennsylvania, 2005.

34 Antoine Girard and George J. Pappas. Approximate bisimulation: A bridge between com-
puter science and control theory. European Journal of Control, 17(5-6):568–578, 2011.

35 Antoine Girard and George J. Pappas. A tool prototype for model-based testing of cyber-
physical systems. Technical Report CST 2015.090, Contol Systems Group, Dept. of Me-
chanical Engineering, Eindhoven University of Technology, 2015.

36 Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. Hybrid dynamical systems. IEEE
Control Systems, 29(2):28–93, 2009.



N. Khakpour and M.R. Mousavi 39

37 Robert M. Hierons. Generating complete controllable test suites for distributed testing.
IEEE Trans. Software Eng., 41(3):279–293, 2015.

38 Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Derrick,
Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul J. Krause, Gerald
Lüttgen, Anthony J. H. Simons, Sergiy A. Vilkomir, Martin R. Woodward, and Hussein
Zedan. Using formal specifications to support testing. ACM Computing Surveys, 41(2):9:1–
9:76, 2009.

39 Bardh Hoxha, Houssam Abbas, and Georgios E. Fainekos. Using S-TaLiRo on industrial
size automotive models. In Proceedings of the Applied Verification for Continuous and
Hybrid Systems (ARCH 2014), 2014.

40 Wen-ling Huang and Jan Peleska. Exhaustive model-based equivalence class testing. In
Proceedings of the 25th IFIP WG 6.1 International Conference of Testing Software and
Systems (ICTSS 2013), volume 8254 of Lecture Notes in Computer Science, pages 49–64.
Springer, 2013.

41 A. Agung Julius, Georgios E. Fainekos, Madhukar Anand, Insup Lee, and George J. Pappas.
Robust test generation and coverage for hybrid systems. In Proceedings of the 10th Inter-
national Workshop on Hybrid Systems: Computation and Control (HSCC 2007), volume
4416 of Lecture Notes in Computer Science, pages 329–342. Springer, 2007.

42 Daniel Liberzon. Switching in Systems and Control. Systems & Control: Foundations and
Application. Birkhäuser, 2003.

43 Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O automata. Information
and Computation, 185(1):105–157, 2003.

44 Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid systems. In Proceedings
of the REX Workshop on Real-Time: Theory in Practice, volume 600 of Lecture Notes in
Computer Science, pages 447–484. Springer, 1992.

45 Karl Meinke, Fei Niu, and Muddassar A. Sindhu. Learning-based software testing: A
tutorial. In International Workshops on Leveraging Applications of Formal Methods, Ver-
ification, and Validation, volume 336 of Communications in Computer and Information
Science, pages 200–219. Springer, 2012.

46 Morteza Mohaqeqi, Mohammad Reza Mousavi, and Walid Taha. Conformance testing of
cyber-physical systems: A comparative study. In Proceedings of the 14th International
Workshop on Automated Verification of Critical Systems (AVOCS 2014), volume 70 of
Electronic Communications of the EASST, 2014.

47 Neda Noroozi. Improving Theories of Input Output Conformance Testing. PhD thesis,
Eindhoven University of Technology, The Netherlands, 2015.

48 Neda Noroozi, Ramtin Khosravi, Mohammad Reza Mousavi, and Tim A. C. Willemse. Syn-
chrony and asynchrony in conformance testing. Software and System Modeling, 14(1):149–
172, 2015.

49 Neda Noroozi, Mohammad Reza Mousavi, and Tim A. C. Willemse. Decomposability
in input output conformance testing. In Proceedings of the 8th Workshop on Model-Based
Testing (MBT 2013), volume 111 of Electronic Proceedings in Theoretical Computer Science,
pages 51–66, 2013.

50 Jan Willem Polderman and Jan C. Willems. Introduction to Mathematical Systems Theory:
A Behavioral Approach, volume 26 of Texts in Applied Mathematics. Springer, 1998.

51 Adenilso Simao and Alexandre Petrenko. From test purposes to asynchronous test cases.
In Third International Conference on Software Testing, Verification, and Validation Work-
shops (ICSTW 2010), pages 1–10. IEEE CS, 2010.

52 Paulo Tabuada. Approximate simulation relations and finite abstractions of quantized
control systems. In Proceedings of the 10th International Workshop on Hybrid Systems:

CONCUR’15



40 Notions of Conformance Testing for Cyber-Physical Systems: Overview and Roadmap

Computation and Control (HSCC 2007), volume 4416 of Lecture Notes in Computer Science,
pages 529–542. Springer, 2007.

53 Jan Tretmans. A formal Approach to conformance testing. PhD thesis, University of
Twente, The Netherlands, 1992.

54 Jan Tretmans. Model-based testing and some steps towards test-based modelling. In
Advanced Lectures of the 11th International School on Formal Methods for the Design of
Computer, Communication and Software Systems (SFM 2011), volume 6659 of Lecture
Notes in Computer Science, pages 297–326. Springer, 2011.

55 Jan Tretmans and Louis Verhaard. A queue model relating synchronous and asynchronous
communication. In Proceedings of the IFIP Symposium on Protocol Specification, Testing
and Verification XII, pages 131–145, Amsterdam, The Netherlands, The Netherlands, 1992.
North-Holland Publishing Co.

56 Franck van Breugel, Claudio Hermida, Michael Makkai, and James Worrell. An accessible
approach to behavioural pseudometrics. In Proceedings of the 32nd International Collo-
quium on Automata, Languages and Programming (ICALP 2005), volume 3580 of Lecture
Notes in Computer Science, pages 1018–1030. Springer, 2005.

57 Machiel van der Bijl, Arend Rensink, and Jan Tretmans. Compositional testing with
IOCO. In Proceedings of the 3rd International Workshop on Formal Approaches to Testing
of Software (FATES 2003), volume 2931 of Lecture Notes in Computer Science, pages 86–
100. Springer, 2004.

58 Arjan van der Schaft and Hans Schumacher. An Introduction to Hybrid Dynamical Systems,
volume 251 of Lecture Notes in Control and Information Sciences. Springer, 2000.

59 Michiel van Osch. Hybrid input-output conformance and test generation. In Formal Ap-
proaches to Software Testing and Runtime Verification, volume 4262 of Lecture Notes in
Computer Science, pages 70–84. Springer, 2006.

60 Michiel van Osch. Automated Model-based Testing of Hybrid Systems. PhD thesis, Eind-
hoven University of Technology, The Netherlands, 2009.

61 Louis Verhaard, Jan Tretmans, Pim Pars, and Ed Brinksma. On asynchronous testign. In
Protocol Test Systems, volume C-11 of IFIP Transaction, pages 55–66, 1992.

62 Martin Weiglhofer. Automated Software Conformance Testing. PhD thesis, Graz University
of Technology, Austria, 2009.

63 Matthias Woehrle, Kai Lampka, and Lothar Thiele. Segmented state space traversal for
conformance testing of cyber-physical systems. In Proceedings of the 9th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS 2011), volume
6919 of Lecture Notes in Computer Science, pages 193–208. Springer, 2011.

64 Matthias Woehrle, Kai Lampka, and Lothar Thiele. Conformance testing for cyber-physical
systems. ACM Transactions on Embedded Computing Systems, 11(4):84:1–84:23, 2013.

65 Jun Zhang, Karl Henrik Johansson, John Lygeros, and Shankar Sastry. Zeno hybrid sys-
tems. International Journal of Robust and Nonlinear Control, 11(5):435–451, 2001.



Behavioural Equivalences for Co-operating
Transactions
Matthew Hennessy

Trinity College Dublin, Ireland
matthew.hennessy@scss.tcd.ie

Abstract
Relaxing the isolation requirements on transactions leads to systems in which transactions can
now co-operate to achieve distributed goals. However in the absence of isolation it is not easy
to understand the desired behaviour of transactional systems, or the extent to which the other
standard ACID properties of transactions can be maintained: atomicity, consistency and durab-
ility. In this talk I will give an overview of some recent work in this area, outlining semantic
theories for a process calculus which has been augmented by a new construct for co-operating
transactions.
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Abstract
Networks have received widespread attention in recent years as a target for domain-specific
language design. The emergence of software-defined networking (SDN) as a popular paradigm
for network programming has led to the appearance of a number of SDN programming languages
seeking to provide high-level abstractions to simplify the task of specifying the packet-processing
behavior of a network.

Previous work by Anderson et al. [1] introduced NetKAT, a language and logic for specifying
and verifying the packet-processing behavior of networks. NetKAT provides general-purpose pro-
gramming constructs such as parallel and sequential composition, conditional tests, and iteration,
as well as special-purpose primitives for querying and modifying packet headers and encoding
network topologies. In contrast to competing approaches, NetKAT has a formal mathematical
semantics and an equational deductive system that is sound and complete over that semantics,
as well as a PSPACE decision procedure. It is based on Kleene algebra with tests (KAT), an
algebraic system for propositional program verification that has been extensively studied for
nearly two decades [3]. Several practical applications of NetKAT have been developed, including
algorithms for testing reachability and non-interference and a syntactic correctness proof for a
compiler that translates programs to hardware instructions for SDN switches.

In a follow-up paper [2], the coalgebraic theory of NetKAT was developed and a bisimulation-
based algorithm for deciding equivalence was devised. The new algorithm was shown to be
significantly more efficient than the previous naive algorithm [1], which was PSPACE in the best
case and the worst case, as it was based on the determinization of a nondeterministic algorithm.
Along with the coalgebraic model of NetKAT, the authors presented a specialized version of the
Brzozowski derivative in both semantic and syntactic forms. They also also proved a version of
Kleene’s theorem for NetKAT that shows that the coalgebraic model is equivalent to the standard
packet-processing and language models introduced previously [1]. They demonstrated the real-
world applicability of the tool by using it to decide common network verification questions such as
all-pairs connectivity, loop-freedom, and translation validation – all pressing questions in modern
networks.

This talk will survey applications of automata theory, concurrency theory and coalgebra to
problems in networking. We will suggest directions for exploring the bridge between the two
communities and ways to deliver new synergies. On the one hand, this will lead to new insights
and techniques that will enable the development of rigorous semantic foundations for networks.
On the other hand, the idysiocransies of networks will provide new challenges for the automata
and concurrency community.
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Abstract
We study the problems of reaching a specific control state, or converging to a set of target states,
in networks with a parameterized number of identical processes communicating via broadcast.
To reflect the distributed aspect of such networks, we restrict our attention to executions in
which all the processes must follow the same local strategy that, given their past performed
actions and received messages, provides the next action to be performed. We show that the
reachability and target problems under such local strategies are NP-complete, assuming that the
set of receivers is chosen non-deterministically at each step. On the other hand, these problems
become undecidable when the communication topology is a clique. However, decidability can be
regained for reachability under the additional assumption that all processes are bound to receive
the broadcast messages.
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1 Introduction

Parameterized models for distributed systems. Distributed systems are nowadays ubiquitous
and distribution is one of the main paradigms in the conception of computing systems.
Conceiving, analyzing, debugging and verifying such systems are tedious tasks which lately
received an increased interest from the formal methods community. Considering parametric
models with an unknown number of identical processes is a possible approach to tame
distributed systems in which all processes share the same code. It has the advantages to allow
one to establish the correctness of a system independently of the number of participants,
and to ease bugs detection by the possibility to adapt the number of processes on demand.

In their seminal paper on distributed models with many identical entities [14], German and
Sistla represent the behavior of a network by finite state machines interacting via ‘rendezvous’
communications. Variants have then been proposed, to handle different communication
means, like broadcast communication [11], token-passing [6, 2], message passing [5] or shared
memory [12]. In his nice survey on such parameterized models [10], Esparza shows that
minor changes, such as the presence or absence of a controller in the system, can drastically
modify the complexity of the verification problems. Another perspective for parametric
systems has been proposed by Bollig who studied their expressive power with respect to
logics over Message Sequence Charts [4].
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Broadcast protocols. Among the various parametric models of networks, broadcast protocols,
originally studied by Esparza et al. [11], have later been analyzed under a new viewpoint,
leading to new insights on the verification problems. Specifically, a low level model to
represent the main characteristics of ad-hoc networks has been proposed [8]: the network
is equipped with a communication topology and processes communicate via broadcast to
their neighbors. It was shown that, given a protocol represented by a finite state machine
performing internal actions, broadcasts and receptions of messages, the problem of deciding
whether there exists an initial communication topology from which one of the processes can
reach a specific control state is undecidable. The same holds for the target problem, which
asks whether all processes can converge to a set of target states. For both the reachability
and the target problems, decidability can however be regained, by considering communication
topologies that can change non-deterministically at any moment [7]. Another option to
recover decidability of the reachability problem is to restrict the topologies to clique graphs [9],
yielding a model equivalent to broadcast protocols.
Local distributed strategies. In this paper, we consider the reachability and target problems
under a new perspective, which we believe could also be interesting for other ‘many identical
processes’ models. In such models, the protocol executed by each process is often described
by a finite state machine that can be non-deterministic. Therefore it may happen that two
processes behave differently, even if they have the same information on what has happened
so far in an execution. To forbid such non-truly distributed behaviors, we constrain processes
to take the same decisions in case they fired the same sequence of transitions so far. We
thus study the reachability and target problems in broadcast protocols restricted to local
strategies. Interestingly, the notably difficult distributed controller synthesis problem [15]
is relatively close to the problem of existence of a local strategy. Indeed a local strategy
corresponds to a local controller for the processes executing the protocol and whose role is to
resolve the non-deterministic choices.
Our contributions. First we show that the reachability and target problems under local
strategies in reconfigurable broadcast networks are NP-complete. To obtain the upper bound,
we prove that local strategies can be succinctly represented by a finite tree of polynomial
size in the size of the input protocol. This result is particularly interesting, because deciding
the existence of a local strategy is intrinsically difficult. Indeed, even with a fixed number of
processes, the locality constraint cannot be simply tested on the induced transition system,
and a priori local strategies may need unbounded memory. From our decidability proofs,
we derive an upper bound on the memory needed to implement the local strategies. We
also give cutoffs, i.e. upper bounds on the minimal number of processes needed to reach or
converge to target states. Second we show the two problems to be undecidable when the
communication topology is a clique. Moreover, the undecidability proof of the target problem
holds even if the locality assumption is dropped. However, the reachability problem under
local strategies in clique is decidable (yet non-primitive recursive) for complete protocols, i.e.
when receptions are always possible from every state.

Due to lack of space, omitted details and proofs can be found in the companion research
report [3].

2 Networks of reconfigurable broadcast protocols

In this paper, given i, j ∈ N such that i ≤ j, we let [i..j] = {k | i ≤ k ≤ j}. For a set E and
a natural ` > 0, let E` be the set of vectors v of size ` over E. For a vector v ∈ E` and
i ∈ [1..`], v[i] is the i-th component of v and |v| = ` its size. The notation VE stands for the
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infinite set
⋃
`∈N\{0}E

` of all vectors over E. We will use the notationM(E) to denote the
set of multi-sets over E.

2.1 Syntax and semantics

We begin by presenting our model for networks of broadcast protocols. Following [8, 9, 7],
we assume that each process in the network executes the same (non-deterministic) broadcast
protocol given by a finite state machine where the actions are of three kinds: broadcast of a
message m (denoted by !!m), reception of a message m (denoted by ??m) and internal action
(denoted by ε).

I Definition 1. A broadcast protocol is a tuple P = (Q, q0,Σ,∆) with Q a finite set of control
states; q0 ∈ Q the initial control state; Σ a finite message alphabet and ∆ ⊆ Q× ({!!m, ??m |
m ∈ Σ} ∪ {ε})×Q a finite set of edges.

We denote by A(q) the set {(q, ε, q′) ∈ ∆} ∪ {(q, !!m, q′) ∈ ∆} containing broadcasts
and internal actions (called active actions) of P that start from state q. Furthermore, for
each message m ∈ Σ, we denote by Rm(q) the set {(q, ??m, q′) ∈ ∆} containing the edges
that start in state q and can be taken on reception of message m. We say that a broadcast
protocol is complete if for every q ∈ Q and every m ∈ Σ, Rm(q) 6= ∅. Whether protocols
are complete or not may change the decidability status of the problems we consider (see
Section 4).

We now define the semantics associated with such a protocol. It is common to represent
the network topology by an undirected graph describing the communication links [7]. Since
the topology may change at any time (such an operation is called reconfiguration), we decide
here to simplify the notations by specifying, for each broadcast, a set of possible receivers that
is chosen non-deterministically. The semantics of a network built over a broadcast protocol
P = (Q, q0,Σ,∆) is given by a transition system TP = (Γ,Γ0,→) where Γ = VQ is the set of
configurations (represented by vectors over Q); Γ0 = V{q0} is the set of initial configurations
and →⊆ Γ× N×∆× 2N × Γ is the transition relation defined as follows: (γ, p, δ, R, γ′) ∈→
(also denoted by γ p,δ,R−−−→ γ′) iff |γ| = |γ′| and p ∈ [1..|γ|] and R ⊆ [1..|γ|] \ {p} and one of
the following conditions holds:
Internal action: δ = (γ[p], ε, γ′[p]) and γ′[p′] = γ[p′] for all p′ ∈ [1..|γ|]\{p} (the p-th process

performs an internal action).
Communication: δ = (γ[p], !!m, γ′[p]) and (γ[p′], ??m, γ′[p′]) ∈ ∆ for all p′ ∈ R such that

Rm(γ[p′]) 6= ∅ , and γ′[p′′] = γ[p′′] for all p′′ ∈ [1..|γ|] \ (R ∪ {p}) and for all p′′ ∈ R such
that Rm(γ[p′′]) = ∅ (the p-th process broadcasts m to all the processes in the reception set
R).

Obviously, when an internal action is performed, the reception set R is not taken into
account. We point out the fact that the hypothesis |γ| = |γ′| implies that the number of
processes remains constant during an execution (there is no creation or deletion of processes).
Yet, TP is an infinite state transition system since the number of possible initial configurations
is infinite. An execution of P is then a finite sequence of consecutive transitions in TP of
the form θ = γ0

p0,δ0,R0−−−−−→ γ1 . . .
p`,δ`,R`−−−−−→ γ`+1 and we denote by Θ[P] (or simply Θ when P

is clear from context) the set of all executions of P . Furthermore, we use nbproc(θ) = |γ0| to
represent the number of processes involved in the execution θ.
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2.2 Local strategies and clique executions
Our goal is to analyze executions of broadcast protocols under local strategies, where each
process performs the same choices of edges according to its past history (i.e. according to
the edges of the protocol it has fired so far).

A finite path in P is either the empty path, denoted by ε, or a non-empty finite sequence
of edges δ0 · · · δ` such that δ0 starts in q0 and for all i ∈ [1..`], δi starts in the state in which
δi−1 ends. For convenience, we say that ε ends in state q0. We write Path(P) for the set of
all finite paths in P.

For an execution θ ∈ Θ[P], we define, for every p ∈ [1..nbproc(θ)], the past of process p
in θ (also referred to as its history), written πp(θ), as the finite path in P that stores the
sequences of edges of P taken by p along θ. We can now define local strategies which allow
us to focus on the executions in which each process performs the same choice according to
its past. A local strategy σ for P is a pair (σa, σr) of functions specifying, given a history,
the next active action to be taken, and the reception edge to choose when receiving a
message, respectively. Formally σa : Path(P)→ (Q× ({!!m | m ∈ Σ} ∪ {ε})×Q) satisfies,
for every ρ ∈ Path(P) ending in q ∈ Q, either A(q) = ∅ or σa(ρ) ∈ A(q). Whereas
σr : Path(P) × Σ → (Q × {??m | m ∈ Σ} × Q) satisfies, for every ρ ∈ Path(P) ending in
q ∈ Q and every m ∈ Σ, either Rm(q) = ∅ or σr(ρ,m) ∈ Rm(q).

Since our aim is to analyze executions where each process behaves according to the same
local strategy, we now provide the formal definition of such executions. Given a local strategy
σ, we say that a path δ0 · · · δ` respects σ if for all i ∈ [0..`− 1], we have δi+1 = σa(δ0 . . . δi)
or δi+1 = σr(δ0 · · · δi,m) for some m ∈ Σ. Following this, an execution θ respects σ if for
all p ∈ [1..nbproc(θ)], we have that πp(θ) respects σ (i.e. we have that each process behaves
as dictated by σ). Finally we define ΘL ⊆ Θ as the set of local executions (also called local
semantics), that is executions θ respecting a local strategy.

We also consider another set of executions where we assume that every message is broadcast
to all the processes of the network (apart from the emitter). Formally, an execution θ =
γ0

p0,δ0,R0−−−−−→ . . .
p`,δ`,R`−−−−−→ γ`+1 is said to be a clique execution if Rk = [1, . . . ,nbproc(θ)] \ {pk}

for every k ∈ [0..`]. We denote by ΘC the set of clique executions (also called clique semantics).
Note that clique executions of broadcast networks have been studied in [9] and that such
networks correspond to broadcast protocols with no rendez-vous [11]. We will also consider
the intersection of these subsets of executions and write ΘLC for the set ΘL ∩ΘC of clique
executions which respect a local strategy.

2.3 Verification problems
In this work we study the parameterized verification of the reachability and target properties
for broadcast protocols restricted to local strategies. The first one asks whether there exists
an execution respecting some local strategy and that eventually reaches a configuration where
a given control state appears, whereas the latter problem seeks for an execution respecting
some local strategy and that ends in a configuration where all the control states belong to a
given target set. We consider several variants of these problems depending on whether we
restrict to clique executions or not and to complete protocols or not.

For an execution θ = γ0
p0,δ0,R0−−−−−→ γ1 . . .

p`,δ`,R`−−−−−→ γ`+1, we denote by End(θ) = {γ`+1[p] |
p ∈ [1..nbproc(θ)]} the set of states that appear in the last configuration of θ. Reach[S], the
parameterized reachability problem for executions restricted to S ∈ {L, C,LC} is defined as
follows:
Input: A broadcast protocol P = (Q, q0,Σ,∆) and a control state qF ∈ Q.
Output: Does there exist an execution θ ∈ ΘS such that qF ∈ End(θ)?
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Figure 1 Example of a broadcast protocol.

In previous works, the parameterized reachability problem has been studied without the
restriction to local strategies; in particular the reachability problem on unconstrained
executions is in PTIME [7] and Reach[C] is decidable and Non-Primitive Recursive (NPR) [9,
11] (it is in fact Ackermann-complete [16]).

Target[S], the parameterized target problem for executions restricted to S ∈ {L, C,LC}
is defined as follows:
Input: A broadcast protocol P = (Q, q0,Σ,∆) and a set of control states T ⊆ Q.
Output: Does there exist an execution θ ∈ ΘS such that End(θ) ⊆ T?
It has been shown that a generalization of the target problem, without restriction to local
strategies, can be solved in NP [7]. In this work, we focus on executions under local strategies
and we obtain the results presented in the following table:

Reach[L] Reach[LC] Target[L] Target[LC]

NP-complete
[Thm. 3]

Undecidable [Thm. 5]
NP-complete

[Thm. 4]
Undecidable [Thm.

5]Decidable and NPR for complete
protocols [Thm. 7]

Most of the problems listed in the above table are monotone: if, in a network of a given size,
an execution satisfying the reachability or target property exists, then, in any bigger network,
there also exists an execution satisfying the same property. Let θ be an execution in ΘL [resp.
ΘLC ]. For every N ≥ nbproc(θ), there exists θ′ in ΘL [resp. ΘLC ] such that nbproc(θ′) = N

and End(θ) = End(θ′) [resp. End(θ) ⊆ End(θ′)]. This monotonicity property allows us
to look for cutoffs, i.e. minimal number of processes such that a local execution with a
given property exists. In this work, we provide upper-bounds on these cutoffs for Reach[L]
(Proposition 3.1) and Target[L] (Theorem 4.2). For Reach[LC] restricted to complete
protocols, given the complexity of the problem, such an upper-bound would be non-primitive
recursive and thus would not be of any practical use.

2.4 Illustrative example
To illustrate the notions of local strategies and clique executions, we provide an example
of a broadcast protocol in Fig. 1. On this protocol no clique execution can reach state
qF : as soon as a process in q0 sends message m, all the other processes in q0 receive this
message, and move to q3, because of the clique topology. An example of a clique execution
is: (q0, q0, q0, q0)→ (q1, q3, q3, q3) (where we omit the labels over →). However, there exists
a local execution reaching qF : (q0, q0)→ (q1, q0)→ (qF , q1). This execution respects a local
strategy since, from q0 with empty past, the first process chooses the edge broadcasting m
with empty reception set and in the next step the second process, also with empty past,
performs the same action, broadcasting the message m to the first process. On the other
hand, no local strategy permits to reach q′F . Indeed, intuitively, to reach q′F , in state q0
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Figure 2 A strategy pattern for the broadcast protocol depicted Fig. 1.

one process with empty past needs to go to q1 and another one to q2, which is forbidden
by locality. Finally (q0, q0, q0)→ (q1, q0, q3)→ (q1, q1, q4)→ (qT, qT, qT) is a local execution
that targets the set T = {qT}.

3 Verification problems for local executions

We begin with studying the parameterized reachability and target problems under local
executions, i.e. we seek for a local strategy ensuring either to reach a specific control state,
or to reach a configuration in which all the control states belong to a given set.

3.1 Solving Reach[L]
To obtain an NP-algorithm for Reach[L], we prove that there exists a local strategy to reach
a specific control state if and only if there is a local strategy which can be represented thanks
to a finite tree of polynomial size; the idea behind such a tree being that the paths in the tree
represent past histories and the edges outgoing a specific node represent the decisions of the
local strategy. The NP-algorithm will then consist in guessing such finite tree of polynomial
size and verifying if it satisfies some conditions needed to reach the specified control state.

Representing strategies with trees. We now define our tree representation of strategies
called strategy patterns, which are standard labelled trees with labels on the edges. Intuitively
a strategy pattern defines, for some of the paths in the associated protocol, the active action
and receptions to perform.

A strategy pattern for a broadcast protocol P = (Q, q0,Σ,∆) is a labelled tree T =
(N,n0, E,∆, lab) with N a finite set of nodes, n0 ∈ N the root, E ⊆ N ×N the edge relation
and lab : E → ∆ the edge-labelling function. Moreover T is such that if e1 · · · e` is a path in
T , then lab(e1) · · · lab(e`) ∈ Path(P), and for every node n ∈ N : there is at most one edge
e = (n, n′) ∈ E such that lab(e) is an active action; and, for each message m, there is at
most one edge e = (n, n′) ∈ E such that lab(e) is a reception of m.

Since all labels of edges outgoing a node share a common source state (due to the
hypothesis on labelling of paths), the labelling function lab can be consistently extended to
nodes by letting lab(n0) = q0 and lab(n) = q for any (n′, n) ∈ E with lab((n′, n)) = (q′, a, q).

The strategy pattern represented in Fig. 2, for the broadcast protocol from Fig. 1,
illustrates that strategy patterns somehow correspond to under-specified local strategies. For
example, from node n1 (labelled by q1) no reception of message m is specified, and from
node n5 (labelled by q4) no reception and no active action are specified.

More generally, given P a broadcast protocol, and T a strategy pattern for P with
edge-labelling function lab, a local strategy σ = (σa, σr) for P is said to follow T if for every
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path e1 · · · e` in T , the path ρ = lab(e1) · · · lab(e`) in P respects σ. Notice that any strategy
pattern admits at least one local strategy that follows it.

Reasoning on strategy patterns. We now show that one can test directly on a strategy
pattern whether the local strategies following it can yield an execution reaching a specific
control state. An admissible strategy pattern for P = (Q, q0,Σ,∆) is a pair (T,≺) where
T = (N,n0, E,∆, lab) is a strategy pattern for P and ≺⊆ N ×N is a strict total order on
the nodes of T such that:
(1) for all (n, n′) ∈ E we have n ≺ n′;
(2) for all e = (n, n′) ∈ E, if lab(e) = (lab(n), ??m, lab(n′)) for some m ∈ Σ, then there

exists e1 = (n1, n
′
1) in E such that n′1 ≺ n′ and lab(e1) = (lab(n1), !!m, lab(n′1)).

In words, (1) states that ≺ respects the natural order on the tree and (2) that every node
corresponding to a reception of m should be preceded by a node corresponding to a broadcast
of m.

The example of strategy pattern on Fig. 2 is admissible with the order ni ≺ nj if i < j,
whereas for any order including n3 ≺ n1 it is not admissible (a broadcast of m should precede
n3). In general, given a strategy pattern T and a strict total order ≺, checking whether
(T,≺) is admissible can be done in polynomial time (in the size of the pattern).

In order to state the relation between admissible strategy patterns and local strategies,
we define lab(T ) = {lab(n) | n ∈ N} as the set of control states labelling nodes of T and
Occur(θ) = {γi[p] | i ∈ [0..`+ 1] and p ∈ [1..nbproc(θ)]} as the set of states that appear along
an execution θ = γ0 → · · · → γ`+1. The next proposition tells us that admissible strategy
patterns are necessary and sufficient to represent the sets of states that can be reached under
local strategies. For all Q′ ⊆ Q, there exists an admissible strategy pattern (T,≺) such that
lab(T ) = Q′ iff there exists a local strategy σ and an execution θ such that θ respects σ and
Q′ = Occur(θ), furthermore σ follows T .

Minimizing admissible strategy patterns. For (T,≺) an admissible strategy pattern, we
denote by last(T,≺) the maximal node w.r.t. ≺ and we say that (T,≺) is qF -admissible if
lab(last(T,≺)) = qF . We now show that there exist polynomial size witnesses of qF -admissible
strategy patterns. The idea is to keep only relevant edges that either lead to a node labelled
by qF or that permit a broadcast of a new message. Intuitively, a minimal strategy pattern
guarantees that (1) there is a unique node labelled with qF , (2) in every subtree there is
either a node labelled by qF or a broadcast of a new message (i.e. a broadcast of a message
that has not been seen previously with respect to the order ≺), and (3) a path starting and
ending in two different nodes labelled by the same state, cannot be compressed without
losing a new broadcast or a path towards qF (by compressing we mean replacing the first
node on the path by the last one). These hypotheses allow us to seek only for qF -admissible
strategy patterns of polynomial size.

If there exists a qF -admissible strategy pattern for P, then there is one of size at most
(2|Σ|+ 1) · (|Q| − 1) and of height at most (|Σ|+ 1) · |Q|.

By Proposition 3.1, there exists an execution θ ∈ ΘL such that qF ∈ Occur(θ) iff there
exists a qF -admissible strategy pattern and thanks to Proposition 3.1 it suffices to look
only for qF -admissible strategy patterns of size polynomial in the size of the broadcast
protocol. A non-deterministic polynomial time algorithm for Reach[L] consists then in
guessing a strategy pattern of polynomial size and an order and then verifying whether it is
qF -admissible.

I Theorem 2. Reach[L] is in NP.
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Figure 3 Encoding a 3-SAT formula into a broadcast protocol.

We can furthermore provide bounds on the minimal number of processes and on the
memory needed to implement local strategies. Given a qF -admissible strategy pattern one
can define an execution following the pattern such that each reception edge of the pattern is
taken exactly once and active actions may be taken multiple times but in a row. Such an
execution needs at most one process per reception edge. Together with the bound on the size
of the minimal strategy patterns (see Proposition 3.1), this yields a cutoff property on the
minimal size of network to reach the final state. Moreover the past history of every process
in this execution is bounded by the depth of the tree, hence we obtain an upper bound on
the size of the memory needed by each process for Reach[L].

If there exists an execution θ ∈ ΘL such that qF ∈ Occur(θ), then there exists an
execution θ′ ∈ ΘL such that qF ∈ Occur(θ′) and nbproc(θ′) ≤ (2|Σ| + 1) · (|Q| − 1) and
|πp(θ′)| ≤ (|Σ|+ 1) · |Q| for every p ∈ [1..nbproc(θ′)].

By reducing 3-SAT, one can furthermore show Reach[L] to be NP-hard. Let φ =∧
1≤i≤k(`i1∨`i2∨`i3) be a 3-SAT formula such that `ij ∈ {x1,¬x1, . . . , xr,¬xr} for all i ∈ [1..k]

and j ∈ {1, 2, 3}. We build from φ the broadcast protocol P depicted at Fig. 3. Under
this construction, φ is satisfiable iff there is an execution θ ∈ ΘL such that qk ∈ Occur(θ).
The local strategy hypothesis ensures that even if several processes broadcast a message
corresponding to the same variable, all of them must take the same decision so that there
cannot be any execution during which both xi and ¬xi are broadcast. It is then clear that
control state qk can be reached if and only if each clause is satisfied by the set of broadcast
messages. Together with Theorem 2, we obtain the precise complexity of Reach[L].

I Theorem 3. Reach[L] is NP-complete.

3.2 Solving Target[L]
Admissible strategy patterns can also be used to obtain an NP-algorithm for Target[L].
As we have seen, given an admissible strategy pattern, one can build an execution where
the processes visit all the control states present in the pattern. When considering the target
problem, one also needs to ensure that the processes can afterwards be directed to the target
set. To guarantee this, it is possible to extend admissible strategy patterns with another
order on the nodes which ensures that (a) from any node there exists a path leading to the
target set and (b) whenever on this path a reception is performed, the corresponding message
can be broadcast by a process that will only later on be able to reach the target.

We formalize now this idea. For T ⊆ Q a set of states, a T-coadmissible strategy pattern
for P = (Q, q0,Σ,∆) is a pair (T,C) where T = (N,n0, E,∆, lab) is a strategy pattern for P
and C ⊆ N ×N is a strict total order on the nodes T such that for every node n ∈ N with
lab(n) /∈ T there exists an edge e = (n, n′) ∈ E with nC n′ and either:

lab(e) = (lab(n), ε, lab(n′)) or,
lab(e) = (lab(n), !!m, lab(n′)) or,
lab(e) = (lab(n), ??m, lab(n′)) and there exists an edge e1 = (n1, n

′
1) ∈ E such that nCn1,

nC n′1 and lab(e1) = (q1, !!m, q′1).
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Figure 4 A T-coadmissible strategy pattern on the example protocol of Fig. 1.

Intuitively the order C in a T-coadmissible strategy pattern corresponds to the order in
which processes must move along the tree towards the target; the conditions express that
any node with label not in T has an outgoing edge that is feasible. In particular, a reception
of m is only feasible before all edges carrying the corresponding broadcast are disabled.

A strategy pattern T equipped with two orderings ≺ and C is said to be T-biadmissible
whenever (T,≺) is admissible and (T,C) is T-coadmissible.

To illustrate the construction of T-coadmissble patterns, we give in Fig. 4 an example
pattern, that, equipped with the natural order ni C nj iff i < j, is T-coadmissible for
T = {qT}. Indeed all leaves are labelled with a target state, and the broadcast edge
n5

(q4,!!m,qT)−−−−−−−→ n6 allows all processes to take the corresponding reception edges. This T-
coadmissible pattern is in particular obtained from the execution (q0, q0, q0)→ (q1, q3, q0)→
(q1, q3, q0) → (qT, q4, q1) → (qT, q4, q1) → (qT, qT, qT). Notice that C is not an admissible
order, because n1 C n2, however there are admissible orders for this pattern, for example the
order n0 ≺ n2 ≺ n3 ≺ n4 ≺ n1 ≺ n5 ≺ n6.

As for Reach[L], one can show polynomial size witnesses of T-biadmissible strategy
patterns exist, yielding an NP-algorithm for Target[L]. Also, the size of minimal T-
biadmissible strategy patterns gives here also a cutoff on the number of processes needed to
satisfy the target condition, as well as an upper bound on the memory size.

I Theorem 4.
1. Target[L] is NP-complete.
2. If there exists an execution θ ∈ ΘL such that End(θ) ⊆ T, then there exists an execution

θ′ ∈ ΘL such that End(θ′) ⊆ T and nbproc(θ′) ≤ 16|Σ| · |Q|+ 4|Σ| · (|Q| − |T|+ 1) and
|πp(θ′)| ≤ 4|Σ| · |Q|+ 2(|Q| − |T|) + 1 for every p ≤ nbproc(θ′).

I Remark. The NP-hardness derives from the fact that the target problem is harder than
the reachability problem. To reduce Reach[L] to Target[L], one can add the broadcast of
a new message from qF , and its reception from any state to qF .

Another consequence of this simple reduction is that Target[L] in NP yields another
proof that Reach[L] is in NP, yet the two proofs of NP-membership allowed us to give an
incremental presentation, starting with admissible strategy patterns, and proceeding with
co-admissible strategy patterns.

4 Verification problems for local clique executions

4.1 Undecidability of Reach[LC] and Target[LC]
Reach[LC] and Target[LC] happen to be undecidable and for the latter, even in the case
of complete protocols. The proofs of these two results are based on a reduction from the
halting problem of a two counter Minsky machine (a finite program equipped with two
integer variables which can be incremented, decremented and tested to zero). The main idea
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consists in both cases in isolating some processes to simulate the behavior of the machine
while the other processes encode the values of the counters.

Thanks to the clique semantics we can in fact isolate one process. This is achieved by
setting the first transition to be the broadcast of a message start whose reception makes all
the other process change their state. Hence, thanks to the clique semantics, there is only one
process that sends the message start, such process, called the controller, will be in charge
of simulating the transitions of the Minsky machine. The clique semantics is also used to
correctly simulate the increment and decrement of counters. For instance to increment a
counter, the controller asks whether a process simulating the counter can be moved from
state 0 to state 1 and if it is possible, relying on the clique topology only one such process
changes its state (the value of the counter is then the number of processes in state 1). In
fact, all the processes will receive the request, but the first one answering it, will force the
other processes to come back to their original state, ensuring that only one process will move
from state 0 to 1.

The main difficulty is that broadcast protocols (even under the clique semantics) cannot
test the absence of processes in a certain state (which would be needed to simulate a test to
0 of one of the counters). Here is how we overcome this issue for Target[LC]: the controller,
when simulating a zero-test, sends all the processes with value 1 into a sink error state and
the target problem allows to check for the reachability of a configuration with no process
in this error state (and thus to test whether the controller has ‘cheated’, i.e. has taken a
zero-test transition whereas the value of the associated counter was not 0). We point out
that in this case, restricting to local executions is not necessary, we get in fact as well that
Target[C] is undecidable.

For Reach[LC], the reduction is more tricky since we cannot rely on a target set of states
to check that zero-test were faithfully simulated. Here in fact we will use two controllers.
Basically, before sending a start message, some processes will be able to go to a waiting state
(thanks to an internal transition) from which they can become controller and in which they
will not receive any messages (this is where the protocol needs to be incomplete). Then we
will use the locality hypothesis to ensure that two different controllers will simulate exactly
the same run of the Minsky machine twice and with exactly the same number of processes
encoding the counters. Restricting to local strategies guarantees the two runs to be identical,
and the correctness derives from the fact that if in the first simulation the controller ‘cheats’
while performing a zero-test (and sending as before some processes encoding a counter value
into a sink state), then in the second simulation, the number of processes encoding the
counters will be smaller (due to the processes blocked in the sink state), so that the simulation
will fail (because there will not be enough processes to simulate faithfully the counter values).

I Theorem 5. Reach[LC] is undecidable and Target[LC] restricted to complete protocol
is undecidable.

The undecidability proof for Reach[LC] strongly relies on the protocol being incomplete.
Indeed, in the absence of specified receptions, the processes ignore broadcast messages
and keep the same history, thus allowing to perform twice the same simulation of the run.
In contrast, for complete protocols, all the processes are aware of all broadcast messages,
therefore one cannot force the two runs to be identical. In fact, the reachability problem is
decidable for complete protocols, as we shall see in the next section.

4.2 Decidability of Reach[LC] for complete protocols
To prove the decidability of Reach[LC] for complete protocols, we abstract the behavior of
a protocol under local clique semantics by counting the possible number of different histories
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in each control state.
We identify two cases when the history of processes can differ (under local clique se-

mantics):
(1) When a process p performs a broadcast, its history is unique for ever (since all the other

processes must receive the emitted message);
(2) A set of processes sharing the same history can be split when some of them perform a

sequence of internal actions and the others perform only a prefix of that sequence.
From a complete broadcast protocol P = (Q, q0,Σ,∆) we build an abstract transition

system T LCP = (Λ, λ0,⇒) where configurations count the number of different histories in
each control state. More precisely the set of abstract configurations is Λ =M(Q× {m, s} ×
{!!ok, !!no}) × {ε, !!}. Abstract configurations are thus pairs where the first element is a
multiset and the second element is a flag in {ε, !!}. The latter indicates the type of the next
actions to be simulated (sequence of internal actions or broadcast): it prevents to simulate
consecutively two incoherent sequences of internal actions (with respect to the local strategy
hypothesis). For the former, an element (q, s, !!ok) in the multiset represents a single process
(flag s) in state q with a unique history which is allowed to perform a broadcast (flag !!ok).
An element (q,m, !!no) represents many processes (flag m) in state q, all sharing the same
unique history and none of them is allowed to perform a broadcast (flag !!no). The initial
abstract configuration λ0 is then ({{(q0,m, !!ok)}}, ε). In the sequel we will write HM for
the set M(Q × {m, s} × {!!ok, !!no}) of history multisets, so that Λ = HM × {ε, !!}, and
typical elements of HM are denoted M, M′, etc.

In order to provide the definition of the abstract transition relation ⇒, we need to
introduce new notions, and notations. An ε-path ρ in P from q to q′ is either the empty
path (and in that case q = q′) or it is a non-empty finite path δ0 · · · δn that starts in q, ends
in q′ and such that all the δi’s are internal transitions.

An ε-path ρ in P is said to be a prefix of an ε-path ρ′ if ρ 6= ρ′ and either ρ is the empty
path or ρ = δ0 · · · δn and ρ′ = δ0 · · · δnδn+1 . . . δn+m for some m > 0. Since we will handle
multisets, let us give some convenient notations. Given E a set, and M a multiset over E, we
write M(e) for the number of occurrences of element e ∈ E in M. Moreover, card(M) stands
for the cardinality of M: card(M) =

∑
e∈EM(e). Last, we will write ⊕ for the addition on

multisets: M⊕M′ is such that for all e ∈ E, (M⊕M′)(e) = M(e) + M′(e).
The abstract transition relation ⇒∈ Λ× Λ is composed of two transitions relations: one

simulates the broadcast of messages and the other one sequences of internal transitions.
This will guarantee an alternation between abstract configurations flagged with ε and the
ones flagged with !!. Let us first define ⇒!!⊆ (HM× {!!})× (HM× {ε}) which simulates a
broadcast. We have (M, !!)⇒!! (M′, ε) iff there exists (q1, !!m, q2) ∈ ∆ and fl1 ∈ {s,m} such
that
1. M(q1,fl1, !!ok) > 0
2. there exists a family of functions G indexed by (q,fl, b) ∈ Q× {m, s} × {!!ok, !!no}, such

that G(q,fl,b) : [1..M(q,fl, b)]→ HM, and:

M′ = {{q2, s, !!ok}} ⊕
⊕

{(q,fl,b)|M(q,fl,b) 6=0}

⊕
i∈[1..M(q,fl,b)]

G(q,fl,b)(i)

and such that for each (q,fl, b) verifying M(q,fl, b) 6= 0, for all i ∈ [1..M(q,fl, b)], the
following conditions are satisfied:
a. if fl1 = s, card(G(q1,fl1,!!ok)(1)) = 0 and if fl1 = m, then there exists q′ ∈ Q such that
G(q1,fl1,!!ok)(1) = {{(q′,fl1, !!ok)}} and such that (q, ??m, q′) ∈ ∆;

b. if (q,fl, b) 6= (q1,fl1, !!ok) or i 6= 1, then there exists q′ ∈ Q such that G(q,fl,b)(i) =
{{(q′,fl, !!ok)}} and such that (q, ??m, q′) ∈ ∆.



N. Bertrand, P. Fournier, and A. Sangnier 55

Intuitively to provide the broadcast, we need to find a process which is ‘allowed’ to perform
a broadcast and which is hence associated with an element (q1,fl1, !!ok) in M. The transition
(q1, !!m, q2) tells us which broadcast is simulated. Then the functions G(q,fl,b) associate with
each element of the multiset M of the form (q,fl, b) a single element which can be reached
thanks to a reception of the message m. Of course this might not hold for an element of
the shape (q1, s, !!ok) if it is the one chosen to do the broadcast since it represents a single
process, and hence this element moves to q2. Note however that if fl1 = m, then (q1,m, !!ok)
represents many processes, hence the one which performs the broadcast is isolated, but the
many other ones have to be treated for reception of the message. Note also that we use here
the fact that since an element (q,m, b) represents many processes with the same history, all
these processes will behave the same way on reception of the message m.

We now define ⇒ε⊆ (HM× {ε})× (HM× {!!}) which simulates the firing of sequences
of ε-transitions. We have (M, ε)⇒ε (M′, !!) iff there exists a family of functions F indexed
by (q,fl, b) ∈ Q× {m, s} × {!!ok, !!no}, such that F(q,fl,b) : [1..M(q,fl, b)]→ HM, and

M′ =
⊕

{(q,fl,b)|M(q,fl,b)6=0}

⊕
i∈[1..M(q,fl,b)]

F(q,fl,b)(i)

and such that for each (q,fl, b) verifying M(q,fl, b) 6= 0, for all i ∈ [1..M(q,fl, b)], we have:
1. card(F(q,fl,b)(i)) ≥ 1 and if fl = s, card(F(q,fl,b)(i)) = 1;
2. If F(q,fl,b)(i)(q′,fl ′, b′) 6= 0, then fl ′ = fl;
3. There exists a pair (q!!,fl !!) ∈ Q× {m, s} such that:

F(q,fl,b)(i)(q!!,fl !!, !!ok) = 1
for all (q′,fl ′) 6= (q!!,fl !!) F(q,fl,b)(i)(q′,fl ′, !!ok) = 0;
There exists a ε-path ρ!! from q to q!!.

4. For all (q′,fl ′) such that F(q,fl,b)(i)(q′,fl ′, !!no) = k > 0, there exists k different ε-paths
(strict) prefix of ρ!! from q to q′.

Intuitively the functions F(q,fl,b) associate with each element (q,fl, b) of the multiset M a set
of elements that can be reached via internal transitions. We recall that each such element
represents a set (or a singleton if fl = s) of processes sharing the same history. Condition 1.
states that if there are multiple processes (fl = m) then they can be matched to more states
in the protocol, but if it is single (fl = s) it should be matched by an unique state. Condition
2. expresses that if an element in M represents many processes, then all its images represent
as well many processes. Conditions 3. and 4. deal with the locality assumption. Precisely,
condition 3. states that among all the elements of M′ associated with an element of M, one
and only one should be at the end of a ε-path, and only one process associated with this
element will be allowed to perform a broadcast. This justifies the use of the flag !!ok. Last,
condition 4. concerns all the other elements associated to this element of M: their flag is set
to !!no (they cannot perform a broadcast, because the local strategy will force them to take
an internal transition), and their state should be on the previously mentioned ε-path.

As announced, we define the abstract transitive relation by ⇒=⇒ε ∪ ⇒!!. Note that
by definition we have a strict alternation of transitions of the type ⇒ε and of the type ⇒!!.
An abstract local clique execution of P is then a finite sequence of consecutive transitions in
T LCP of the shape ξ = λ0 ⇒ λ1 · · · ⇒ λ`+1. As for concrete executions, if λ`+1 = (M`+1, t`+1)
we denote by End(ξ) = {q | ∃fl ∈ {m, s}.∃b ∈ {!!ok, !!no}.M`+1(q,fl, b) > 0} the set of states
that appear in the end configuration of ξ.

As an example, a possible abstract execution of the broadcast protocol from Fig. 1
is: ({{(q0,m, !!ok)}}, ε) ⇒ ({{(q0,m, !!no), (q2,m, !!no), (q2,m, !!ok)}}, !!). This single-step
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execution represents that among the processes in q0, some processes will take an internal
action to q2 and loop there with another internal action (they are represented by the
element (q2,m, !!ok)), others will only move to q2 taking a single internal action (they are
represented by (q2,m, !!no)), and finally some processes will stay in q0 (they are represented
by (q0,m, !!no)); note that these processes cannot perform a broadcast, because due to the
local strategy hypothesis, they committed to firing the internal action leading to q2.

Another example of an abstract execution is: ({{(q0,m, !!ok)}}, ε)⇒ ({{(q0,m, !!ok)}}, !!)
⇒ ({{(q1, s, !!ok), (q3,m, !!ok)}}, ε) ⇒ ({{(q1, s, !!ok), (q3,m, !!no), (q3,m, !!ok)}}, ε). Here in
the first step, no process performs internal actions, in the second step one of the processes in
q0 broadcasts m, moves to q1 and we know that no other process will ever share the same
history, it is hence represented by (q1, s, !!ok); then all the other processes with the same
history represented by (q0,m, !!ok) must receive m and move to q3, they are hence represented
by (q3,m, !!ok). The last step represents that some processes perform the internal action
loop on q3.

The definition of the abstract transition system T LCP ensures a correspondence between
abstract local clique executions and local clique executions in P. Formally:

I Lemma 6. Let qF ∈ Q. There exists an abstract local clique execution ξ of P such that
qF ∈ End(ξ) iff there exists a local clique execution θ ∈ ΘLC such that qF ∈ End(θ).

Given the abstract transition system T LCP , in order to show that Reach[LC] is decidable,
we then rely on the theory of well-structured transition systems [1, 13]. Indeed, the natural
order on abstract configurations is a well-quasi-order compatible with the transition relation
⇒ of T LCP (bigger abstract configurations simulate smaller ones) and one can compute
predecessors of upward-closed sets of configurations. This allows us to conclude that, in T LCP ,
the set of all predecessors of a configuration where qF appears is effectively computable, so
that we can decide whether qF is reachable in T LCP , hence, thanks to the previous lemma,
in P.

We also show that Reach[LC] is non-primitive recursive thanks to a PTIME reduction
from Reach[C] (which is Ackermann-complete [16]) to Reach[LC]. We exploit the fact that
the only difference between the semantics C and LC is that in the latter, processes with the
same history take the same decision. We simulate this in C with a gadget which assigns a
different history to each individual process at the beginning of the protocol making hence
the reachability problem for C equivalent to the one with LC semantics.

I Theorem 7. Reach[LC] restricted to complete protocols is decidable and NPR.

5 Conclusion

We considered reconfigurable broadcast networks under local strategies that rule out execu-
tions in which processes with identical local history behave differently. Under this natural
assumption for distributed protocols, the reachability and target problems are NP-complete.
Moreover, we gave polynomial bounds on the cutoff and on the memory needed by strategies.
When the communication topology is a clique, both problems become undecidable. Decidab-
ility is recovered for reachability if we further assume that protocols are complete.

To the best of our knowledge, this is the first attempt to take into account the local
viewpoint of the processes in parameterized distributed systems. It could be interesting to
study how the method we propose in this work can be adapted to parameterized networks
equipped with other means of communication (such as rendez-vous [14] or shared memory
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[12]). In the future we also plan to deal with properties beyond simple reachability objectives,
as for example linear or branching time properties.
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Abstract
Modern distributed systems often rely on databases that achieve scalability by providing only
weak guarantees about the consistency of distributed transaction processing. The semantics
of programs interacting with such a database depends on its consistency model, defining these
guarantees. Unfortunately, consistency models are usually stated informally or using disparate
formalisms, often tied to the database internals. To deal with this problem, we propose a frame-
work for specifying a variety of consistency models for transactions uniformly and declaratively.
Our specifications are given in the style of weak memory models, using structures of events and
relations on them. The specifications are particularly concise because they exploit the property
of atomic visibility guaranteed by many consistency models: either all or none of the updates
by a transaction can be visible to another one. This allows the specifications to abstract from
individual events inside transactions. We illustrate the use of our framework by specifying several
existing consistency models. To validate our specifications, we prove that they are equivalent to
alternative operational ones, given as algorithms closer to actual implementations. Our work
provides a rigorous foundation for developing the metatheory of the novel form of concurrency
arising in weakly consistent large-scale databases.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Replication, Consistency models, Transactions

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2015.58

1 Introduction

To achieve availability and scalability, modern distributed systems often rely on replicated
databases, which maintain multiple replicas of shared data. The database clients can
execute transactions on the data at any of the replicas, which communicate changes to
each other using message passing. For example, large-scale Internet services use data
replicas in geographically distinct locations, and applications for mobile devices keep replicas
locally as well as in the cloud to support offline use. Ideally, we want the concurrent and
distributed processing in a replicated database to be transparent, as formalised by the
classical notion of serialisability [20]: the database behaves as if it executed transactions
serially on a non-replicated copy of the data. However, achieving this ideal requires extensive
coordination between replicas, which slows down the database and even makes it unavailable if
network connections between replicas fail [1]. For this reason, nowadays replicated databases
often provide weaker consistency guarantees, which allow non-serialisable behaviours, called
anomalies. For example, consider the following program issuing transactions concurrently:

txn {x.write(post); y.write(empty) } ‖ txn {u = x.read(); y.write(comment) }
‖ txn { v = x.read(); w = y.read() }

(1)

where x, y are database objects and u, v, w local variables. In some databases the above
program can execute so that the last transaction observes the comment, but not the post:
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u = post, v = empty, w = comment. This result cannot be obtained by executing the three
transactions in any sequence and, hence, is not serialisable. In an implementation it may
arise if the first two transactions are executed at a replica r, and the third one at another
replica r′, and the messages carrying the updates by the first two transactions arrive to r′
out of order.

The semantics of programs interacting with a replicated database thus depends on its
consistency model, restricting the anomalies it can exhibit and, as a consequence, the possible
performance optimisations in its implementation. Recent years have seen a plethora of
proposals of consistency models for replicated databases [6, 19, 12, 24, 21, 13, 4] that make
different trade-offs between consistency and performance. Unfortunately, these subtle models
are usually specified informally or using disparate formalisms, often tied to database internals.
Whereas some progress in formalising the consistency models has been recently made for
replicated databases without transactions [11, 12], the situation is worse for databases
providing these. The lack of a uniform specification formalism represents a major hurdle
in developing the metatheory of the novel form of concurrency arising in weakly consistent
replicated databases and, in particular, methods for formal reasoning about application
programs using them.

To deal with this problem, we propose a framework to uniformly specify a variety of
modern transactional consistency models. We apply the framework to specify six existing
consistency models for replicated databases; the results are summarised in Figure 1, page 63.
Specifications in our framework are declarative, i.e., they do not refer to the database internals
and thus allow reasoning about the database behaviour at a higher abstraction level. To
achieve this, we take an axiomatic approach similar to the one used to define the semantics of
weak memory models of multiprocessors and shared-memory programming languages [3]: our
specifications model database computations by abstract executions, which are structures of
events and relations on them, reminiscent of event structures [26]. For example, Figure 3(a),
page 63 gives an execution that could arise from the program (1). The boxes named T1,
T2 and T3 depict transactions, which are sequences of events ordered by the program order
po, reflecting the program syntax. The visibility edges T1

VIS−−→ T2 and T2
VIS−−→ T3 mean that

the transaction T2 (T3) is aware of the updates made by T1 (T2). Consistency models are
specified by consistency axioms, constraining abstract executions; e.g., a consistency axiom
may require the visibility relation to be transitive and thereby disallow the execution in
Figure 3(a).

The key observation we exploit in our framework is that modern consistency models for
replicated databases usually guarantee atomic visibility: either all or none of the events in a
transaction can be visible to another transaction; it is the flexibility in when a transaction
becomes visible that leads to anomalies. Thanks to atomic visibility, in abstract executions
we can use relations on whole transactions (such as VIS in Figure 3(a)), rather than on
separate events inside them, thereby achieving particularly concise specifications. We further
illustrate the benefits of this form of the specifications by exploiting it to obtain sufficient
and necessary conditions for observational refinement [16] between transactions. This allows
replacing a transaction in an abstract execution by another one without invalidating the
consistency axioms of a given model. One can think of our conditions as characterising the
optimisations that the database can soundly perform inside a transaction due to its atomic
visibility.

To ensure that our declarative axiomatic specifications indeed faithfully describe the
database behaviour, we prove that they are equivalent to alternative operational ones, given
as algorithms closer to actual implementations (Theorem 6, §4). This correspondence also
highlights implementation features that motivate the form of the consistency axioms.
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Our work systematises the knowledge about consistency models of replicated databases
and provides insights into relationships between them (§3). The proposed specification
framework also gives a basis to develop methods for reasoning about application programs
using weakly consistent databases. Finally, our framework is an effective tool for exploring
the space of consistency models, because their concise axiomatic specifications allow easily
experimenting with alternative designs. In particular, our formalisation naturally suggests a
new consistency model (§3).

2 Abstract Executions

We consider a database storing objects Obj = {x, y, . . .}, which for simplicity we assume to be
integer-valued. Clients interact with the database by issuing read and write operations on the
objects, grouped into transactions. We let Op = {read(x, n), write(x, n) | x ∈ Obj, n ∈ Z}
describe the possible operation invocations: reading a value n from an object x or writing n
to x.

To specify a consistency model, we need to define the set of all client-database interactions
that it allows. We start by introducing structures for recording such interactions in a
single database computation, called histories. In these, we denote operation invocations
using history events of the form (ι, o), where ι is an identifier from a countably infinite
set EventId and o ∈ Op. We use e, f, g to range over history events. We let WEventx =
{(ι, write(x, n)) | ι ∈ EventId, n ∈ Z}, define the set REventx of read events similarly, and
let HEventx = REventx ∪WEventx. A relation is a total order if it is transitive, irreflexive,
and relates every two distinct elements one way or another.

I Definition 1. A transaction T, S, . . . is a pair (E, po), where E ⊆ HEvent is a finite,
non-empty set of events with distinct identifiers, and the program order po is a total order
over E. A history H is a (finite or infinite) set of transactions with disjoint sets of event
identifiers.

All transactions in a history are assumed to be committed: to simplify presentation, our
specifications do not constrain values read inside aborted or ongoing transactions.

To define the set of histories allowed by a given consistency model, we introduce abstract
executions, which enrich histories with certain relations on transactions, declaratively describ-
ing how the database processes them. Consistency models are then defined by constraining
these relations. We call a relation prefix-finite, if every element has finitely many predecessors
in the transitive closure of the relation.

I Definition 2. An abstract execution is a triple A = (H,VIS,AR) where:
visibility VIS ⊆ H×H is a prefix-finite, acyclic relation; and
arbitration AR ⊆ H×H is a prefix-finite, total order such that AR ⊇ VIS.

We often write T VIS−−→ S in lieu of (T, S) ∈ VIS, and similarly for AR. Figure 3(a) gives
an execution corresponding to the anomaly explained in §1. Informally, T VIS−−→ S means
that S is aware of T , and thus T ’s effects can influence the results of operations in S. In
implementation terms, this may be the case if the updates performed by T have been delivered
to the replica performing S; the prefix-finiteness requirement ensures that there may only be
finitely many such transactions T . We call transactions unrelated by visibility concurrent.
The relationship T AR−−→ S means that the versions of objects written by S supersede those
written by T ; e.g., comment supersedes empty in Figure 3(a). The constraint AR ⊇ VIS
ensures that writes by a transaction T supersede those that T is aware of; thus AR essentially
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orders writes only by concurrent transactions. In an implementation, arbitration can be
established by assigning timestamps to transactions.

A consistency model specification is a set of consistency axioms Φ constraining executions.
The model allows those histories for which there exists an execution that satisfies the axioms:

HistΦ = {H | ∃VIS,AR. (H,VIS,AR) |= Φ}. (2)

Our consistency axioms do not restrict the operations done by the database clients. We can
obtain the set of histories produced by a particular program interacting with the database,
such as (1), by restricting the above set, as is standard in weak memory model definitions [7].

3 Specifying Transactional Consistency Models

We now apply the concepts introduced to define several existing consistency models; see
Figures 1–3. For a total order R and a set A, we let maxR(A) be the element u ∈ A such that
∀v ∈ A. v = u ∨ (v, u) ∈ R; if A = ∅, then maxR(A) is undefined. In the following, the use of
maxR(A) in an expression implicitly assumes that it is defined. For a relation R ⊆ A×A and
an element u ∈ A, we let R−1(u) = {v | (v, u) ∈ R}. We denote the sequential composition
of relations R1 and R2 by R1; R2. We write _ for a value that is irrelevant and implicitly
existentially quantified.

Baseline consistency model: Read Atomic. The weakest consistency model we consider,
Read Atomic (Figure 1), is defined by the axioms Int and Ext (Figure 2), which determine
the outcomes of reads in terms of the visibility and arbitration relations. Consistency models
stronger than Read Atomic are defined by adding axioms that constrain these relations. The
internal consistency axiom Int ensures that, within a transaction, the database provides
sequential semantics: a read from an object returns the same value as the last write to or
read from this object in the transaction. In particular, Int guarantees that, if a transaction
writes to an object and then reads the object, then it will observe its last write. The axiom
also disallows so-called unrepeatable reads: if a transaction reads an object twice without
writing to it in-between, it will read the same value in both cases.

If a read is not preceded in the program order by an operation on the same object,
then its value is determined in terms of writes by other transactions using the external
consistency axiom Ext. The formulation of Ext relies on the following notation, defining
certain attributes of a transaction T = (E, po). We let T `Write x : n if T writes to x and
the last value written is n: maxpo(E ∩WEventx) = (_, write(x, n)). We let T ` Read x : n
if T makes an external read from x, i.e., one before writing to x, and n is the value returned
by the first such read: minpo(E ∩ HEventx) = (_, read(x, n)). In this case, Int ensures that
n will be the result of all external reads from x in T . According to Ext, the value returned
by an external read in T is determined by the transactions VIS-preceding T that write to
x: if there are no such transactions, then T reads the initial value 0; otherwise it reads the
final value written by the last such transaction in AR. (In examples we sometimes use initial
values other than 0.) For example, the execution in Figure 3(a) satisfies Ext; if it included
the edge T1

VIS−−→ T3, then Ext would force the read from x in T3 to return post. The axiom
Ext implies the absence of so-called dirty reads: a committed transaction cannot read a
value written by an aborted or an ongoing transaction (which are not present in abstract
executions), and a transaction cannot read a value that was overwritten by the transaction
that wrote it (ensured by the definition of T `Write x : n). Finally, Ext guarantees atomic
visibility of a transaction: either all or none of its writes can be visible to another transaction.
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For example, Ext disallows the execution in Figure 3(b) and, in fact, any execution with the
same history. This illustrates a fractured reads anomaly: T1 makes Alice and Bob friends,
but T2 observes only one direction of the friendship relationship. Thus, the consistency
guarantees provided by Read Atomic are useful because they allow maintaining integrity
invariants, such as the symmetry of the friendship relation.

Stronger consistency models. Even though Read Atomic ensures that all writes by a
transaction become visible together, it does not constrain when this happens. This leads
to a number of anomalies, including the causality violation shown in Figure 3(a). We now
consider stronger consistency models that provide additional guarantees about the visibility
of transactions. We specify the first model of causal consistency by requiring VIS to be
transitive (TransVis). This implies that transactions ordered by VIS (such as T1 and T2 in
Figure 3(a)), are observed by others (such as T3) in this order. Hence, the axiom TransVis
disallows the anomaly in Figure 3(a).

Both Read Atomic and causal consistency can be implemented without requiring any
coordination among replicas [6, 19]: a replica can decide to commit a transaction without
consulting other replicas. This allows the database to stay available even during network
failures. However, the above consistency models allow the lost update anomaly illustrated by
the execution in Figure 3(c), which satisfies the axioms of causal consistency. This execution
could arise from the code, also shown in the figure, that uses transactions T1 and T2 to make
deposits into an account. The two transactions read the initial balance of the account and
concurrently modify it, resulting in one deposit getting lost. The next consistency model
we consider, parallel snapshot isolation, prohibits such anomalies in exchange for requiring
replica coordination in its implementations [24]. We specify it by strengthening causal
consistency with the axiom NoConflict, which does not allow transactions writing to the
same object to be concurrent. This rules out any execution with the history in Figure 3(c):
it forces T1 and T2 to be ordered by VIS, so that they cannot both read 0 from acct.

The axiom TransVis in causal consistency and parallel snapshot isolation guarantees
that VIS-ordered transactions are observed by others in this order (cf. Figure 3(a)). However,
the axiom allows two concurrent transactions to be observed in different orders, as illustrated
by the long fork anomaly in Figure 3(d), allowed by both models. Concurrent transactions
T1 and T2 write to x and y, respectively. A transaction T3 observes the write to x, but not
y, and a transaction T4 observes the write to y, but not x. Thus, from the perspectives of T3
and T4, the writes of T1 and T2 happen in different orders.

The next pair of consistency models that we consider disallow this anomaly. We specify
prefix consistency and snapshot isolation by strengthening causal consistency, respectively,
parallel snapshot isolation, with the requirement that all transactions become visible through-
out the system in the same order given by AR. This is formalised by the axiom Prefix: if T
observes S, then it also observes all AR-predecessors of S. Since AR ⊇ VIS, Prefix implies
TransVis. The axiom Prefix disallows any execution with the history in Figure 3(d): T1
and T2 have to be related by AR one way or another; but then by Prefix, either T4 has to
observe post1 or T3 has to observe post2 .

Even though consistent prefix and snapshot isolation ensure that transactions become
visible to others in the same order, they allow this to happen with a delay, caused by
asynchronous propagation of updates in implementations. This leads to the write skew
anomaly shown in Figure 3(e). Here each of T1 and T2 checks that the combined balance of
two accounts exceeds 100 and, if so, withdraws 100 from one of them. Both transactions
pass the checks and make the withdrawals from different accounts, resulting in the combined
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Φ Consistency model Axioms (Figure 2) Fractured Causality Lost Long Write
reads violation update fork skew

RA Read Atomic [6] Int, Ext 8 X X X X RA

CC

PSIPC

SI

SER

⊂
⊂⊂

⊂ ⊂

⊂
CC Causal Int, Ext, TransVis 8 8 X X X

consistency [19, 12]
PSI Parallel snapshot Int, Ext, TransVis, 8 8 8 X X

isolation [24, 21] NoConflict
PC Prefix consistency [13] Int, Ext, Prefix 8 8 X 8 X

SI Snapshot isolation [8] Int, Ext, Prefix, 8 8 8 8 X

NoConflict
SER Serialisability [20] Int, Ext, TotalVis 8 8 8 8 8

Figure 1 Consistency model definitions, anomalies and relationships.

∀(E, po) ∈ H.∀e ∈ E.∀x, n. (e = (_, read(x, n)) ∧ (po−1(e) ∩ HEventx 6= ∅))
=⇒ maxpo(po−1(e) ∩ HEventx) = (_,_(x, n)) (Int)

∀T ∈ H. ∀x, n. T ` Read x : n =⇒
((VIS−1(T ) ∩ {S | S `Write x : _} = ∅ ∧ n = 0) ∨

maxAR(VIS−1(T ) ∩ {S | S `Write x : _}) `Write x : n) (Ext)

VIS is transitive (TransVis) AR; VIS ⊆ VIS (Prefix) VIS is total (TotalVis)

∀T, S ∈ H. (T 6= S ∧ T `Write x : _ ∧ S `Write x : _) =⇒ (T VIS−−→ S ∨ S VIS−−→ T ) (NoConflict)

Figure 2 Consistency axioms, constraining an execution (H,VIS,AR).

(a) Causality violation

T1 T2 T3VIS

AR

VIS

AR

AR

write(x, post) write(y, empty) read(x, post) write(y, comment) read(x, empty) read(y, comment)
po po po

(b) Fractured reads

write( ,Bob)xAlice write( ,Alice)xBob read( ,Bob)xAlice read( , empty)xBob

T1 T2
po poVIS

(c) Lost update (d) Long fork

AR

VIS

VIS

acct := acct + 50

acct := acct + 25

T1

T2

T3read(acct, 0) write(acct, 50)

read(acct, 0) write(acct, 25)

read(acct, 25)

po

po

T1

T2

T3

T4

VIS

VIS

write(x, post1 ) read(x, post1 ) read(y, empty)
po

write(y, post2 ) read(x, empty) read(y, post2 )
po

(e) Write skew. Initially acct1 = acct2 = 60.

if (acct1 + acct2 > 100)
acct1 := acct1 - 100

if (acct1 + acct2 > 100)
acct2 := acct2 - 100

T1

T2

read(acct1, 60) read(acct2, 60) write(acct1,−40)

read(acct1, 60) read(acct2, 60) write(acct2,−40)

po po

po po

Figure 3 Executions illustrating anomalies allowed by different consistency models. The boxes
group events into transactions. We sometimes omit irrelevant AR edges.
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balance going negative. NoConflict allows the transactions to be concurrent, because they
write to different objects.

Write skew and all the other anomalies mentioned above are disallowed by the classical
consistency model of serialisability. Informally, a history is serialisable if the results of
operations in it could be obtained by executing its (committed) transactions in some total
order according to the usual sequential semantics. We formalise this in our framework by
the axiom TotalVis, which requires the visibility relation VIS to be total. Since we always
have AR ⊇ VIS, it is easy to see that there is no execution with the history in Figure 3(e)
and a total VIS that would satisfy Ext.

Ramifications. The above specifications demonstrate the benefits of using our framework.
First, the specifications are declarative, since they state constraints on database processing
in terms of VIS and AR relations, rather than the database internals. The specifications thus
allow checking whether a consistency model admits a given history solely in terms of these
relations, as per (2).

The declarative nature of our specifications also provides a better understanding of
consistency models. In particular, it makes apparent the relationships between different
models and highlights the main mechanism of strengthening consistency—mandating that
more edges be included into visibility.

I Proposition 3. The strict inclusions between the consistency models in Figure 1 hold.

The strictness of the inclusions in Figure 1 follows from the examples of histories in Figure 3.
Axiomatic specifications also provide an effective tool for designing new consistency

models. For example, the existing consistency models do not include a counterpart of Read
Atomic obtained by adding the NoConflict axiom. Such an “Update Atomic” consistency
model would prevent lost update anomalies without having to enforce causal consistency
(as in parallel snapshot isolation), which incurs performance overheads [5]. Update Atomic
could be particularly useful when mixed with Read Atomic, so that the NoConflict axiom
apply only to some transactions specified by the programmer. This provides a lightweight
way of strengthening consistency where necessary.

Atomic visibility and observational refinement. Our specifications are particularly concise
because they are tailored to consistency models providing atomic visibility. With axioms Int
and Ext establishing this property, additional guarantees can be specified while abstracting
from the internal events in transactions: solely in terms of VIS and AR relations on whole
transactions and transaction attributes given by the `-judgements. To further illustrate the
benefits of this way of specification, we now exploit it to establish sufficient and necessary
conditions for when one transaction observationally refines another, i.e., we can replace
it in an execution without invalidating the consistency axioms. This notion is inspired
by that of testing preorders in process algebras [16]. We can think of it as characterising
the optimisations that the database can soundly perform inside the transaction due to its
atomic visibility. As it happens, the conditions we establish differ subtly depending on the
consistency model.

To formulate observational refinement, we introduce contexts X—abstract executions
with a hole [ ] that represents a transaction with an unspecified behaviour: X = (H ∪
{[ ]},VIS,AR), where VIS,AR ⊆ (H∪ {[ ]})× (H∪ {[ ]}) satisfy the conditions in Definition 2.
We can fill in the hole in the above context X by a transaction T , provided that the sets
of event identifiers appearing in T and H are disjoint. This yields the abstract execution
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X [T ] = (H ∪ {T},VIS[[ ] 7→ T ],AR[[ ] 7→ T ]), where VIS[[ ] 7→ T ] treats T in the same way as
VIS treats [ ] and similarly for AR[[ ] 7→ T ] (we omit the formal definition to conserve space).
We say that a transaction T1 observationally refines a transaction T2 on the consistency
model Φ, written T1 vΦ T2, if ∀X .X [T1] |= Φ =⇒ X [T2] |= Φ.

I Theorem 4. Let T1, T2 be such that ({T1, T2}, ∅, ∅) |= Int. We have T1 vRA T2 if and
only if for all x, n:(
¬(T1 ` Read x : n) =⇒ ¬(T2 ` Read x : n)

)
∧
(
T1 `Write x : n ⇐⇒ T2 `Write x : n

)
.

For Φ ∈ {CC,PC,SER} we have T1 vΦ T2 if and only if for all x, n,m, l:(
¬(T1 ` Read x : n) =⇒ (¬(T2 ` Read x : n) ∧ (T1 `Write x : n ⇐⇒ T2 `Write x : n))

)
∧(

(T1 ` Read x : n ∧ (T1 `Write x : m =⇒ m = n)) =⇒ (T2 `Write x : l =⇒ l = n)
)
.

For Φ ∈ {SI,PSI} we have T1 vΦ T2 if and only if T1 vCC T2 and for all x, n:

¬(T1 `Write x : n) =⇒ ¬(T2 `Write x : n).

We prove the theorem in [14, §A]. In the case of Φ = RA, we prohibit T2 from reading
more objects than T1 or changing the values read by T1; however, it is safe for T2 to read
less than T1. We also require T1 and T2 to have the same sets of final writes. The case of
Φ ∈ {CC,PC} introduces two exception to the latter requirement. One exception is when T1
reads an object and writes the same value to it. Then T2 may not change the value written,
but may omit the write. Another exception is when T1 reads an object, but does not write
to it. Then T2 can write the value read without invalidating the reads in the context. This is
disallowed when Φ ∈ {SI,PSI}.

4 Operational Specifications

To justify that our axiomatic specifications of weak consistency models indeed faithfully
describe the intended database behaviour, we now prove that they are equivalent to alternative
operational ones. These are given as algorithms that are close to actual implementations [6,
19, 13, 24], yet abstract from some of the more low-level features that such implementations
have. We start by giving an operational specification of the weakest consistency model we
consider, Read Atomic. We then specify other models weaker than serialisability by assuming
additional guarantees about the communication between replicas in this algorithm.

4.1 Operational Specification of Read Atomic

Informally, the idealised algorithm for Read Atomic operates as follows. The database consists
of a set of replicas, identified by RId = {r0, r1, . . .}, each maintaining a copy of all objects.
The set RId is infinite, to model dynamic replica creation. We assume that the system is
fully connected: each replica can broadcast messages to all others. All client operations
within a given transaction are initially executed at a single replica (though operations in
different transactions can be executed at different replicas). For simplicity, we assume that
every transaction eventually terminates. When this happens, the replica decides whether
to commit or abort it. In the former case, the replica sends a message to all other replicas
containing the transaction log, which describes the updates done by the transaction. The
replicas incorporate the updates into their state upon receiving the message. A transaction
log has the form t : ρ, where ρ ∈ {write(x, n) | x ∈ Obj, n ∈ N}∗ , UpdateList. This gives
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the sequence of values written to objects and the unique timestamp t ∈ N of the transaction,
which is used to determine the precedence of different object versions (and thus implements
the AR relation in abstract executions). We denote the set of all sets of logs with distinct
timestamps by LogSet.

Every replica processes transactions locally without interleaving. This idealisation does
not limit generality, since all anomalies that would result from concurrent execution of
transactions at a single replica arise anyway because of the asynchronous propagation of
updates between replicas. The above assumption allows us to maintain the state of a replica
r in the algorithm by a pair (D, l) ∈ RState , LogSet× (UpdateList ] {idle}), where:

l is either the sequence of updates done so far by the (single) transaction currently
executing at r, or idle, signifying that no transaction is currently executing; and
D is the database copy of r, represented by the set of logs of transactions that have
committed at r or have been received from other replicas.

Then a configuration of the whole system (R,M) ∈ Config , (RId → RState) × LogSet is
described by the state R(r) of every replica r and the pool of messages M in transit among
replicas.

Formally, our algorithm is defined using the transition relation _: Config×LEvent×Config
in Figure 4, which describes how system configurations change in response to low-level events
from a set LEvent, describing actions by clients and message receipts by replicas. The set
LEvent consists of triples of the form (ι, r,o), where ι ∈ EventId is the event identifier, r ∈ RId
is the replica the event occurs at, and o is a low-level operation from the set

COp = {start, read(x, n), write(x, n), commit(t), abort, receive(t : ρ) |
x ∈ Obj, n ∈ Z, t ∈ N, ρ ∈ UpdateList}.

We use e, f ,g to range over low-level events.
According to _, when a client starts a transaction at a replica r (Start), the database

initialises the current sequence of updates to signify that a transaction is in progress. Since
a replica processes transactions serially, a transaction can start only if r is not already
executing a transaction. When a client writes n to an object x at a replica r (Write), the
corresponding record write(x, n) is appended to the current sequence of updates. This rule
can be applied only when r is not executing a transaction. A read of an object x at r (Read)
returns the value determined by a lastval function based on the transactions in r’s database
copy and the current transaction. For D′ ∈ LogSet we define lastval(x,D′) as the last value
written to x by the transaction with the highest timestamp among those in D′, or 0 if x is
not mentioned in D′. Since the timestamps of transactions in D′ are distinct, this defines
lastval(x,D′) uniquely. For brevity, we omit its formal definition. Note that (Read) implies
that a transaction always reads from its own writes and a snapshot of the database the
replica had at its start; the transaction is not affected by writes concurrently executing at
other replicas, thus ensuring the absence of unrepeatable reads (§3).

If a transaction aborts at a replica r (Abort), the current sequence of updates of r is
cleared. If the transaction commits (Commit), it gets assigned a timestamp t, and its log is
added to the message pool, as well as to r’s database copy. The timestamp t is chosen to
be greater than the timestamps of all the transactions in r’s database copy, which validates
the condition AR ⊇ VIS in Definition 2. The timestamp t also has to be distinct from any
timestamp assigned previously in the execution. The fact that (Commit) sends all updates
by a transaction in a single message ensures atomic visibility. Note that, in Read Atomic, a
transaction can always commit; as we explain in the following, this is not the case for some
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(Start)
e = (_, r, start)

(R[r 7→ (D, idle)],M)
e
_ (R[r 7→ (D, ε)],M)

(Write)
e = (_, r, write(x, n))

(R[r 7→ (D, ρ)],M)
e
_ (R[r 7→ (D, ρ · write(x, n))],M)

(Read)
e = (_, r, read(x, n)) n = lastval(x,D ∪ {∞ : ρ})

(R[r 7→ (D, ρ)],M)
e
_ (R[r 7→ (D, ρ)],M)

(Abort)
e = (_, r, abort)

(R[r 7→ (D, ρ)],M)
e
_ (R[r 7→ (D, idle)],M)

(Commit)

e = (_, r, commit(t))
(∀r′, D′. R(r′) = (D′,_) =⇒ (t : _) /∈ D′) (∀t′. (t′ : _) ∈ D =⇒ t > t′)

(R[r 7→ (D, ρ)],M)
e
_ (R[r 7→ (D ∪ {t : ρ}, idle)],M ∪ {t : ρ})

(Receive)
e = (_, r, receive(t : ρ))

(R[r 7→ (D, idle)],M ∪ {(t : ρ)})
e
_ (R[r 7→ (D ∪ {(t : ρ)}, idle)],M ∪ {t : ρ})

Figure 4 Transition relation _: Config×LEvent×Config for defining the operational specification.
We let R[r 7→ u] be the function that has the same value as R everywhere except r, where it has the
value u; · denotes sequence concatenation, and ε the empty sequence.

(
e1 ∈ {(_, r, receive(t1 : _)), (_, r, commit(t1))} ∧ e2 = (_, r, commit(t2)) ∧ e1 ≺ e2 ∧ r 6= r′ ∧

f2 = (_, r′, receive(t2 : _))
)

=⇒
(
∃f1 ∈ {(_, r′, receive(t1 : _)), (_, r′, commit(t1))}. f1 ≺ f2

)
(CausalDeliv)(

e1 = (_,_, commit(t1)) ∧ e2 = (_,_, commit(t2)) ∧ e1 ≺ e2
)

=⇒ t1 < t2 (MonTS)(
g = (_, r, start) ∧ e2 ∈ {(_, r, commit(t2)), (_, r, receive(t2 : _))} ∧ f = (_,_, commit(t1))

∧ t1 < t2 ∧ e2 ≺ g
)

=⇒
(
∃e1 ∈ {(_, r, commit(t1)), (_, r, receive(t1 : _))}. e1 ≺ g

)
(TotalDeliv)(

e1 = (_, r, write(x,_)) ∧ f1 = (_, r, commit(t1)) ∧ TSC(e1) = t1 ∧

e2 = (_, r′, write(x,_)) ∧ f2 = (_, r′, commit(t2)) ∧ TSC(e2) = t2 ∧ f2 ≺ f1 ∧ r 6= r′
)

=⇒
(
∃g ∈ E.g = (_, r, receive(t2 : _)) ∧ g ≺ f1

)
, (ConflictCheck)

where for e ∈ E we let

TSC(e) =


t, if ∃r. e ∈ {(_, r, read(_,_)), (_, r, write(_,_))} ∧

∃g ∈ E.g = (_, r, commit(t)) ∧
¬(∃f ∈ {(_, r, commit(_)), (_, r, abort)}. (e ≺ f ≺ g))

undefined, otherwise

Φ Constraints Φ Constraints Φ Constraints

RA None PSI (CausalDeliv), (ConflictCheck)
SI

(MonTS), (TotalDeliv),
CC (CausalDeliv) PC (MonTS), (TotalDeliv) (ConflictCheck)

Figure 5 Constraints on concrete executions C = (E,≺) required by various consistency models.
Free variables are universally quantified and range over the following domains: ei, f , fi,g ∈ E for
i = 1, 2; t1, t2 ∈ N; r, r′ ∈ RId.
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of the other consistency models. Finally, a replica r that is not executing a transaction can
receive a transaction log from the message pool (Receive), adding it to the database copy.

We define the semantics of Read Atomic by considering all sequences of transitions
generated by _ from an initial configuration where the log sets of all replicas and the
message pool are empty. We thereby consider all possible operations that clients could issue
to the database.

I Definition 5. Let (R0,M0) = (λr. (∅, idle), ∅). A concrete execution is a pair C = (E,≺),
where: E ⊆ LEvent; ≺ is a prefix-finite, total order on E; and if e1, e2, e3, . . . is the enumera-
tion of the events in E defined by ≺, then for some configurations (R1,M1), (R2,M2), . . . ∈
Config we have (R0,M0) e1_ (R1,M1) e2_ (R2,M2) e3_ . . .

4.2 Correspondence to Axiomatic Specifications and Other Models

We next show that the above operational specification indeed defines the semantics of Read
Atomic, and that stronger models can be defined by assuming additional guarantees about
communication between replicas. These guarantees are formalised by the constraints on
concrete executions in Figure 5; in implementations they would be ensured by distributed
protocols that our specifications abstract from.

We first map each concrete execution into a history, which includes only reads and writes
in its committed transactions. The history of C = (E,≺) is defined as follows:

history(C) =
{
Tt | {e ∈ E | TSC(e) = t} 6= ∅

}
, where Tt = (Et, pot) for

Et = {(ι,o) | ∃e ∈ E. e = (ι,_,o) ∧ TSC(e) = t};
pot = {(ι1,o1), (ι2,o2) | (ι1,o1), (ι2,o2) ∈ Et ∧ (ι1,_,o1) ≺ (ι2,_,o2)},

where TSC is defined in Figure 5. We lift the function history to sets of concrete executions
as expected.

I Theorem 6. For a consistency model Φ let ConcExecΦ be the set of concrete executions
satisfying the model-specific constraints in Figure 5. Then history(ConcExecΦ) = HistΦ.

Proof outline. We defer the full proof to [14, §B]. Here we sketch the argument for one
set inclusion (⊆) and, on the way, explain the constraints in Figure 5. Fix a Φ and let
C = (E,≺) ∈ ConcExecΦ. To show history(C) ∈ HistΦ we let A = (history(C),VIS,AR), where
AR = {(Tt1 , Tt2) | t1 < t2} and

VIS =
{

(Tt1 , Tt2) | ∃e1, e2 ∈ E.∃r. e1 ∈ {(_, r, commit(t1)), (_, r, receive(t1 : _))} ∧
e2 = (_, r, commit(t2)) ∧ e1 ≺ e2

}
.

While AR merely lifts the order on timestamps to transactions, VIS reflects message delivery:
Tt1

VIS−−→ Tt2 if the effects of Tt1 have been incorporated into the state of the replica where
Tt2 is executed. We can show that any abstraction execution A constructed from a concrete
execution C as above satisfies Int and Ext, and hence, its history belongs to HistRA. The
constraints on a concrete execution C in Figure 5 ensure that the abstract execution A
constructed from it satisfies other axioms in Figure 2.

Constraint (CausalDeliv) implies the axiom TransVis, because it ensures that the
message delivery is causal [9]: if a replica r sends the log of a transaction t2 (event e2) after
it sends or receives the log of t1 (event e1), then every other replica r′ will receive the log of
t2 (event f2) only after it receives or sends the log of t1 (event f1).
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The axiom Prefix follows from constraints (MonTS) and (TotalDeliv). The constraint
(MonTS) requires that timestamps agree with the order in which transactions commit. The
constraint (TotalDeliv) requires that each transaction access a database snapshot that is
closed under adding transactions with timestamps (t1) smaller than the ones already present
in the snapshot (t2). In an implementation, the above constraints can be satisfied if replicas
communicate via a central server, which assigns timestamps to transactions when they
commit, and propagates their logs to replicas in the order of their timestamps [13].

The axiom NoConflict follows from the constraint (ConflictCheck), similar to that in
the original definitions of SI [8] and PSI [24]. The constraint allows a transaction t1 to
commit at a replica r (event f1) only if it passes a conflict detection check: if t1 updates
an object x (event e1) that is also updated by a transaction t2 (event e2) committed at
another replica r′ (event f2), then the replica r must have received the log of t2 (event g).
If this check fails, the only option left for the database is to abort t using the rule (Abort).
Implementing the check in a realistic system would require the replica r to coordinate with
others on commit [24]. J

The above operational specifications are closer to the intuition of practitioners [6, 19, 13,
24] and thus serve to validate our axiomatic specifications. However, they are more verbose
and reasoning about database behaviour using them may get unwieldy. It requires us to
keep track of low-level information about the system state, such as the logs at all replicas
and the set of messages in transit. We then need to reason about how the system state is
affected by a large number of possible interleavings of operations at different replicas. In
contrast, our axiomatic specifications (§3) are more declarative and, in particular, do not
refer to implementation-level details, such as message exchanges between replicas. These
specifications thereby facilitate reasoning about the database behaviour.

5 Related Work

Our specification framework builds on the axiomatic approach to specifying consistency
models, previously applied to weak shared-memory models [3] and eventual consistency [11,
12]. In particular, the visibility and arbitration relations were first introduced for specifying
eventual consistency and causally consistent transactions [12]. In comparison to prior work,
we handle more sophisticated transactional consistency models. Furthermore, our framework
is specifically tailored to transactional models with atomic visibility, by defining visibility
and arbitration relations on whole transactions as opposed to events. This avoids the need
to enforce atomic visibility explicitly in all axioms [12], thus simplifying specifications.

Adya [2] has previously proposed specifications for weak consistency models of transactions
in classical databases. His framework also broadly follows the axiomatic specification approach,
but uses relations different from visibility and arbitration. Adya’s work did not address the
variety of consistency models for large-scale databases proposed recently, while our framework
is particularly appropriate for these. On the other hand, Adya handled transactional
consistency models that do not guarantee atomic visibility, such as Read Committed, which
we do not address. Adya also specified snapshot isolation (SI), which is a weak consistency
model older than the others we consider. However, his specification is low-level, since it
introduces additional events to denote the times at which a transaction takes a snapshot of
the database state. Saeida Ardekani et al. [22] have since proposed a higher-level specification
for snapshot isolation; this specification still uses relations on individual events and thus
does not exploit atomic visibility.
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Partial orders have been used to define semantics of concurrent and distributed programs,
e.g., by event structures [26]. Our results extend this research line by considering new kinds of
relations among events, appropriate to describe computations of weakly consistent databases,
and by relating the resulting abstract specifications to lower-level algorithms.

Prior work has investigated calculi with transactions communicating via message passing:
cJoin [10], TCCSm [17] and RCCS [15]. Even though replicated database implementations
and our operational specifications are also based on message passing, the database interface
that we consider allows client programs only to read and write objects. Thereby, it provides
the programs with an (imperfect) illusion of shared memory, and our goal was to provide
specifications for this interface that abstract from its message passing-based implementation.

6 Conclusion

We have proposed a framework for uniformly specifying transactional consistency models of
modern replicated databases. The axiomatic nature of our framework makes specifications
declarative and concise, with further simplicity brought by exploiting atomic visibility. We
have illustrated the use of the framework by specifying several existing consistency models
and thereby systematising the knowledge about them. We have also validated our axiomatic
specifications by proving their equivalence to operational specifications that are closer to
implementations.

We hope that our work will promote an exchange of ideas between the research communit-
ies of large-scale databases and concurrency theory. In particular, our framework provides
a basis to develop techniques for reasoning about the correctness of application programs
using modern databases; this is the subject of our ongoing work.

Finally, axiomatic specifications are well-suited for systematically exploring the design
space of consistency models. In particular, insights provided by the specifications may suggest
new models, as we illustrated by the Update Atomic model in §3. This is likely to help in the
design of the sophisticated programming interfaces that replicated databases are starting to
provide to compensate for the weakness of their consistency models. For example, so-called
replicated data types [23] avoid lost updates by eventually merging concurrent updates
without coordination between replicas, and sessions [25] provide additional consistency
guarantees for transactions issued by the same client. Finally, there are also interfaces that
allow the programmer to request different consistency models for different transactions [18],
analogous to fences in weak memory models [3]. In the future we plan to generalise our
techniques to handle the above features. We expect to handle replicated data types by
integrating our framework with their specifications proposed in [11], and to handle sessions
and mixed consistency models by studying additional constraints on the visibility and
arbitration relations. We believe that the complexity of database consistency models and
the above programming interfaces makes it indispensable to specify them formally and
declaratively. Our work provides the necessary foundation for achieving this.

Acknowledgements. We thank Artem Khyzha, Vasileios Koutavas, Hongseok Yang and the
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Abstract
Verification of concurrent systems is a difficult problem in general, and this is the case even
more in a parametrized setting where unboundedly many concurrent components are considered.
Recently, Hague proposed an architecture with a leader process and unboundedly many copies
of a contributor process interacting over a shared memory for which safety properties can be
effectively verified. All processes in Hague’s setting are pushdown automata. Here, we extend it
by considering other formal models and, as a main contribution, find very liberal conditions on the
individual processes under which the safety problem is decidable: the only substantial condition
we require is the effective computability of the downward closure for the class of the leader
processes. Furthermore, our result allows for a hierarchical approach to constructing models of
concurrent systems with decidable safety problem: networks with tree-like architecture, where
each process shares a register with its children processes (and another register with its parent).
Nodes in such networks can be for instance pushdown automata, Petri nets, or multi-pushdown
systems with decidable reachability problem.
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1 Introduction

Parametrized concurrent systems, i.e., systems composed of an arbitrary number of concurrent
components of finitely many kinds, are the natural models of many concrete systems such as
distributed network protocols, operating system drivers, or multi-threaded applications for
multi-core hardware, just to mention a few. In some cases, they are algorithmically easier
to analyze than the corresponding non-parametrized models which makes them a suitable
abstraction for concurrency (see [21]).

Verification of shared-memory systems is a notoriously difficult problem, even for simple
properties as safety. As a classical example, two pushdown systems communicating via a
shared variable can directly simulate a Turing machine. In order to gain decidability, it is
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ClassD: possible instances for the leader ClassC: possible instances for contributors

pushdown automata,
Petri nets,
decidable subclasses of multi-stack push-
down automata,
stacked counter automata,
order-2 pushdown automata.

anything in ClassD,
higher-order pushdown automata with col-
lapse,
lossy channel systems,
hierarchical composition of (C, D)-
systems with ClassD and ClassC from
this table.

Figure 1 Examples of models that fit our general decidability result for (C, D)-systems.

crucial to limit the synchronization power of such systems, for example by placing restrictions
on the policies of the synchronization primitives, or bounding the number of interactions.
For parametrized systems, assuming that the components have no identities is helpful besides
being appropriate for many concurrent systems of interest (see also [14] for a survey).

In this paper, we revisit the verification problem for safety properties of parametrized
asynchronous shared-memory systems. These systems consist of a leader process D and
an arbitrary number of identical contributor processes C. The processes communicate via
shared memory modelled by read/write registers. There are two important features of such
(C,D)-systems: first, there are no locking mechanisms on the shared memory, and second,
contributors do not have identities.

This setting has been proposed by Hague [19], who studied the case when leaders and
contributors are pushdown automata and showed an Expspace upper bound. Esparza et
al. [16] settled the complexity of the problem for pushdown automata proving it Pspace-
complete. The interest for such systems is also related to the analysis of distributed protocols
that use no synchronization primitives, which is the case on wireless sensor networks where
a central co-ordinator (the base station) communicates with an arbitrary number of tiny
agents that run concurrently and asynchronously (see [16]).

In this paper, we prove a general decidability result for verifying safety properties of
(C,D)-systems. It gives conditions on leaders and contributors, expressed in terms of basic
language theoretic closure and effectiveness properties, under which the problem is decidable.
The main requirement is that the downward closure of the language of the leader should be
effectively computable. This requirement is interesting in itself, and we remark that, in our
setting, it is weaker than having effective semilinear Parikh images.

Our work shows that the setting of (C,D)-systems can be instantiated in many different
ways, while preserving the decidability of safety properties. Figure 1 lists some examples
of types of systems for leaders and for contributors that our theorem covers. For example,
the leader and contributors can be themselves Petri nets, or restrictions of multi-pushdown
processes with decidable reachability problem.

One interesting consequence of our main result is that it can be applied recursively, by
instantiating a contributor C by another (C,D)-system (see Figure 2). This implies that
safety properties can be verified for networks that have a tree-like architecture: each process
shares a register with its children processes (and another register with its parent). Nodes in
such networks can belong to one of the formal models listed above.

Finally, as a byproduct, our construction allows to reprove in a different way known
complexity results for (C,D)-systems over pushdown automata [16]. We believe that our
approach is simpler thanks to the use of downward closures.
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Figure 2 Example of a hierarchical composition of (C, D)-systems, Pi are process types and
Ri are R/W registers. P0 is the leader D of a (C, D)-system whose contributors are themselves
(C, D)-systems each one with leader from P1 and contributors from P2.

Related work. Parametrized verification of shared-memory multi-threaded programs has
been studied for finite-state threads in [8, 22] and for threads modeled as pushdown systems
in [7, 10, 24, 25, 9]. The main difference with our setting is that in those models the
synchronization primitives are allowed, and thus for pushdown threads, reachability becomes
undecidable even if we restrict to finite data domains. The decidability results in [7, 10, 24,
25, 9] concern the reachability analysis up to a bounded number of execution contexts, and
in [7, 10], dynamic thread creation is allowed.

Parameterized reachability is also considered in [6] for shared-memory systems formed of
one pushdown and several counters.

There is a rich literature concerning the verification of asynchronously-communicating
parametrized programs that is mostly related to the verification of distributed protocols and
varies for approaches and models (see e.g. [17, 11, 15, 23] for some early work, and [13, 5, 29]
and references therein).

Parametrized tree systems, i.e., systems formed of an arbitrary number of processes
operating on a tree-like architecture, have been studied by tree rewritings (see [4, 3] and
references therein). Our hierarchical composition of (C,D)-systems is quite different from
the models studied there. Namely, each process shares a finite memory with its children
processes and its parent process: all the interactions with the network neighbours are through
asynchronous accesses to such memories. As processes, we allow several classes of systems,
not just finite-state systems. On the other side, in our model there is no notion of global
transitions.

Organization of the paper. In Section 2, we give some basic definitions and introduce the
notion of (C,D)-system. In Section 3, the accumulator semantics is introduced and shown
equivalent to the standard semantics of (C,D)-systems. In Section 4, we give two constructions
that allow to decompose the semantics of (C,D)-systems into the parts concerning respectively
the leader and the contributors. In Section 5, these constructions are used to give a decision
algorithm that shows the main result of the paper. In Section 6, we use our approach to
study the computational complexity of the reachability for (C,D)-systems for the classes of
finite automata and pushdown automata. We conclude in Section 7 with a few remarks.
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2 Preliminaries

We first define the parametrized systems that we consider, and their reachability problem.
These systems consist of one instance of a leader process D, and an arbitrary number of
instances of a contributor process C. Both C and D can be arbitrary, potentially infinite,
transition systems. One can think of them as transition systems generated by, for example,
pushdown automata, Petri nets, or lossy channel systems. Our decidability result will refer
to the closure properties of classes of transition systems over which C and D range.

A transition system is a graph with states and labelled edges. The labels of edges are
called actions. There may be infinitely many states in a transition system, but we will assume
that the set of actions is finite. A transition system will come with an initial state. A trace
is a sequence of actions labelling a path starting in the initial state. A word v is a subword
of u if it can be obtained from u by erasing letters.

The synchronized product of two transition systems is a system whose state set is the
product of the state sets of the two systems, and whose transitions are defined according
to the rule: for actions common to the two systems the transition should be synchronized,
whereas actions of only one of the two systems affect only the relevant component of the pair.
In particular, the synchronized product of two transition systems over the same alphabet is
just the standard product of the two.

For our decidability results we will assume implicitly that transition systems are given
by some finite description. For example, when we will talk about the class of pushdown
transition systems we will assume that they are given by pushdown automata.

We say that a class of transition systems is effectively closed under some operation if from
a description of a transition system in the class we can effectively construct a description of
the image of the transition system under that operation. Our decidability result will use
a couple of abstract properties of classes of transition systems. For a class C of transitions
systems we say that:
C is effectively closed under synchronized products with finite automata if for every
description of a system in C, and every finite automaton, one can effectively find a
description in C of the synchronized product of the transition system with the automaton.
C has decidable reachability problem if there is an algorithm deciding for a given action
and a description of a transition system in C if from the initial state of C there is a trace
containing this action.
C has an effective downward closure if there is an algorithm calculating for a given
description of a transition system in C the finite automaton accepting all subwords of the
traces of C from the initial state.

Observe that having effective downward closure implies having decidable reachability problem.
We will give an example of the use of these notions in a simple result on page 77 (Corollary 2).

We proceed to the formal definition of (C,D)-systems. These systems are composed of
arbitrary many instances of a contributor process C and one instance of a leader process
D. The processes communicate through a shared register. We write G for the finite set of
register values, and use g, h to range over elements of G. The initial value of the register is
denoted ginit . The alphabets of both C and D contain actions representing reads and writes
to the register:

ΣC = {r(g), w(g) : g ∈ G} , ΣD = {r̄(g), w̄(g) : g ∈ G} .

Both C and D are, possibly infinite, transition systems over these alphabets:

C = 〈S, δ ⊆ S × ΣC × S, sinit〉 D = 〈T,∆ ⊆ T × ΣD × T, tinit〉 .
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The transition systems do not have internal actions. Adding them to the alphabets would
not modify our results, so for simplicity we prefer not to deal with them here. Internal
actions will be useful though when we consider hierarchical composition of (C,D)-systems.

A (C,D)-system consists of an unspecified number of copies of C, one copy of D, and a
shared register. A configuration of such a system can be represented by a triple (f : N→
S, t ∈ T, g ∈ G), consisting of a function f counting the number of instances of C in a given
state, the state t of D and the current register value g.

In principle we would expect that f is a partial function defined only on an initial interval
of N. This would represent that indeed there are only finitely many copies of C. Given the
questions we are interested in, this is irrelevant, so we prefer not to put this condition.

The transitions of the (C,D)-system are presented below. We extend the transition
relation δ of C from S to N → S and write f a−→ f ′ in δ, meaning that there is an index i
such that f(i) a−→ f ′(i) in C and f(j) = f ′(j) for j 6= i.

(f, t, g) w̄(h)−−−→(f, t′, h) if t w̄(h)−−−→ t′ in ∆

(f, t, g) r̄(h)−−−→(f, t′, h) if t r̄(h)−−−→ t′ in ∆ and h = g

(f, t, g) w(h)−−−→(f ′, t, h) if f w(h)−−−→ f ′ in δ

(f, t, g) r(h)−−−→(f ′, t, h) if f r(h)−−−→ f ′ in δ and h = g

The reachability problem is to decide if in a given (C,D)-system the register can contain
some error value that we denote by #. Observe that it may be assumed w.l.o.g. that this
value is written by the leader D. This means that we are asking if there is a trace of the
(C,D)-system from the initial configuration (finit , tinit , ginit), with label from (ΣC∪ΣD)∗w̄(#).
Here, finit is a constant function assigning the initial state of C to every i ∈ N. In the
following we will simply say that we want to decide if there is a #-trace in the (C,D)-system.

3 Accumulator semantics

The semantics we have presented above, although natural, is not that easy to work with.
Here we formulate a different semantics, called accumulator semantics, that is equivalent
if the reachability problem is considered. As an example of the advantage offered by the
accumulator semantics we give a very simple argument for the decidability in the case when
C ranges over finite state systems.

In the accumulator semantics, instead of a function f : N→ S we use a set A ⊆ S that we
call accumulator to reflect the fact that it can only grow. The idea is that since we reason in
parametrized setting, we do not need to count precisely how many copies of C have reached
a given state. Once that a state is reached, it can be “duplicated” an arbitrary number of
times. So in the accumulator semantics configurations are of the form (A ⊆ S, t ∈ T, g ∈ G),
and the transitions are:

(A, t, g) w̄(h)−−−→(A, t′, h) if t w̄(h)−−−→ t′ in ∆

(A, t, g) r̄(h)−−−→(A, t′, h) if t r̄(h)−−−→ t′ in ∆ and h = g

(A, t, g) w(h)−−−→(A ∪ {s′}, t, h) if s w(h)−−−→ s′ in δ for some s ∈ A

(A, t, g) r(h)−−−→(A ∪ {s′}, t, h) if h = g and s r(h)−−−→ s′ in δ for some s ∈ A

I Proposition 1. There is a #-trace from (finit , tinit , ginit) in the (C,D)-system iff there is
one from ({sinit}, tinit , ginit) in the accumulator semantics.
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Proof. For the left to right direction, we take a run {(fi, ti, gi)}i=1,...,n and show that
{(Ai, ti, gi)}i=1,...,n is a run, where Ai is the set of the states of C that have appeared as a
value of one of f1, . . . , fi.

For the right to left direction we prove a more general statement. Suppose that σ is a
#-trace in the accumulator semantics from a state (A, t, g) and f is such that |{i : f(i) =
s}| ≥ 2|σ| for all s ∈ A. Then we show that there is a #-trace from (f, t, g) in (C,D)-system.
The proposition then follows since in finit we have arbitrarily many copies of sinit . The proof
of this statement is by induction on the length of σ. One step in the accumulator semantics
is simulated by letting either D take the step, or half of the copies of C take the step. J

Note that the standard and the accumulator semantics do not generate the same traces.
In order to simulate a step in the accumulator semantics, the (C,D)-system may need to
perform several steps.

If C is a finite state automaton then the A-part in the accumulator semantics is of bounded
size. This gives a simple decidability result:

I Corollary 2. Suppose that ClassD is closed under synchronized products with finite automata.
The reachability problem for (C,D)-systems where C is a finite-state automaton, and D is
from ClassD, effectively reduces to the reachability problem in ClassD.

Proposition 1 allows us to use the accumulator semantics as the semantics of (C,D)-
systems, and this will be our implicit assumption in the following sections.

4 Capacities and downward closures

Our objective is a decidability result for (C,D)-systems. It will be obtained by combining
two reductions that we describe in this section. First, we will decompose the semantics of a
(C,D)-system into the part concerning C and the one concerning D. Lemma 4 reduces our
problem to that of finding an input on which we can run separately two parts. The second
step starts from the observation that instead of D we can work with the downward closure
of D (Lemma 5). Then we can rely on the well-known fact that the downward closure of any
language is regular. Using a decomposition technique similar to that of Lemma 4 we obtain
our main technical result, Lemma 7. This will be turned into a decision procedure in the
next section.

We start by defining the transition system Dκ, that captures the part of the (C,D)-system
concerning D. The system Dκ is obtained by abstracting the register contributions of C by a
set K ⊆ G of possible values. Let Dκ = 〈P(G)× T ×G, δ, (∅, tinit , ginit)〉. So a configuration
of Dκ has the form

(K ⊆ G, t ∈ T, g ∈ G).

Intuitively, K represents a capacity: the values that contributors have already written
into the register up to the present point of the execution of the system. State t ∈ T is the
current state of D, and g ∈ G is the current content of the register.

To update the K-component of a configuration we introduce a new alphabet

Σν = {ν(g) : g ∈ G} ,

and let the alphabet of Dκ be ΣD ∪Σν . The intuition behind the transitions of Dκ presented
below is the following. Since an arbitrary number of copies of C can be started, whenever a
value g is written in the register by a contributor we can construct a different run where this
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instance of the contributor is duplicated some number of times. In this new run, any time in
the future of the computation when the value g is needed in the register we can use one of
these duplicates. We capture this phenomenon in the transitions of Dκ by enabling a read
action r̄(h) whenever h ∈ K.

Precisely, the transitions of Dκ are:

(K, t, g) w̄(h)−−−→(K, t′, h) if t w̄(h)−−−→ t′ in ∆,

(K, t, g) r̄(h)−−−→(K, t′, h) if t r̄(h)−−−→ t′ in ∆ and h ∈ K ∪ {g},

(K, t, g) ν(h)−−−→(K ∪ {h}, t, h) if h 6∈ K.

It is not difficult to see that if there is a #-trace in the (C,D)-system then there is one in
Dκ. The opposite is clearly not true because Dκ ignores the form of C: there is no check that
ν(h) actions can indeed come from writes of C. We will recover the equivalence by putting
an additional condition on traces of Dκ (cf. Lemma 4 below).

In order to obtain a sufficient condition on traces of Dκ we construct a “capacity aware”
version of C. This is the transition system Cκ = 〈P(G)× S ×G, δκ, (∅, sinit , ginit)〉 where δκ
is:

(K, s, g) w̄(h)−−−→ (K, s, h) (K, s, g) r̄(h)−−−→ (K, s, h) (K, s, g) ν(h)−−−→ (K ∪ {h}, s, h)

(K, s, g) w(h)−−−→(K, s′, h) if s w(h)−−−→ s′ in δ and h ∈ K

(K, s, g) r(h)−−−→(K, s′, h) if s r(h)−−−→ s′ in δ and h ∈ K ∪ {g}.

This automaton follows the actions of Dκ (first line above) in order to be aware of the current
contents of the register and the capacity. At the same time, Cκ can also do the w(h) actions
provided they are declared in the capacity K, and the r(h) actions when h is either in the
capacity K or in the register. So the capacity restricts the write actions of contributors and
allows for more read actions.

We stress the following:
1. Both for Cκ and Dκ, the content of the register after a transition is determined by the

executed action.
2. Both systems have two kinds of reads: from the register g, and from the capacity K. We

refer to actions r̄(h) and r(h) as capacity reads whenever h ∈ K. The idea is that these
reads simulate a read of a value written by a copy of C.

3. The K-component of Cκ and Dκ is determined by the sequence of ν(h)-moves. An
execution of Dκ can have at most one ν(h) action for every h ∈ G.

Lemma 4 below formulates the condition on traces of the transition system Dκ that
correspond to traces in the (C,D)-system.

Notation. We will use the convention of writing ΣD,ν for ΣD ∪ Σν . Similarly for ΣC,ν and
ΣC,D,ν . By v|Σ we will denote the subword of v obtained by erasing the symbols not in Σ.

I Definition 3. A trace v ν(h) ∈ Σ∗D,ν is C-supported if there exists a word u ∈ Σ∗C,D,ν such
that

u|ΣD,ν = v and u ν(h)w(h) ∈ L(Cκ).

A trace v ∈ Σ∗D,ν is totally C-supported if every prefix v′ν(h) of v is C-supported.
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q1 q2 · · · qi · · · qn+1

Σ1 Σ2 Σi Σn+1

a1 a2 ai−1 ai an

Figure 3 A pattern in Dκ↓.

The intuition behind this definition is that every ν(h) in a trace of Dκ should be supported
by a run of contributors witnessing that the write action w(h) is indeed possible.

I Lemma 4. There is a #-trace in a (C,D)-system if and only if there is a totally C-supported
#-trace in Dκ.

Lemma 4 tells us that in order to find a #-trace in (C,D)-system we need to find a #-trace
in Dκ and verify that it is supported. We will now see that we can actually work with the
set of subwords of Dκ. This is important, as for every language the set of its subwords is a
regular language. Moreover, the minimal automaton for the downward closure has a very
simple form. The main technical result of this section says that our initial problem reduces
to finding a particular pattern in this minimal automaton.

I Lemma 5. If v1ν(h1) . . . viν(hi) is a C-supported trace and vj is a subword of v′j ∈ Σ∗D for
every j = 1, . . . , i, then v′1ν(h1) . . . v′iν(hi) is C-supported.

The downward closure of language L, denoted L↓, is the set of subwords of the words
in L. In the following, we denote by Dκ↓ the minimal automaton accepting the downward
closure of the set of traces from Dκ. Every minimal automaton accepting a downward closed
language is a graph where the only cycles are self-loops on some states. So every word
accepted by Dκ↓ comes from a pattern of the form in Figure 3, where on each qi there is
a self-loop on letters from some, possibly empty, alphabet Σi ⊆ ΣD. Note that actions of
the form ν(h) do not occur on self-loops, since by observation 3 on page 78 their number is
bounded in any trace from D.

As Dκ↓ is a finite automaton, there are finitely many such patterns. We can thus take
patterns one by one, and check if there is one that determines a totally C-supported trace.
The problem is that to check this we need to fix a trace in advance, and it is not clear how
to do this since we have no bound on the length of a fully supported trace. The definition of
compatible patterns and the lemma that follows go around this problem.

I Definition 6. Consider a pattern as in Figure 3. The pattern is C-compatible up to position
i if for every j = 1, . . . , i there are words vj ∈ Σ∗j such that v0a1 . . . viai is C-supported. The
pattern is fully C-compatible if for every i = 1, . . . , n such that ai = ν(h) for some h, the
pattern is C-compatible up to position i. A #-pattern is one ending with an = w̄(#).

The difference between the above definition and Definition 3 is that in the latter we work
with a single trace that is C-supported. In Definition 6 we may have to consider different
C-supported traces for distinct positions of the pattern. This is necessary, because we cannot
fix in advance a trace for all positions of the pattern.

I Lemma 7. There is a totally C-supported #-trace in Dκ iff there is a fully C-compatible
#-pattern in Dκ↓.

Lemma 7 together with Lemma 4 reduces our reachability problem to the problem of
finding a fully C-compatible #-pattern in a finite automaton Dκ↓.
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5 A general decidability result

In this section we present the main result of the paper giving conditions under which the
reachability problem for (C,D)-systems is decidable. The theorem refers to the properties
of classes of transition systems defined on page 75. We also discuss the hypotheses of the
theorem as well its applicability referring back to examples from Figure 1.

I Theorem 8. Suppose ClassC ,ClassD are two classes of transition systems closed under
synchronized products with finite automata. If ClassC has a decidable reachability problem,
and ClassD has effective downward closure then the reachability problem for (C,D)-systems,
with C from ClassC and D from ClassD, is decidable.

Proof. We describe an algorithm deciding the reachability problem for (C,D)-systems. Given
C and D, the algorithm first computes Cκ and Dκ as defined on page 78. The definition of
Dκ tells us that it can be obtained by first extending D with actions in Σν and then making
a product with a finite automaton that takes care of the capacity set and the register content
(similar for Cκ). Then the algorithm computes the finite automaton Dκ↓ for the downward
closure of Dκ. These operations are effective since D is in ClassD.

In the next step the algorithm examines all #-patterns in Dκ↓ of the form:

q1 q2 · · · qn+1 qn+2

Σ1 Σ2 Σn+1

a1 a2 an #

and checks if there is one that is fully C-compatible. The algorithm answers yes if and only if
it finds a #-pattern in Dκ↓ that is fully C-compatible. Observe that by Lemma 7 this holds
iff Dκ has a fully C-supported #-trace, and thus by Lemma 4 iff there exists a #-trace in the
(C,D)-system.

To complete the proof, we need to show how to check that a pattern as above is fully
C-compatible. Let k1, . . . , kl be the indices such that aki is of the form ν(hi). The algorithm
checks if the prefix of the pattern up to aki is C-compatible for i = 1, . . . , l.

For each i = 1, . . . , l, the check proceeds as follows. First, starting from the pattern up to
aki it constructs the finite automaton accepting Γ∗1a1 . . .Γ∗kiν(hi)w(hi) where Γj = Σj ∪ ΣC
for j = 1, . . . , ki. Then, it takes the synchronized product of the resulting automaton with
Cκ. Denote it with (Cκ)i. The final step of the check is to test for reachability of w(hi) in
(Cκ)i. Note that this can be done by hypothesis since from the properties of ClassC , (Cκ)i
is still in ClassC. In fact, the test succeeds iff the pattern up to aki is C-compatible. This
concludes the proof. J

In Figure 1 we have listed some concrete instances of (C,D)-systems for which the
reachability problem is decidable thanks to Theorem 8. For all the listed classes the closure
under synchronized products required by the theorem is immediate, since all of them have
finite control.

The effective downward closure, and thus effective reachability problem, holds for push-
down automata [12], Petri net languages [18], stacked counter automata [31], and higher-order
pushdown automata of order 2 [30].

Multi-stack pushdown automata (MPA) are Turing powerful already with two stacks.
There are though subclasses of MPA with a decidable reachability problem such as path-tree
MPA, and scope-bounded MPA [26, 27]. The former include bounded-phase MPA and
ordered MPA. For all these classes it is known that visibly multi-pushdown languages have
effective semilinear Parikh images. Note that since a run of an MPA is a word over a visible
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alphabet, there is a simple reduction that allows to show semilinearity of Parikh images also
for the non visibly-pushdown languages accepted by any of these classes. Then Corollary 9
below implies decidability for these classes of MPA.

Reachability is decidable for lossy channel systems [1] and higher-order pushdown auto-
mata with collapse [20]. Lossy channel systems do not have effective downward closure: this
can be seen by a rather direct reduction from the problem of deciding boundedness of the
set of reachable configurations [28]. For higher-order pushdown automata it is not known if
the downward closure is effective.

Theorem 8 makes several assumptions about the classes ClassC and ClassD. It is worth
examining them closer.

The closure property of the theorem, closure under synchronized product, is implied by
closure under rational transductions. Given two alphabets Σ and Γ, a rational transduction
from Σ to Γ is the subset of Σ∗ × Γ∗ generated by a finite-state transducer.

A class of languages is closed under rational transductions if for every language L in the
class, and every finite-state transducer T the image of L under T is in the class. Observe
that the closure under synchronized products with finite automata does not imply closure
under projections, and more generally under homomorphisms. So the closure requirements
of our theorem are weaker than the closure under rational transductions.

Having an effective downward closure is an interesting condition in itself that probably
deserves to be better understood. Zetzsche [30] has recently shown that a sufficient condition
for a class to have an effective downward closure is to be closed under rational transductions
and to have effective semilinear Parikh images. The latter means that there is an algorithm
that given a description of a transition system calculates a semilinear representation of the
Parikh image of the language of the transition system. A closer examination of his argument
shows that our closure under synchronized product with finite automata, together with
effective semilinear Parikh images, already implies effective downward closure. Thus in our
theorem we can replace the requirement that ClassD has effective downward closure by
effective semilinear Parikh images.

I Corollary 9. Suppose that ClassC ,ClassD are two classes of transition systems closed
under synchronized products with finite automata. If ClassC has a decidable reachability
problem and ClassD has effective semilinear Parikh images then the reachability problem for
(C,D)-systems, with C from ClassC and D from ClassD, is decidable.

Some requirements of the theorem, as the closure under products with finite automata
seem rather unavoidable. Observe that if, for example, we take ClassD to be the class of
process algebra processes, then the register can act as a common state making the reachability
problem undecidable even for the case when ClassC is a trivial class containing one process
that does nothing. Clearly, the same holds for more general rewriting as process rewrite and
term rewriting systems.

Another example of a class that is not closed under products with finite automata is
the class of context-free FIFO rewriting systems (that has an effective downward closure
though [2]). Our theorem cannot be applied with this class as ClassC or ClassD, and we do
not know if the reachability problem becomes undecidable in this case.

6 Complexity issues

We have not yet discussed complexity issues. One of the reasons why the algorithm from the
proof of Theorem 8 may not be optimal is that it requires to generate the downward closure
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explicitly. Here we consider two instances where the downward closure can be generated
on-the-fly. The two results of this section are already known [16]. Our purpose is to indicate
that our approach is algorithmically interesting, and gives arguably more transparent proofs.

The first result is quite immediate thanks to the accumulator semantics.

I Proposition 10. The reachability problem for (C,D)-systems is in NP when C ranges over
finite state systems, and D over pushdown systems.

Proof. The claim is obvious if D is also finite state, since the first component in the accu-
mulator grows monotonically. Thus, a #-trace from ({sinit}, tinit , ginit) in the accumulator
semantics can be guessed in polynomial time. If D is a pushdown system, then a trace in the
accumulator semantics splits in ≤ |S| phases, where the accumulator component is constant
in each phase. So this reduces to (1) guessing the sequence of A-values and (2) a reachability
question for a pushdown system executing in ≤ |S| phases; each phase corresponding to a
particular value of the accumulator. In a phase with value A, the value of the register can
change via ε-transitions corresponding to contributor writes from states in A. J

The second result solves the case when both D and C are pushdown systems.

I Theorem 11. The reachability problem for (C,D)-systems is in Pspace when both C and
D range over pushdown systems.

The proof of this result starts with a construction by Courcelle [12] that provides an
exponential size NFA for Dκ↓; moreover the transitions of the automaton can be computed
on-the-fly in Pspace.

Let σ = h1, . . . , hi be a sequence of pairwise distinct values from G and 1 ≤ j ≤ i. Let Fj
be a pushdown automaton accepting C-supported words over ΣD,ν that contain exactly the
prefix of length j of σ as the occurrences of Σν-symbols. So Fj accepts words of the form

v1ν(h1) . . . vj−1ν(hj−1)vjν(hj) , vk ∈ Σ∗D (1)

and can be obtained essentially as the projection of Cκ on ΣD,ν augmented with a check that
the occurrences from Σν correspond to h1, . . . , hj (we also need to check for a transition on
w(hj) from the state entered after reading the last Σν). Note that once we fix σ, the size of
each pushdown Fj is polynomial in the size of C.

I Lemma 12. An NFA Bj can be effectively constructed such that:
1. L(Bj) ⊆ L(Fj);
2. for every u ∈ L(Fj) there is a subword v of u with v ∈ L(Bj).
The NFA Bj is of size exponential in the size of C and its transitions can be computed
on-the-fly in Pspace.

For the proof of the above lemma we refer e.g. to Theorem 7 in [16]. A alternative
proof is to take the NFA that accepts words generated by a CFG equivalent to Fσ with
derivation trees where no variable occurs more than once on any path. Note also that since
L(Bj) ⊆ L(Fj), the words accepted by this automaton are of the form (1) as well.

We use now Lemmas 5 and 12 in order to replace both D and C by NFAs. First we guess
a sequence σ = h1, . . . , hi of distinct register values.

For every 1 ≤ j ≤ i let F̂j be an NFA accepting extensions of the words accepted by Bj ,
more precisely the words u1ν(h1) . . . uj−1ν(hj−1)ujν(hj) with uk ∈ Σ∗D such that there are
subwords vk of uk with v1ν(h1) . . . vj−1ν(hj−1)vjν(hj) ∈ L(Bj). Observe that F̂j is of the
same size as Bj and its transitions can also be generated in Pspace. The next lemma shows
that L(Fj) = L(F̂j) for every 1 ≤ j ≤ i.
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I Lemma 13. L(Fj) = L(F̂j).

Proof. From item (2) of Lemma 12 and the definition of F̂j , we get L(Fj) ⊆ L(F̂j).
For the other direction take a word u ∈ F̂j . By definition, it is necessarily of the form

u = u1ν(h1) . . . uj−1ν(hj−1)uiν(hj). Moreover there is a word v accepted by Bj of the form
v = v1ν(h1) . . . vj−1ν(hj−1)vjw(hj), with vk subword of uk for every k. Since by Lemma 12,
L(Bj) ⊆ L(Fj), we have that v is accepted by Fj . Thus, by Lemma 5, u is C-supported
and contains the prefix of length j of σ as sequence of Σν symbols, therefore it is accepted
by Fj . J

The algorithm required in Theorem 11 nondeterministically guesses on-the-fly a trace
in Dκ↓, and runs simultaneously F̂1, . . . , F̂i on this trace in order to check if it is fully
supported according to Lemma 4. Since all the automata can be generated in Pspace the
whole algorithm is in Pspace.

7 Conclusions

Parametrized models with decidable reachability problem are relatively rare. We have
studied parametrized systems where processes have no identities, and there are no locking
mechanisms on the shared memory [19]. The model has turned out to have interesting
algorithmic properties: safety analysis is decidable when its components are chosen from
a wide range of formal models. Technically, there are two novelties of in our approach:
the accumulator semantics, and the use of downward closures. Our result allows for a
compositional construction of a formal model of a distributed system, as schematically
presented in Figure 2.

This work puts a spotlight on the effective downward closure property. It would be
interesting to investigate this property for other models, as for example for higher-order
pushdowns. Among other important issues raised by this work are the questions of the
complexity of computing downward closures, and in particular of computing them on-the-fly.

It is not clear if there is an elegant characterization of classes ClassC and ClassD for which
the reachability problem for (C,D)-systems is decidable. The differences between Corollary 2
and Theorem 8 appear difficult to bridge.
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Abstract
The ability to create succinct programs is a central criterion for comparing programming and
specification methods. Specifically, approaches to concurrent programming can often be thought
of as idioms for the composition of automata, and as such they can then be compared using the
standard and natural measure for the complexity of automata, descriptive succinctness. This
measure captures the size of the automata that the evaluated approach needs for expressing the
languages under discussion. The significance of this metric lies, among other things, in its impact
on software reliability, maintainability, reusability and simplicity, and on software analysis and
verification. Here, we focus on the succinctness afforded by three basic concurrent programming
idioms: requesting events, blocking events and waiting for events. We show that a programming
model containing all three idioms is exponentially more succinct than non-parallel automata,
and that its succinctness is additive to that of classical nondeterministic and “and” automata.
We also show that our model is strictly contained in the model of cooperating automata à la
statecharts, but that it may provide similar exponential succinctness over non-parallel automata
as the more general model – while affording increased encapsulation. We then investigate the
contribution of each of the three idioms to the descriptive succinctness of the model as a whole,
and show that they each have their unique succinctness advantages that are not subsumed by
their counterparts. Our results contribute to a rigorous basis for assessing the complexity of
specifying, developing and maintaining complex concurrent software.
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1 Introduction

As is well known, many measures of computational complexity are used to compare solutions
to algorithmic and software development problems. However, when it comes to comparing
the methods, languages and tools that are used to construct those solutions, one needs
quite different criteria for comparison. One of the main approaches to this, which has been
used ever since the Rabin-Scott work on nondeterministic automata [22], is the size of the
description. Size comparisons are usually carried out on the finite automata level of detail,
and the most common metric, often called descriptive succinctness or state complexity, is the
total number of states needed by the automata to express certain languages.

A large amount of work has been dedicated to descriptive succinctness in recent decades.
A few notable models whose succinctness has been studied in detail are nondeterministic
and universal automata, alternating automata, reverse automata, unary automata, and also
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various kinds of grammars and language formalisms (see, e.g., [15] for a survey). These
studies have been motivated by the strong connection between succinctness and software
reliability [20], indicating that succinct software is easier to develop, maintain and reuse.
Further, the descriptive succinctness of a model is often connected to the complexity of
various decision problems in it [15], and hence can be relevant also to verification problems.

In this paper, we set out to analyze the descriptive succinctness of various idioms used in
concurrent programming, seeking, as in most previous studies, exponential gaps in descriptive
power. In particular, we study whether the addition of certain idioms to a programming
model exponentially improves that model’s succinctness, and in what cases. In addition to
the considerations mentioned above and to our desire to better understand the fundamental
nature of these concurrency idioms, our motivation has another aspect: a careful selection of
concurrency idioms may make resulting programs more amenable to formal analysis. Thus,
a better characterization of concurrency idioms and of the types of problems which they
are suitable for solving could allow programmers to more carefully tailor the programming
model used to the problem at hand – on the one hand retaining “just enough” concurrency
to efficiently solve the problem, while on the other hand keeping the model simple and
amenable to analysis. However, these topics are beyond the scope of this paper; for a broader
discussion of the usefulness of keeping concurrency idioms simple in tasks like program repair
and compositional verification we refer the interested reader to [9, 11, 12].

Here, we focus on three fundamental concurrency idioms: requesting, blocking and
waiting for events (defined formally in Section 2). The requesting and waiting-for idioms are
fairly common in discrete-event programming languages, with versions thereof appearing as
first-class citizens in, e.g., publish-subscribe architectures [6]; whereas the blocking idiom is
somewhat less common, appearing, e.g., in the live sequence charts (LSCs) formalism [4].
All three idioms can, of course, be implemented in any high level language. Combined, they
also form the behavioral programming (BP) model [13]. Research suggests that using these
idioms may lead to simple code modules that are aligned with the specification [13].

Following the required definitions presented in Section 2, the paper’s contributions appear
in Sections 3 and 4. In Section 3 we study a model containing the requesting, waiting-for
and blocking idioms (which we call the RWB model), and position it in comparison to
other well known models. Specifically, we show that RWB is polynomially expressible as
automata with cooperative concurrency a la statecharts [5], but that cooperative concurrency
can be exponentially more succinct than RWB. We then show that despite this gap, the
RWB model, which affords greater encapsulation, shares some of the cooperative model’s
strength and offers considerable advantages when compared to non-parallel automata. Next,
we show that the succinctness of RWB is additive to that of classical nondeterminism and
universal (“and”) nondeterminism, and that a combination of all three features yields a
triple-exponential improvement in succinctness. This last result establishes a hierarchy of
succinctness relations indicating, e.g., that the (more practical) nondeterministic or universal
RWB models are double-exponentially more succinct than non-parallel automata.

Next, in Section 4, we study the separate contribution of each of RWB’s idioms to the
model’s descriptive succinctness. We define variants of RWB in which each of these idioms
is omitted, and show that the full RWB model has exponential succinctness advantages over
each of the variants. We also show that each of these downgraded versions has succinctness
advantages over one or both of the other downgraded versions and over non-parallel models.
This establishes the fact that each of the idioms makes its own unique contribution to
succinctness, and is not subsumed by its counterparts. Notable among these results is the
fact that event blocking, which is less common as a first-class concurrency idiom, provides
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exponential savings in succinctness. Further, we show that the succinctness afforded by each
of these three idioms is not of equal power: for instance, the waiting-for idiom is weaker than
the requesting one. Related work appears in Section 5, and we conclude with Section 6.

2 Definitions

2.1 The Request-Wait-Block Model
In this work we focus on the Request-Wait-Block (RWB) model for concurrent programs.
As we mentioned before, the requesting, waiting-for and blocking idioms are common and
appear in various models such as publish-subscribe architectures [6], live sequence charts [4]
and behavioral programming [13]. Further, research has shown that these idioms often enable
programmers to specify and develop systems naturally and incrementally, with components
that are aligned with how humans often describe behavior [7, 13]. Still, the RWB model is
not intended to be programmed in directly – rather, it is intended as a formal representation
of programs written in higher level languages, for the sake of rigorous analysis.

The formal definitions of the RWB model are as follows. An RWB-automaton consists
of orthogonal components called RWB-threads:

I Definition 1. A Request-Wait-Block-thread (RWB-thread) is a tuple 〈Q,Σ, δ, q0, R,B〉,
where Q is a finite set of states, Σ is a finite set of events, δ ⊆ Q×Σ×Q is a transition relation
and q0 is an initial state. We require that δ be deterministic, i.e. 〈q, e, q1〉 ∈ δ ∧ 〈q, e, q2〉 ∈
δ =⇒ q1 = q2. For simplicity of notation, we use δ̄ to indicate the effect event e has in state
q (or its absence):

δ̄(q, e) =
{
q′ ; if exists q′ ∈ Q such that 〈q, e, q′〉 ∈ δ
q ; otherwise .

The mapping functions R,B : Q→ 2Σ associate a state with the set of events requested and
blocked, respectively, by the RWB-thread in that state.

Observe that there is no labeling function for waited-for events: the notion of waiting is
expressed via the transitions between states. If state q has a transition labeled with event e
that was not requested at q, the thread is considered to be waiting for event e in state q.

A composition of RWB-threads yields an RWB-automaton, defined as follows:

I Definition 2. An RWB-automaton (RWBA) A over a finite event set Σ is a finite tuple
of RWB-threads 〈T1, . . . , Tn〉, denoted Ti = 〈Qi,Σi, δi, qi0, Ri, Bi〉, such that Σi ⊆ Σ for all
i, and the Qi state sets are pairwise disjoint.

A configuration of an RWBA is the state of its threads, i.e. an element of Q1 × . . .×Qn.
A configuration ĉ = 〈q̂1, . . . , q̂n〉 is a successor of configuration c = 〈q1, . . . , qn〉 with respect
to an event e ∈ Σ, denoted c e−→ ĉ, whenever

e ∈
n⋃
i=1

Ri(qi)︸ ︷︷ ︸
e is requested

∧
e /∈

n⋃
i=1

Bi(qi)︸ ︷︷ ︸
e is not blocked

n∧
i=1

(
(e ∈ Σi =⇒ q̂i = δ̄i(qi, e))︸ ︷︷ ︸
affected threads read the event

and change state if needed

∧ (e /∈ Σi =⇒ q̂i = qi)︸ ︷︷ ︸
unaffected threads

stay in the same state

)
.

Observe that, since the threads have deterministic transition functions, each configuration
can have at most one successor with respect to a specific event. It may, however, have
multiple successors, each with respect to a different event.
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A run of A is a sequence of configurations c0c1c2 . . . such that, for all i, ci+1 is a successor
(with respect to some event) of ci and c0 = 〈q1

0 , . . . , q
n
0 〉 is the initial configuration. A run

may be an infinite sequence of successive configurations, or a finite sequence that ends in
a terminal configuration, i.e., a configuration with no successors. Every run r = c0c1c2 . . .

of an RWBA induces a set words(r) = {σ ∈ Σ∗ ∪ Σω : ∀0≤i<|r|, ci
σ[i]−−→ ci+1 }. Note that

words(r) ⊆ Σ∗ or words(r) ⊆ Σω, depending on r being finite or infinite, respectively. We
say that a word σ ∈ Σ∗ ∪ Σω is accepted by an RWBA A if there is a run r of A such that
σ ∈ words(r). The language of A, denoted L(A), is the set of all words accepted by A.

The acceptance condition in this definition is simple – all valid runs are accepted. Of
course, the formalism can be modified to cater for more elaborate acceptance conditions,
such as conventional accepting states or the various acceptance conditions for ω-automata.
The motivation for the present choice is that we regard RWB as representing the underlying
models of programming approaches. As such, languages are seen as generated by, rather
than accepted by, a program; indeed, we use these two terms interchangeably.

Next, we define our notion of size, to be used in the analysis of the descriptive succinctness
of various variants of RWBAs and other models.

I Definition 3. The size of an RWB-automaton A with threads {〈Qi,Σi, δi, qi0, Ri, Bi〉}ni=1
is |A| =

∑n
i=1 |Qi|+ |{〈q, e, q̂〉 ∈ δi}|, namely the total number of states and transitions in

the threads. For simplicity, the requested and blocked events in every state are omitted from
the calculation. They contribute no more than |Σ| · |Qi| to the size of each thread, and have
no effect on the size’s order of magnitude as |Σ| is considered constant.

2.2 Finite Parallel Automata
In order to measure the advantages of RWB and of other parallel models, we define the
following non-parallel model to serve as a reference point:

I Definition 4. A deterministic looping automaton (DLA) A is a tuple 〈Q,Σ, δ, q0〉, where
Q is a set of states, Σ is an alphabet, δ ⊆ Q× Σ×Q is a deterministic transition relation
and q0 ∈ Q is an initial state. As it reads an input word, A traverses its states according to
δ, in the usual manner. A accepts infinite words, as well as finite words that end in terminal
states (states with no successors). A word is rejected if it contains a letter for which there is
no matching transition, or if it ends in a non-terminal state. The language L(A) is the set of
words accepted by A, and the size of A is |A| = |Q|+ |{〈q, e, q̂〉 ∈ δ}|, namely the number of
states plus the number of transitions in A.

We now discuss other parallel models, focusing on the three fundamental notions: non-
determinism [22] (E-automata) and its dual, pure parallelism (A-automata), which when
combined yield alternating automata [3], and cooperative concurrency (C-automata) [5]. The
first two notions take the form of ∃- and ∀-states in alternating automata, whereas cooperative
automata play a role in formalisms and languages such as statecharts [8].

All three features – E , A and C – may co-exist. Further, it is shown in [5] that each feature
contributes exponentially to the succinctness of the model, independently and additively, so
that, e.g., (E ,A, C)-automata allow for triple-exponentially more succinct representations
than is possible without these features. Below we give the definition of (E ,A, C)-automata;
the other models are regarded as restrictions thereof.

I Definition 5. An alternating cooperative automaton (an (E ,A, C)-automaton) over a finite
alphabet Σ is a tuple M = 〈M1,M2, . . . ,Mn,Φ〉 where each M i is a triple 〈Qi, δi, qi0〉. Qi
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are pairwise-disjoint state sets and qi0 are the initial states. δi ⊆ Qi×Σ×Γ×Qi are transition
relations, where Γ is the set of propositional formulas over the states of all components,⋃n
i=1Q

i. Elements from Γ serve as guards: a transition can be applied only if its guard
evaluates to true. For example, for q1 ∈ Q1 and q2 ∈ Q2, the guard q1 ∧¬q2 evaluates to true
precisely when component M1 is in state q1 and component M2 is not in state q2. Finally,
Φ ∈ Γ is the E-condition – a condition that, when true, implies that the configuration is
existential (an E-configuration); otherwise, the configuration is universal (an A-configuration).
In [5], these automata include a termination condition as well, but as we deal with the simple
variant of looping automata, we may omit it.

A configuration of M is an element of Q1 ×Q2 × . . .×Qn × (Σ∗ ∪ Σω)× N, indicating
the state of each component, the (finite or infinite) input word, and the position of M in
that word. A configuration c satisfies a guard condition γ ∈ Γ if γ evaluates to true when
assigned the states of c. Let σ = σ0σ1 . . . ∈ Σ∗ ∪ Σω and let t = 〈q, a, γ, p〉 be a transition
in δi. We say that t is applicable to a configuration c = 〈q1, . . . , qn, σ, j〉 if σj = a, qi = q

and c satisfies γ. A configuration 〈p1, . . . , pn, σ,m〉 is a successor of c if for each i there is a
transition 〈qi, σj , γi, pi〉 ∈ δi that is applicable to c, and m = j + 1.

A computation of M on input word σ can be described as a tree. It starts at the initial
configuration 〈q1

0 , q
2
0 , . . . , q

n
0 , σ, 1〉, and reads a letter. If the state has multiple successors,

the computation “splits”, and progresses in parallel for all possible successor states. The
process then continues. Any infinite path in this tree is said to be accepting. A finite path
is accepting iff it ends in a terminal configuration (a configuration with no successors). An
E-configuration is accepting iff there exists an accepting path starting at that state, whereas
an A-configuration is said to be accepting iff every path starting at that state is accepting.
Word σ is accepted by M iff the root of its computation tree is accepting.

If each configuration of M has a single successor (i.e., all transitions are deterministic),
we have a C-automaton, which we might call a cooperative automaton. When n = 1 it is in
fact an (E ,A)-automaton: an alternating looping automaton. When n = 1 and Φ = true, M
is a nondeterministic looping automaton; and when n = 1 and Φ = false it is a universal
looping automaton. Finally, when both n = 1 and every configuration has a single successor,
M is simply a deterministic looping automaton – a DLA.

I Definition 6. The size of an (E ,A, C)-automaton M is defined to be the sum of the
sizes of its condition and components; i.e. |M | = |Φ| +

∑n
i=1 |M i|, where |M i| = |Qi| +∑

〈q,a,γ,p〉∈δi |γ|. A condition’s size is defined as the length of the formula that represents it.

2.3 Succinctness Gaps
We next lay out the method of comparing the succinctness of two models. Informally, we say
that a computational modelM1 is more succinct than modelM2 if there are programs that
have descriptions inM1 that are significantly smaller than the smallest possible descriptions
for those programs inM2. In this paper we consider a gap to be significant if it is at least
exponential. Following [5], we define upper and lower bounds on gaps in succinctness:

I Definition 7. LetM1,M2 denote two computational models. We writeM1
p→M2 (resp.,

M1
·→ M2) if there is a polynomial p (resp., a polynomial p and a constant k > 1) such

that for any automaton M1 ∈ M1 of size m there is an automaton M2 ∈ M2 such that
L(M1) = L(M2), and M2 is of size no more than p(m) (resp., kp(m)). In this case, we say
thatM1 is at most polynomially (resp., exponentially) more succinct than M2.
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We writeM1 →· M2 if there is a family of ω-regular languages Ln, a polynomial p and
a constant k > 1, such that Ln is accepted by an automaton M1 ∈ M1 of size p(f(n)) for
some monotonically-increasing function f , but the smallest M2 ∈M2 accepting it is at least
of size kf(n). In this case, we say thatM1 is at least exponentially more succinct than M2.

3 RWBRWBRWB and Parallel Automata

In this section, we investigate how RWB-automata fare when considered in the context of
E-, A- and C-automata; that is, how the special RWB idioms relate to the conventional
idioms of and- and or-nondeterminism and bounded concurrency. We observe that, of the
three models, RWB seems most closely related to C – as the threads of an RWBA constitute
cooperating components running in parallel – although this cooperation is more limited than
in the C model. The first part of this section validates this observation, by proving that
RWB p→ C, but that C →· RWB. This establishes a firm succinctness relationship between
C and RWB: the former is strictly stronger.

The proof that C →· RWB revolves around counting – a task for which the C model is
particularly suited, as it allows one to count to n using automata of size only O(log2 n) [5].
As we prove, in the general case of counting, RWB-automata must be of size n, which is
exponentially worse. This result gives rise to the question: does RWB retain any of C’s
power, i.e. is it succinctness-wise better than non-parallel automata?

We answer the question in the affirmative, in two parts. First, we show that RWB shares
some of the power of C automata; e.g., in certain cases it is possible to count to n with
RWB-automata of size O(log2 n · log logn), and so RWB →· DLA. Second, we study the
relationship between RWB and the E and A models, and show that RWB can sometimes
replace C in (E ,A, C)-automata, while preserving that model’s descriptive succinctness.

The relationship between E ,A and C has been extensively studied in [5], where it is
shown that they are orthogonal, i.e. that their descriptive succinctness is independent and
additive. In particular, [5] shows that the (E ,A, C) model offers a tight triple-exponential
gap in succinctness compared to non-parallel automata. Our proof that the (E ,A,RWB)
model affords the same triple-exponential gap thus strengthens the original result of [5], as it
shows that a model in which components cannot freely observe other components’ states,
and is thus more encapsulated than C, suffices for obtaining the triple exponential gap.

3.1 RWBRWBRWB-Automata and CCC-Automata
Of the three models E ,A and C, it is natural to define RWB programs in terms of C-
automata, as the underlying parallel components of both make transitions that depend on
other components. C-automata take the most general form, allowing components to query
the internal states of other components. This is established in the following proposition,
proven in Appendix A of the supplementary material [10]:

I Proposition 1. RWB p→ C

We next show that the converse does not hold; i.e., that there exists a family of languages
that can be expressed succinctly using C-automata, but that the smallest RWBAs that can
express them are exponentially larger.

I Proposition 2. C →· RWB
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Proof. For n ∈ N, consider the language Ln = (0 + 1)n0ω. For every n, there exists a
C-automaton of size O(log2 n) that accepts Ln, as follows. The automaton consists of logn
components, each representing a single bit of a (logn)-bit counter that counts to n. Carries
are performed using the guards: bit number i + 1 moves from state 0 to 1 if and only if
all previous bits 1 . . . i are in state 1. A final transition occurs when the counter reaches n,
into a state that only allows 0s. As the logn components can have size logn because of the
transition guards, the automaton is of size O(log2 n). See [5] for details.

Now, let us consider the same language in the RWB model. Suppose that an RWB-
automaton A with threads T1, . . . , Tk accepts Ln. We show that at least one of these threads
has to have Ω(n) states, thus proving the claim. Intuitively, the proof relies on the fact that
while A reads the n-bit prefix of the word the threads cannot use events to communicate
between themselves, and so a single thread has to handle the counting up to n.

Suppose, contrary-wise, that all threads have fewer than n states, and consider the word
σ = 0n−1 · 1 · 0ω ∈ Ln. Examine an arbitrary thread Ti as it reads the ρ = 0n−1 prefix of
σ. By our assumption, thread Ti has fewer than n states. Consequently, by the pigeonhole
principle, it has a state s1 that it will visit at least twice as it reads ρ. The portion of the
path of states that it traverses between these two visits, denoted s1

0−→ s2
0−→ . . .

0−→ sαi

0−→ s1,
constitutes a cycle of length αi in the thread’s state graph. This holds for every thread Ti,
and so all the threads must traverse cycles of lengths α1, . . . , αn as they read ρ.

We now use a pumping argument to show that A accepts a word that is not in Ln. Let
β =

∏n
i=1 αi. Consider the word σ′ = 0n−1 · 0β · 1 · 0ω, and its prefix ρ′ = 0n−1 · 0β . The

word 0ω is in Ln, and ρ′ is a prefix of this word; hence, the automaton cannot reject the
input word after reading ρ′. However, as the threads are traversing cycles of lengths that
divide β, they will each be in the same state after reading ρ′ as they would be after reading
ρ. Thus, as they read the 1 · 0ω suffix of σ′, they would accept the word – just as they would
accept σ. Since σ′ /∈ Ln, this is a contradiction. J

We note that the gap shown by Proposition 2 is tight, in the sense that C-automata are
at most (single) exponentially more succinct than RWB-automata. See Appendix B of the
supplementary material [10] for the proof.

3.2 Counting with Succinct RWBRWBRWB-Automata
Proposition 2 implies that perhaps the RWB model is not much stronger than non-parallel
automata; indeed, for the task of counting, an RWBA requires as many states as a DLA
– exponentially many more than a C-automaton requires. However, the main difference in
power between C and RWB is in the ability of one component in a C-automaton to observe
the state of another without any restrictions, whereas in RWB a marker event (a sentinel)
must be triggered for such an observation to be made. Thus, when a sentinel is present, the
difference in succinctness between C-automata and RWB-automata diminishes greatly:

I Proposition 3. For every n ∈ N, there exists an RWB-automaton An that accepts the
language Ln = 0n1ω, such that An is of size O(log2 n · log logn).

Proof. We use the first appearance of 1 to mark the end of the counting phase. Let k ∈ N be
the smallest number such that the first k prime numbers p1, . . . , pk satisfy

∏k
i=1 pi > n, and

let 〈α1, . . . , αk〉 be defined by αi = n mod pi for all 1 ≤ i ≤ k. By the Chinese Remainder
Theorem, n is the only integer in the range [1..

∏k
i=1 pi] that has these remainders. Consider

the RWB-automaton An that has k threads T1, . . . , Tk, where thread Ti is given by:
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0
0

· · · αi
0 0

· · · pi − 1
0

0

1

R={0},B={1} R={0},B={1}R={1},B=∅

The sets of events requested (R) and blocked (B) in each state are listed by that state.
In state αi the thread requests 1 and blocks nothing, and in the other states it requests 0
and blocks 1. To see that this automaton accepts Ln, note that if even one of the threads is
not in its respective αi state, the next event in any accepted word has to be 0, because that
thread requests 0 and blocks 1 and no thread ever blocks 0. On the other hand, once all
threads are in their αi states the only requested event is 1, resulting in a 1ω suffix. Finally,
The Chinese Remainder Theorem guarantees us that the first time the threads are all in
their αi states is precisely at the nth step, as required.

Since we chose the smallest k for which
∏k
i=1 pi > n, it follows that k = O(logn). By the

Prime Number Theorem we have pi = O(i log i). Combining the two, we get that the total
size of An is indeed O(log2 n · log logn). J

From Proposition 3 it follows that RWB →· DLA. Further, because RWB p→ C and

C ·→ DLA [5], we get that RWB ·→ DLA, i.e. that the bound is tight.

3.3 Combining RWBRWBRWB with EEE- and AAA-Automata
One of the main results of [5] establishes a tight triple-exponential gap in succinctness between
(E ,A, C)-automata and DLA. Specifically, there exists a family of languages Ln expressible
by (E ,A, C)-automata of size O(log2 n), but that require at least 22n states when expressed
by a DLA. In this section we quantify the succinctness gap between the (E ,A,RWB) model
– where C is replaced by RWB – and the DLA model.

The semantics of an (E ,A,RWB)-automaton is as follows: as before, the threads run
in parallel, and a transition may occur if the event is requested by at least one thread and
is blocked by none. In this model, unlike in RWB, we allow nondeterministic transitions
in threads, and so a state may have multiple outgoing transitions labeled with the same
event. We also adapt the E-condition to operate in an RWB-like fashion, by allowing threads
to request/block that a configuration be universal. Thus, a configuration is existential by
default, but becomes universal if this was requested by at least one thread and blocked
by none (this E-condition is somewhat arbitrary – other definitions could be used as well).
Observe that this form of E-condition is a restriction (i.e., a special case) of the E-condition
of [5]. The acceptance criteria is the same as for (E ,A, C) (see Definition 5).

Having shown in Proposition 1 that RWB p→ C, it follows that the upper bound of [5]
holds; that is, a program in the (E ,A,RWB) model will incur at most a triple-exponential
blowup when transformed appropriately into a DLA. Next, we show that this bound is tight,
by establishing a corresponding lower bound. The family of languages that we use is an
adaptation of a similar family from [5]:

Ln = {(0 + 1 + #)∗#w#(0 + 1 + #)∗#$w⊥0ω | w ∈ {0, 1}n} ∪ {(0 + 1 + #)ω}

over the alphabet of {0, 1,#, $,⊥}. Intuitively, an automaton that accepts Ln encounters
a sequence of words, separated by #s. Then, it encounters a $, followed by a word w,
terminated by ⊥. The automaton must then decide if this w is of size n, and whether it was
encountered before, in the initial sequence of words. If the answer is yes, the automaton
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accepts the word if it ends in an infinite sequence of 0s; otherwise, it rejects the word. The
automaton also accepts all words in which the $ and ⊥ signs never appear.

Pigeonhole and pumping arguments show that a non-parallel automaton that recognizes
the language has to remember, by the time it reaches the $ sign, all the words of length n
that it has encountered previously. Thus, it must have at least 22n states [3, 19]. However,
an (E ,A,RWB)-automaton for Ln may be triple-exponentially smaller, as we now show:

I Proposition 4. Ln is recognizable by an (E ,A,RWB)-automaton of size O(log2 n·log logn).

Proof. Due to space considerations, we provide here only the core of the proof. Our strategy,
inspired by [5], is as follows: in words where the $ and ⊥ signs appear, the automaton’s
nondeterminism is used to “guess” when the first instance of w is encountered. Then,
universality is used to compare all n bits of the two occurrences of w simultaneously. Finally,
ensuring that both copies of w are of length n, and performing the necessary counting to
compare each pair of bits, is performed efficiently by the automaton’s RWB-threads.

More explicitly, the RWB idioms are used for 3 tasks: (1) verifying that the first
occurrence of w is of size n; (2) verifying that the second occurrence of w is of size n; and (3)
comparing a single pair of bits in the two occurrences of w. Because task (3) is performed
universally for all n bits, it ensures that the two occurences of w are equal. For task (3) the
automaton counts to n, but is suspended on # and resumed on $. Thus, when the counting
is finished, the next symbol should match the symbol on which the counting was started.

Tasks (1) and (2) can be performed succinctly by an RWBA, as both occurrences of w in
Ln are terminated by a sentinel – # or ⊥. Thus, the construction from Section 3.2 suffices.
The automaton size these tasks require is O(log2 n · log logn). Task (3), however, requires
counting without a sentinel, which – according to the proof of Proposition 2 – requires an
RWB-automaton of size Ω(n). However, we now show that in an (E ,A,RWB)-automaton
such counting can actually be performed succinctly, by leveraging the E and A idioms.

Let k ∈ N be the smallest number such that the first k prime numbers, p1, . . . , pk, satisfy∏k
i=1 pi > n. Let 〈α1, . . . , αk〉 be the tuple of remainders, i.e., αi = n mod pi for all 1 ≤ i ≤ k.

By the Chinese Remainder Theorem, these remainders uniquely determine n in the range
[1..
∏k
i=1 pi]. Suppose, without loss of generality, that the symbol in the first occurrence of

w was 0. Then, our goal is to count to n and verify that we reach another 0. Consider an
RWB-automaton with k threads T1, . . . , Tk, where Ti is given by:

0
0, 1

· · · αi

0, 1 0, 1
· · · pi − 1

0, 1

0, 1

xi

0

0, 1,⊥

R={0, 1},B={⊥} R={0, 1},B={⊥} R={0, 1},B={⊥}

R={0, 1,⊥},B=∅

All states 0, . . . , pi − 1 request both 0 and 1 and block ⊥; state xi requests 0, 1 and ⊥.
Finally, thread Ti requests that the global configuration be universal if and only if it is at
state xi. The details of suspending the count on # and resuming it on $ are omitted from
the figure, to reduce clutter; this can be performed by associating each state s ∈ {1, . . . , pi}
with an auxiliary state s′, and having the appearance of # send the thread to s′, where it
loops, until a later appearance of $ sends it back to s. If the $ and ⊥ signs do not appear,
then the word is accepted, as it has the form (0 + 1 + #)ω, which we included in Ln.

Intuitively, the automaton works as follows. All threads traverse their loops, counting to
n. While in these loops, a ⊥ symbol causes the word to be rejected. Hence, the only way a
word that has a ⊥ sign can be accepted is if all threads escape their loops before reaching ⊥.
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E ,RWB RWB

E DLA

E ,A,RWB A,RWB

E ,A A

Figure 1 The succinctness hierarchy involving the E , A and RWB models, and their combinations.
Arrows indicate tight exponential gaps in succinctness. By Proposition 4, the (E , A, RWB) model is
at least triple exponentially more succinct than the DLA model; and, applying Proposition 1, it is
also at most as succinct as the (E , A, C) model. Combining this with the fact that (E , A, C) is triple
exponentially more succinct than DLA [5], we get that the same holds for (E , A, RWB). Thus, any
path along the edges of the depicted cube, starting at (E , A, RWB) and ending at DLA, must include
precisely 3 exponential gaps. The tight exponential gaps depicted in the figure then follow from
known results regarding alternating automata and C-automata [5], combined with Proposition 1.

The only way to escape the counting loops is through the α states. If thread Ti reaches state
αi and reads a 0 symbol, it may escape its loop, assuming the transition is existential; if it is
universal, one branch of the thread will remain in the loop, and will reject the word.

The escape transition remains existential until some thread has used it to escape. After-
wards, that thread will remain in its xi state, requesting that all successive configurations be
universal. Hence, all threads must traverse the transition from αi to xi simultaneously in
order for the word to be accepted. This can only happen if all threads are in their respective
α states – which, by the Chinese Remainder Theorem, only occurs at index n – and if the
next symbol is the required 0. Hence, since this testing is performed universally for all
symbols in w, the word is rejected if even one pair of matching symbols differs.

We stress that this solution is in line with our previous observations that RWB is weaker
than C, in that RWB cannot succinctly count without a sentinel. In this construction, the
behavior threads use the ability of the E-condition semantics to peek into the states of other
threads, thus achieving some of the power of the C-automaton guards, and enabling it to
count succinctly, even without a sentinel.

As in Proposition 3, analysis shows that the automaton is of size O(log2 n · log logn). J

We have thus established the triple-exponential succinctness gap between (E ,A,RWB)
and DLA. While (E ,A,RWB) is not a practical programming model, we observe that,
combined with the results of [5] and Proposition 1, this result immediately establishes a
succinctness hierarchy concerning other, more practical models, such as (E ,RWB) and
(A,RWB). These corollaries are depicted and explained in Figure 1. In particular, these
results indicate that the RWB idioms of requesting, blocking and waiting for events provide
a succinctness advantage that is additive and independent of the succinctness provided by
the E and A idioms – and that the RWB idioms are not just those of E- or A-automata in
disguise. While similar results were previously shown for the C model [5], our results are
stronger as they show that a limited version of C already suffices to uphold the hierarchy.

From a software-engineering point of view, C-automata afford their succinctness by
allowing each component to be aware of the internal state of each of the other components;
this liberal awareness is not provided in the RWB model, resulting in increased module
encapsulation, which is usually considered desirable (see, e.g., [21]).
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RWB

WB

RW RB

Figure 2 The descriptive succinctness of the RWB, WB, RW and RB models, compared to each
other. A bi-directional arrow indicates a tight exponential gap in succinctness in both directions –
either model may be more succinct than the other. A directed arrow indicates a tight exponential
succinctness advantage of the source over the destination, but no such advantage in the reverse
direction, i.e., a reverse translation is always possible with only a polynomial blowup.

4 Contributions of the Request, Wait, and Block Idioms

Whereas Section 3 was dedicated to comparing RWB to other parallel models succinctness-
wise, in this section we focus on its internal structure. We study each of its main idioms
of requesting, waiting-for, and blocking events, and quantify their contribution to the
succinctness afforded by RWB as a whole. Towards this end, we define the following
sub-models:
1. The WB model: Requesting is omitted. Any event that is not blocked can be triggered.

Waiting-for and blocking are allowed. This model can be viewed as having all threads
request all events in each state, which, in the notation of Definitions 1 and 2, corresponds
to Ri(qi) = Σi for every state qi ∈ Qi of thread Ti, for every i.

2. The RB model: Waiting is omitted; requesting and blocking are allowed. Threads are
not informed of events they did not request, and cannot change states when such events
are triggered. Formally, for every Ti, if e /∈ Ri(q) then δi(q, e) = q.

3. The RW model: Blocking is omitted. Requesting and waiting-for are allowed, and any
requested event may be triggered. Formally, Bi(q) = ∅ for every state q and Ti.

We begin by establishing a simple upper bound, proven in Appendix B of the supple-
mentary material [10]:

I Proposition 5. For anyM1,M2 ∈ {RWB,WB,RB,RW},M1
·→ M2

Next, we establish tight bounds on the difference in succinctness of every pair of these models,
as depicted in Figure 2.

We begin by proving that the RWB model is exponentially more succinct than the WB
variant, i.e., that the event requesting idiom exponentially improves the succinctness of the
model.

I Proposition 6. RWB →· WB

Proof. Let n ∈ N, and let k ∈ N be the smallest number such that the first k prime numbers,
p1, . . . , pk, satisfy

∏k
i=1 pi > n. Define the family of languages Ln = {`1`2 . . .} by:

`j =
{

0 or 1 ; ∃i such that pi | #0(`1 . . . `j−1)
0 ; otherwise

Here #0(`1, . . . , `j−1) is the number of 0s that have appeared in the word so far. The jth
event can be either 0 or 1 if there is a pi which divides this number. In the RWB model, this
language can be accepted by an automaton of size O(log2 n · log logn), whereas the smallest
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WB-automaton that accepts it is of size at least n (for more details, see Appendix C of the
supplementary material [10]). J

This proof affords some insight into the power of the requesting idiom. Particularly,
requesting allows us to succinctly express or conditions – i.e., that an event only be triggered
if a disjunction of conditions holds.

We now prove that the waiting idiom also affords exponential succinctness:

I Proposition 7. RWB →· RB

Proof. Let n ∈ N, and consider the family of singleton languages Ln = 0n1ω. Section 3.2
shows an RWB-automaton of size O(log2 n · log logn) that accepts Ln. However, the smallest
RB-automaton that accepts Ln must have a thread of size n; see Appendix D of the
supplementary material [10] for details. J

The language used for this proof illustrates the power of the waiting idiom. In the basic
construction of Section 3.2, each thread would count modulo some prime number, and would,
upon the correct remainder, request 1. However, that thread would also wait for a 0 event,
thus letting other threads supersede it; if one of them determined that it was not yet time to
trigger a 1, they would block 1 and request 0. Without the wait-for idiom, however, a thread
cannot observe events it did not request, preventing this sort of inter-thread cooperation.

We now show that RWB is exponentially more succinct than the RW variant, i.e. event
blocking also yields exponential succinctness. We consider this result to be particularly
interesting, as blocking is perhaps the least common, or most special, idiom of RWB.

I Proposition 8. RWB →· RW

Proof. Let n ∈ N, and let k ∈ N be the smallest number such that the first k prime numbers,
p1, . . . , pk, satisfy

∏k
i=1 pi > n. Observe the languages Ln = (0N−1(0+1))ω, for N =

∏k
i=1 pi.

In RWB, this language is accepted by an automaton of size O(log2 n · log logn). In the
RW model, however, an automaton accepting this language must be of size at least n (see
Appendix E of the supplementary material [10] for precise details). J

The language used for the proof gives some intuition as to the power of the blocking
idiom. Particularly, it shows that blocking can succinctly enforce and conditions – e.g., that
an event is not blocked iff it gives the correct remainder for all the primes.

We conclude by examining how the RWB idioms fare with respect to each other. For
example, can requesting be replaced by blocking without having to pay with an exponential
decrease in succinctness? Our results, illustrated in Figure 2, show that the WB and RW
models, and also the RB and RW models, are incomparable – i.e., there can be exponential
gains in both directions. Also, we prove that the WB model is weaker than the RB model,
and so, in a way, requesting outpowers waiting. We also show that each of the WB, RB and
RW models is exponentially more succinct than DLA. For more details, see Appendix F of
the supplementary material [10].

5 Related Work

In this paper we focused on studying the RWB concurrency idioms from a succinctness point
of view. For a software-engineering oriented comparison between these RWB idioms (in the
context of Behavioral Programming) and other programming models, see [13] and references
therein. Below we discuss some notable related work on descriptive succinctness.
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Starting with [22], extensive comparative analysis of expressiveness and succinctness in
various models of computations has been carried out. Examples include Büchi, Streett, and
Emerson and Lei automata [23], two-way finite automata [24, 2], sweeping automata [16],
and – most relevant to the present paper – cooperative automata [5, 14]. Expressiveness and
succinctness in timed automata are studied in [1].

The issue of counting to n using unary automata, which played a central role in Section 3,
was raised in [19] and has been studied extensively. It is well known that counting requires
Θ(n) states in deterministic and nondeterministic finite automata. As any deterministic unary
automaton with n states has an equivalent alternating automaton with O(logn) states [18],
it follows that alternating automata can count with size O(logn). [17] shows a Θ(

√
n) bound

for counting with universal automata, whereas cooperating automata can count to n with
size O(log2 n) [5]. Counting in other automata types has also been studied: one-switch
alternating automata, for instance, count to n with O(log2 n · log logn) states [2].

6 Conclusion and Future Work

In this work we set out to analyze the descriptive succinctness afforded by various concurrent
programming idioms. Our motivation was the strong connections between the succinctness
of the software’s description and its simplicity, maintainability, reliability, analysis and
verification. We focused on three basic and common idioms – requesting, blocking and
waiting for events. We began by analyzing the succinctness of the three idioms taken
together, showing that the RWB model can be translated into cooperating automata with
only a polynomial increase in size, but that the converse translation might incur an exponential
blowup. Hence, the RWB model, in which components cannot directly query the state of
other components, is strictly less succinct than the C model. We continued by showing
that RWB can nevertheless succinctly perform non-trivial tasks, that its succinctness is
independent and additive to that of the E- and A-automata, and that (E ,A,RWB)-automata
are triple-exponentially more succinct than DLA – making them in some cases as strong as
the more general (E ,A, C)-automata of [5]. This result established a succinctness hierarchy,
indicating the succinctness advantages of models like (E ,RWB) and (A,RWB). These
findings show that the RWB model, which offers stronger encapsulation and has additional
software-engineering advantages over C-automata [13], can sometimes retain the succinctness
of the more general model.

We then quantified the contribution of the requesting, waiting-for and blocking idioms to
the succinctness of RWB as a whole. We proved that they are each vital to the succinctness
of RWB, as the removal of either may cause an exponential blowup in size, and hence that
they do not subsume one another.

The contribution of the present work is thus in substantiating formally the advantages for
software engineering that the RWB idioms, in a variety of programming languages, appear
to have; and also in gaining insights into the particular tasks for which each of the idioms is
particularly useful. One natural future research direction is to study the succinctness afforded
by additional idioms for concurrent programming, such as the lock-step progression idiom,
by which all components process a triggered event simultaneously. Another direction is to
further study the gap in succinctness between RWB and C-automata; e.g., to characterize
additional tasks, besides counting, in which C’s superiority is manifested.
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Abstract
In this paper, we introduce a novel rule for synthesis of reactive systems, applicable to systems
made of n components which have each their own objectives. It is based on the notion of
admissible strategies. We compare our novel rule with previous rules defined in the literature,
and we show that contrary to the previous proposals, our rule define sets of solutions which
are rectangular. This property leads to solutions which are robust and resilient. We provide
algorithms with optimal complexity and also an abstraction framework.
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1 Introduction

The automatic synthesis of reactive systems has recently attracted a considerable attention.
The theoretical foundations of most of the contributions in this area rely on two-player zero
sum games played on graphs: one player (player 1) models the system to synthesize, and
the other player (player 2) models its environment. The game is zero-sum: the objective of
player 1 is to enforce the specification of the system while the objective of player 2 is the
negation of this specification. This is a worst-case assumption: because the cooperation of
the environment cannot be assumed, we postulate that it is antagonistic.

A fully adversarial environment is usually a bold abstraction of reality. Nevertheless, it is
popular because it is simple and sound: a winning strategy against an antagonistic player is
winning against any environment which pursues its own objective. But this approach may fail
to find a winning strategy even if there exist solutions when the objective of the environment
is taken into account. Also, this model is for two players only: system vs environment.
In practice, both the system and the environment may be composed of several parts to
be constructed individually or whose objectives should be considered one at a time. It is
thus crucial to take into account different players’ objectives when synthesizing strategies;
accordingly, alternative notions have been proposed in the literature.

A first classical alternative is to weaken the winning condition of player 1 using the
objective of the environment, requiring the system to win only when the environment meets
its objective. This approach together with its weaknesses have been discussed in [3], we
will add to that later in the paper. A second alternative is to use concepts from n-players
non-zero sum games. This is the approach taken both by assume-guarantee synthesis [6]
(AG), and by rational synthesis [16] (RS). AG relies on secure equilibria [8] (SE), a refinement
of Nash equilibria [23] (NE). In SE, objectives are lexicographic: players first try to maximize
their own specifications, and then try to falsify the specifications of others. It is shown in [8]
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that SE are those NE which represent enforceable contracts between the two players. In RS,
the system is assumed to be monolithic and the environment is made of components that are
partially controllable. In RS, we search for a profile of strategies where the system ensures
its objective and the players that model the environment are given an “acceptable” strategy
profiles, from which it is assumed that they will not deviate. “Acceptable” is formalized
either by NE, dominating strategies (Dom), or subgame perfect equilibria (SPE).

Contributions. As a first and central contribution, we propose a novel notion of synthesis
where we take into account different players’ objectives using the concept of admissible
strategies [1, 2, 4]. For a player with objective φ, a strategy σ is dominated by σ′ if σ′ does
as well as σ w.r.t. φ against all strategies of the other players, and better for some of those
strategies. A strategy σ is admissible if it is not dominated by another strategy. In [2], the
admissibility notion was lifted to games played on graphs, and algorithmic questions left
open were solved in [4], with the goal of model checking the set of runs that survive the
iterative elimination of dominated strategies. Here, we use this notion to derive a meaningful
notion to synthesize systems with several players, with the following idea. Rational players
should only play admissible strategies since dominated strategies are clearly suboptimal. In
assume-admissible synthesis (AA), we make the assumption that players play admissible
strategies. Then for each player, we search for an admissible strategy that is winning
against all admissible strategies of other players. AA is sound: any strategy profile that
is winning against admissible strategies of other players, satisfies the objectives of all the
players (Theorem 1).

As a second contribution, we compare the different synthesis rules. First we apply all the
rules on a simple but representative example, and show the main advantages of AA w.r.t.
the other rules. Then we compare systematically the different approaches. We show when a
solution for one rule implies a solution for another rule and we prove that, contrary to other
rules, AA yields rectangular sets of solutions (Theorem 4). We argue that the rectangularity
property is essential for practical applications. As a third contribution, we provide algorithms
to decide the existence of assume-admissible winning strategy profiles and prove the optimal
complexity of our algorithm (Theorem 8): PSPACE-complete for Müller, and PTIME for
Büchi objectives. As a last important contribution, we provide an abstraction framework
which allows us to define sufficient conditions to compute sets of winning assume-admissible
strategies for each player in the game compositionally (Theorem 12).

Additional pointers to related works. We have already mentioned assume-guarantee syn-
thesis [6] and rational synthesis [16, 20]. Those are the closest related works to ours as
they pursue the same scientific objective: to synthesis strategy profiles for non-zero sum
multi-player games by taking into account the specification of each player. As those works
are defined for similar formal setting, we are able to provide formal statements in the core of
the paper that add elements of comparison with our work.

In [15], Faella studies several alternatives to the notion of winning strategy including the
notion of admissible strategy. His work is for two-players only, and only the objective of
one player is taken into account, the objective of the other player is left unspecified. Faella
uses the notion of admissibility to define a notion of best-effort in synthesis while we use the
notion of admissibility to take into account the objectives of the other players in an n player
setting where each player has his own objective.

The notion of admissible strategy is definable in strategy logics [9, 22] and decision
problems related to the AA rule can be reduced to satisfiability queries in such logics.
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Nevertheless this would not lead to worst-case optimal algorithms. Based on our previous
work [4], we develop in this paper worst-case optimal algorithms.

In [12], Damm and Finkbeiner use the notion of dominant strategy to provide a com-
positional semi-algorithm for the (undecidable) distributed synthesis problem. So while
we use the notion of admissible strategy, they use a notion of dominant strategy. The
notion of dominant strategy is strictly stronger : every dominant strategy is admissible but an
admissible strategy is not necessary dominant. Also, in multiplayer games with omega-regular
objectives with complete information (as considered here), admissible strategies are always
guaranteed to exist [2] while it is not the case for dominant strategies. We will show in
an example that the notion of dominant strategy is too strong for our purpose. Also, note
that the objective of Damm and Finkbeiner is different from ours: they use dominance as
a mean to formalize a notion of best-effort for components of a distributed system w.r.t.
their common objective, while we use admissibility to take into account the objectives of the
other components when looking for a winning strategy for one component to enforce its own
objective. Additionally, our formal setting is different from their setting in several respects.
First, they consider zero-sum games between a distributed team of players (processes) against
a unique environment, each player in the team has the same specification (the specification
of the distributed system to synthesize) while the environment is considered as adversarial
and so its specification is the negation of the specification of the system. In our case, each
player has his own objective and we do not distinguish between protagonist and antagonist
players. Second, they consider distributed synthesis: each individual process has its own view
of the system while we consider games with perfect information in which all players have a
complete view of the system state. Finally, let us point out that Damm and Finkbeiner use
the term admissible for specifications and not for strategies (as already said, they indeed
consider dominant strategies and not admissible strategies). In our case, we use the notion
of admissible strategy which is classical in game theory, see e.g. [17, 1]. This vocabulary
mismatch is unfortunate but we decided to stick to the term of “admissible strategy” which
is well accepted in the literature, and already used in several previous works on (multi-player)
games played on graphs [2, 15, 4].

Structure of the paper. Sect. 2 contains definitions. In Sect. 3, we review synthesis rules
introduced in the literature and define assume-admissible synthesis. In Sect. 4, we consider an
example; this allows us to underline some weaknesses of the previous rules. Sect. 5 presents
a formal comparison of the different rules. Sect. 6 contains algorithms for Büchi and Müller
objectives, and Sect. 7 abstraction techniques applied to our rule.

2 Definitions

A turn-based multiplayer arena is a tuple A = 〈P, (Si)i∈P , sinit, (Acti)i∈P , δ〉 where P is a
finite set of players; for i ∈ P , Si is a finite set of player-i states; we let S =

⊎
i∈P Si; sinit ∈ S

is the initial state; for every i ∈ P , Acti is the set of player-i actions; we let Act =
⋃
i∈P Acti;

and δ : S× Act 7→ S is the transition function. A run ρ is a sequence of alternating states
and actions ρ = s1a1s2a2 . . . ∈ (S · Act)ω such that for all i ≥ 1, δ(si, ai) = si+1. We write
ρi = si, and acti(ρ) = ai. A history is a finite prefix of a run ending in a state. We denote
by ρ≤k the history s1a1 . . . sk; and write last(ρ≤k) = sk, the last state of the history. The set
of states occurring infinitely often in a run ρ is Inf(ρ) = {s ∈ S | ∀j ∈ N. ∃i > j, ρi = s}.

A strategy of player i is a function σi : (S∗ · Si)→ Acti. A strategy profile for the set of
players P ⊆ P is a tuple of strategies, one for each player of P . We write −i for the set
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P \ {i}. Let Σi(A) be the set of the strategies of player i in A, written Σi if A is clear from
context, and ΣP the strategy profiles of P ⊆ P.

A run ρ is compatible with strategy σ for player i if for all j ≥ 1, ρj ∈ Si and actj(ρ) =
σ(ρ≤j). It is compatible with strategy profile σP if it is compatible with each σi for i ∈ P.
The outcome of a strategy profile σP is the unique run compatible with σP starting at sinit,
denoted OutA(σP). We write OutA,s(σP) for the outcome starting at state s. Given σP ∈ ΣP
with P ⊆ P, let OutA(σP ) denote the set of runs compatible with σP , and extend it to
OutA(Σ′) where Σ′ is a set of strategy profiles. For E ⊆ Si × Acti, let Strati(E) denote the
set of player-i strategies σ that only use actions in E in all outcomes compatible with σ.

An objective φ is a subset of runs. A strategy σi of player i is winning for objective φi if
for all σ−i ∈ Σ−i, OutA(σi, σ−i) ∈ φi. A game is an arena equipped with an objective for
each player, written G = 〈A, (φi)i∈P〉 where for each player i, φi is an objective. Given a
strategy profile σP for the set of players P , we write G, σP |= φ if OutA(σP ) ⊆ φ. We write
OutG(σP ) = OutA(σP ), and OutG = OutG(Σ). For any coalition C ⊆ P, and objective φ, we
denote by WinC(A, φ) the set of states s such that there exists σC ∈ ΣC with OutG,s(σC) ⊆ φ.

Although we prove some of our results for general objectives, we give algorithms for
ω-regular objectives represented by Muller conditions. A Muller condition is given by a
family F of sets of states: φi = {ρ | Inf(ρ) ∈ F}. Following [19], we assume that F is
given by a Boolean circuit whose inputs are S, which evaluates to true exactly on valuations
encoding subsets S ∈ F . We also use linear temporal logic (LTL) [24] to describe objectives.
LTL formulas are defined by φ := Gφ | Fφ | Xφ | φUφ | φWφ | S where S ⊆ S (We refer
to [14] for the semantics.) We consider the special case of Büchi objectives, given by
GF(B) = {ρ | B ∩ Inf(ρ) 6= ∅}. Boolean combinations of formulas GF(S) define Muller
conditions representable by polynomial-size circuits.

In any game G, a player i strategy σi is dominated by σ′i if for all σ−i ∈ Σ−i, G, σi, σ−i |= φi
implies G, σ′i, σ−i |= φi and there exists σ−i ∈ Σ−i, such that G, σ′i, σ−i |= φi and G, σi, σ−i 6|=
φi, (this is classically called weak dominance, but we call it dominance for simplicity). A
strategy which is not dominated is admissible. Thus, admissible strategies are maximal,
and incomparable, with respect to the dominance relation. We write Admi(G) for the set
of admissible strategies in Σi, and AdmP (G) =

∏
i∈P Admi(G) the product of the sets of

admissible strategies for P ⊆ P.
Strategy σi is dominant if for all σ′i, and σ−i, G, σ′i, σ−iφi implies G, σi, σ−i |= φi. The

set of dominant strategies for player i is written Domi(G). A Nash equilibrium for G is a
strategy profile σP such that for all i ∈ P, and σ′i ∈ Σi, G, σ−i, σ′i |= φi implies G, σP |= φi;
thus no player can improve its outcome by deviating from the prescribed strategy. A Nash
equilibrium for G from s, is a Nash equilibrium for G where the initial state is replaced by
s. A subgame-perfect equilibrium for G is a strategy profile σP such that for all histories h,
(σi ◦ h)i∈P is a Nash equilibrium in G from state last(h), where given a strategy σ, σ ◦ h
denotes the strategy last(h) · h′ 7→ σ(h · h′).

3 Synthesis Rules

In this section, we review synthesis rules proposed in the literature, and introduce a novel
one: the assume-admissible synthesis rule (AA). Unless stated otherwise, we fix for this
section a game G, with players P = {1, . . . , n} and their objectives φ1, . . . , φn.

Rule Coop. The objectives are achieved cooperatively if there is a strategy profile σP =
(σ1, σ2, . . . , σn) such that G, σP |=

∧
i∈P φi.
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This rule [21, 10] asks for a strategy profile that jointly satisfies the objectives of all the
players. This rule makes very strong assumptions: players fully cooperate and strictly follow
their respective strategies. This concept is not robust against deviations and postulates that
the behavior of every component in the system is controllable. This weakness is well-known:
see e.g. [6] where the rule is called weak co-synthesis.

Rule Win. The objectives are achieved adversarially if there is a strategy profile σP =
(σ1, . . . , σn) such that for all i ∈ P, G, σi |= φi.

This rule does not require any cooperation among players: the rule asks to synthesize for
each player i a strategy which enforces his/her objective φi against all possible strategies
of the other players. Strategy profiles obtained by Win are extremely robust: each player
is able to ensure his/her objective no matter how the other players behave. Unfortunately,
this rule is often not applicable in practice: often, none of the players has a winning strategy
against all possible strategies of the other players. The next rules soften this requirement by
taking into account the objectives of other players.

Rule Win-under-Hyp. Given a two-player game G with P = {1, 2} in which player 1
has objective φ1, player 2 has objective φ2, player 1 can achieve adversarially φ1 under
hypothesis φ2, if there is a strategy σ1 for player 1 such that G, σ1 |= φ2 → φ1.

The rule winning under hypothesis applies for two-player games only. Here, we consider
the synthesis of a strategy for player 1 against player 2 under the hypothesis that player 2
behaves according to his/her specification. This rule is a relaxation of the rule Win as player 1
is only expected to win when player 2 plays so that the outcome of the game satisfies φ2.
While this rule is often reasonable, it is fundamentally plagued by the following problem:
instead of trying to satisfy φ1, player 1 could try to falsify φ2, see e.g. [3]. This problem
disappears if player 2 has a winning strategy to enforce φ2, and the rule is then safe. We
come back to that later in the paper (see Lemma 1).

Chatterjee et al. in [6] proposed synthesis rules inspired by Win-under-Hyp but avoid the
aforementioned problem. The rule was originally proposed in a model with two components
and a scheduler. We study here two natural extensions for n players.

Rules AG∧ and AG∨. The objectives are achieved by
(AG∧) assume-guarantee-∧ if there exists a strategy profile σP such that
1. G, σP |=

∧
i∈P φi,

2. for all players i, G, σi |= (
∧
j∈P\{i} φj)⇒ φi.

(AG∨) assume-guarantee-∨1 if there exists a strategy profile σP such that
1. G, σP |=

∧
i∈P φi,

2. for all players i, G, σi |= (
∨
j∈P\{i} φj)⇒ φi.

The two rules differ in the second requirement: AG∧ requires that player i wins whenever
all the other players win, while AG∨ requires player i to win whenever one of the other
player wins. Clearly AG∨ is stronger, and the two rules are equivalent for two-player games.
As shown in [8], for two-player games, a profile of strategy for AG∧ (or AG∨) is a Nash
equilibrium in a derived game where players want, in lexicographic order, first to satisfy

1 This rule was introduced in [5], under the name Doomsday equilibria, as a generalization of the AG rule
of [6] to the case of n-players.
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their own objectives, and then as a secondary objective, want to falsify the objectives of the
other players. As NE, AG∧ and AG∨ require players to synchronize on a particular strategy
profiles. As we will see, this is not the case for the new rule that we propose.

[16] and [20] introduce two versions of rational synthesis (RS). In the two cases, one of
the player, say player 1, models the system while the other players model the environment.
The existential version (RS∃) searches for a strategy for the system, and a profile of strategies
for the environment, such that the objective of the system is satisfied, and the profile for the
environment is stable according to a solution concept which is either NE, SPE, or Dom. The
universal version (RS∀) searches for a strategy for the system, such that for all environment
strategy profiles that are stable according to the solution concept, the objective of the system
holds. We write ΣNE

G,σ1
, resp. ΣSPE

G,σ1
, for the set of strategy profiles σ−1 = (σ2, σ3, . . . , σn)

that are NE (resp. SPE) equilibria in the game G when player 1 plays σ1, and ΣDom
G,σ1

for the
set of strategy profiles σ−1 where each strategy σj , 2 ≤ j ≤ n, is dominant in the game G
when player 1 plays σ1.

Rules RS∃,∀(NE,SPE,Dom) . Let γ ∈ {NE,SPE,Dom}, the objective is achieved by:
(RS∃(γ)) existential rational synthesis under γ if there is a strategy σ1 of player 1,

and a profile σ−1 ∈ ΣγG,σ1
, such that G, σ1, σ−1 |= φ1.

(RS∀(γ)) universal rational synthesis under γ if there is a strategy σ1 of player 1,
such that ΣγG,σ1

6= ∅, and for all σ−1 ∈ ΣγG,σ1
, G, σ1, σ−1 |= φ1.

Clearly, (RS∀(γ)) is stronger than (RS∃(γ)) and more robust. As RS∃,∀(NE,SPE) are derived
from NE and SPE, they require players to synchronize on particular strategy profiles.

Novel rule. We now present our novel rule based on the notion of admissible strategies.

Rule AA. The objectives are achieved by assume-admissible (AA) strategies if there is
a strategy profile σP such that:
1. for all i ∈ P, σi ∈ Admi(G);
2. for all i ∈ P, ∀σ′−i ∈ Adm−i(G). G, σ′−i, σi |= φi.

A player-i strategy satisfying conditions 1 and 2 above is called assume-admissible-winning
(AA-winning). A profile of AA-winning strategies is an AA-winning strategy profile. The rule
AA requires that each player has a strategy winning against admissible strategies of other
players. So we assume that players do not play strategies which are dominated, which is
reasonable as dominated strategies are clearly suboptimal options.

Contrary to Coop, AG∧, and AG∨, AA does not require that the strategy profile is winning
for each player. As for Win, this is a consequence of the definition:

I Theorem 1. For all AA-winning strategy profile σP , G, σP |=
∧
i∈P φi.

The condition that AA strategies are admissible is necessary for Thm. 1; it does not
suffice to have strategies that are winning against admissible strategies.

4 Synthesis Rules at the Light of an Example

We illustrate the synthesis rules on an example of a real-time scheduler with two tasks. The
system is composed of Sched (player 1) and Env (player 2). Env chooses the truth value for
r1, r2 (ri is a request for task i), and Sched controls q1, q2 (qi means that task i has been
scheduled). Our model is a turn-based game: first, Env chooses a value for r1, r2, then in
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the next round Sched chooses a value for q1, q2, and we repeat forever. The requirements for
Sched and Env are as follows:
1. Sched is not allowed to schedule the two tasks at the same time. When r1 is true, then

task 1 must be scheduled (q1) within three rounds. When r2 is true, task 2 must be
scheduled (q2) in exactly three rounds.

2. Whenever Env issues ri then it does not issue this request again before the occurrence of
the grant qi. Env issues infinitely many requests r1 and r2.

We say that a request ri is pending whenever the corresponding grant has not yet been issued.
Those requirements can be expressed in LTL as follows:

φSched = G(r1 → Xq1 ∨ XXXq1) ∧ G(r2 → XXXq2) ∧ G¬(q1 ∧ q2).
φEnv = G(r1 → X(¬r1Wq1)) ∧ G(r2 → X(¬r2Wq2)) ∧ (GFr1) ∧ (GFr2).

A solution compatible with the previous rules in the literature. First, we note that there
is no winning strategy neither for Sched, nor for Env. In fact, first let σ̂1 be the strategy of
Sched that never schedules any of the two tasks, i.e. leaves q1 and q2 constantly false. This is
clearly forcing ¬φEnv against all strategies of Env. Second, let σ̂2 be s.t. Env always requests
the scheduling of both task 1 and task 2, i.e. r1 and r2 are constantly true. It is easy to
see that this enforces ¬φSched against any strategy of Sched. So, there is no solution with
rule Win2. But clearly those strategies are also not compatible with the objectives of the
respective players, so this leaves the possibility to apply successfully the other rules. We now
consider a strategy profile which is a solution for all the rules except for AA.

Let (σ1, σ2) be strategies for player 1 and 2 respectively, such that the outcome of (σ1, σ2)
is "Env emits r1, then Sched emits q1, Env emits r2, then Sched waits one round and emits q2,
and repeat." If a deviation from this exact execution is observed, then the two players switch
to strategies σ̂1 and σ̂2 respectively, i.e. to the strategies that falsify the specification of the
other players. The reader can now convince himself/herself that (σ1, σ2) is a solution for Coop,
AG and RS∃(NE,SPE,Dom). Furthermore, we claim that σ1 is a solution for Win-under-Hyp
and RS∀(NE,SPE,Dom). But, assume now that Env is a device driver which requests the
scheduling of tasks by the scheduler of the kernel of an OS when the device that it supervised
requires it. Clearly (σ1, σ2), which is compatible with all the previous rules (but Win), makes
little sense in this context. On the other hand, φSched and φEnv are natural specifications for
such a system. So, there is clearly room for other synthesis rules!

Solutions provided by AA, our novel rule. For Env, we claim that the set of admissible
strategies, noted Adm(φEnv), are exactly those that (i) do not emit a new request before the
previous one has been acknowledged, and (ii) do always eventually emit a (new) request
when the previous one has been granted. Indeed as we have seen above, Env and Sched can
cooperate to satisfy φSched ∧ φEnv, so any strategy of Env which would imply the falsification
of φEnv is dominated and so it is not admissible. Also, we have seen that Env does not have
a winning strategy for φEnv, so Env cannot do better.

Now, let us consider the following strategy for Sched. (i) if pending requests r1 and r2
were made one round ago, then grant q1; if pending requests r1 and r2 were made three rounds
ago, then behave arbitrarily (it is no more possible to satisfy the specification); (ii) if pending
request r2 was made three rounds ago, but not r1, then grant q2; (iii) if pending r1 was

2 Also, it is easy to see that Env does not have a dominant strategy for his specification. So, considering
dominant strategies as best-effort strategies would not lead to a solution for this example. To find a
solution, we need to take into account the objectives of the other players.
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made three rounds ago, but not r2, then grant q1. We claim that this strategy is admissible
and while it is not winning against all possible strategies of Env, it is winning against all
admissible strategies of Env. So, this strategy enforces φSched against all reasonable strategies
of Env w.r.t. to his/her own objective φEnv. In fact, there is a whole set of such strategies
for Sched, noted WinAdmSched. Similarly, there is a whole set of strategies for Env which are
both admissible and winning against the admissible strategies of Sched, noted WinAdmEnv.
We prove in the next section that the solutions to AA are rectangular sets: they are exactly
the solutions in WinAdmSched×WinAdmEnv. This ensures that AA leads to resilient solutions:
players do not need to synchronize with the other players on a particular strategy profile but
they can arbitrarily choose inside their sets of strategies that are admissible and winning
against the admissible strategies of the other players.

5 Comparison of Synthesis Rules

AA AG∨,∧ Coop

RS∃,∀(NE, SPE,Dom)Win

Figure 1 Comparison of synthe-
sis rules.

In this section, we compare the synthesis rules to un-
derstand which ones yield solutions more often, and to
assess their robustness. Some relations are easy to estab-
lish; for instance, rules Win,AG∨,AG∧,AA imply Coop by
definition (and Thm. 1). We summarize the implication
relations between the rules in Fig. 1. We present the rules
AG∨,AG∧, and the variants of RS·(·) in one group, respec-
tively. A dashed arrow from A to B means that rule A
implies some rule in B; while a plain arrow means that A implies all rules in B (e.g. AA
implies AG∧ but not AG∨; while Win implies both rules.) An absence of path means that A
does not imply any variant of B. Thus the figure explains which approaches yield solutions
more often, by abstracting away the precise variants. The following theorem states the
correctness of our diagram.

I Theorem 2. The implication relations of Fig. 1 hold.

In the controller synthesis framework using two-player games between a controller and its
environment, some works advocate the use of environment objectives which the environment
can guarantee against any controller [7]. Under this assumption, Win-under-Hyp implies AA:

I Lemma 3. Let G = 〈A, φ1, φ2〉 be a two-player game. If player 2 has a winning strategy
for φ2 and Win-under-Hyp has a solution, then AA has a solution.

We now consider the robustness of the profiles synthesized using the above rules. An
AA-winning strategy profile σP is robust in the following sense: The set of AA-winning
profiles is rectangular, i.e. any combination of AA-winning strategies independently chosen
for each player, is an AA-winning profile. Second, if one replaces any subset of strategies
in AA-winning profile σP by arbitrary admissible strategies, the objectives of all the other
players still hold. Formally, a rectangular set of strategy profiles is a set that is a Cartesian
product of sets of strategies, given for each player. A synthesis rule is rectangular if the set of
strategy profiles satisfying the rule is rectangular. The RS rules require a specific definition
since player 1 has a particular role: we say that RS∀,∃(γ) is rectangular if for any strategy σ1
witnessing the rule, the set of strategy profiles (σ2, . . . , σn) ∈ ΣγG,σ1

s.t. G, σ1, . . . , σn |= φ1 is
rectangular. We show that apart from AA, only Win and RS∀(Dom) are rectangular.

CONCUR’15



108 Assume-Admissible Synthesis

I Theorem 4. We have:
1. Rule AA is rectangular; and for all games G, AA-winning strategy profile σP , coalition

C ⊆ P, if σ′C ∈ AdmC(G), then G, σ−C , σ′C |=
∧
i∈−C φi.

2. The rules Win and RS∀(Dom) are rectangular; the rules Coop, AG∨, AG∧, RS∃(NE,SPE,Dom),
and RS∀(NE,SPE) are not rectangular.

6 Algorithm for Assume-Admissible Synthesis

We now recall the characterization of the outcomes of admissible strategy profiles given in [4],
and derive algorithms for the AA rule. We use the game of Fig. 2 as a running example for
this section. Clearly, none of the players of this game has a winning strategy for his own
objective when not taking into account the objective of the other player, but, as we will see,
both players have an admissible and winning strategy against the admissible strategies of
the other player, and so the AA rule applies.

s1 s2 s3

Figure 2 Game G with two players P =
{1, 2}. Player 1 controls the round states,
and has objective GFs2, and player 2 con-
trols the square state and has objective
GFs1.

The notion of value associated to the states of a
game plays an important role in the characterization
of admissible strategies and their outcomes [2, 4].
Fix a game G. A state s has value 1 for player i,
written Vali(s) = 1, if player i has a winning strategy
from s; Vali(s) = −1 if for all strategy profiles σP ∈
ΣP , OutG,s(σP) does not satisfy φi; and otherwise
Vali(s) = 0. A player j decreases its own value in
history h if there is a position k such that Valj(hk) >
Valj(hk+1) and hk ∈ Sj . We proved in [4], that admissible strategies do not decrease their
own values. Let us call such strategies value-preserving. In fact, if the current state has
value 1, there is a winning strategy which stays within the winning region; if the value is 0,
then although other players may force the play into states of value −1, a good strategy for
player i will not do this by itself.

I Lemma 5 ([4, Lem. 1]). For all games G, players i, and histories ρ, if last(ρ) ∈ Si and
σi ∈ Admi then Vali(δ(last(ρ), σi(ρ))) = Vali(last(ρ)).

For player i, let us define the sets Vi,x = {s | Vali(s) = x} for x ∈ {−1, 0, 1}, which
partition S. We define the set of value-preserving edges for player i as Ei = {(s, a) ∈ S×Act |
s ∈ Si ⇒ Vali(δ(s, a)) = Vali(s)}. Observe that value-preserving strategies for player i are
exactly those respecting Ei.

In our running example of Fig. 2, it should be clear that any strategy that chooses a
transition that goes to s3 is not admissible nor for Player 1 neither for Player 2, as by making
this choice both players are condemned to lose their own objective while their other choices
leave a chance to win; so the choice of going to s3 would decrease their own value. So, we
can already conclude that Player 2 always chooses s2 7→ s1, his only admissible strategy.

Not all value-preserving strategies are admissible: for Müller objectives, staying inside
the winning region does not imply the objective. Moreover, in states of value 0, admissible
strategies must visit states where other players can “help” satisfy the objective. Formally,
help states for player i are other players’ states with value 0 and at least two different
successors of value 0 or 1. Let Hi = {s ∈ S \ Si | Vali(s) = 0 ∧ ∃s′ 6= s′′. s′ ∈ δ(s,Act) ∧ s′′ ∈
δ(s,Act) ∧ Vali(s′) ≥ 0 ∧ Vali(s′′) ≥ 0}. Given this, the following lemma, adapted from [4],
characterizes the outcomes of admissible strategies. We denote by G(Ei) the set of runs that
respect Ei, i.e. G(

∨
(s,a)∈Ei

s ∧ X(δ(s, a))).
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I Lemma 6. For all games G, and players i, OutG ∩ Φi = OutG(Admi,Σ−i), where
Φi = G(Ei) ∧ (GF(Vi,1)⇒ φi) ∧ (GF(Vi,0)⇒ φi ∨ GF(Hi)).

In our running example of Fig. 2, a strategy of Player 1 which, after some point, always
chooses s1 7→ s1 is dominated by strategies that chose infinitely often s1 7→ s2. This is a
corollary of the lemma above. Indeed, while all those strategies only visit states with value 0
(and so do not decrease the value for Player 1), the strategy that always chooses s1 7→ s1
has an outcome which is loosing for Player 1 while the other strategies are compatible with
outcomes that are winning for Player 1. So, outcome of admissible strategies for Player 1
that always visit states with values 0, also visits s2 infinitely often. Using the fact that
strategies are value-preserving and the last observation, we can now conclude that both
players have (admissible) winning strategies against the admissible strategies of the other
players. For instance when Player 1 always chooses to play s1 7→ s2, he wins against the
admissible strategies of Player 2.

Note that Φi can be decomposed into a safety condition Si = G(Ei) and a prefix indepen-
dent condition Mi = (GF(Vi,1)⇒ φi) ∧ (GF(Vi,0)⇒ (φi ∨ GF(Hi)) which can be expressed by
a Müller condition described by a circuit of polynomial size.

For player i, we let Ωi = OutG(Admi)∧(OutG(Adm−i)⇒ φi), which describes the outcomes
of admissible strategies of player i, which satisfy objective φi under the hypothesis that they
are compatible with other players’ admissible strategies. In fact, it follows from [4] that Ωi
captures the outcomes of AA-winning strategies for player i.

I Lemma 7. A player i strategy is AA-winning iff it is winning for objective Ωi.

Objective Ωi is not directly expressible as a Müller condition, since Φi and
∧
j Φj contain

safety parts. Nevertheless, the information whether G(Ei), or G(∪j 6=iEj) has been violated
can be encoded in the state space. Formally, for each player i, we define game G′i by taking
the product of G with {>, 0,⊥}; that is, the states are S× {>, 0,⊥}, and the initial state
(sinit, 0). The transitions are defined as for G for the first component; while from state (s, 0),
any action a outside Ei leads to (δ(s, a),⊥), and any action a outside Ej , j 6= i, leads to
(δ(s, a),>). The second component is absorbing at ⊥,>. We now rewrite the condition Ωi
for G′i as Ω′i =

(
GF(S× {0}) ∧M ′i ∧ (∧j 6=iM ′j ⇒ φ′i)

)
∨ (GF(S× {>}) ∧M ′i), where M ′i is the

set of runs of G′i whose projections to G are in Mi, and similarly for φ′i.
Now, checking AA-synthesis is reduced to solving games with Müller conditions. Moreover,

we also obtain a polynomial-time algorithm when all objectives are Büchi conditions, by
showing that Ω′i is expressible by a parity condition with four colors.

I Theorem 8. AA-synthesis in multiplayer games is PSPACE-complete, and P-complete for
Büchi objectives. Player i wins for objective Ωi in G iff he wins for objective Ω′i in G′i.

7 Abstraction

We present abstraction techniques to compute assume-admissible strategy profiles following
the abstract interpretation framework [11]; see [18] for games. Abstraction is a crucial feature
for scalability in practice, and we show here that the AA rule is amenable to abstraction
techniques. The problem is not directly reducible to computing AA-winning strategies in
abstract games obtained as e.g. in [13]; in fact, it can be easily seen that the set of admissible
strategies of an abstract game is incomparable with those of the concrete game in general.
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Overview. Informally, to compute an AA-winning strategy for player i, we construct an
abstract game A′i with objective Ω′i s.t. winning strategies of player i in A′i map to AA-
winning strategies in G. To define A′, we re-visit the steps of the algorithm of Section 6 by
defining approximations computed on the abstract state space. More precisely, we show how
to compute under- and over-approximations of the sets Vx,k, namely V x,k and V x,k, using
fixpoint computations on the abstract state space only. We then use these sets to define
approximations of the value preserving edges (Ek and Ek) and those of the help states (Hk

and Hk). These are then combined to define objective Ω′k s.t. if player k wins the abstract
game for Ω′k, then he wins the original game for Ω′k, and thus has an AA-winning strategy.

Abstract Games. Consider G = 〈A, (φi)i∈P〉 with A = 〈P, (Si)i∈P , sinit, (Acti)i∈P , δ〉 where
each φi is a Müller objective given by a family of sets of states (Fi)i∈P . Let Sa =

⊎
i∈P Sa

i

denote a finite set, namely the abstract state space. A concretization function γ : Sa 7→ 2S is
a function such that:
1. the abstract states partitions the state space:

⊎
sa∈Sa γ(sa) = S,

2. it is compatible with players’ states: for all players i and sa ∈ Sa
i , γ(sa) ⊆ Si.

We define the corresponding abstraction function α : S→ Sa where α(s) is the unique state
sa s.t. s ∈ γ(sa). We also extend α, γ naturally to sets of states; and to histories, by replacing
each element of the sequence by its image.

We further assume that γ is compatible with all objectives Fi in the sense that the
abstraction of a set S is sufficient to determine whether S ∈ Fi: for all i ∈ P , for all S, S′ ⊆ S
with α(S) = α(S′), we have S ∈ Fi ⇔ S′ ∈ Fi. If the objective φi is given by a circuit, then
the circuit for the corresponding abstract objective φa

i is obtained by replacing each input on
state s by α(s). We thus have ρ ∈ φi if, and only if, α(ρ) ∈ φa

i .
The abstract transition relation ∆a induced by γ is defined by: (sa, a, ta) ∈ ∆a ⇔

∃s ∈ γ(sa),∃t ∈ γ(ta), t = δ(s, a). We write post∆(sa, a) = {ta ∈ Sa | ∆(sa, a, ta)}, and
post∆(sa,Act) = ∪a∈Actpost∆(sa, a). For each coalition C ⊆ P, we define a game in which
players C play together against coalition −C; and the former resolves non-determinism in ∆a.
Intuitively, the winning region for C in this abstract game will be an over-approximation of
the original winning region. Given C, the abstract arena AC is 〈{C,−C}, (SC , S−C), α(sinit),
(ActC ,Act−C), δa,C〉, where SC =

(⋃
i∈C Sa

i

)
∪
(⋃

i∈P Sa
i × Acti

)
, S−C =

⋃
i 6∈C Sa

i ; and ActC =(⋃
i∈C Acti

)
∪ Sa and Act−C =

⋃
i∈−C Acti. The relation δa,C is given by: if sa ∈ Sa,

then δa,C(sa, a) = (sa, a). If (sa, a) ∈ Sa × Act and ta ∈ Sa satisfies (sa, a, ta) ∈ ∆a then
δa,C((sa, a), ta) = ta; while for (sa, a, ta) 6∈ ∆a, the play leads to an arbitrarily chosen state ua

with ∆(sa, a, ua). Thus, from states (sa, a), coalition C chooses a successor ta.
We extend γ to histories of AC by first removing states of (Sa

i × Acti); and extend α

by inserting these intermediate states. Given a strategy σ of player k in AC , we define its
concretization as the strategy γ(σ) of G that, at any history h of G, plays γ(σ)(h) = σ(α(h)).
We write WinD(AC , φa

k) for the states of Sa from which the coalition D has a winning strategy
in AC for objective φa

k, with D ∈ {C,−C}. Informally, it is easier for coalition C to achieve
an objective in AC than in G, that is, WinC(AC , φa

k) over-approximates WinC(A, φk):

I Lemma 9. If the coalition C has a winning strategy for objective φk in G from s then it
has a winning strategy for φa

k in AC from α(s).

Value-Preserving Strategies. We now provide under- and over-approximations for value-
preserving strategies for a given player. We start by computing approximations V k,x and V k,x
of the sets Vk,x, and then use these to obtain approximations of the value-preserving edges Ek.
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Fix a game G, and a player k. Let us define the controllable predecessors for player k
as CPREAP\{k},k(X) = {sa ∈ Sa

k | ∃a ∈ Actk, post∆(sa, a) ⊆ X} ∪ {sa ∈ Sa
P\{k} | ∀a ∈

Act−k, post∆(sa, a) ⊆ X}. We let

V k,1 = Win{k}(A{k}, φa
k), V k,−1 = Win∅(A∅,¬φa

k),
V k,0 = WinP\{k}(AP\{k},¬φa,k) ∩WinP(AP , φa

k),
V k,1 = Win{k}(AP\{k}, φa

k), V k,−1 = Win∅(AP ,¬φa
k)

V k,0 = νX.
(
CPREAP\{k},k(X ∪ V k,1 ∪ V k,−1) ∩ F

)
,

where F = WinP\{k}(A{k},¬φa
k) ∩WinP(A∅, φa

k).

The last definition uses the νX.f(X) operator which is the greatest fixpoint of f . These sets
define approximations of the sets Vk,x. Informally, this follows from the fact that to define
e.g. V k,1, we use the game A{k}, where player k resolves itself the non-determinism, and
thus has more power than in G. In contrast, for V k,1, we solve AP\{k} where the adversary
resolves non-determinism. We state these properties formally:

I Lemma 10. For all players k and x ∈ {−1, 0, 1}, γ(V k,x) ⊆ Vk,x ⊆ γ(V k,x).

We thus have ∪xγ(V k,x) = S (as ∪xVk,x = S) but this is not the case for V k,x; so let us
define V = ∪j∈{−1,0,1}V k,j . We now define approximations of Ek based on the above sets.

Ek = {(sa, a) ∈ Sa × Act | sa ∈ Sa
k ⇒ ∃x, sa ∈ V k,x, post∆(sa, a) ∩ ∪l≥xV k,l 6= ∅},

Ek = {(sa, a) ∈ Sa × Act | sa ∈ Sa
k ⇒ ∃x, sa ∈ V k,x, post∆(sa, a) ⊆ ∪l≥xV k,l}

∪{(sa, a) | sa 6∈ V }.

Intuitively, Ek is an over-approximation of Ek, and Ek under-approximates Ek when
restricted to states in V (notice that Ek contains all actions from states outside V ). In fact,
our under-approximation will be valid only inside V ; but we will require the initial state to
be in this set, and make sure the play stays within V . We show that sets Ek and Ek provide
approximations of value-preserving strategies.

I Lemma 11. For all games G, and players k, Stratk(Ek) ⊆ γ(Stratk(Ek)), and if sinit ∈
γ(V ), then ∅ 6= γ(Stratk(Ek)) ⊆ Stratk(Ek).

Abstract Synthesis of AA-winning strategies. We now describe the computation of AA-
winning strategies in abstract games. Consider game G and assume sets Ei, Ei are computed
for all players i. Roughly, to compute a strategy for player k, we will constrain him to play
only edges from Ek, while other players j will play in Ej . By Lemma 11, any strategy of
player k maps to value-preserving strategies in the original game, and all value-preserving
strategies for other players are still present. We now formalize this idea, incorporating the
help states in the abstraction.

We fix a player k. We construct an abstract game in which winning for player k
implies that player k has an effective AA-winning strategy in G. We also define A′k =
〈{{k},−k}, (S′ak,S′

a
−k ∪ S′a × Act), α(sinit), (Actk,Act−k), δAk〉, where S′a = Sa × {⊥, 0,>};

thus we modify AP\{k} by taking the product of the state space with {>, 0,⊥}. Intuitively, as
in Section 6, initially the second component is 0, meaning that no player has violated the value-
preserving edges. The component becomes ⊥ whenever player k plays an action outside of Ek;
and > if another player j plays outside Ej . We extend γ to A′k by γ((sa, x)) = γ(sa)× {x},
and extend it to histories of A′k by first removing the intermediate states S′a × Act. We thus
see A′k as an abstraction of A′ of Section 6.
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In order to define the objective of A′k, let us first define approximations of the help states
Hk, where we write ∆(sa,Act, ta) to mean ∃a ∈ Act,∆(sa, a, ta).

Hk = {sa ∈ V k,0 \ Sa
k | ∃ta, ua ∈ V k,0 ∪ V k,1. ∆(sa,Act, ta) ∧∆(sa,Act, ua)}

Hk = {sa ∈ V k,0 \ Sa
k | ∃a 6= b ∈ Act, post∆(sa, a) ∩ post∆(sa, b) = ∅,

post∆(sa, a) ∪ post∆(sa, b) ⊆ V k,0 ∪ V k,1}.

We define the following approximations of the objectives M ′k and Ω′k in A′k.

M ′k = (GF(V k,1)⇒ φa
k) ∧

(
GF(V k,0)⇒ (φa

k ∨ GF(Hk))
)
,

M
′
k = (GF(V k,1)⇒ φa

k) ∧
(
GF(V k,0)⇒ (φa

k ∨ GF(Hk))
)
,

Ω′k =
(

GF(Sa × {0}) ∧M ′k ∧
(∧

j 6=kM
′
j ⇒ φa

k

))
∨ (GF(Sa × {>}) ∧M ′k) .

I Theorem 12. For all games G, and players k, if sinit ∈ V , and player k has a winning
strategy in A′k for objective Ω′k, then he has a winning strategy in G′k for Ωk; and thus a
AA-winning strategy in G.

Now, if Theorem 12 succeeds to find an AA-winning strategy for each player k, then the
resulting strategy profile is AA-winning.

8 Conclusion

In this paper, we have introduced a novel synthesis rule, called the assume admissible
synthesis, for the synthesis of strategies in non-zero sum n players games played on graphs
with omega-regular objectives. We use the notion of admissible strategy, a classical concept
from game theory, to take into account the objectives of the other players when looking
for winning strategy of one player. We have compared our approach with other approaches
such as assume guarantee synthesis and rational synthesis that target the similar scientific
objectives. We have developed worst-case optimal algorithms to handle our synthesis rule
as well as dedicated abstraction techniques. As future works, we plan to develop a tool
prototype to support our assume admissible synthesis rule.
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Abstract
Two-player zero-sum games of infinite duration and their quantitative versions are used in veri-
fication to model the interaction between a controller (Eve) and its environment (Adam). The
question usually addressed is that of the existence (and computability) of a strategy for Eve
that can maximize her payoff against any strategy of Adam. In this work, we are interested in
strategies of Eve that minimize her regret, i.e. strategies that minimize the difference between
her actual payoff and the payoff she could have achieved if she had known the strategy of Adam in
advance. We give algorithms to compute the strategies of Eve that ensure minimal regret against
an adversary whose choice of strategy is (i) unrestricted, (ii) limited to positional strategies, or
(iii) limited to word strategies, and show that the two last cases have natural modelling applic-
ations. We also show that our notion of regret minimization in which Adam is limited to word
strategies generalizes the notion of good for games introduced by Henzinger and Piterman, and
is related to the notion of determinization by pruning due to Aminof, Kupferman and Lampert.
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1 Introduction

The model of two player games played on graphs is an adequate mathematical tool to solve
important problems in computer science, and in particular the reactive system synthesis
problem [20]. In that context, the game models the non-terminating interaction between the
system to synthesize and its environment. Games with quantitative objectives are useful to
formalize important quantitative aspects such as mean-response time or energy consumption.
They have attracted large attention recently, see e.g. [7, 3]. Most of the contributions in
this context are for zero-sum games: the objective of Eve (that models the system) is to
maximize the value of the game while the objective of Adam (that models the environment)
is to minimize this value. This is a worst-case assumption: because the cooperation of the
environment cannot be assumed, we postulate that it is antagonistic.

In this antagonistic approach, the main solution concept is that of a winning strategy.
Given a threshold value, a winning strategy for Eve ensures a minimal value greater than
the threshold against any strategy of Adam. However, sometimes there are no winning
strategies. What should the behaviour of the system be in such cases? There are several
possible answers to this question. One is to consider non-zero sum extensions of those games:
the environment (Adam) is not completely antagonistic, rather it has its own specification.
In such games, a strategy for Eve must be winning only when the outcome satisfies the
objectives of Adam, see e.g. [5]. Another option for Eve is to play a strategy which minimizes
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her regret. The regret is informally defined as the difference between what a player actually
wins and what she could have won if she had known the strategy chosen by the other player.
Minimization of regret is a central concept in decision theory [2]. This notion is important
because it usually leads to solutions that agree with common sense.

Let us illustrate the notion of regret minimization on the example of Fig. 1. In this
example, Eve owns the squares and Adam owns the circles (we do not use the letters labelling
edges for the moment). The game is played for infinitely many rounds and the value of a play
for Eve is the long run average of the values of edges traversed during the play (the so-called
mean-payoff). In this game, Eve is only able to secure a mean-payoff of 1

2 when Adam is fully
antagonistic. Indeed, if Eve (from v1) plays to v2 then Adam can force a mean-payoff value
of 0, and if she plays to v3 then the mean-payoff value is at least 1

2 . Note also that if Adam
is not fully antagonistic, then the mean-payoff could be as high as 2. Now, assume that Eve
does not try to force the highest value in the worst-case but tries to minimize her regret. If
she plays v1 7→ v2 then the regret is equal to 1. This is because Adam can play the following
strategy: if Eve plays to v2 (from v1) then he plays v2 7→ v1 (giving a mean-payoff of 0), and
if Eve plays to v3 then he plays to v5 (giving a mean-payoff of 1). If she plays v1 7→ v3 then
her regret is 1 1

2 since Adam can play the symmetric strategy. It should thus be clear that
the strategy of Eve which always chooses v1 7→ v2 is indeed minimizing her regret.

In this paper, we will study three variants of regret minimization, each corresponding
to a different set of strategies we allow Adam to choose from. The first variant is when
Adam can play any possible strategy (as in the example above), the second variant is when
Adam is restricted to playing memoryless strategies, and the third variant is when Adam is
restricted to playing word strategies. To illustrate the last two variants, let us consider again
the example of Fig. 1. Assume now that Adam is playing memoryless strategies only. Then
in this case, we claim that there is a strategy of Eve that ensures regret 0. The strategy is as
follows: first play to v2, if Adam chooses to go back to v1, then Eve should henceforth play
v1 7→ v3. We claim that this strategy has regret 0. Indeed, when v2 is visited, either Adam
chooses v2 7→ v4, and then Eve secures a mean-payoff of 2 (which is the maximal possible
value), or Adam chooses v2 7→ v1 and then we know that v1 7→ v2 is not a good option for
Eve as cycling between v1 and v2 yields a payoff of only 0. In this case, the mean-payoff is
either 1, if Adam plays v3 7→ v5, or a payoff of 1

2 , if he plays v3 7→ v1. In all the cases, the
regret is 0. Let us now turn to the restriction to word strategies for Adam. When considering
this restriction, we use the letters that label the edges of the graph. A word strategy for
Adam is a function w : N → {a, b}. In this setting Adam plays a sequence of letters and
this sequence is independent of the current state of the game. When Adam plays word
strategies, the strategy that minimizes regret for Eve is to always play v1 7→ v2. Indeed, for
any word in which the letter a appears, the mean-payoff is equal to 2, and the regret is 0,
and for any word in which the letter a does not appear, the mean-payoff is 0 while it would
have been equal to 1

2 when playing v1 7→ v3. So the regret of this strategy is 1
2 and it is

the minimal regret that Eve can secure. Note that the three different strategies give three
different values in our example. This is in contrast with the worst-case analysis of the same
problem (memoryless strategies suffice for both players).

We claim that at least the two last variants are useful for modelling purposes. For
example, the memoryless restriction is useful when designing a system that needs to perform
well in an environment which is only partially known. In practical situations, a controller
may discover the environment with which it is interacting at run time. Such a situation can
be modelled by an arena in which choices in nodes of the environment model an entire family
of environments and each memoryless strategy models a specific environment of the family.
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Table 1 Complexity of deciding the regret threshold problem.

Payoff type Any strategy Memoryless strategies Word strategies

Sup, Inf, PTIME-c coNP-h (Lem. 8) EXPTIME-c
and LimSup (Thm. 1) and in PSPACE (Lem. 6) (Thm. 10)
LimInf PTIME-c (Thm. 1) PSPACE-c (Thm. 5) EXPTIME-c (Thm. 10)
MP, MP MP equivalent (Thm. 1) PSPACE-c (Thm. 5) Undecidable (Lem. 13)

In such cases, if we want to design a controller that performs reasonably well against all
the possible environments, we can consider a controller that minimizes regret: the strategy
of the controller will be as close as possible to an optimal strategy if we had known the
environment beforehand. This is, for example, the modelling choice done in the famous
Canadian traveller’s problem [19]: a driver is attempting to reach a specific location while
ensuring the traversed distance is not too far from the shortest feasible path. The partial
knowledge is due to some roads being closed because of snow. The Canadian traveller,
when planning his itinerary, is in fact searching for a strategy to minimize his regret for
the shortest path measure against a memoryless adversary who determines the roads that
are closed. Similar situations naturally arise when synthesizing controllers for robot motion
planning [21]. We now illustrate the usefulness of the variant in which Adam is restricted to
play word strategies. Assume that we need to design a system embedded into an environment
that produces disturbances: if the sequence of disturbances produced by the environment is
independent of the behavior of the system, then it is natural to model this sequence not as a
function of the state of the system but as a temporal sequence of events, i.e. a word on the
alphabet of the disturbances. Clearly, if the sequences are not the result of an antagonistic
process, then minimizing the regret against all disturbance sequences is an adequate solution
concept to obtain a reasonable system and may be preferable to a system obtained from a
strategy that is optimal under the antagonistic hypothesis.

Contributions. In this paper, we provide algorithms to solve the regret threshold problem
(strict and non-strict) in the three variants explained above, i.e. given a game and a threshold,
does there exist a strategy for Eve with a regret that is (strictly) less than the threshold
against all (resp. all memoryless, resp. all word) strategies for Adam. Almost all of our
algorithms are reductions to well-known games, therefore synthesizing the corresponding
controller amounts to computing the strategy of Eve in the resulting game. We study this
problem for six common quantitative measures: Inf, Sup, LimInf, LimSup, MP, MP. For all
measures, but MP, the strict and non-strict threshold problems are equivalent. We state our
results for both cases for consistency. In almost all the cases, we provide matching lower
bounds showing the worst-case optimality of our algorithms. Our results are summarized in
Table 1.

For the variant in which Adam plays word strategies only, we show that we can recover
decidability of mean-payoff objectives when the memory of Eve is fixed in advance: in this
case, the problem is NP-complete (Theorems 14 and 15).

Related works. The notion of regret minimization is a central one in game theory, see
e.g. [22] and references therein. Also, iterated regret minimization has been recently proposed
by Halpern et al. as a concept for non-zero sum games [13]. There, it is applied to matrix
games and not to game graphs. In a previous contribution, we have applied the iterated regret
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minimization concept to non-zero sum games played on weighted graphs for the shortest
path problem [12]. Restrictions on how Adam is allowed to play were not considered there.
As we do not consider an explicit objective for Adam, we do not consider iteration of the
regret minimization here.

The disturbance-handling embedded system example was first given in [8]. In that work,
the authors introduce remorsefree strategies, which correspond to strategies which minimize
regret in games with ω-regular objectives. They do not establish lower bounds on the
complexity of realizability or synthesis of remorsefree strategies and they focus on word
strategies of Adam only.

In [14], Henzinger and Piterman introduce the notion of good for games automata. A
non-deterministic automaton is good for solving games if it fairly simulates the equivalent
deterministic automaton. We show that our notion of regret minimization for word strategies
extends this notion to the quantitative setting (Proposition 17). Our definitions give rise to
a natural notion of approximate determinisation for weighted automata on infinite words.

In [1], Aminof et al. introduce the notion of approximate determinisation by pruning
for weighted sum automata over finite words. For α ∈ (0, 1], a weighted sum automaton is
α-determinisable by pruning if there exists a finite state strategy to resolve non-determinism
and that constructs a run whose value is at least α times the value of the maximal run of
the given word. So, they consider a notion of approximation which is a ratio. We will show
that our concept of regret, when Adam plays word strategies only, defines instead a notion of
approximation with respect to the difference metric for weighted automata (Proposition 16).
There are other differences with their work. First, we consider infinite words while they
consider finite words. Second, we study a general notion of regret minimization problem in
which Eve can use any strategy while they restrict their study to fixed memory strategies
only and leave the problem open when the memory is not fixed a priori.

Finally, the main difference between these related works and this paper is that we study
the Inf, Sup, LimInf, LimSup, MP, MP measures while they consider the total sum measure
or qualitative objectives.

2 Preliminaries

A weighted arena is a tuple G = (V, V∃, E, w, vI) where (V,E,w) is a finite edge-weighted
graph1 with integer weights, V∃ ⊆ V , and vI ∈ V is the initial vertex. In the sequel we depict
vertices owned by Eve (i.e. V∃) with squares and vertices owned by Adam (i.e. V \ V∃) with
circles. We denote the maximum absolute value of a weight in a weighted arena by W .

A play in a weighted arena is an infinite sequence of vertices π = v0v1 . . . where v0 = vI
and (vi, vi+1) ∈ E for all i. We extend the weight function to partial plays by setting
w(〈vi〉li=k) =

∑l−1
i=k w(vi, vi+1).

1 W.l.o.g. G is assumed to be total: for each v ∈ V , there exists v′ ∈ V such that (v, v′) ∈ E.
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A strategy for Eve (Adam) is a function σ that maps partial plays ending with a vertex
v in V∃ (V \ V∃) to a successor of v. A strategy has memory m if it can be realized as
the output of a finite state machine with m states (see e.g. [15] for a formal definition). A
memoryless (or positional) strategy is a strategy with memory 1, that is, a function that only
depends on the last element of the given partial play. A play π = v0v1 . . . is consistent with a
strategy σ for Eve (Adam) if whenever vi ∈ V∃ (vi ∈ V \ V∃), σ(〈vj〉j≤i) = vi+1. We denote
by S∃(G) (S∀(G)) the set of all strategies for Eve (Adam) and by Σm∃ (G) (Σm∀ (G)) the set
of all strategies for Eve (Adam) in G that require memory of size at most m, in particular
Σ1
∃(G) (Σ1

∀(G)) is the set of all memoryless strategies of Eve (Adam) in G. We omit G if the
context is clear.

Payoff functions. A play in a weighted arena defines an infinite sequence of weights. We
define below several classical payoff functions that map such sequences to real numbers.2
Formally, for a play π = v0v1 . . . we define:

the Inf (Sup) payoff, is the minimum (maximum) weight seen along a play: Inf(π) =
inf{w(vi, vi+1) : i ≥ 0} and Sup(π) = sup{w(vi, vi+1) : i ≥ 0};
the LimInf (LimSup) payoff, is the minimum (maximum) weight seen infinitely often:
LimInf(π) = lim infi→∞ w(vi, vi+1) and LimSup(π) = lim supi→∞ w(vi, vi+1);
the mean-payoff value of a play, i.e. the limiting average weight, defined using lim inf or
lim sup since the running averages might not converge: MP(π) = lim infk→∞ 1

kw(〈vi〉i<k)
and MP(π) = lim supk→∞ 1

kw(〈vi〉i<k).

A payoff function Val is prefix-independent if for all plays π = v0v1 . . ., for all j ≥ 0,
Val(π) = Val(〈vj〉j≥i). It is well-known that LimInf, LimSup, MP, and MP are prefix-
independent. Often, the arguments that we develop work uniformly for these four measures
because of their prefix-independent property. Inf and Sup are not prefix-independent but
often in the sequel we apply a simple transformation to the game and encode Inf into a
LimInf objective, and Sup into a LimSup objective. The transformation consists of encoding
in the vertices of the arena the minimal (maximal) weight that has been witnessed by a play,
and label the edges of the new graph with this same recorded weight. When this simple
transformation does not suffice, we mention it explicitly.

Regret. Consider a fixed weighted arena G, and payoff function Val. Given strategies σ, τ ,
for Eve and Adam respectively, and v ∈ V , we denote by πvστ the unique play starting from
v that is consistent with σ and τ and denote its value by: ValvG(σ, τ) := Val(πvστ ). We omit
G if it is clear from the context. If v is omitted, it is assumed to be vI .

Let Σ∃ ⊆ S∃ and Σ∀ ⊆ S∀ be sets of strategies for Eve and Adam respectively. Given
σ ∈ Σ∃ we define the regret of σ in G w.r.t. Σ∃ and Σ∀ as:

regσΣ∃,Σ∀
(G) := supτ∈Σ∀

(supσ′∈Σ∃
Val(σ′, τ)−Val(σ, τ)).

We define the regret of G w.r.t. Σ∃ and Σ∀ as:

RegΣ∃,Σ∀
(G) := infσ∈Σ∃ regσΣ∃,Σ∀

(G).

When Σ∃ or Σ∀ are omitted from reg(·) and Reg(·) they are assumed to be the set of all
strategies for Eve and Adam.

2 The values of all functions are not infinite, and therefore in R since we deal with finite graphs only.
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We will make use of two other values associated with the vertices of an arena: the
antagonistic and cooperative values, defined for plays from a vertex v ∈ V as

aValv(G) := supσ∈S∃
infτ∈S∀ Valv(σ, τ) cValv(G) := supσ∈S∃

supτ∈S∀
Valv(σ, τ).

When clear from context G will be omitted, and if v is omitted it is assumed to be vI .
I Remark. It is well-known that cVal and aVal can be computed in polynomial time, w.r.t.
the underlying graph of the given arena, for all payoff functions but MP [4, 6]. For MP, cVal
is known to be computable in polynomial time for aVal it can be done in UP ∩ coUP [17]
and in pseudo-polynomial time [23, 3].

3 Variant I: Adam plays any strategy

For this variant, we establish that for all the payoff functions that we consider, the problem
of computing the antagonistic value and the problem of computing the regret value are
inter-reducible in polynomial time. As a direct consequence, we obtain the following theorem:

I Theorem 1. Deciding if the regret value is less than a given threshold (strictly or non-
strictly) is PTIME-complete (under log-space reductions) for Inf, Sup, LimInf, and LimSup,
and equivalent to mean-payoff games (under polynomial-time reductions) for MP and MP.

Upper bounds. We now describe an algorithm to compute regret for all payoff functions.

I Lemma 2. For payoff functions Inf, Sup, LimInf, LimSup, MP, and MP computing the
regret of a game is at most as hard as computing the antagonistic value of a (polynomial-size)
game with the same payoff function.

Sketch. We describe how the algorithm works for the MP function, the algorithm is similar
for all other payoff functions and details are given in the technical report [16]. Let us fix a
weighted arena G. We define a new weight function w′ as follows. For any edge e = (u, v)
let w′(e) = −∞ if u ∈ V \ V∃, and if u ∈ V∃ then w′(e) = max{cValv

′
: (u, v′) ∈ E \ {e}}.

Intuitively, w′ represents the best value obtainable for a strategy of Eve that differs at
the given edge. It is not difficult to see that in order to minimize regret, Eve is trying to
simultaneously maximize the value given by the original weight function w, and minimize the
maximum w′-weighted edge seen. For b ∈ Range(w′) we define Gb to be the graph obtained
by restricting G to edges e with w′(e) ≤ b.

Next, we will construct a new weighted arena Ĝ such that the regret of G is a function
of the antagonistic value of Ĝ. Figure 3 depicts the general form of the arena we construct.
We have three vertices v0 ∈ V̂ \ V̂∃ and v1, v⊥ ∈ V̂∃ and a “copy” of G as Gb for each
b ∈ Range(w′) \ {−∞}. We have a self-loop of weight 0 on v0 which is the initial vertex of
Ĝ, a self-loop of weight −2W − 1 on v⊥, and weight 0 edges from v0 to v1 and from v1 to
the initial vertices of Gb for all b. Recall that Gb might not be total. To fix this we add, for
all vertices without a successor, a weight 0 edge to v⊥. The remainder of the weight function
ŵ, is defined for each edge eb in Gb as ŵ(eb) = w(e)− b.

Intuitively, in Ĝ Adam first decides whether he can ensure a non-zero regret. If this is the
case, then he moves to v1. Next, Eve chooses a maximal value she will allow for strategies
which differ from the one she will play (this is the choice of b). The play then moves to the
corresponding copy of G, i.e. Gb. She can now play to maximize her mean-payoff value.
However, if her choice of b was not correct then the play will end in v⊥. We claim this
construction ensures that Reg(G) = −aVal(Ĝ). J
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Lower bounds. For all the payoff functions, from G we can construct in logarithmic space
G′ such that the antagonistic value of G is equal to the regret value of G′, and so we have:

I Lemma 3. For payoff functions Inf, Sup, LimInf, LimSup, MP, and MP computing the
regret of a game is at least as hard as computing the antagonistic value of a (polynomial-size)
game with the same payoff function.

Sketch. Suppose G is a weighted arena with initial vertex vI . Consider the weighted arena
G′ obtained by adding to G the gadget of Figure 5. The initial vertex of G′ is set to be v′I .
We claim that the right choice of values for the parameters L,M1,M2, N1, N2 makes it so
that the antagonistic value of G is a function of the regret of the game G′.

For concreteness, let us consider the payoff function MP, and let L = M1 = M2 = 0,
N1 = W + 1, and N2 = −3W − 2. At v′I , Eve has a choice: she can choose to remain in
the gadget or she can move to the original game G. If she chooses to remain in the gadget,
her payoff will be −3W − 2, meanwhile Adam could choose a strategy that would have
achieved a payoff of cVal(G) if she had chosen to play to G. Hence her regret in this case
is cVal(G) + 3W + 2 ≥ 2W + 2. Otherwise, if she chooses to play to G, she can achieve a
payoff of at most aVal(G) if Adam is adversarial. As cVal(G) ≤W and W is the maximum
possible payoff achievable in G, the strategy of Adam which now maximizes Eve’s regret is
the one which remains in the gadget – giving a payoff of W + 1. Her regret in this case is
K + 1− aVal(G) ≤ 2W + 1. Therefore, to minimize her regret she will play this strategy.
It follows that Reg(G′) = W + 1 − aVal(G), and thus the adversarial value of G can be
deduced from the regret value of G′. J

Memory requirements for Eve and Adam. It follows from the reductions underlying the
proof of Lemma 2 that Eve only requires positional strategies to minimize regret when there
is no restriction on Adam’s strategies. On the other hand, Adam’s strategy for maximizing
regret consists of a combination of three positional strategies: first he moves to the optimal
vertex for deviating, then he plays his optimal (positional) strategy in the antagonistic game.
His strategy for the alternative scenario, assuming Eve had deviated, is his optimal strategy
in the co-operative game which is also positional. This combined strategy is clearly realizable
as a strategy with three memory states, giving us:

I Corollary 4. For payoff functions LimInf, LimSup, MP and MP: Reg(G) = RegΣ1
∃,Σ

3
∀
(G).

The algorithm we give relies on the prefix-independence of the payoff function. As the
transformation from Inf and Sup to equivalent prefix-independent ones is polynomial it
follows that polynomial memory (w.r.t. the size of the underlying graph of the arena) suffices
for both players.

4 Variant II: Adam plays memoryless strategies

For this variant, we provide a polynomial space algorithm to solve the problem for all the
payoff functions, we then provide lower bounds.

I Theorem 5. Deciding if the regret value is less than a given threshold (strictly or non-
strictly) playing against memoryless strategies of Adam is PSPACE-complete for LimInf, MP
and MP; in PSPACE and coNP-hard for Inf, Sup and LimSup.
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Figure 3 Weighted arena Ĝ, constructed from
G. Dotted lines represent several edges added
when the condition labelling it is met.
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Figure 4 Weighted arena Ĝ1, constructed
from G1. In the edge set component only edges
leaving Adam nodes are depicted.

Upper bounds. Let us now show how to compute regret against positional adversaries.

I Lemma 6. For payoff functions Inf, Sup, LimInf, LimSup, MP and MP, the regret of a
game played against a positional adversary can be computed in polynomial space.

Sketch. Once again, we describe how the algorithm works for the MP. Given a weighted
arena G, we construct a new weighted arena Ĝ such that we have that −aVal(Ĝ) is equivalent
to the regret of G. The argument works for all prefix independent payoff functions and the
details are given in the technical report [16] for Inf, Sup.

The vertices of Ĝ encode the choices made by Adam. For a subset of edges D ⊆ E, let
G�D denote the weighted arena (V, V∃, E ∩D,w, vI). The new weighted arena Ĝ is the tuple
(V̂, V̂∃, Ê, ŵ, v̂I) where
(i) V̂ = V × P(E);
(ii) V̂∃ = {(v, e) ∈ V̂ : v ∈ V∃};
(iii) v̂I = (vI , E);
(iv) Ê contains the edge

(
(u,C), (v,D)

)
if and only if (u, v) ∈ C and, either u ∈ V∃ and

D = C, or u ∈ V \ V∃ and D = C \ {(u, x) ∈ E : x 6= v};
(v) ŵ

(
(u,C), (v,D)

)
= w(u, v)− cVal(G�D).

The application of this transformation for the graph of Fig. 2 is given in Fig. 4.
Finally, we recall that the value of a mean-payoff game is equivalent to the value of its

cycle forming game [10]. This finite cycle forming game is identical to the mean-payoff game
except that it is stopped as soon as a cycle is formed and the value of the game is given
by the mean-payoff value of the cycle. It follows that one can use an Alternating Turing
Machine to compute the value of Ĝ in time bounded by the length of the longest simple path
in Ĝ: |V |(|E|+ 1). Since APTIME = PSPACE, the result follows. J

Lower bounds. We give a reduction from the QSAT Problem to the problem of determin-
ing whether, given r ∈ Q, RegS∃,Σ1

∀
(G)C r for the payoff functions LimInf, MP, and MP (for

C ∈ {<,≤}). Then we provide a reduction from the complement of the 2-disjoint-paths
Problem for LimSup, Sup, and Inf.

I Lemma 7. For r ∈ Q, weighted arena G and payoff function LimInf, MP, or MP, determ-
ining whether RegS∃,Σ1

∀
(G)C r, for C ∈ {<,≤}, is PSPACE-hard.

Sketch. The crux of the reduction from QSAT is a gadget for each clause of the QSAT
formula. Visiting this gadget allows Eve to gain information about the highest payoff
obtainable in the gadget, each entry point corresponds to a literal from the clause, and the
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Figure 5 Gadget to reduce a game to its
regret game.
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Figure 8 Regret gadget for
2-disjoint-paths reduction.

literal is visited when it is made true by the valuation of variables chosen by Eve and Adam
in the reduction described below. Figure 6 depicts an instance of the gadget for a particular
clause. Let us focus on the mean-payoff function. Note that staying in the inner 6-vertex
triangle would yield a mean-payoff value of 4. However, in order to do so, Adam needs to
cooperate with Eve at all three corner vertices. Also note that if he does cooperate in at
least one of these vertices then Eve can secure a payoff value of at least 11

3 .
The complete reduction for MP consists in describing how to construct, from an input

QBF Φ, a weighted arena G of linear size w.r.t. Φ. In G, Eve can ensure RegS∃,Σ1
∀
(G) < 2

if and only if the QBF true. We assume Φ is in 3-CNF and w.l.o.g. we assume that each
clause contains at least one existentially quantified variable.

It is common to consider a QBF as a game between an existential and a universal player.
The game we construct mimics the choices of the existential and universal player and makes
sure that the regret of the game is smaller than 2 if and only if Φ is true. Figure 7 depicts the
general structure of the game. Eve and Adam choose valuations for the variables. Depending
on these choices, clause gadgets and literals that are made true by the constructed valuation
can be visited by Eve.

Assume the QBF is true, then Eve has a value-choosing strategy s.t. for any strategy of
Adam, all clauses have at least one literal which holds. Hence, Eve can ensure to visit every
clause gadget. If Adam helps Eve in any of these gadgets then she can ensure a payoff of 11

3
as explained above. Otherwise, she arrives at Φ, gets mean-payoff 2 and, since Adam did not
help her in any of the clause gadgets, she is sure that no alternative strategy can achieve a
payoff value of 4. Hence, the regret of the game is less than 2.

Conversely, if the QBF is false then Adam can make sure Eve does not visit at least
one clause gadget that corresponds to a clause that is false in the constructed valuation.
Additionally, in every clause gadget she does visit, he does not help her. She can now ensure
a mean-payoff value of 2 by going to Φ but an alternative strategy of Eve can force a visit to
the gadget not visited (as each clause contains at least one existentially quantified variable)
and there Adam can now fully cooperate and ensures a payoff of 4 to Eve. J
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I Lemma 8. For r ∈ Q, weighted arena G and payoff function Inf, Sup, or LimSup, determ-
ining whether RegS∃,Σ1

∀
(G)C r, for C ∈ {<,≤}, is coNP-hard.

Proof. We provide a reduction from the complement of the 2-disjoint-paths Problem
on directed graphs [11]. As the problem is known to be NP-complete, the result follows. In
other words, we sketch how to translate a given instance of the 2-disjoint-paths Problem
into a weighted arena in which Eve can ensure regret value strictly less than 1 if and only if
the answer to the 2-disjoint-paths Problem is negative.

Consider a directed graph G and distinct vertex pairs (s1, t1) and (s2, t2). W.l.o.g. we
assume that for all i ∈ {1, 2}:
(i) ti is reachable from si, and
(ii) ti is a sink (i.e. has no outgoing edges)
in G. We now describe the changes we apply to G in order to get the underlying graph
structure of the weighted arena and then comment on the weight function. Let all vertices
from G be Adam vertices and s1 be the initial vertex. We replace all edges (v, t1) incident
on t1 by a copy of the gadget shown in Figure 8. Next, we add self-loops on t1 and t2 with
weights 1 and 2, respectively. Finally, the weights of all remaining edges are 0.

We claim that, in this weighted arena, Eve can ensure regret strictly less than 1 – for
payoff functions Sup and LimSup – if and only if in G the vertex pairs (s1, t1) and (s2, t2)
cannot be joined by vertex-disjoint paths. Indeed, we claim that the strategy that minimizes
the regret of Eve is the strategy that, in states where she has a choice, tells her to go to t1.

First, let us prove that this strategy has regret strictly less than 1 if and only if no two
disjoint paths in the graph exist between the pairs of states (s1, t1) and (s2, t2). Assume the
latter is the case. Then if Adam chooses to always avoid t1, then clearly the regret is 0. If t1
is eventually reached, then the choice of Eve secures a value of 1 (for all payoff functions).
Note that if she had chosen to go towards s2 instead, as there are no two disjoint paths, we
know that either the path constructed from s2 by Adam never reaches t2, and then the value
of the path is 0 – and the regret is 0 for Eve– or the path constructed from s2 reaches t1
again – and, again, the regret is 0 for Eve. Now assume that two disjoint paths between the
source-target pairs exist. If Eve changed her strategy to go towards s2 (instead of choosing
t1) then Adam has a strategy to reach t2 and achieve a payoff of 2. Thus, her regret would
be equal to 1.

Second, we claim that any other strategy of Eve has a regret greater than or equal to
1. Indeed, if Eve decides to go towards s2 (instead of choosing to go to t1) then Adam can
choose to loop on the state before s2 and the payoff in this case is 0. Hence, the regret of
Eve is at least 1.

Note that minimal changes are required for the same construction to imply the result for
Inf. Further, the weight function and threshold r can be accommodated so that Eve wins for
the non-strict regret threshold. Hence, the general result follows. J

Memory requirements for Eve. It follows from our algorithms for computing regret in
this variant that Eve only requires strategies with exponential memory. Examples where
exponential memory is necessary can be easily constructed.

I Corollary 9. For all payoff functions Sup, Inf, LimSup, LimInf, MP and MP, for all game
graphs G, there exists m which is 2O(|G|) such that: RegS∃,Σ1

∀
(G) = RegΣm

∃ ,Σ
1
∀
(G).
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5 Variant III: Adam plays word strategies

For this variant, we provide tight upper and lower bounds for all the payoff functions:
the regret threshold problem is EXPTIME-complete for Sup, Inf, LimSup, and LimInf, and
undecidable for MP and MP. For the later case, the decidability can be recovered when we
fix a priori the size of the memory that Eve can use to play, the decision problem is then
NP-complete. Finally, we show that our notion of regret minimization for word strategies
generalizes the notion of good for games introduced by Henzinger and Piterman in [14], and
we also formalize the relation that exists with the notion of determinisation by pruning for
weighted automata introduced by Aminof et al. in [1].

Additional definitions. We say that a strategy of Adam is a word strategy if his strategy
can be expressed as a function τ : N→ [max{deg+(v) : v ∈ V }], where [n] = {i : 1 ≤ i ≤ n}.
Intuitively, we consider an order on the successors of each Adam vertex. On every turn, the
strategy τ of Adam will tell him to move to the i-th successor of the vertex according to the
fixed order. We denote by W∀ the set of all such strategies for Adam. When considering
word strategies, it is more natural to see the arena as a (weighted) automaton.

A weighted automaton is a tuple Γ = (Q, qI , A,∆, w) where A is a finite alphabet, Q
is a finite set of states, qI is the initial state, ∆ ⊆ Q × A × Q is the transition relation,
w : ∆→ Z assigns weights to transitions. A run of Γ on a word a0a1 . . . ∈ Aω is a sequence
ρ = q0a0q1a1 . . . ∈ (Q×A)ω such that (qi, ai, qi+1) ∈ ∆, for all i ≥ 0, and has value Val(ρ)
determined by the sequence of weights of the transitions of the run and the payoff function.
The value Γ assigns to a word is the supremum of the values of all its runs on the word. We
say the automaton is deterministic if ∆ is functional.

A game in which Adam plays word strategies can be reformulated as a game played on a
weighted automaton Γ = (Q, qI , A,∆, w) and strategies of Adam – of the form τ : N→ A –
determine a sequence of input symbols to which Eve has to react by choosing ∆-successor
states starting from qI . In this setting a strategy of Eve which minimizes regret defines a
run by resolving the non-determinism of ∆ in Γ, and ensures the difference of value given by
the constructed run is minimal w.r.t. the value of the best run on the word spelled out by
Adam. The following result summarizes the results of this section:

I Theorem 10. Deciding if the regret value is less than a given threshold (strictly or non-
strictly) playing against word strategies of Adam is EXPTIME-complete for Inf, Sup, LimInf,
and LimSup; it is undecidable for MP and MP.

Upper bounds. There is an EXPTIME algorithm for solving the regret threshold problem
for Inf, Sup, LimInf, and LimSup. This algorithm is obtained by a reduction to parity games.

I Lemma 11. For r ∈ Q, weighted automaton Γ and payoff function Inf, Sup, LimInf, or
LimSup, determining whether RegS∃,W∀

(Γ)C r, for C ∈ {<,≤}, can be done in exponential
time.

Sketch. We focus, for this sketch, on the LimInf payoff function. Our decision algorithm
consists in first building a deterministic automaton for Γ = (Q1, qI , A,∆1, w1) using the
construction provided in [6]. We denote by DΓ = (Q2, sI , A,∆2, w2) this deterministic
automaton and we know that it is at most exponentially larger than Γ. Then we shift
the weights of the automaton DΓ by −r, and we denote it by D−rΓ . Finally, we need to
decide if Eve is able to simulate D−rΓ on Γ in the sense of [6]: she must be able to resolve
non-determinism in Γ on letters given by Adam in a way that the run constructed in Γ has a
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Figure 9 Initial gadget used in reduction from countdown games.

value greater than or equal to the value of the unique run of D−rΓ on the word constructed
by Adam. This simulation problem can be reduced to determining the winner in a parity
game. In our case, the parity game that we need is linear in the size of the product between
D−rΓ and Γ, and so exponential in the size of Γ, but uses a polynomial number of priorities.
Solving this parity game can be done in exponential time in the size of Γ, giving us the
required upper bound for the regret threshold problem. Details for LimInf and the other
measures are given in the technical report [16]. J

Lower bounds. We first establish EXPTIME-hardness for the payoff functions Inf, Sup,
LimInf, and LimSup by giving a reduction from countdown games [18]. That is, we show that
given a countdown game, we can construct a game where Eve ensures regret less than 2 if
and only if Counter wins in the original countdown game.

I Lemma 12. For r ∈ Q, weighted automaton Γ and payoff function Inf, Sup, LimInf, or
LimSup, determining whether RegS∃,W∀

(Γ)C r, for C ∈ {<,≤}, is EXPTIME-hard.

To show undecidability of the problem for the mean-payoff function we give a reduction
from the threshold problem in mean-payoff games with partial-observation. This problem
was shown to be undecidable in [9, 15].

I Lemma 13. For r ∈ Q, weighted automaton Γ and payoff function MP or MP, determining
whether RegS∃,W∀

(Γ)C r, for C ∈ {<,≤}, is undecidable even if Eve is only allowed to play
finite memory strategies.

Fixed memory for Eve. Since the problem is EXPTIME-hard for most payoff functions and
already undecidable for MP and MP, we now fix the memory Eve can use.

I Theorem 14. For r ∈ Q, weighted automaton Γ and payoff function Inf, Sup, LimInf,
LimSup, MP, or MP, determining whether RegΣm

∃ ,W∀
(Γ)C r, for C ∈ {<,≤}, can be done

in NTIME(m2|Γ|2).

Sketch. Guess the strategy σ of Eve. Consider the non-deterministic automaton constructed
from the synchronous product of the original machine and the deterministic automaton
defined by the automaton restricted to transitions allowed by σ, this clearly has size at most
m|Γ|. The weights of the transitions of the new automaton are set to the difference of the
values of the functions of the two original automata. The language of the new machine is
empty (for accepting threshold r) if and only if the desired property holds. As emptiness of
a weighted automaton A can be decided in O(|A|2) time [6], the result follows. J

We provide a matching lower bound. The proof is an adaptation of the NP-hardness proof
from [1] (all the details are provided in the technical report [16]).

I Theorem 15. For r ∈ Q, weighted automaton Γ and payoff function Inf, Sup, LimInf,
LimSup, MP, or MP, determining whether RegΣ1

∃,W∀
(Γ)C r, for C ∈ {<,≤}, is NP-hard.
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Relation to other works. Let us first extend the definitions of approximation, embodiment
and refinement from [1] to the setting of ω-words. Consider two weighted automata A =
(QA, qI , A,∆A, wA) and B = (QB, qI , A,∆B, wB) and let d : R × R → R be a metric.3
We say B (strictly) α-approximates A (with respect to d) if d(B(w),A(w)) ≤ α (resp.
d(B(w),A(w)) < α) for all words w ∈ Σω. We say B embodies A if QA ⊆ QB, ∆A ⊆ ∆B and
wA agrees with wB on ∆A. For an automaton A = (Q, qI , A,∆, w) and an integer k ≥ 0, the
k-refinement of A is the automaton obtained by refining the state space of A using k boolean
variables. The automaton A is said to be (strictly) (α, k)-determinisable by pruning if the
k-refinement of A embodies a deterministic automaton which (strictly) α-approximates A.
The next result follows directly from the above definitions.

I Proposition 16. For non-negative α ∈ Q, k ∈ N, a weighted automaton Γ is (strictly)
(α, k)-DBP (w.r.t. the difference metric) iff RegΣ2k

∃ ,W∀
(Γ) ≤ α (resp. RegΣ2k

∃ ,W∀
(Γ) < α).

In [14] the authors define good for games automata. Their definition is based on a game
which is played on an ω-automaton by Spoiler and Simulator. We propose the following
generalization of the notion of good for games automata for weighted automata. A weighted
automaton A is (strictly) α-good for games if Simulator, against any word w ∈ Aω spelled
by Spoiler, can resolve non-determinism in A so that the resulting run has value v and
d(v,A(w)) ≤ α (resp. d(v,A(w)) < α), for some metric d. We summarize the relationship
that follows from the definition in the following result:

I Proposition 17. For non-negative α ∈ Q, a weighted automaton Γ is (strictly) α-good for
games (w.r.t. the difference metric) iff RegS∃,W∀

(Γ) ≤ α (resp. RegS∃,W∀
(Γ) < α).

Acknowledgements. We thank Udi Boker for his comments on how to determinise LimSup
automata.
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Abstract
This paper describes a synthesis algorithm tailored to the construction of choice-free Petri nets
from finite persistent transition systems. With this goal in mind, a minimised set of simplified
systems of linear inequalities is distilled from a general region-theoretic approach, leading to al-
gorithmic improvements as well as to a partial characterisation of the class of persistent transition
systems that have a choice-free Petri net realisation.
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1 Introduction, some examples, and basic notation

In system analysis, the main task is to examine a given system’s properties by means of a
behavioural description. By contrast, in system synthesis, the task is to construct – preferably
automatically – an implementing system from a given behavioural specification. The benefit
of such an approach is that a successfully synthesised system is “correct by design”. There
is no need to re-examine its behavioural properties, because they are known to hold by
construction. If synthesis fails, this may also help to delineate the true reasons of the failure,
paving the way to modifications of the given input behaviour allowing for a more successful
subsequent synthesis.

Synthesis is being applied in many different areas (e.g., [11, 19]). In general, however, since
behavioural descriptions may be extremely (even infinitely) large, synthesis algorithms could
be impossible to obtain by theoretical undecidability [14], or at least be very time-consuming.
Also, synthesis suffers from nondeterminism, since for a given behavioural specification, many
different implementations may exist. Moreover, if there is a desire for an implementation
to enjoy further properties, detecting the existence of a suitable one (if possible) tends to
increase the difficulty of a synthesis problem.

We investigate a special, decidable instance of system synthesis. It is assumed that a
behavioural specification is given in the form of a finite, edge-labelled transition system,
or lts, for short. For example, we could be interested in the transition system TS1 shown
on the left-hand side of Figure 1. We shall be asking whether or not such an lts can be
implemented by an unlabelled Petri net having a specific shape. The shape we shall be
aiming at is choice-freeness, meaning that every place has at most one outgoing transition.
For example, both Petri nets N1 and N ′1 shown in Figure 1 implement TS1, in the sense that
their reachability graphs are isomorphic to TS1. However, N1 is choice-free while N ′1 is not.
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Figure 1 The lts TS1 is solved by the Petri net N1. It is also solved by N ′
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1 is not
(in this paper) accepted as a solution of TS1 because its transitions are non-injectively labelled.
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Figure 3 The Petri net N3 solves the lts TS3. No pure solution of TS3 exists.

Being related to arbiter-freeness [16], choice-freeness is interesting in a digital design
context [11]. Choice-free Petri nets are also precisely the class of nets allowing a fully
distributed [1] implementation. The problem has been addressed and solved for special
classes of choice-free nets in previous papers by the present authors, as follows: for connected
marked graphs and T-systems in [5, 7]; for bounded, reversible choice-free nets (i.e., where it
is always possible to come back to the initial state) in [6, 8]; and for connected, bounded,
live choice-free nets (i.e., where no transition may become dead) in [9]. In the present paper,
this framework will be generalised to bounded choice-free nets, also allowing for non-live
transitions.

We shall be concerned with exact synthesis, disallowing that two or more transitions carry
the same label. This excludes nets such as N ′′1 in Figure 1 as implementations. Moreover, we
shall take into consideration the full class of place/transition systems [18]. For example, the
lts TS2 depicted in Figure 2 can be solved by N2 with an arc having weight 2 from p3 to c,
but not by any plain (meaning: having arc weights at most 1) Petri net. Similarly, the lts
TS3 shown in Figure 3 can be solved by N3, but not by a pure (meaning: side-place free)
Petri net. Observe that there are also specifications which cannot be implemented by any
unlabelled Petri net, such as the lts TS0 shown on the right-hand side of Figure 2 ([3]). The
proofs of partial or full unsolvability are not hard and are left to the reader; [10] may help.

For easy reference, basic formal definitions are summarised in the remainder of this
section. Important concepts with strong impact on the formal development of this paper will
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130 Synthesis of Bounded Choice-Free Petri Nets

be introduced in-line, that is, in the text explaining their relevance. To facilitate spotting
them, such notions will be emphasised in italic at the point of their formal introduction.

I Definition 1.1 (Basic notations and conventions used in this paper). A finite labelled
transition system with initial state is a tuple TS = (S,→, T, s0) with nodes S (a finite set of
states), edge labels T , edges→⊆ (S×T ×S), and an initial state s0 ∈ S. A label t is enabled
at s ∈ S, written formally as s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→, and backward enabled at s,
written as [t〉s, if ∃s′ ∈ S : (s′, t, s) ∈→. A state s′ is reachable from s through the execution
of σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path from s to s′ whose edges are labelled
consecutively by σ. The set of states reachable from s is denoted by [s〉. A (firing) sequence
σ ∈ T ∗ is allowed from a state s, denoted by s[σ〉, if there is some state s′ such that s[σ〉s′.
The language of TS is the set L(TS) = {σ ∈ T ∗ | s0[σ〉}. Two lts TS1 = (S1,→1, T, s01)
and TS2 = (S2,→2, T, s02) are language-equivalent if L(TS1) = L(TS2), and isomorphic if
there is a bijection ζ : S1 → S2 with ζ(s01) = s02 and (s, t, s′) ∈→1⇔ (ζ(s), t, ζ(s′)) ∈→2,
for all s, s′ ∈ S1.

An initially marked Petri net is denoted as N = (P, T, F,M0) where P is a finite set of
places, T is a finite set of transitions, F is the flow function F : ((P × T ) ∪ (T × P ))→ N
specifying the arc weights, and M0 is the initial marking (where a marking is a mapping
M : P → N, indicating the number of tokens in each place). N is plain if no arc weight
exceeds 1; pure or side-place free if ∀p ∈ P : (p•∩•p) = ∅, where p• = {t ∈ T | F (p, t)>0} and
•p = {t ∈ T | F (t, p)>0}; and CF (choice-free [12, 20]) or ON (place-output-nonbranching
[8]) if ∀p ∈ P : |p•| ≤ 1. A transition t ∈ T is enabled at a marking M , denoted by M [t〉,
if ∀p ∈ P : M(p) ≥ F (p, t). The firing of t leads from M to M ′, denoted by M [t〉M ′, if
M [t〉 and M ′(p) = M(p)− F (p, t) + F (t, p). This can be extended, as usual, to M [σ〉M ′ for
sequences σ ∈ T ∗, and [M〉 denotes the set of markings reachable from M . The reachability
graph RG(N) of N is the labelled transition system with the set of vertices [M0〉, initial
state M0, label set T , and set of edges {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧M [t〉M ′}. If an lts
TS is isomorphic to the reachability graph of a Petri net N , we say that N solves TS. All
notions defined for labelled transition systems apply to Petri nets through their reachability
graphs. J 1.1

2 Basic synthesis of Petri nets, recapitulated

Certain classes of lts can be excluded from consideration up front. For instance, it might
happen that in some transition system TS = (S,→, T, s0), some state s is not reachable from
the initial state s0. Such an lts can never be solved by a Petri net, since the reachability
graph is defined by adding all reachable markings (and no others). Hence we shall adopt, for
TS, total reachability, meaning that ∀s ∈ S : s ∈ [s0〉.

Nondeterminism can never occur in the reachability graph of a Petri net, because if
M [t〉M ′, then the successor marking M ′ is uniquely determined by M and t. Generalising
this, let Ψ(σ) denote the Parikh vector of a sequence σ ∈ T ∗, i.e., the vector with index set T
which returns the number of occurrences of t ∈ T in σ, and call an lts strongly deterministic
if, whenever Ψ(τ) = Ψ(τ ′) and either s[τ〉s′ and s[τ ′〉s′′ or s′[τ〉s and s′′[τ ′〉s, then s′ = s′′.

If some sequence τ is cyclic in the reachability graph of a Petri net, i.e., leads from some
marking M to itself, M [τ〉M , then (according to standard Petri net theory) any sequence
which is Parikh-proportional to τ is also cyclic, at any marking at which it is enabled. Let
us call an lts strongly cycle-consistent if the same property holds for it.

For the sake of brevity, let us call an lts decent if it is totally reachable, strongly
deterministic, and strongly cycle-consistent. A non-decent lts has no possible Petri net
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solution, and it can therefore be interesting to first check this structural constraint in order
to avoid applying uselessly a costly regional analysis. This observation is exploited by some
tools (e.g. [21]).

A very general (but also expensive) algorithm for synthesising a Petri net from a labelled
transition system can be described as follows.

For a given finite and decent lts TS = (S,→, T, s0), we start constructing a net by letting
it have T as its set of transitions, and no places. Such a net has the language T ∗, which
(normally) contains many more words than L(TS). In order to exclude words disallowed
in TS, and in order to guarantee a bijection between TS and the reachability graph of
the hoped-for net N , a place will be introduced for every separation problem in TS as
follows.

An event/state separation problem consists of an ordered pair (s, t) ∈ S×T with ¬(s[t〉).
There are at most |S|·|T | such problems. For every event/state separation problem,
N needs to have at least one place p such that M(p) < F (p, t) for the marking M

corresponding to state s, where F (p, t) is the weight of the arc from p to t.

A state separation problem consists of a pair of states {s, s′} with s 6= s′. There are
1
2 ·(|S|·(|S|−1)) such problems. For every state separation problem, N needs to contain
at least one place p such that M(p) 6= M ′(p) for the markings M and M ′ corresponding
to states s and s′, respectively.

The notion of a “place” is not known for TS. A region [2] of an lts (S,→, T, s0) is
a triple (R,B,F) ∈ (S → N, T → N, T → N) such that for all s[t〉s′, R(s) ≥ B(t) and
R(s′) = R(s)−B(t)+F(t). A region models a place p, in the sense that B(t) models F (p, t),
F models F (t, p), and R(s) models the token count of p in the marking corresponding to
s.

A straightforward algorithm inspects every separation problem in turn and tries to solve
a linear inequality system for it. The unknowns are the arc weights of a place p with
respect to every transition in T , and the initial marking M0(p). The inequality system
arises from the need to guarantee the region properties (giving rise to many inequalities),
and from the need to guarantee a separation property (giving rise to one or two additional
inequalities). If these systems are solvable for every separation problem, we find a net
which is isomorphic to TS, otherwise such a net does not exist. If they are solvable
for every event/state separation problem, then we can construct a Petri net which is
language-equivalent to TS.

Thus, in general, we need to solve O(|S|2) inequality systems, each with more than 2 · |T |
unknowns. In the present paper, we ask whether a given finite, decent lts has a choice-free
Petri net solution. If such a requirement is added, the algorithm could become more complex;
but the aim of this paper is to demonstrate that, knowing what solutions we are looking for
may also work the other way, namely focussing the search and speeding up the region-based
general algorithm.

The reachability graphs of choice-free Petri nets necessarily satisfy an additional set of
properties which are not shared by all finite labelled transition systems, even if they are
decent. This excludes many decent ones from consideration. In the next Section 3, we shall
gather a set of such properties. In Section 4, we describe how these properties and the special
shape of the places (and regions) of a choice-free net can be exploited in order to simplify
the region inequalities.
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132 Synthesis of Bounded Choice-Free Petri Nets

3 Persistent transition systems, small cycles, and CF Petri nets

The reachability graphs of choice-free Petri nets are persistent, and persistent lts enjoy a
property of small cycles, as will be described next.

An lts TS = (S,→, T, s0) is called persistent [17] if, whenever s[a〉 and s[b〉 with a 6= b,
then also s[ab〉s′ and s[ba〉s′ for some common state s′. For example, all of the lts shown in
figures 1–3 (including TS0) are persistent. Any choice-free net N = (S, T, F,M0) is persistent,
because if a 6= b for a, b ∈ T , then there is no common pre-place p of a and b, i.e., for all
p ∈ P , either F (p, a) = 0 or F (p, b) = 0, or both, which directly entails the persistence
property, if we add the strong determinism of any Petri net.

The property of small cycles generalises the following observations. First, define a home
state of TS to be a state s̃ ∈ S which satisfies ∀s ∈ [s0〉 : s̃ ∈ [s〉. Finite persistent lts always
have at least one home state (with an easy proof; see, e.g. corollary 2 of [4]). The sets of home
states of TS0, TS1, TS2 and TS3 of figures 1–3 are, respectively, {s5}, {s3}, {s1, s2, s3, s4},
and {s2}. Next, define a nontrivial cycle s[σ〉s around a state s ∈ [s0〉 to be small if there
is no nontrivial cycle s′[σ′〉s′ with s′ ∈ [s0〉 and Ψ(σ′) � Ψ(σ), where � = (≤ ∩ 6=). For
example, in TS2, both s3[bac〉s3 and s3[abc〉s3, and also s1[acb〉s1 (and others) are small
cycles, but s1[acabcb〉s1 (and others) are not. Notice that in TS2, all small cycles have the
same Parikh vector. In TS3, by contrast, s1[b〉s1 is small, s2[b〉s2 is small, s2[c〉s2 is small,
but s2[bc〉s2 is not. Notice that in TS3, all small cycles either have the same Parikh vectors,
or are label-disjoint, where two Parikh vectors are label-disjoint if their supports are disjoint,
and the support of a Parikh vector Ψ: T → N is defined as the set {t ∈ T | Ψ(t) > 0}.

This property is general, as follows.

I Theorem 3.1 (Cycle decomposition at home states). Let TS = (S,→, T, s0) be a finite,
decent, persistent lts. Then there exist a state s̃ ∈ [s0〉 and a finite set C = {s̃ [ρi〉s̃ | 1 ≤ i ≤ n}
of mutually label-disjoint small cycles around s̃, with n ≤ |T |, such that for any state s ∈ [s0〉,
the Parikh vector of any cycle s[ρ〉s decomposes as Ψ(ρ) =

∑n
i=1 ki ·Ψ(ρi) for some ki ∈ N.

Proof. From theorem 2 of [4], observing that the preconditions of this result are implied by
finiteness, decency, and persistence, and keeping in mind that small cycles have been called
hypersimple in [4]. J

In fact, the results of [4] also show that for s̃, any home state can be chosen and that the
set of Parikh vectors in C is independent of the choice of home state. For example, in TS2, we
may choose s̃ = s1 and C = {s1[acb〉s1} with |C| = 1, and in TS3, s̃ = s2 is the only possible
choice, and we get C = {s2[b〉s2, s2[c〉s2} with |C| = 2. In TS0 and TS1, s̃ = s5 and s̃ = s3
(respectively), and we have C = ∅ in both cases. If a persistent Petri net N = (S, T, F,M0)
is bounded, i.e., has a finite reachability graph RG(N), then it satisfies the premises of the
previous theorem. Hence the cycles of RG(N) can be decomposed in the same way.

The decomposition theorem has implications for the distribution of live transitions in
TS. A label t ∈ T is live if ∀s ∈ [s0〉∃s′ ∈ [s〉 : s′[t〉. If TS is finite, decent, and persistent,
then live transitions are exactly those that can be found in one of the cycles in C. All others
(for instance, a and d in TS3, but also a and b in TS0) can never again be executed, once a
home state has been reached. We cast these notions in the following definition.

I Definition 3.2 (The small cycles property P{Υ1, . . . ,Υn}). Let TS = (S,→, T, s0) be an
lts. For some n ∈ N and for all 1 ≤ i ≤ n, let Υi be a function Υi : T → N such that these
functions are mutually label-disjoint. TS satisfies property P{Υ1, . . . ,Υn} iff {Υ1, . . . ,Υn}
is the set of Parikh vectors of small cycles of TS. J 3.2
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If an lts TS satisfies P{Υ1, . . . ,Υn}, then we shall henceforth denote by Ti the support
of Υi and by T0 the set T \ (T1 ∪ . . . ∪ Tn). By definition, these n + 1 sets are mutually
disjoint. In case TS is finite, decent, and persistent, the set on non-live transitions is exactly
T0. For example, TS2 and TS0 in Figure 2 satisfy P{Υ1} and P∅, respectively, where Υ1
maps a, b and c to 1. Also, T0 is ∅ in TS2 and {a, b} in TS0. In Figure 3, TS3 satisfies
P{Υ1,Υ2} where Υ1 = (a 7→ 0, b 7→ 1, c 7→ 0, d 7→ 0), Υ2 = (a 7→ 0, b 7→ 0, c 7→ 1, d 7→ 0),
and T0 = {a, d}.

A coherent notion of distance between states can be introduced as follows.

I Definition 3.3 (Modulo vectors and distances). Let TS = (S,→, T, s0) be a finite, decent,
and persistent lts satisfying P{Υ1, . . . ,Υn}.
For a natural T -vector Υ, let

Υ mod {Υ1, . . . ,Υn} = Υ−
∑

i∈{1,...,n}

( min
t∈Ti

( Υ(t)÷Υi(t) ) ) ·Υi

be the natural T -vector obtained by subtracting each of the vectors Υi as often as possible
from Υ (in the formula, ÷ denotes integer division). Let r ∈ S, s ∈ [r〉 and r[α〉s be a path
of TS. Then ∆r,s = Ψ(α) mod {Υ1, . . . ,Υn} is called the distance between r and s. J 3.3

The following lemma shows that ∆r,s does not depend on the path chosen between r
and s.

I Lemma 3.4 (istances are well-defined). Let TS = (S,→, T, s0) be a finite, decent, and
persistent lts satisfying P{Υ1, . . . ,Υn}.
Let r[σ〉s and r[σ′〉s be two paths between the same states r, s ∈ [s0〉.
Then Ψ(σ) mod {Υ1, . . . ,Υn} = Ψ(σ′) mod {Υ1, . . . ,Υn}.

For the proof of this lemma, we use Keller’s theorem [15], a basic tool for analysing
persistent systems. For sequences σ, τ ∈ T ∗, let τ−• σ denote the sequence left after erasing
successively in τ the leftmost occurrences of all symbols from σ, read from left to right.
Keller’s theorem states that in a deterministic and persistent lts, if s[τ〉 and s[σ〉 for some
s ∈ [s0〉, then Ψ(τ(σ−• τ)) = Ψ(σ(τ−• σ)) and s[τ(σ−• τ)〉ŝ and s[σ(τ−• σ)〉ŝ for some state
ŝ ∈ [s0〉.

Proof. Applied to r[σ〉s and r[σ′〉s, Keller’s theorem yields s[σ−• σ′〉ŝ and s[σ′−• σ〉ŝ. The
definition of −• implies that σ−• σ′ and σ′−• σ are label-disjoint. Lemma 4 in [4] states that in
a finite, deterministic, strongly cycle-consistent and persistent lts, two paths between two
different states always have a common label. This implies s = ŝ.

Thus, both s[σ−• σ′〉s and s[σ′−• σ〉s are cyclic, and by Theorem 3.1, both Ψ(σ−• σ′) and
Ψ(σ′−• σ) are linear combinations of Υ1, . . . ,Υn. On T0, they both must be null, so that
Ψ(σ) and Ψ(σ′) coincide on T0. On each Ti with i ∈ {1, . . . , n}, since σ−• σ′ and σ′−• σ are
label-disjoint, at least one of them must be the empty sequence; hence, on Ti, one of Ψ(σ) or
Ψ(σ′) must be greater or equal to the other, by a multiple of Υi. J

In Figure 4, TS4 satisfies P{Υ1,Υ2} where Υ1 = (a 7→ 0, b 7→ 1, c 7→ 1, d 7→ 0, e 7→
0) = Ψ(bc) and Υ2 = (a 7→ 0, b 7→ 0, c 7→ 0, d 7→ 1, e 7→ 1) = Ψ(de). There are two Parikh-
incomparable paths s0[bac〉s and s0[dae〉s, and no smaller ones from s0 to s. Yet the distance
∆s0,s is uniquely defined as the Parikh vector ∆s0,s = (a 7→ 1, b 7→ 0, c 7→ 0, d 7→ 0, e 7→ 0) =
Ψ(a), and it can be obtained either by subtracting Υ1 from Ψ(bac) or by subtracting Υ2
from Ψ(dae).
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Figure 4 Upper part: Two lts which are PN-solvable but have no choice-free Petri net solutions.
Lower part: Solutions N4 of TS4 (left-hand side) and N5 of TS5 (right-hand side).

The properties defined thus far (total reachability, determinism, cycle-consistency, per-
sistence, and the small cycle property) are shared by all reachability graphs of bounded
persistent Petri nets. The reachability graphs of bounded choice-free Petri nets enjoy further
(stronger) properties, two of which, the prime cycle property and the distance property, are
described in the remainder of this section. If any of these properties is violated for some lts,
then it is certain that choice-free synthesis (to be defined in the next section) will fail for it.

I Definition 3.5 (Prime cycles). Let TS = (S,→, T, s0) be any lts and s[σ〉s a cycle in
it. This cycle is called prime if gcd{Ψ(σ)(t) | t ∈ T} = 1 (where gcd denotes the greatest
common divisor). J 3.5

I Lemma 3.6 (Prime cycle property). In the reachability graph of a bounded choice-free net,
all small cycles are prime.

Proof. Lemma 16 in [20] states that in a choice-free net (P, T, F,M0), if there is a T-semiflow
X (i.e., a T -indexed vector X ≥ 0 such that ∀p ∈ P :

∑
t∈T (F (t, p) − F (p, t)) ·X(t) = 0),

and a firing sequence M0[σ〉M with Ψ(σ) ≥ X, then it is possible to rearrange σ in such
a way that M0[σ′〉M [ρ〉M with Ψ(ρ) = X and Ψ(σ′ρ) = Ψ(σ). This implies that at home
states, non-prime cycles can be factored out into a nontrivial initial part followed by a prime
cycle executing exactly X, and hence are not small. J

This is illustrated by TS5 shown on the right-hand side of Figure 4. It is finite, decent,
persistent, and satisfies P{Υ1} with Υ1 = (a 7→ 2, b 7→ 2, c 7→ 2). It is PN-solvable by N5,
as also shown in Figure 4, but, as a consequence of Lemma 3.6, may not be solved by a
choice-free net.

I Definition 3.7 (Parikh-minimal paths). Let TS = (S,→, T, s0) be any lts, let r ∈ S, let
s ∈ [r〉, and let r[σ〉s be a path from r to s. The latter is called Parikh-minimal if there is
no path r[σ′〉s with Ψ(σ′) � Ψ(σ). J 3.7

The following lemma implies that in choice-free nets, the distance ∆r,s between two states
r and s agrees with the minimal Parikh vector of any path from r to s. In particular, unlike
in TS4, there are no Parikh-incomparable Parikh-minimal paths between the same states.
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µ0

p

x

a1

a2

...

am

k+h

h

k1

k2

km

(x ∈ T` with 0 ≤ ` ≤ n)

Figure 5 A general pure (h = 0) or non-pure (h > 0) choice-free place with initial marking µ0.

I Lemma 3.8 (Distance property). In the reachability graph RG(N) of a bounded choice-free
net N , if r[σ〉s is a Parikh-minimal path, then Ψ(σ) = ∆r,s. Also, if q[ρ〉q is a small cycle
in RG(N), then Ψ(σ) 6≥ Ψ(ρ).

Proof. This again follows from an iterated application of Lemma 16 in [20]. J

For example, the lts TS4 shown in Figure 4 is PN-solvable (by N4, also shown in
the figure), finite, decent, persistent, and satisfies P{Υ1,Υ2} as already mentioned, but
may not be solved by a choice-free net, since, for instance, s0[bac〉s is Parikh-minimal but
Ψ(bac) 6= ∆s0,s = Ψ(a); also, Ψ(bac) ≥ Υ1 = (a 7→ 0, b 7→ 1, c 7→ 1, d 7→ 0, e 7→ 0).

4 Choice-free synthesis

In this section, it will be shown how the special form of the target places of a hoped-for
choice-free Petri net solving a given lts can be exploited in order to reduce the number, and
to simplify the shape, of the linear inequality systems that need to be solved. Concretely,
let us consider an lts TS = (S,→, T, s0) which is finite, decent, persistent, and satisfies
P{Υ1, . . . ,Υn}. We shall analyse when and how one can synthesise a corresponding choice-
free net N = (P, T, F,M0). As before, the set of transitions of N is the same as the set of
labels of TS. Since N is intended to be choice-free, every place p ∈ P has the general form
shown in Figure 5, with x ∈ T as its only outgoing transition, and {a1, . . . , am} = T \ {x}.
All arc weight parameters k, h, k1, k2, . . . , km and the initial marking µ0 of p are required to
be semipositive, and they are the unknowns of the synthesis. If p is used for preventing x at
some state s, i.e., for solving some event/state separation problem ¬(s[x〉), we must have
k + h > 0; but, for the time being, any of these parameters could also be zero.
Let T = T0 •∪T1 •∪ . . . •∪Tn be the partition of T induced by P{Υ1, . . . ,Υn}. For 0 ≤ i ≤ n,
we denote by Ii = {j | aj ∈ Ti} the indices of transitions aj for which Υi(aj) > 0.
In the following, we shall also denote by ` the unique index such that x ∈ T`.

Ensuring that cycles are preserved. Since the net effect of firing x on p is−k = (−(k+h)+h)
and all Parikh vectors in {Υ1, . . . ,Υn} are cyclic, we must have

∀i ∈ {1, . . . , n} :
∑
j∈Ii

kj ·Υi(aj) = k ·Υi(x) (1)

ensuring that if every transition t is fired Υi(t) times, the marking on p is reproduced. Note
that this implies k ≥ 0, and even k > 0 unless all the kj ’s for j ∈ Ii are null.

If x ∈ T0, i.e., ` = 0, all the right-hand sides of (1) are null, so that all kj for j 6∈ I0
must be null too; in other words, if p• ⊆ T0, then •p ⊆ T0. Thus, if x is non-live, then all
transitions in •p are also non-live. If x ∈ T` for ` ∈ {1, . . . , n}, the right-hand sides of (1) are
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null when i ∈ {1, . . . , n} \ {`}, so that all kj for j 6∈ I0 ∪ I` must be null too; in other words,
if p• ⊆ T`, then •p ⊆ T0 ∪ T`. Thus, if x is live and part of a small cycle, then all transitions
in •p are either non-live, or live and part of the same small cycle.

Ensuring that the marking on p does not prevent enabled transitions. By the shape of
the place shown in Figure 5, by •p ⊆ T0 ∪ T`, and by the firing rule, the marking of place p
at (the marking corresponding to) an arbitrary state r ∈ [s0〉 is

Mr(p) = µ0 +
∑

j∈I0∪I`

kj ·∆s0,r(aj)− k·∆s0,r(x) (2)

This sum must always be nonnegative. Let us start by analysing what it means that p may
never prevent any enabled x. Thus, consider an edge r[x〉r′ in TS. Then the marking Mr(p)
has to be at least k+h, and Mr′(p) is at least h. More generally, if l > 0 and r[xl〉r′, then we
must have Mr(p) ≥ l · k + h, or equivalently, Mr′(p) ≥ h. For this reason, when considering
the marking of p at a state r with r[x〉, we first try to follow x-chains in forward direction
as long as possible. If r[x〉r′[x〉r′′ with r 6= r′, then by strong determinism, r′′ is necessarily
different from r and from r′, so that x-chains starting with two different states can never hit
an x-cycle, nor an x-branch, and necessarily have a unique last state. We may have infinite
x-paths, but only in case r[x〉r (like those for b or for c in Figure 3), where state r can never
be left by an x-edge. Thus, we are interested in the following subset of states:

XNX(x) = {r ∈ S | [x〉r ∧ ¬r[x〉} ∪ {r ∈ S | r[x〉r}

which either are produced by x but do not enable x, or have an x-loop. The above
considerations amount to a proof of the following corollary:

I Corollary 4.1 (XNX and enabling condition).
(
∀r ∈ S : r[x〉 ⇒Mr(p) ≥ k+h

)
⇐⇒

(
∀r ∈

XNX(x) : Mr(p) ≥ h
)
.

In other words, we only need to require Mr(p) ≥ h for states r ∈ XNX(x) in order to
guarantee that place p allows x whenever it is enabled. But we can do more. Suppose that
r, r′ ∈ XNX(x) and r ∈ [r′〉, and consider the case that r′[α〉r where α is x-free. Then α
acts semipositively on p, and we only need to require Mr′(p) ≥ h on r′, in order to have
Mr(p) ≥ h on r. For this reason, before imposing the requirement Mr(p) ≥ h on some
r ∈ XNX(x), we may try to follow x-free backward chains starting at r, hoping to find some
r′ ∈ XNX(x) such that imposing Mr′(p) ≥ h on r′ implies Mr(p) ≥ h for r. In doing so,
we may hit a cycle. However, by Theorem 3.1, such a cycle may not contain any transition
from T0 ∪ T`. This is because cycles may never contain transitions from T0 anyway, and
because, while a cycle might intersect T` if ` > 0, it would then also have to contain x (but
we only follow x-free backward chains). Thus, the cycle we may be hitting could at most be
formed by transitions in T \ (T0 ∪ T`); however, this has no importance since – as we already
know – such cycles do not modify the marking of p. Let us therefore consider the following
equivalence relation between states q, q′:

q ≡` q
′ ⇐⇒ q[β〉q′ and q′[β′〉q with β, β′ ∈ (T \ (T0 ∪ T`))∗

and let us define

MXNX(x) = {r ∈ XNX(x) |6 ∃r′ ∈ XNX(x) : r′ 6≡` r and r′[α〉r with α ∈ (T \ {x})+}
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i.e., we only consider states in XNX(x) which do not lie x-freely after another (non-≡`-
equivalent) one. This set may contain many ≡`-equivalent states, but we need only keep one
of them. Let us therefore choose some set

mXNX(x) ⊆ MXNX(x) with a single representative of each ≡`-equivalent class in it

These considerations amount to a proof of

I Corollary 4.2 (mXNX and enabling condition).
(
∀r ∈ S : r[x〉 ⇒ Mr(p) ≥ k + h

)
⇐⇒(

∀r ∈ mXNX(x) : Mr(p) ≥ h
)
.

In other words, we only need to require Mr(p) ≥ h for states r ∈ mXNX(x) in order to
guarantee that place p allows x whenever it is enabled. Combining Corollary 4.2 with the
formula (2) relating any Mr(p) to µ0 yields the following set of constraints:

∀r ∈ mXNX(x) : µ0 ≥ k ·∆s0,r(x)−
∑

j∈I0∪I`

kj ·∆s0,r(aj) + h (3)

Let us now re-examine the constraint that ∀r ∈ [s0〉 : Mr(p) ≥ 0. By r ∈ [s0〉, there is a path
s0[α〉r. If α contains an x, let s be the visited state before the last x; from the previous
constraints, Ms(p) ≥ k+h and Mr(p) ≥ h ≥ 0. If α contains no x, then it has a semipositive
effect on p and thus, µ0 ≤ Mr(p). It is then enough to impose µ0 ≥ 0 to get the desired
property Mr(p) ≥ 0. However, µ0 ≥ 0 can always be ensured by adding, if necessary, an
adequate shift to all markings of p, as well as to h.

In sum, requiring the non-negative solvability of (3) suffices in order to find parameters
k, h, k1, . . . , km, µ0 in such a way that the corresponding region (and then, a corresponding
place p with initial marking M0(p) = µ0) allows all the paths that are possible in TS.

Ensuring that place p solves an event/state separation problem. For each state s not
enabling x, there should be a place p which does not have enough tokens to allow to perform
x when reaching the state corresponding to s. That is, in addition to the constraints derived
in the previous section, p should satisfy Ms(p) < k + h, i.e., using (2) with r = s:

µ0 < k + h+ k ·∆s0,s(x)−
∑

j∈I0∪I`

kj ·∆s0,s(aj) (4)

Again, it is possible to reduce the number of such inequalities. For any α ∈ (T \ {x})∗ with
s′[α〉s, we have Ms′(p) ≤Ms(p). Hence, if (4) is ascertained for s, it is no longer necessary
to bother about s′. Again, we may have cycles of equivalent states allowing to progress
indefinitely while staying in states non-enabling x. Note that, by persistence, if s ≡` s

′, then
s[x〉 ⇐⇒ s′[x〉; moreover, if s[a〉r with r 6≡` s, then s′[a〉r′ with r ≡` r

′; i.e., ≡`-equivalent
states behave equivalently, as far as (non-) enabling of x is concerned. Hence, it makes sense
to define MNX(x) = {s ∈ S | ¬s[x〉 and ∀s[a〉r : (s ≡` r) ∨ r[x〉} and

mNX(x) ⊆ MNX(x) with a single representative of each ≡`-equivalence class in it

i.e., we consider states not allowing x such that no non-equivalent successor still excludes
performing x, and we keep one representative of each class. Thus, if the event/state separation
problems can be solved for the states s in mNX(x), then they are solved for all s ∈ S with
¬s[x〉. Hence, for every s ∈ mNX(x), we need to find a place satisfying (3) and (4).

Combining the constraints (3) and (4) allows to eliminate both µ0 and h:

∀r∈mXNX(x) : 0 < k · [1 + ∆s0,s(x)−∆s0,r(x)] +
∑

j∈I0∪I`
kj · [∆s0,r(aj)−∆s0,s(aj)] (5)
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input a finite, decent, persistent lts TS = (S,→, T, s0) satisfying P{Υ1, . . . ,Υn};
initially T is the set of transitions, and P is empty;
for every x ∈ T` (0 ≤ ` ≤ n) and s ∈ mNX(x) do
construct a set mXNX(x) and the corresponding system (5/6);
if there is no natural solution to this system then
{output “TS is not CF-solvable, due to x, s, and system (5/6)”; stop};

choose a set of natural numbers (k, k1, . . . , km) satisfying (5), as well as (1) if ` 6= 0,
and compute h and µ0;

add to P a place as in Fig. 5, with weights k1, . . . , km, k + h, h, and initial marking µ0;
end for
output “The net with transitions T and places P CF-solves TS”.

Figure 6 An algorithm checking CF-solvability and constructing an adequate solution.

If the system (5) is solvable in the domain of natural numbers (with kj = 0 if j 6∈ I0 ∪ I`),
let us define µ = max{k ·∆s0,r(x)−

∑
j∈I0∪I`

kj ·∆s0,r(aj) | r ∈ mXNX(x)}. If µ ≥ 0, by
choosing h = 0 and µ0 = µ we shall get a solution to the systems (3) and (4), with µ0 ≥ 0.
If µ < 0, it is not possible to create a suitable pure place from this solution, but we may
choose h = −µ and µ0 = 0 (realising the “adequate shift” referred to above), and we shall
again get a solution to the systems (3) and (4), with µ0 ≥ 0.

If x 6∈ T0, the constraints (1) need to be fulfilled as well. Combining (1) and (5), we get

∀r ∈ mXNX(x) :
0 <

∑
j∈I0∪I`

kj · [Υ`(aj)·(1 + ∆s0,s(x)−∆s0,r(x))−Υ`(x)·(∆s0,s(aj)−∆s0,r(aj))]
(6)

If the system (6) is solvable in the domain N, it is also possible to find a natural solution to
both (1) and (5), by choosing a suitable value for k using (1), and, if necessary, multiplying
the solution found by a common factor. Then we may choose h and µ0 as described above.

Figure 6 summarises the resulting algorithm, where by “system (5/6)” we mean “system
(5)” if x ∈ T0 and “system (6)” if x ∈ T` for 1 ≤ ` ≤ n.

I Theorem 4.3 (Validity of the construction). If, for some x ∈ T and s ∈ mNX(x), the
corresponding system (5/6) is not solvable, then TS has no CF solution. Otherwise, the
constructed net is a CF solution of TS.

Proof. If the system (5/6) associated with some x ∈ T and s ∈ mNX(x) is not solvable, then
from the analysis above there is no place of a CF net both allowing all valid evolutions and
excluding the invalid transition x from s. Let us thus assume all those systems are solvable
and let us consider the net constructed as above.

We have seen that for any s ∈ S, if s[x〉, there is a state r ∈ mXNX(x) and a state
s′ ∈ XNX(x) such that r[α〉s′ and s[x`〉s′, with ` > 0 and α ∈ (T \{x})∗. By the construction
of each place p, Mr(p) ≥ h, Ms′(p) ≥ h, and Ms(p) ≥ k + h. We have also seen that, for
any s ∈ S, there is an x-free sequence α such that either s0[α〉s and Ms(p) ≥M0(p) ≥ 0, or
there is some r ∈ XNX(x) with r[α〉s so that Ms(p) ≥Mr(p) ≥ h. As a consequence, place p
allows all valid evolutions specified by the lts. If ¬s′[x〉, we know there is some s ∈ mNX(x)
such that Ms′(p) ≤ Ms(p). From the choice of M0(p) for the corresponding place p, and
from (5), we have (4) whatever h, which excludes to perform x from s as well as from s′.

Thus, the solvability of all systems (5/6) implies that all event/state separation problems
can be solved, and we get a CF net N with the same language as TS. The only way to
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have non-isomorphism is that some state separation problem cannot be solved, i.e., that two
states s1 and s2 correspond to the same marking. In that case, let s1[β〉q1 be a path to a
home state q1 of TS. Since s1 and s2 correspond to the same marking and L(N) = L(TS),
s2[β〉q2 for some state q2 corresponding to the same marking as q1. Since q1 is a home state,
there is a path q2[α〉q1. Since the language is the same and q1, q2 correspond to the same
marking, we have q2[α〉q1[α〉q3[α〉q4 . . ., and from finiteness and cycle consistency, we must
have q1 = q2. But then, by strong determinism, we also have s1 = s2. J

Two examples
Consider TS3 (Figure 3). For x = a, we get x ∈ T0 = {a, d}, I` = I0 = {1} if a1 = d,
mXNX(a) = {s1}, mNX(a) = {s2} and equation (5) reduces to 0 < k·[1+1−1]+k1 ·[0−1],
which leads to the solution k = 1, k1 = 0, µ0 = 1 and h = 0, corresponding to place
p1 in N3. For x = b, we get x ∈ T1 = {b}, T0 = {a, d}, I0 = {1, 2} if a1 = a

and a2 = d, I1 = ∅, mXNX(b) = {s1}, mNX(b) = {s0} and equation (6) reduces to
0 < k1 · [0−1 · (0−1)] +k2 · [0−1 · (0−0)], which leads to the solution k1 = 1, k = k2 = 0,
µ0 = 0 and h = 1, corresponding to place p2 in N3. The treatments of c and d are similar.
Consider TS4 (Figure 4). For x = a, we get x ∈ T0 = {a}, I` = I0 = ∅, MXNX(a) =
{s4, s5, s6} (all states are ≡0-equivalent), mXNX(a) = {s4} (for example), MNX(a) =
{s0, s4, s5, s6, s}, mNX(a) = {s0, s} (for example), and for x = s0, equation (5) reduces
to 0 < k · [1 + 0− 1] + 0, which is unsolvable.

Some special cases
All transitions are live. Then T0 = ∅; ≡0 is identity; and any aj ∈ •p corresponds to
the same small cycle as x ∈ p•. If synthesis succeeds, the resulting CF net is a disjoint
composition of n individual CF nets, each one connected by itself and corresponding to
one of the Parikh vectors Υi (for 1 ≤ i ≤ n). In essence, therefore, this reduces to the
next case.
All transitions are live and n = 1 (cf. [9]). Then both ≡0 and ≡1 reduce to identity. All
sets mXNX(x) and mNX(x) are unique and can be simplified as follows:

XNX(x) = {s ∈ S | [x〉s ∧ ¬s[x〉}
mXNX(x) = {s ∈ XNX(x) |6 ∃s′ ∈ XNX(x) : s′[α〉s with α ∈ (T \ {x})+}
mNX(x) = {s ∈ S | ¬s[x〉 ∧ ∀s′ ∈ S, a ∈ T : s[a〉s′ ⇒ s′[x〉}

Such transition systems are “almost reversible” (i.e., they consist of an initial acyclic part,
followed by a single strongly connected component, such as TS2 in Figure 2).
TS is reversible, i.e., s0 is a home state (cf. [6, 8]). All previous simplifications hold and,
additionally, if there is a CF solution, then there is also a pure solution. Nevertheless
(despite the simpler setting), it is possible to construct reversible persistent transition
systems which can be solved by a plain and pure Petri net, but not by a CF net.
TS belongs to a marked graph (a plain net with ∀p ∈ P : |p•| = 1 ∧ |•p| = 1) or to a
T-system (a plain net with ∀p ∈ P : |p•| ≤ 1 ∧ |•p| ≤ 1) (cf. [5, 7]). Such transition
systems have full characterisations for bounded as well as for unbounded Petri nets.

5 Concluding remarks

The first part of this paper describes a partial characterisation – more precisely, an upper
approximation – of the state spaces of bounded choice-free Petri nets. The reachability graphs
of such Petri nets are finite, totally reachable, strongly deterministic, strongly cycle-consistent,
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persistent, and enjoy the small cycle, the prime cycle, and the distance properties. A full
structural characterisation seems to be very difficult to obtain. Even for finite words, such as
TS0 in Figure 2, it is very difficult to obtain exact structural (i.e., so to speak, free of linear
algebra) conditions characterising the PN-solvable ones amongst them [3].

In its second part (starting with Section 4), the paper describes how choice-freely solvable
transition systems can be detected and their Petri net solutions be constructed if possible.
The aim here was to use structural knowledge in order to limit the set of states for which
event/state separation problems need to be solved, and also to reduce the number of linear
inequalities needed for each one of these problems.

The algorithmic gains are threefold: (1) It is possible to check, before starting synthesis,
some of the properties given by the upper state space characterisation and to discard any
given lts failing to satisfy one of them as not being solvable choice-freely. Such an algorithm
has already been included for marked graphs in APT [10] and performs very satisfactorily. In
general, though, these properties may not be easy to check. (2) State separation problems all
but disappear (though this came as no surprise, given the result described in [13]). (3) The
number of unknowns and the number of systems is reduced for the event/state separation
problems that remain. This allows more efficient synthesis, and our first experiments confirm
that our algorithm exhibits interesting performances. However, even for the special cases
discussed at the end of Section 4, it seems difficult to estimate exactly how much can be
gained, and in particular how the size of the essential sets mXNX(x) and mNX(x) evolves
with the size of the lts, and possibly with some of its specific characteristics (like the out-
and in-degrees of its nodes, symmetries of the structure, etc.).

There are many extensions and potential applications of choice-free synthesis. One
particularly promising generalisation is to allow partially non-injective transition labellings
for Petri nets (for instance, by forbidding equally labelled transitions in parallel components).

Acknowledgements. We are indebted to the reviewers for valuable comments.
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Abstract
We consider weighted automata with both positive and negative integer weights on edges and
study the problem of synchronization using adaptive strategies that may only observe whether
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1 Introduction

The problem of synchronizing automata [4, 13, 14] studies the following natural question:
“how can we gain control over a device when its current state is unknown?” Synchronizing
automata have classically been studied in the setting of deterministic finite automata (DFA),
aiming at finding short synchronizing words, i.e. finite sequences of input symbols that will
bring the automaton from any (unknown) state into a unique state. Here the existence of
a synchronizing word is NLOGSPACE-complete [4, 14], and polynomial bounds were given
on the length of the shortest synchronizing word. Yet, establishing a tight bound on the
length of the shortest synchronizing word has been an open problem for the last 50 years,
with Černý [4] conjecturing that words of length at most (n− 1)2, where n is the number of
states in the DFA, are sufficient.

We consider synchronization of deterministic weighted automata (WA), where their states
are composed of locations and integer weights, and where transitions have their associated
weights from Z. In this setting, weights are simply accumulated during the run of the system,
and thus it is impossible to find a word that will ensure synchronization to a single state:
for any two states with identical locations but different weights, e.g. (`, z) and (`, z + 1),
any word will – by the assumption of determinism – maintain the relative difference in
their weights. We therefore assume that during the synchronization, the controller has some
(minimal) information available concerning the current weight of the system; in particular,
we assume that the controller is able to observe whether the current weight is negative or
nonnegative. Under this assumption, a solution to the synchronization problem becomes
an adaptive strategy, in the sense that the next input to be selected may be based on the
previous weight-observations made by the controller.

Our main result is that the existence of a synchronizing strategy, using only observations
of the sign of the current weight-level, is decidable in polynomial time for deterministic WA.
This result relies on a polynomial time algorithm for detecting cycles of weight +1 and −1
in a given weighted graph.
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`1,1 `2,1 `3,1

`1,2 `2,2 `3,2

`1,1

`1,2

`3,1

`3,2

e, 4 e,−2 e,−2

e, 3 e,−4 e, 2

w,−3 w, 0w,−1

w,−1 w, 5w,−2

n, 1 n, 2 n, 0

n,−1 n,−1 n, 0

s, 1 s, 2 s, 5

s,−2 s, 0 s, 2

Figure 1 Blind Packman with moves north (n), south (s), east (e) and west (w).

Fig. 1 illustrates BP (Blind Packman), a WA with 6 locations and 4 actions. We have to
find a strategy that will (under partial observability of weights) synchronize infinitely many
states of the form (`i,j , z) where `i,j is one of the 6 locations and z ∈ Z is the starting weight.
First, we note that after an n-input, BP will be in one of the 3 (top-row) locations `i,2 for
i = 1, 2, 3. Given the cyclic, horizontal structure, it is also clear that no further sequence of
inputs from the set {n, e, s,w} can provide any additional information in which of the three
locations we are located. However, assuming the weight-level is observed to be nonnegative
(a similar case applies if the weight-level is observed to be negative), we may infer that BP
is in a state of the form (`i,2, z) with z ≥ 0. Noting the −1-loops from `1,2 and `2,2, it is
tempting to repeatedly offer n as input until the weight-level becomes negative. However,
the presence of the 0-loop at `3,2 makes it possible that such a strategy will not terminate.
Instead, we observe that the input-word (n · e)3 will constitute a (composite) cycle in BP
that makes the weight-level drop exactly by −1, regardless as to from which of the three
top-locations the word was executed. Thus, by repeating this input-word while constantly
observing the sign of the weight-level and terminating as soon as the weight-level becomes
negative, we are able to infer that the BP automaton is either in the location `3,2 in case
the observation changed after the input e, or in one of the states (`1,2,−1) or (`2,2,−1) if
the change happened after the input n. In the former case, we exercise the cycle e3 until a
change in observation brings us to (`3,2, 0). In the latter case, an e-input followed by a test
of the weight-level will reveal the true identity of the state; using ±1 cycles, it is now easy to
reach (`3,2, 0), thus completing the synchronization.

As illustrated by the above example, the presence of cycles with weights +1 and −1 is
essential for the synchronization under partial observability. As we shall demonstrate, the
existence of such cycles is decidable in polynomial time, and constitutes, with a few other
polynomial time checks, a necessary and sufficient condition for the synchronization of a WA.

Related work

Survey of results and applications for classical synchronizing words may be found in [13, 14].
Recently, there has been an increasing interest in novel extensions of the synchronization
problem. Volkov [9] studied synchronization games and priced synchronization on weighted
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automata with positive weights and finds a synchronizing word where the worst accumulated
cost is below a given bound. In [6, 7, 8], (infinite) synchronizing words were studied in
the probabilistic settings. Synchronization of weighted timed automata was studied in [5],
where location synchronization with safety conditions on the weight was considered, though
without the requirement on the weight synchronization. Finally, synchronization under
partial observability was recently studied in [12] but only in the context of finite automata
without weights.

2 Definitions

We shall now formally define the synchronization problem on deterministic and complete
weighted automata.

I Definition 1 (Weighted Automaton). A (deterministic) weighted automaton (WA) is a
tuple A = (L,Act,T ,W ) where

L is a finite set of locations,
Act is a finite set of actions,
T : L×Act → L is a transition function, and
W : L×Act → Z is a weight function.

A state of A is a pair (`, z) ∈ L × Z where ` is the current location and z the current
weight. Let S(A) be the set of all states of A. We write (`, z) a,w−−→ (`′, z′) if T(`, a) = `′,
W (`, a) = w and z′ = z + w.

A path in A is a finite sequence of states π = s0s1 . . . sn such that for all i, 0 ≤ i < n, we
have si

ai,wi−−−→ si+1 for some ai ∈ Act and wi ∈ Z. The last state sn in the path π is referred
to as last(π). The set of all paths is denoted by Paths(A). For the complexity analysis in
the rest of this paper, we assume a binary encoding of integers in A.

I Definition 2 (Observation Function). An observation function γ : S(A)→ O maps each
state of A to an observation from an observations set O.

Assume now a given observation function γ to the set of observationsO. Let π = s0s1 . . . sn

be a path in A. The observation function γ is naturally extended to an observation sequence
for π by

γ(π) = γ(s1)γ(s2) . . . γ(sn) .

I Definition 3 (Strategy). A strategy is a function δ : O+ → Act ∪ {done} that maps a
nonempty sequence of observations to a proposed action or the symbol done 6∈ Act, signaling
that no further actions will be proposed.

A path π = s0s1 . . . sn follows a strategy δ if si
ai,wi−−−→ si+1 for ai = δ(γ(s0s1 . . . si)) and

wi ∈ Z, for all i, 0 ≤ i < n. A strategy δ is terminating if it does not generate any infinite
path, in other words there is no infinite sequence where all its finite prefixes follow δ.

Given a subset of states X ⊆ S(A) and a terminating strategy δ, the set of all maximal
paths that follow the strategy δ in A and start from some state in X, denoted by δ[X], is
defined as follows:

δ[X] = {π = s0s1 . . . sn ∈ Paths(A) | s0 ∈ X,π follows δ and δ(γ(π)) = done} .

The set of final states reached when following δ starting from X is defined as last(δ[X]) =
{last(π) | π ∈ δ[X]}. Assuming a given observation function γ, we can now define a
synchronizing strategy that will bring the system from any unknown initial state to the same
single synchronizing state.
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I Definition 4 (Synchronization). Given a WA A, a strategy δ is synchronizing if δ is
terminating and |last(δ[S(A)])| = 1. Further, A is synchronizable if it admits a synchronizing
strategy.

We limit our study to systems where we see no information about the current location
and have a partial observability of the current weight so that we can distinguish whether its
value is negative or nonnegative. This is the minimal possible observation as if we cannot
observe anything about the weight then synchronization is impossible. Hence, we define the
observation function γ to the set of observations O = {<0,≥0} by

γ((`, z)) =
{
<0 if z < 0
≥0 if z ≥ 0 .

We are interested in deciding whether a given WA is synchronizable under this observation
function γ.

3 Polynomial Time Algorithm for Synchronizing

Let A = (L,Act, T,W ) be a WA. We write ` a,w−−→ `′ for `, `′ ∈ L whenever T(`, a) = `′

and w = W (`, a). A cycle in A starting in `0 is a path of the form `0
a0,w0−−−−→ `1

a1,w1−−−−→
. . . `n

an,wn−−−−→ `0. The weight of the cycle is
∑n

i=0 wi.
We now perform a series of checks in order to test whether we can synchronize from

any possible initial state. The tests will give a necessary and sufficient condition for
synchronization. At the end, we will argue that all the checks can be done in polynomial
time. Therefore, we provide a polynomial time algorithm for deciding synchronizability.
Furthermore, if all the checks succeed, we also construct a synchronizing strategy. It works
in several phases, each concerning some of the tests. However, we note that although our
algorithm decides synchronizability in polynomial time, the construction of a synchronizing
strategy as an explicit function is not possible due to the fact that the lengths of the
synchronizing sequences proposed by the strategy are unbounded (they depend on the initial
weight values). We instead provide an algorithm, describing the unbounded strategy from
any given initial state.

First, we check if the given A, viewed as a labelled directed graph, has the following
property.

Property 1. The graph A has a strongly connected component that is reachable from any
location in A.

If Property 1 is not satisfied, and such a bottom strongly connected component does not
exist, clearly there is no synchronizing strategy for A. From now on, assume that Property 1
holds. Taking advantage of this property, we define the first phase of the constructed
synchronizing strategy δ.

. Phase 1. For every location ` let home(`) be a sequence of actions that will bring ` into
this strongly connected component and for any sequence of actions x let `[x] be the location
that we will reach from ` after performing the sequence x (note that this is well defined due
to the fact that A is deterministic). Our synchronizing strategy will start by performing the
action sequence x1x2x3 . . . xn where

x1 = home(`1), x2 = home(`2[x1]), x3 = home(`3[x1x2]), . . . , xn = home(`n[x1x2 . . . xn−1])
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assuming that L = {`1, `2, . . . , `n}. We shall refer to this technique as sequentialization:
intuitively, even if the initial location is unknown, we can perform given actions for each
possible initial location, meanwhile tracking where we move if the actual initial location was
different, and execute these steps in a sequence for each possible location. /

I Example 1. We illustrate Phase 1 on the system below in Figure 2. We first execute
home(`1) = a. Meanwhile both `2 and `3 move to `2. Therefore, we proceed with home(`2) =
ba. Therefore, if we started in `3 we are now in `4, too. Since `4 is in a bottom strongly
connected component, home(`4) is the empty sequence and we are done.

`1 `2 `3

`4

a

b

b

a

a

b

a, b

Figure 2 Example of sequentialization (the word aba will bring all locations to `4).

Consequently, after Phase 1, we are for sure in the strongly connected component. Within
this component, we check the following property.

Property 2. Let A be strongly connected. In A, there is a cycle with weight 1 and a cycle
with weight −1.

I Lemma 5. If Property 2 is not satisfied then there is no synchronizing strategy.

Proof. Assume that A is synchronizable. Then there must be a positive and a negative cycle
in A. Further, for any location `, the states (`, 0) and (`, 1) can be synchronized. Therefore,
there is a path from both these states to some state (`′, z) for some z ∈ Z. Since A is
strongly connected, there is also a path from (`′, z) back to the state (`, z′) for some z′ ∈ Z.
Consequently, there are two cycles from ` with weights z′ and z′ − 1, respectively; moreover,
these weights can be chosen non-zero due to existence of a positive cycle. Hence the weights
of these two cycles are relative primes and in combination with the presence of a positive
and negative cycle in A, this implies the existence of cycles with the weights +1 and −1. J

From now on, assume that A is strongly connected and Property 2 holds. Observe that,
consequently, there are +1 and −1 cycles starting and ending in each location `. Let us
denote the corresponding sequences of actions by `+ and `−. The first, and rather naive, use
of these cycles is to get the weight component of the state close to zero.

. Phase 2. We extend our strategy δ by performing the ±1 cycles until we see a change
in our observation. Assuming we start with nonnegative observation, Phase 2 ends at the
moment when a negative observation is reached (and symmetrically for the other case). To
this end, assuming L = {`1, . . . , `n}, we employ the sequentialization technique again. We
first execute the word `−1 for the −1 cycle from `1 and keep track of the resulting locations
{`′1, . . . , `′n}. Note that their weights could have increased instead, say by at most c1. Next
we execute `′2

− exactly (c1 + 1)-times, so that even if the initial location was `2, after this
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many cycles the weight decreased no matter how it increased by performing `−1 . Meanwhile
`′3 changes to `′′3 and its weight could have in total increased by at most c2. We thus execute
`′′3
− exactly (c2 + 1)-times and so on for all locations cyclically (starting again at the first

location once we went through all of them) until the weight decreases below zero. This
process terminates since whenever performing cycles for a particular location, its weight (if
we indeed started in the respective location) drops below any previous value. /

I Example 2. We illustrate Phase 2 on the system below in Figure 3 when the observation
is nonnegative. We first execute `− = a. Meanwhile r loops under a and increases by c1 = 3.
Therefore, we proceed with repeating r− = bab for 4 times. This in turn makes ` return
again to ` with value increased by c2 = 4 · 3 = 12. Next we repeat `− for 13 times etc.

` r

b, 0

b, 0
a, −1 a, 3

Figure 3 Example illustrating Phase 2.

We are now guaranteed that right after Phase 2, the observation has just changed.
Therefore, we are now in a state (`, z) for some ` ∈ L and

0 ≤ z < M if γ((`, z)) = ≥0 or −M ≤ z < 0 if γ((`, z)) = <0

where M is the largest absolute value of any weight used in A. Therefore, there are finitely
many states we can be at. Now that we have a bound how far we are from zero, we can
make a better use of ±1 cycles and derive for each location, where we possibly might be at,
its weight.

. Phase 3. Once again, we employ sequentialization. Assuming first that we are in
location `1 ∈ L of a state (`1, z) with −M ≤ z < M , we can perform a sequence of
actions corresponding to −1 or +1 cycle from `1 (depending on whether γ((`1, z)) = ≥0 or
γ((`1, z)) = <0) until the observation changes at the end of the cycle when we are again in
`1. If we indeed started in the location `1, we know that we are now in the state (`1,−1)
if γ((`1, z)) = ≥0, or (`1, 0) if γ((`1, z)) = <0. If the weight in the reached states did not
change from nonnegative to negative (or the other way round) even after performing M
cycles, we know for sure that we were not in the location `1. The situation where we started
in a different location than `1 and the weight observation still changed as expected simply
adds an extra (false) hypothesis that can be eliminated (as shown later on in this section).

Now consider what would happen, until now, if we were instead in location `2 ∈ L at the
moment before we started to perform the −1 or +1 cycles for `1. After playing according to
the strategy above, we would be now in a possibly different location `′2 with weight in the
range [−M ′,M ′] where M ′ can be computed from M and the strategy performed so far. We
can now start performing −1 or +1 cycle from `′2 exactly as before in order to determine
the exact weight in this location (provided we started in `2) and we continue like this with
handling `3 etc., for each location in L. /

I Example 3. We illustrate Phase 3 on the system below in Figure 4. If the observation is
nonnegative, the current weight is at most 2 and we start with repeating bbaa, a −1 cycle
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for `, for at most M = 3 times. If the observation remains nonnegative after this sequence
(case 1) we must be in r. Otherwise (case 2), we stop when the observation changes and
if we are in ` the current weight is −1. Meanwhile r returned back to r and could have
increased its weight to at most 5 in case 2. Then we proceed with repeating bbaa at most 6
times to get for sure to (r,−1). In case 1, the observation is negative and the weight is at
least −2. Hence, we repeat aab, a +1 cycle for r. Say that the observation changes after two
repetitions. Then we are either in (r, 0) or in the meanwhile achieved (`,−3). (The latter is,
however, impossible here since the observation would remain negative.)

` r

b, 0

b, 3
a, −2 a, −1

Figure 4 Example illustrating Phase 3.

We conclude that after Phase 3 we must be in one of the states from the set

{(`1, z1), (`2, z2), . . . , (`n, zn)}

called the hypothesis set, where all zi’s are exactly known. We can w.l.o.g. assume that all
locations in the assumption are pairwise different. Indeed, we can perform a number of ±1
cycles from the location that appears in the hypothesis set more times and determine which
one of the weights is still feasible (at most one is). Note that the size of the hypothesis set is
thus at most |L|.

The next task is to distinguish between these hypotheses. For each pair of locations,
assuming their weights from the hypothesis set, there must be a way to synchronize them.
We present three tests such that at least one of them must be passed by each pair. All tests
refer to the following notion of difference graph.

I Definition 6 (Difference Graph). The difference graph of a WA A is a weighted graph
GA = (V,E) with E ⊆ V × Z × V such that V = L × L, and for every a ∈ Act we have(
(`, `′),W (`, a)−W (`′, a), (T (`, a),T (`′, a))

)
∈ E.

In other words, GA is a synchronous product of two A’s, where each edge weight is the
difference of edge weights in the first and the second component.

I Example 4. Consider the system on the upper part of Figure 5, parametrized by k ∈ Z.
We depict a part of its difference graph on the lower part of the figure.

We have already seen how to distinguish states with the same location using ±1 cycles.
For all pairs of locations (`1, `2) where `1 6= `2, we run the following three tests.

Property 3. There is a path in GA from (`1, `2) to (`, `) for some ` ∈ L.

Property 4. There is a path in GA from (`1, `2) to (`′1, `′2) such that there is a cycle of
nonzero weight (positive or negative) in GA starting in (`′1, `′2).

In order to define the last Property 5, we need additional notions and reasoning. If
Property 4 is not satisfied for a given pair (`1, `2) then every cycle in GA reachable from
(`1, `2) has zero weight. Therefore, whenever any cycle C in GA is performed in A starting
from location `1 or `2, the weight changes in both cases by the same value, called the projected
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`1

`2

r1

r2 r3

r4

a, k

b, 3

a, −k + 1 b, −k − 1 a, 0
b, 3

a, 1
b, −1

a, 0

b, 3

a, 1
b, −1

(`1, r1) (`2, r2) (`1, r3) (`2, r4)

. . . . . .

a, k

b, 0

a, −k b, −k a, k

b, 0

a, −k b, −k

Figure 5 Example of difference graph.

weight P(C) of C. Although GA may be disconnected, we may w.l.o.g. assume that (`1, `2)
is a node in GA that is a part of some strongly connected component (otherwise, we bring it
there, using sequentialization).

I Lemma 7. For every strongly connected component S of GA satisfying Property 2 and
not satisfying Property 4, there is a number p such that 1 ≤ p ≤ |L| and for any node
(pair of locations) in S there are cycles C+, C− starting in this node with P(C+) = p and
P(C−) = −p. Moreover, such p can be computed in polynomial time.

Proof. Let (`1, `2) be an arbitrary node in S. Due to Property 2, there is a cycle from `1 in
A with weight +1. We repeatedly perform this +1 cycle and follow the same behaviour from
(`1, `2) in GA. At the end of each cycle, the first component in GA will be in the location `1
and the second component in one of the |L| possible locations. By the pigeon-hole principle,
after performing the +1 cycle at most |L| times, we will find a repeated pair in GA. Hence
we found a cycle C+ in GA with zero weight in GA, due to the violation of Property 4, and
with the projected weight 0 < P(C+) ≤ |L|. By the same arguments, but using the fact
about the existence of −1 cycle in A, we can find a cycle C− in GA with the projected weight
0 > P(C−) ≥ −|L|.

Let us now argue that for each node we can choose cycles with absolute weights equal to
a fixed integer. Let pmin := min{|P(C)| | C is a cycle in S} denote the smallest projection
over all cycles in the strongly connected component S. We claim that for any pair of states
(`1, `2) in S, there are cycles in S starting in (`1, `2) with projected weights pmin and −pmin.
Indeed, note that there is a cycle C in S with |P(C)| = pmin and there are cycles D+ and
D− from (`, `′) that visit some state of C and have positive and negative projected weight,
respectively. Now by repeating C on the way either in D+ or in D−, we construct cycles E+

and E− with 0 < P(E+) ≤ pmin and 0 > P(E−) ≥ −pmin, respectively. By minimality of
pmin, we obtain P(E+) = pmin and P(E−) = −pmin. Note that, moreover, for each cycle C
is S, P(C) is a multiple of pmin. And vice versa, for each multiple of pmin, there is a cycle
with such projected weight in any node of S. Therefore, we can perform the pigeon-hole
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construction of a cycle (in polynomial time), obtaining a weight 0 < p ≤ |L|, and we are
guaranteed that from each node there are cycles with projected weights p and −p, respectively
(although p is not necessarily minimal). J

Consequently, for each strongly connected component S, we have 0 < p ≤ |L|. For S, we
define a reachability problem on a graph AS = (V,→) where

V = (L× {0, . . . , p− 1})× (L× {0, . . . , p− 1}) ∪ {separated}, and
for each v =

(
(`1, z1), (`2, z2)

)
and a ∈ Act, let v′ =

(
(`′1, z′1), (`′2, z′2)

)
where `′1 = T (`1, a),

`′2 = T (`2, a) and z′1 = z1 + W (`1, a) +α · p and z′2 = z2 + W (`2, a) +α · p for the unique
α ∈ Z such that the larger of z′1, z′2 lies in the interval [0, p− 1]; we set
v → v′ if v′ ∈ V , i.e. the lower weight is also nonnegative, and
v → separated, otherwise, i.e. the lower weight is negative.

We say that the graph AS is distinguishing for a pair of locations (`1, `2) ∈ S if from any
initial node

(
(`1, z1), (`2, z2)

)
, for each 0 ≤ z1, z2 ≤ p− 1, we can reach the node separated.

Note that the size of AS is at most |L|4 + 1, hence polynomial in |A|. Now we state the final
test.

Property 5. If (`1, `2) belongs to a strongly connected component S of GA then the graph
AS is distinguishing for (`1, `2).

I Example 5. Consider the difference graph of Figure 5. Observe that there is no path from
(`1, r1) to a pair with identical components, as well as no nonzero cycle. The length p is equal
2 here. If k ≥ 2 then we have ((`1, 0), (r1, 0))→ separated as action a immediately creates
a large enough difference. If k = 1, then separated is still reachable from ((`1, 0), (r1, 0)),
but only after aa is taken. Then both weights are 1 and the next action a creates the
distinguishing difference as the weights would now be 2, 1, i.e. transformed to 0,−1.

Supposing each pair of locations satisfies Property 3 or Property 4 or Property 5, we can
iteratively decrease the size of the hypothesis set until it becomes a singleton as shown in
the next phase.

. Phase 4. We employ sequentialization again. We pick any two states from the current
hypothesis set and eliminate at least one of them as described below. Meanwhile, we update
all remaining states from the hypothesis set to their current states. We repeat this procedure
until the hypothesis set becomes a singleton. Let (`1, z1) and (`2, z2) be the currently explored
pair from the hypothesis set.

First, if Property 3 holds we perform the sequence of actions that brings both locations
into a single location. Afterwards, if their respective weights are different, using the ±1
cycles, we detect at least one of the weights impossible as above. Thus we decrease the size
of the hypothesis set.

Second, if Property 4 holds then we can extend our strategy δ by executing the sequence
of actions that brings (`1, `2) to some (`′1, `′2) where we can repeatedly execute actions on
the nonzero cycle in GA until the weights in the pair of states reached after this sequence
are sufficiently (see below) far away from each other. Assume w.l.o.g. that the weights z′1, z′2
of the two reached states are both positive and z′1 < z′2 (the other situations are symmetric).
Now from the location with the lower weight (`′1), we enter a simple cycle in A with the
minimal (negative) weight and start executing it. This ensures that if we started from `1
or `2, then the observation will change to negative in n1 or n2 steps, respectively, where
n1 < n2 (since |z′2 − z′1| was sufficiently large) and we can compute these numbers. If the
observation changes after exactly n1 steps, we eliminate the state corresponding to `2 from
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the hypothesis set. If the observation changes after exactly n2 steps, we eliminate the state
corresponding to `1 from the hypothesis set. If the observation changes after a different
number of steps, we eliminate both.

Third, let Property 5 hold (and Property 4 not) and (`1, `2) be in a strongly connected
component S of GA. By Lemma 7, we have zero cycles in AS with projected weights p
and −p where 0 < p ≤ |L|. We perform these cycles until the larger weight is in [0, p− 1].
If the lower weight is negative at this moment, the current observation eliminates one of
the hypotheses. Otherwise, the weights in both states are in [0, p− 1]. Due to Property 5
we have a strategy to reach separated in AS , inducing a strategy in A by inserting the −p
and p cycles. Upon reaching separated in AS , the observation in A proves one of the two
hypotheses impossible. (If at any moment throughout the process, an unexpected change of
observation occurs, we eliminate the respective hypothesis from the set immediately.)

Once the hypothesis set is a singleton, we know precisely the current state. Finally, we
deterministically reach a fixed location and fixed weight (by performing ±1 cycles) and thus
synchronize. /

The stated properties are not only sufficient, but also necessary conditions for synchroniz-
ability:

I Lemma 8. Let A be a strongly connected WA satisfying Property 2. Then A is synchron-
izable if and only if for each pair of locations (`1, `2) either Property 3 or Property 4 or
Property 5 is satisfied.

Proof. The “if”-part follows from the previously constructed synchronizing strategy. For
the “only-if”-part, assume that there is a pair (`1, `2) satisfying neither Property 3, nor
Property 4, nor Property 5. By the last one, there are weights z1, z2 ∈ [0, p− 1] such that
the node separated is not reachable from the configuration init =

(
(`1, z1), (`2, z2)

)
in the

graph Ap. For a contradiction, assume that A admits a synchronizing strategy σ. When σ is
applied to initial states (`1, z1) and (`2, z2), we obtain two paths π1 and π2, inducing two
sequences of observations γ(π1) and γ(π2). Comparing the respective elements in the two
sequences, there are two cases.

In the first case, observations will never differ. Since σ is synchronizing, it brings both
states (`1, z1) and (`2, z2) eventually into the same state, in particular to the same location,
witnessing Property 3 and contradicting to our assumption.

In the second case, after a certain number of steps, the observations of the current states
(`′1, z′1) and (`′2, z′2) of the two path will differ, w.l.o.g. z′1 < 0 ≤ z′2. Since Property 4 is not
satisfied, by Lemma 7 there are cycles increasing and decreasing weight in both `1 and `2
by p. The two paths π1, π2 produced by the strategy σ in A induce two sequences π̂1, π̂2
where the ith elements are both increased/decreased by αi · p for some αi ∈ Z so that the
larger one is in [0, p− 1]. These sequences straightforwardly induce a path in AS , where S
is the strongly connected component of init. Since separated cannot be reached from init,
the smaller weight is always in [0, p− 1], too. Let ẑ′1, ẑ′2 denote the weights in AS when σ
achieves z′1, z′2. Since z′2 ≥ 0, ẑ′2 < p, and ẑ′2 ≡ z′2 (mod p), we obtain ẑ′2 ≤ z′2. Therefore, by
ẑ′2 − ẑ′1 = z′2 − z′1 we also get ẑ′1 ≤ z′1. Since z′1 < 0, we obtain ẑ′1 < 0, a contradiction. J

4 Complexity

We can now state our main theorem:

I Theorem 9. The synchronizability problem for deterministic weighted automata is decidable
in polynomial time.
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Proof. Properties 1-5 form sufficient and necessary conditions for the existence of a synchron-
izing strategy for A by Lemma 5 and Lemma 8. Moreover, all properties can be verified in
polynomial time. Indeed, the size of GA is polynomial in |A| and p necessary for constructing
AS is computable in polynomial time by Lemma 5, and the presence of ±1 cycles is decided
in polynomial time by Theorem 11 as discussed in the rest of this section. J

We now prove that the presence of ±1 cycles can be decided in polynomial time. We
assume a weighted graph G = (V,E) where V is a finite set of nodes and E ⊆ V × Z× V
are the edges written as u w−→ v whenever (u,w, v) ∈ E. A path in G is a sequence of edges
v0

w0−−→ v1
w1−−→ . . .

wn−1−−−→ vn. A weight of a path π is defined as |π| =
∑n−1

i=0 wi. A k-cycle is a
path π where v0 = vn such that k = |π|.

I Remark. We first briefly discuss related problems and point to severe differences, preventing
us from adapting the existing results. On the one hand, we note that the problem whether
there is a k-cycle, where k is a part of the input, is NP-hard (see full version of the paper). On
the other hand, it is a classical result [11] that existence of 0-cycles is decidable in polynomial
time. The result can be proven by a reduction to linear programming. The idea is the
following. For each transition, there is a variable encoding the frequency of the transition
on the desired cycle. Encoding of Kirchhoff’s flow-preservation laws then ensures that the
frequencies indeed induce a cycle. Finally, the sum of transition weights multiplied by the
frequencies is required to be 0. From every rational solution, we can by multiplication obtain
an integer solution, and thus a realizable cycle. Since 0 multiplied by any number remains
0, we thus obtain a 0-cycle. In contrast, in our setting, this idea cannot be used. Indeed,
suppose we require the frequency-weighted sum of edge-weights to be 1. Since the frequencies
and thus also the number 1 must be multiplied by an a priori unknown integer, in order
to obtain an integer solution, the resulting total weight is not 1. Asking instead directly
for an integer solution to the system is an instance of integer linear programming, which
is an NP-hard problem. Instead of using linear programming, we employ (as shown in the
full version of the paper) a number theoretic arguments and exploit Dijkstra’s shortest path
algorithm on graphs where weights are counted modulo various numbers. Finally, note that
although we can decide the existence of ±1-cycles in polynomial time, the length (number of
edges) of the shortest one may still be exponential. For instance, consider a single vertex
with two self-loops labelled by 2n + 1 and −2.

The discussion suggests that number theoretic techniques have to be applied. We
reduce our problem to the problem whether the greatest common divisor of all cycles in
a graph is 1. Formally, for a weighted graph G, let the period gcd(G) denote gcd{k | k ∈
Z, G has a k-cycle}.

I Proposition 10. For every strongly connected weighted graph G, there is a 1-cycle and a
−1-cycle in G if and only if there is a positive and a negative cycle in G and gcd(G) = 1.

Proof. The ‘Only-if’ direction is trivial. For the ‘If’ direction, gcd(G) = 1 yields by Bézout’s
identity an equality

1 = α1 · k1 + · · ·+ αn · km (1)

for some m ∈ N, αi ∈ Z, and ki being the weight of some cycle ci in G, and where, moreover,
some kp > 0 and some kn < 0. Note that these numbers can be extracted using the extended
Euclidean algorithm. First, we argue, we can choose all αi ≥ 0 so that Equation (1) still
holds.
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Whenever αi < 0 with ki positive, we increase αi by x · (−kn) for some x ∈ N so that
it becomes positive. Further, we increase αn by x · ki, thus preserving Equation (1). For
negative ki, we proceed similarly, using kp and αp instead. Since this procedure only increases
α’s, they all eventually become positive.

Nonnegative coefficients αi determine the number of repetitions of each cycle ci. Since
these cycles may be disconnected, this does not yield a single 1-cycle yet. To this end, we
consider a negative cycle visiting each vertex of G, guaranteed by assumptions. Let −ω
denote its weight. We construct a 1-cycle by executing this cycle and on the way, whenever
reaching a vertex where the cycle ci originates, we execute ci for (ω+1) ·αi times. A −1-cycle
is constructed similarly. J

I Theorem 11. The presence of both a 1-cycle and at the same time a −1-cycle in a weighted
graph G is decidable in polynomial time. Moreover, such cycles can be effectively constructed.

Proof. Deciding presence of a negative cycle and producing a witness can be done in
polynomial time using, for instance, Bellman-Ford algorithm (see e.g. [3]); the same holds
for positive cycles by swapping the signs.

The period of a graph can be computed in polynomial time, too. Indeed, the result for
unweighted graphs (all weights are one) was proven in [10]. Further, [1] suggests an extension
of the technique to weighted graphs. Since [10] is to the best of our knowledge not accessible
electronically (the only hardcopy of the report is located at library of Stanford University)
and the correctness of the extension to weighted graphs is not proven in [1], we also provide
our own proof, using supposedly different techniques. Full version of the paper gives the
details. J

I Remark. The polynomial time algorithm for deciding synchronizability is relying only a
single observation, testing whether the accumulated weight is negative or nonnegative. In
a more general setting, we may consider a richer set of observations checking whether the
weights are less-than/greater-or-equal to a given number of integer values. The techniques
in this paper can be directly reused to handle this more generation situation and the only
check that must be modified is Property 5. Here, if some observations are far away from
each other (the integers that they test have distance more than p) then it is sufficient to
check if at least of them succeeds, otherwise the graph AS is extended to include weights in
the range [0, kp− 1] where k is the number of observations that are close to each other so
that all of them are considered in the check for distinguishability of a given pair of locations.
As the observations are part of the input (of the problem description), this still creates a
graph with only polynomially many nodes.

5 Conclusion

We have shown that the synchronization problem for deterministic WA under (minimal)
partial observability is decidable in polynomial time. This result is based on a polynomial
time algorithm for deciding the existence of +1 and −1 cycles in a weighted graph and states
five necessary and sufficient conditions for synchronizability. All conditions are verifiable in
polynomial time, despite the fact that the length of the resulting synchronization strategy is
unbounded (as it depends on the initial weight values). The presented techniques are general
and allow for a straightforward adaptation to the situation when more observations become
available. Future research will include nontrivial extensions to nondeterministic WA and
synchronization under safety constraints, e.g. constraints on the weight-levels encountered
during the synchronization.
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Abstract
Compositional reasoning over probabilistic systems wrt. behavioral metric semantics requires
the language operators to be uniformly continuous. We study which SOS specifications define
uniformly continuous operators wrt. bisimulation metric semantics. We propose an expressive spe-
cification format that allows us to specify operators of any given modulus of continuity. Moreover,
we provide a method that allows to derive from any given specification the modulus of continuity
of its operators.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases SOS, probabilistic process algebra, bisimulation metric semantics, com-
positional metric reasoning, uniform continuity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2015.155

1 Introduction

Probabilistic programming languages are languages that incorporate probabilistic choice
as a primitive. They allow us to describe probabilistic concurrent communicating systems.
The operational semantics of those languages is usually described by Structural Operational
Semantics (SOS) specifications. A SOS specification assigns to each language expression a
transition system with transitions inductively defined by means of SOS rules [19, 7].

As behavioral semantics we consider bisimulation metric [9, 22], which is the quantitative
analogue of bisimulation equivalence [17] and assigns to each pair of processes a distance
which measures the proximity of their quantitative properties. Compositional reasoning over
probabilistic processes and probabilistic programs requires that the language operators are
uniformly continuous [12]. Uniform continuity ensures that a small variance in the behavior
of the parts leads to a bounded small variance in the behavior of the composed processes.

A successful approach to study systematically compositionality properties is the struc-
tural analysis of SOS language specifications [1, 19]. In this approach one analyses SOS
specifications that satisfy desired compositionality properties and proposes syntactic SOS
rule and specification templates that ensure by construction the compositionality property.

In this paper we develop an expressive SOS specification format guaranteeing that the
specified operators are uniformly continuous. The format allows us to specify for each operator
its respective modulus of continuity. Our fundamental insight is that an operator is uniformly
continuous if it is Lipschitz continuous for each finite projection. The SOS specification
format derives then from the definition of Lipschitz factors of the finite projections the
guarantee that the specified operator is uniformly continuous. Furthermore, we develop a
method to derive from any modulus of continuity the respective syntactic requirements on
the specifications ensuring that the specified operators satisfy this modulus of continuity.
Moreover, we develop a novel method to derive from any SOS specification the modulus of
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continuity of its operators. The Lipschitz factor of some operator wrt. the k-th projection,
i.e., wrt. the up-to-k bisimulation metric, is determined by the replication of processes in
the first k steps, the probabilistic choices in those steps, and the (step) discount of the
bisimulation metric. Hence, our analysis provides further insights in the interplay between
those determining factors. Our key contributions are:
1. We develop an expressive SOS specification format guaranteeing that all specified operators

are uniformly continuous (Thm. 28).
2. We provide a method that allows us to derive for any uniformly continuous operator its

respective modulus of continuity from its specification rules (Thms. 27 and 28).
3. We provide a method that, given any modulus of continuity, determines sufficient syntactic

requirements s.t. any specification satisfying these requirements defines an operator with
that modulus of continuity (Thm. 32).

4. We show by appropriate examples that our SOS specification formats and syntactic
requirements cannot be relaxed in any obvious way (Exs. 10–13).

5. We apply those results and derive an upper bound on the distance between language
expressions from the syntactic properties of the operators (Thm. 35). This enables metric
compositional reasoning over partial program specification [12].

The paper is organized as follows. In Section 2 we recall the necessary technical definitions.
In Section 3 we prove that an operator is uniformly continuous if it is Lipschitz continuous for
each finite projection. In Section 4 we discuss which structural patterns of SOS rules define
uniformly continuous operators. In Section 5 we present our format for uniformly continuous
operators. In Section 6 we develop our method to derive from any modulus of continuity the
respective syntactic requirements on the specifications ensuring that the specified operators
satisfy this modulus of continuity. In Section 7 we show how to apply our results to derive
an upper bound on the distance between language expressions from the syntactic properties
of the operators. We conclude in Section 8 and discuss possible future work.

2 Preliminaries

The operational semantics of programming languages and process algebras is usually given
as a transition system with language expressions (terms) as states and a transition relation
inductively defined by means of SOS rules.

Probabilistic Transition Systems. A signature is a structure Σ = (F, r), where F is a
countable set of operators, and r : F → N is a rank function. We will use n for r(f) if it
is clear from the context. By f ∈ Σ we mean f ∈ F . We assume an infinite set of state
variables Vs. The set of state terms over a signature Σ and a set of state variables V ⊆ Vs,
notation T(Σ, V ), is defined as usual. The set of closed state terms T(Σ, ∅) is abbreviated as
T(Σ). The set of open state terms T(Σ,Vs) is abbreviated as T(Σ).

Probabilistic transition systems extend transition systems by allowing for probabilistic
choices in the transitions. We consider probabilistic nondeterministic labelled transition
systems [20]. As state space we take the set of all closed terms T(Σ). Probability distributions
over this space are mappings π : T(Σ) → [0, 1] with

∑
t∈T(Σ) π(t) = 1 that assign to each

term t ∈ T(Σ) its respective probability π(t). By ∆(T(Σ)) we denote the set of all probability
distributions on T(Σ). We let π, π′ range over ∆(T(Σ)).

I Definition 1 (PTS [20]). A probabilistic nondeterministic labeled transition system (PTS)
is given by a triple (T(Σ), A,−→), where Σ is a signature, A is a countable set of actions, and
−→ ⊆ T(Σ)×A×∆(T(Σ)) is a transition relation.



D. Gebler and S. Tini 157

We write t a−→ π for (t, a, π) ∈ −→. Let der(t, a) = {π ∈ ∆(T(Σ)) | t a−→ π}.

Bisimulation metric. Bisimulation metrics are the quantitative analogue to bisimulation
equivalences. Let ([0, 1]T(Σ)×T(Σ),v) be the complete lattice of functions d, d′ : T(Σ)×T(Σ)→
[0, 1] ordered by d v d′ iff d(t, t′) ≤ d′(t, t′) for all terms t, t′ ∈ T(Σ). The bottom element
0 is the constant zero function 0(t, t′) = 0. A function d : T(Σ) × T(Σ) → [0, 1] is a 1-
bounded pseudometric if d(t, t) = 0, d(t, t′) = d(t′, t) and d(t, t′′) ≤ d(t, t′) + d(t′, t′′) for all
t, t′, t′′ ∈ T(Σ). Intuitively, the bisimilarity metric will be a 1-bounded pseudometric d with
d(t, t′) measuring the maximal distance of quantitative properties between t and t′.

We define now the bisimilarity metric as least fixed point of a monotone function
over ([0, 1]T(Σ)×T(Σ),v) [8]. A pseudometric on terms T(Σ) is lifted to a pseudometric on
distributions ∆(T(Σ)) by the Kantorovich pseudometric. This lifting corresponds to the
lifting of bisimulation equivalence relations on terms to bisimulation equivalence relations on
distributions [22]. A matching for a pair of distributions (π, π′) ∈ ∆(T(Σ))×∆(T(Σ)) is a
distribution over the product state space ω ∈ ∆(T(Σ)×T(Σ)) with π and π′ as left and right
marginal, i.e.,

∑
t′∈T(Σ) ω(t, t′) = π(t) and

∑
t∈T(Σ) ω(t, t′) = π′(t′) for all terms t, t′ ∈ T(Σ).

Let Ω(π, π′) denote the set of all matchings for (π, π′). The Kantorovich pseudometric
K(d) : ∆(T(Σ))×∆(T(Σ))→ [0, 1] of pseudometric d : T(Σ)×T(Σ)→ [0, 1] is defined for all
distributions π, π′ ∈ ∆(T(Σ)) by

K(d)(π, π′) = min
ω∈Ω(π,π′)

∑
t,t′∈T(Σ)

d(t, t′) · ω(t, t′).

In order to capture nondeterministic choices, we need to lift pseudometrics on distributions
to pseudometrics on sets of distributions. The Hausdorff pseudometric H(d̂) : P (∆(T(Σ)))×
P (∆(T(Σ)))→ [0, 1] is defined for Π1,Π2 ⊆ ∆(T(Σ)) and d̂ : ∆(T(Σ))×∆(T(Σ))→ [0, 1] by

H(d̂)(Π1,Π2) = max
{

sup
π1∈Π1

inf
π2∈Π2

d̂(π1, π2), sup
π2∈Π2

inf
π1∈Π1

d̂(π2, π1)
}

with inf ∅ = 1, sup ∅ = 0.
Now we define B : [0, 1]T(Σ)×T(Σ) → [0, 1]T(Σ)×T(Σ) by

B(d)(t, t′) = sup
a∈A
{H(λ ·K(d))(der(t, a), der(t′, a))}

for d : T(Σ)×T(Σ)→ [0, 1], t, t′ ∈ T(Σ), λ ∈ (0, 1] a discount factor1, and (λ ·K(d))(π, π′) =
λ ·K(d)(π, π′). B is a monotone function over ([0, 1]T(Σ)×T(Σ),v). Prefixed points B(d) v d
are pseudometrics satisfying the bisimulation transfer condition (for all pairs t and t′ each
transition from t can be mimicked by an equally labelled transition from t′ s.t. the distance
between the accessible distributions does not exceed the distance between t and t′). By the
Knaster-Tarski theorem B has a least fixed point, which forms the bisimilarity metric.

I Definition 2 (Bisimilarity metric [9, 8]). We call dk = Bk(0) the up-to-k bisimilarity metric,
and d = limk→∞ dk the bisimilarity metric.

By bisimulation distance between t and t′ we mean d(t, t′). Bisimulation equivalence [20]
is the kernel of the bisimilarity metric [9].

1 By means of the discount factor λ ∈ (0, 1] we allow to specify how much the behavioral distance of
future transitions is taken into account.

CONCUR’15



158 Uniformly Continuous SOS Specifications of Probabilistic Systems

I Example 3. Consider the probabilistic CCS [23, 15, 12] terms s = a.aω and te = a.([1−
e]aω ⊕ [e]0), with e ∈ (0, 1). Process aw performs a forever. The transitions s a−→ πs, with
πs(aω) = 1, and te

a−→ πt, with πt(aω) = 1−e and πt(0) = e, are derivable. Then d(aω, aω) =
0 and d(aω, 0) = 1. Hence K(d)(πs, πt) = e. Thus, d0(s, te) = 0 and dk(s, te) = λe if k ≥ 1.
Finally, we get d(s, te) = λe.

Algebra of probability distributions. By δ(t) with t ∈ T(Σ) we denote the Dirac distri-
bution defined by (δ(t))(t) = 1. The convex combination

∑
i∈I piπi of a family {πi}i∈I of

distributions πi ∈ ∆(T(Σ)) with pi ∈ (0, 1] and
∑
i∈I pi = 1 is defined by (

∑
i∈I piπi)(t) =∑

i∈I(piπi(t)) for all t ∈ T(Σ). The expression f(π1, . . . , πn) with f ∈ Σ and πi ∈ ∆(T(Σ))
denotes the product distribution defined by f(π1, . . . , πn)(f(t1, . . . , tn)) =

∏n
i=1 πi(ti).

In order to describe probabilistic behavior, we need syntactic expressions that denote
probability distributions. We assume an infinite set of distribution variables Vd. We let µ, ν
range over Vd. We denote by V the set of state and distribution variables V = Vs ∪Vd. We let
ζ, ζ ′ range over V . The set of distribution terms over a set of state variables Vs ⊆ Vs and a set
of distribution variables Vd ⊆ Vd, notation DT(Σ, Vs, Vd), is the least set satisfying [6]:
(i) Vd ⊆ DT(Σ, Vs, Vd),
(ii) {δ(t) | t ∈ T(Σ, Vs)} ⊆ DT(Σ, Vs, Vd),
(iii)

∑
i∈I piθi ∈ DT(Σ, Vs, Vd) whenever θi ∈ DT(Σ, Vs, Vd) and pi ∈ (0, 1] with

∑
i∈I pi = 1,

and
(iv) f(θ1, . . . , θn) ∈ DT(Σ, Vs, Vd) whenever f ∈ Σ and θi ∈ DT(Σ, Vs, Vd).
We write θ1⊕p θ2 for

∑2
i=1 piθi with p1 = p and p2 = 1−p. Furthermore, we write θ1 f θ2 for

f(θ1, θ2). We write DT(Σ) for DT(Σ,Vs,Vd) (set of all open distribution terms), and DT(Σ)
for DT(Σ, ∅, ∅) (set of all closed distribution terms).

Distribution terms have the following meaning. A distribution variable µ ∈ Vd is a variable
that takes values from ∆(T(Σ)). An instantiable Dirac distribution δ(t) instantiates to δ(t′)
if t instantiates to t′. Case (iii) allows to construct convex combinations of distributions.
Case (iv) lifts the structural inductive construction of state terms to distribution terms.
Substitutions are defined as usual [7].

SOS specification. We specify the operational semantics of operators by SOS rules. SOS
rules are syntax-driven inference rules that define the behavior of complex expressions in
terms of the behavior of their components. We employ SOS rules of the probabilistic GSOS
format [4, 7, 18, 6]. This format uses triples of the form t

a−→ θ that specify in a single
literal all probabilistic choices of a transition. Earlier formats [3, 16, 21] used the old
fashion quadruple t a,p−−→ t′ that decorates the transitions with both the action label and
the probability in order to partially specify a probabilistic jump. However, this approach
required complicated consistency conditions on the set of all rules to ensure that the partially
specified probabilistic jumps define in total probabilistic choices.

I Definition 4 (SOS rule). A SOS rule r has the form:

{xi
ai,k−−−→ µi,k | i ∈ I, k ∈ Ki} {xi

bi,l−−→6 | i ∈ I, l ∈ Li}
f(x1, . . . , xn) a−→ θ

with n the rank of operator f ∈ Σ, I = {1, . . . , n} the indices of the arguments of f , Ki, Li
finite index sets, ai,k, bi,l, a ∈ A actions, xi ∈ Vs state variables, µi,k ∈ Vd distribution
variables, and θ ∈ DT(Σ) a distribution term. Furthermore, all µi,k for i ∈ I, k ∈ Ki

are pairwise different, all x1, . . . , xn are pairwise different, and all variables in θ are from
{µi,k | i ∈ I, k ∈ Ki} ∪ {x1 . . . , xn}.
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The expressions xi
ai,k−−−→ µi,k, xi

bi,l−−→6 and f(x1, . . . , xn) a−→ θ are called, resp., positive
premises, negative premises and conclusion. The set of all premises is denoted by prem(r).
The term f(x1, . . . , xn) is called the source, the variables x1, . . . , xn are called source variables,
and the distribution term θ is called the target (notation trgt(r)). Let der(r, xi) = {µi,k |
xi

ai,k−−−→ µi,k ∈ prem(r)}. We call µ ∈ der(r, xi) a derivative of source variable xi.
A probabilistic transition system specification (PTSS) is a triple P = (Σ, A,R), where Σ is

a signature, A is a countable set of actions and R is a countable set of SOS rules. We denote
by Rf the set of rules specifying operator f , i.e., all rules of R with source f(x1, . . . , xn).
The unique model of P is a PTS (T(Σ), A,−→), with transitions in −→ all and only those for
which P offers a justification [7].

Intuitively, a term f(t1, . . . , tn) represents the composition of terms t1, . . . , tn by operator
f . A rule r specifies some transition f(t1, . . . , tn) a−→ π that represents the evolution of
the composed term f(t1, . . . , tn) by action a to the distribution π. We say that a rule with
conclusion f(x1, . . . , xn) a−→ θ delays the evolution of the source term xi if xi appears in
θ, and that the source term xi evolves to µ ∈ der(r, xi) if µ appears in θ. We say that r
replicates a source variable xi if multiple instances of either xi or xi-derivatives in der(r, xi)
appear in the target θ of rule r.

3 Uniform continuity

In order to specify and reason about probabilistic systems in a compositional manner, it
is necessary that the operators describing these systems are uniformly continuous [12]. A
uniformly continuous operator ensures that a small variance in the behavior of a system
component leads to a bounded small variance in the behavior of the composed system. We
assume some fixed PTSS P = (Σ, A,R).

I Definition 5 (Modulus of continuity). Let f ∈ Σ be some n-ary operator and d be any
1-bounded pseudometric on T(Σ). A mapping ω : [0, 1]n → [0, 1] is an upper bound on the
distance between f -composed terms wrt. d if for all terms si, ti ∈ T(Σ)

d(f(s1, . . . , sn), f(t1, . . . , tn)) ≤ ω(d(s1, t1), . . . , d(sn, tn)).

An upper bound ω of f wrt. d is a modulus of continuity of f wrt. d if ω is continuous at
(0, . . . , 0), i.e., lim(ε1,...,εn)→(0,...,0) ω(ε1, . . . , εn) = ω(0, . . . , 0), and ω(0, . . . , 0) = 0.

I Definition 6 (Uniformly continuous operator). Let d be any 1-bounded pseudometric on
T(Σ). An operator f ∈ Σ is
1. uniformly continuous wrt. d if f admits some modulus of continuity wrt. d,
2. L-Lipschitz continuous wrt. d with L ∈ R≥0 if ω(ε1, . . . , εn) = L

∑n
i=1 εi is a modulus of

continuity of f wrt. d, and
3. Lipschitz continuous wrt. d if f is L-Lipschitz continuous wrt. d for some L ∈ R≥0.

I Example 7. Consider the synchronous parallel composition operator specified by

x
a−→ µ y

a−→ ν

x | y a−→ µ | ν

and terms s and te as in Ex. 3. Recall that d(s, te) = λe. The transitions s | s a−→ πs,
with πs = δ(aω | aω), and te1 | te2

a−→ πt, with πt = (1 − e1)(1 − e2)δ(aω | aω) + e1(1 −
e2)δ(0 | aω) + (1 − e1)e2δ(aω | 0) + e1e2δ(0 | 0), are derivable. Then, d(s | s, te1 | te2) =
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λK(d)(πs, πt) = λ(1− (1− e1)(1− e2)) ≤ λe1 + λe2 = d(s, te1) + d(s, te2). Thm. 27 below
will confirm that ω(ε1, ε2) = ε1 + ε2 is a modulus of continuity of the synchronous parallel
composition operator wrt. d. Hence, this operator is 1-Lipschitz continuous.

The behavioral distance between two arbitrary terms s and t can be divided in the
distance observable by the first k steps and the distance observable after step k. The distance
observable after step k is bounded by λk.

I Proposition 8. Let s, t ∈ T(Σ). Then d(s, t) ≤ dk(s, t) + λk for all k ∈ N.

A fundamental insight that we will use later to define the SOS specification format is that
an operator is uniformly continuous wrt. the bisimilarity metric if this operator is Lipschitz
continuous wrt. all up-to-k bisimilarity metrics.

I Theorem 9. Assume λ < 1. If an operator f ∈ Σ is Lipschitz continuous wrt. dk for each
k ∈ N, then f is uniformly continuous wrt. d.

Hence, we assume now a strictly discounting bisimulation metric with λ < 1.

4 Analysis of uniformly continuous operators

We analyze now the structural patterns of SOS rules that define uniformly continuous
operators and give representative examples of rules that specify operators that are not
uniformly continuous. Moreover, we derive from the structural properties of the rules the
moduli of continuity of the specified operators.

I Example 10 (Non-recurring process replication). Consider the rules

x
a−→ µ

f(x) a−→ θ

x
a−→ µ y

a−→ ν

x | y a−→ µ | ν

with θ ∈ DT(Σ) some distribution term. We analyze for various distribution terms θ the
modulus of continuity of the specified operator f . We use again the terms s and te from
Ex. 3. Recall that d(s, te) = λe.

Consider θ = δ(x | x). The operator f replicates the source process x, delays both
instances, and lets them evolve in parallel. The transitions f(s) a−→ δ(s | s) and f(te)

a−→
δ(te | te) are derivable. It follows that d(f(s), f(te)) = λK(d)(δ(s | s), δ(te | te)) = λd(s |
s, te | te) ≤ 2λd(s, te) (c.f. Ex. 7). Thm. 27 below will confirm that ω(ε) = (2λ)ε is a modulus
of continuity of this specification of f .

Consider θ = (δ(x | x)⊕r δ(0)) for some r ∈ (0, 1). The operator f replicates and delays
now only with probability r the source process x. The transitions f(s) a−→ rδ(s | s)+(1−r)δ(0)
and f(te)

a−→ rδ(te | te) + (1 − r)δ(0) are derivable. Hence, d(f(s), f(te)) = λrd(s | s, te |
te) ≤ 2rλd(s, te). Thm. 27 below will confirm that ω(ε) = (2rλ)ε is a modulus of continuity
of this specification of f .

Consider θ = (µ | µ) ⊕r δ(0). The operator f replicates (but does not delay) with
probability r the source process x. The evolved instances proceed in parallel. The transitions
f(s) a−→ rδ(aω | aω) + (1− r)δ(0) and f(te)

a−→ r((1− e)2δ(aω | aω) + e(1− e)δ(0 | aω) + (1−
e)eδ(aω | 0) + e2δ(0 | 0)) + (1− r)δ(0) are derivable. Now d(f(s), f(te)) ≤ 2rλe = 2rd(s, te).
Thm. 27 below will confirm that ω(ε) = (2r)ε is a modulus of continuity of this specification
of f .



D. Gebler and S. Tini 161

In essence, Ex. 10 shows that the number of non-recurring process replications, weighted
by the probability of their realization, and weighted by the discount factor if processes are
delayed, determines the Lipschitz factor of the operator.

I Example 11 (Linear process replication). We proceed with the analysis of Ex. 10 and
analyze the specification of recursive replication behavior.

Consider θ = δ(f(x)) | µ. Note that this specification of f is precisely the π-calculus
bang operator. The transitions f(s) a−→ πs, with πs = δ(f(s) | aω), and f(te)

a−→ πt, with
πt = (1 − e)δ(f(te) | aω) + eδ(f(te) | 0) are derivable. Then d(f(s), f(te)) = λe + λ(1 −
e)d(f(s) | aω, f(te) | aω)) = λe+ λ(1− e)d(f(s), f(te)). Hence, d(f(s), f(te)) = λe

1−λ+λe ≤
λe

1−λ = 1
1−λd(s, te). Intuitively, the operator f spawns and delays in each computation step a

new instance of the source process x. Thus, the total number of spawned (resp. discounted)
process copies is

∑∞
k=0 λ

k = 1/(1 − λ). Hence, ω(ε) = 1
1−λε (formally shown below by

Thm. 27) is a modulus of continuity of this specification of f .
Consider θ = δ(f(x)) | µ | δ(x). The specified operator f has the modulus of continuity

ω(ε) = 1+λ
1−λε. Similarly, if θ = δ(f(x)) | µ | δ(x) | δ(x), then ω(ε) = 1+2λ

1−λ ε is a modulus of
continuity of the specified operator f .

In essence, Ex. 11 shows that if the number of recurring process replications is finitely
bounded, then the specified operator is Lipschitz continuous.

I Example 12 (Non-linear process replication). We analyze now the fork operation of operating
systems specified by the copy operator of [5, 11] with the rules

x
a−→ µ

cp(x) a−→ µ
(a 6∈ {l, r}) x

l−→ µ x
r−→ ν

cp(x) s−→ cp(µ) | cp(ν)

Actions l and r are the left and right forking actions, and s is the resulting split action.
The fork of t is the process cp(t) evolving by t to the parallel composition of the left fork
(l-derivative of t) and the right fork (r-derivative of t). For all other actions a 6∈ {l, r} the
process cp(t) mimics the behavior of t.

First, we show that the copy operator is not Lipschitz continuous. Formally, for any
L ∈ R≥0, we show that d(cp(s), cp(t)) > Ld(s, t) for some CCS processes s, t. Let s1 =
l.([1 − e]a ⊕ [e]0) + r.([1 − e]a ⊕ [e]0) and t1 = l.a + r.a, and sk+1 = l.sk + r.sk and
tk+1 = l.tk+r.tk. Clearly d(sk, tk) = λke. Then d(cp(sk), cp(tk)) = λk(1− (1−e)2k ). Hence,
for any k with 2k > L, d(cp(s), cp(t))/d(s, t) = (1− (1− e)2k )/e > L holds for s = sk, t = tk
and all 0 < e < (2k −L)/(2k−1(2k − 1)). Thus, the copy operator is not Lipschitz continuous.

However, Thm. 27 below will confirm that ω(ε) = infk∈N(2kε + λk) is a (non-linear)
modulus of continuity of the copy operator. Intuitively, the copy operator creates in k steps
at most 2k copies of the source process x, i.e., the copy operator is 2k-Lipschitz continuous
for the up-to-k bisimilarity metric. Then, by Prop. 8 we derive the modulus of continuity
wrt. bisimilarity metric from the moduli of continuity of the up-to-k bisimilarity metrics.

In essence, Ex. 12 shows that an operator is uniformly continuous if in each step only finitely
many process copies are spawned.

I Example 13 (Non-uniformly continuous operators). Consider the unary operators f and g
specified by the following rules for all k ∈ N:

x
a−→ µ

f(x) a−→ µ | . . . | µ︸ ︷︷ ︸
k−times

g(x) a−→ δ(h(. . . h(︸ ︷︷ ︸
k−times

x)))
x

a−→ µ

h(x) a−→ µ | µ
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We start with operator f . We get d(f(s), f(te)) = supk∈N λ(1− (1− e)k) = λ. The least
upper bound on the distance between f -composed processes is ω(ε) = λ if ε > 0 and ω(0) = 0.
However, ω is not a modulus of continuity since it is not continuous at 0. Hence, operator f
is not uniformly continuous.

We proceed with operator g. We get d(g(s), g(te)) = supk∈N λ2(1 − (1 − e)2k ) = λ2.
Following the same line of reasoning as with operator f we conclude that operator g is not
uniformly continuous.

In essence, Ex. 13 shows that an operator may be not uniformly continuous if there is no
bound on the number of process copies it can spawn in a single step.

5 Specification of uniformly continuous operators

We develop now a specification format that allows us to specify uniformly continuous operators.
We exploit Thm. 9 and specify uniformly continuous operators by defining suitable Lipschitz
factors wrt. all up-to-k bisimilarity metrics.

5.1 Finite projection Lipschitz continuous operators
I Definition 14 (Lipschitz factor assignment). We call a mapping2 L : (N × Σ) → R∞≥0 a
Lipschitz factor assignment (LFA, for short) for operators in Σ. Let LΣ be the set of all
LFAs for Σ, with L,M ∈ LΣ ordered L vM iff Lk(f) ≤Mk(f) for all k ∈ N and f ∈ Σ.

Intuitively, Lk(f) is either the Lipschitz factor of operator f ∈ Σ wrt. dk, or ∞ if f is
not Lipschitz continuous wrt. dk.

I Proposition 15. (LΣ,v) is a complete lattice.

It is clear that the bottom element of the lattice (LΣ,v) is the LFA 0 ∈ LΣ given by
0k(f) = 0 for all k ∈ N and f ∈ Σ.

I Definition 16 (Semantic consistency). Let L ∈ LΣ be a LFA and k ∈ N. We call L
consistent with the up-to-k bisimilarity metric dk if

dk(f(s1, . . . , sn), f(t1, . . . , tn)) ≤ Lk(f)
n∑
i=1

dk(si, ti)

for all operators f ∈ Σ and terms si, ti ∈ T(Σ). Furthermore, we call L consistent with the
bisimilarity metric d if L is consistent with dk for all k ∈ N.

Hence L ∈ LΣ is consistent with dk if each operator f with Lk(f) <∞ is Lk(f)-Lipschitz
continuous wrt. dk. We proceed by lifting LFAs from operators to terms.

I Definition 17 (LFA on terms). Let L ∈ LΣ be a LFA. The lifting of L is a Lipschitz factor
assignment on terms given as the mapping L : (N× (T(Σ) ∪ DT(Σ))× V)→ R∞≥0 defined by:

Lk(t, ζ) =


1 if t = ζ

Lk(f)
n∑
i=1

Lk(ti, ζ) if t = f(t1, . . . , tn)

0 otherwise

2 We will write the first argument of L as subscript, i.e., Lk(f) for L(k, f), to align with the notation dk

of up-to-k-bisimilarity metric.
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Lk(θ, ζ) =



1 if θ = ζ

Lk(t, ζ) if θ = δ(t)∑
i∈I

pi · Lk(θi, ζ) if θ =
∑
i∈I

piθi

Lk(f)
n∑
i=1

Lk(θi, ζ) if θ = f(θ1, . . . , θn) and ζ ∈ Vs

Lk(f)
n∑
i=1

Lk(θi, ζ) if θ = f(θ1, . . . , θn) and ζ ∈ Vd

0 otherwise

with Lk(f) = max(Lk(f), 1).

The Lipschitz factor of a state term arises from the functional composition of the Lipschitz
moduli of continuity of the operators in the state term. Similarly, also for distribution terms
except for operators with Lk(f) < 1 (case 5 of Lk(θ, ζ)). As shown in [13, Sec. 4.2], if f has
a modulus of continuity on state terms below 1-Lipschitz continuity, then the modulus of
continuity of f on distribution terms is 1-Lipschitz continuity (but not smaller).

The lifting of a LFA preserves consistency.

I Proposition 18. Let L ∈ LΣ be a LFA and k ∈ N. If L is consistent with dk, then for any
term t ∈ T(Σ) we have

dk(σ1(t), σ2(t)) ≤
∑
x∈Vs

Lk(t, x) · dk(σ1(x), σ2(x))

for all closed substitutions σ1, σ2 : V → T(Σ).

The set of SOS rules R gives rise to a mapping R : LΣ → LΣ with R(L) defined as the
LFA obtained by applying the rules of R to L.

I Definition 19 (R-extension). The R-extension of LFAs is the mapping3 R : LΣ → LΣ
defined by

R(L)0(f) = 0

R(L)k+1(f) = sup
r∈Rf

r(f)
max
i=1

λ · Lk(trgt(r), xi) +
∑

µ∈der(r,xi)

Lk(trgt(r), µ)


for all L ∈ LΣ and f ∈ Σ.

Intuitively, the lifted LFA on terms (Def. 17) is obtained by structural induction over
terms, while the R-extended LFA (Def. 19) is obtained by operational induction over rules.
The R-extension of Lipschitz factor assignments preserves semantic consistency.

I Proposition 20. Let L ∈ LΣ be a LFA and k ∈ N. If L is consistent with dk, then R(L)
is consistent with dk+1.

I Corollary 21. If L is consistent with d, then R(L) is consistent with d.

3 The symbol R denotes both the set of rules of some specification and the R-extension mapping of LFAs
induced by a set of rules R. The meaning of symbol R will always be clear from the application context.
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The R-extension mapping allows us to specify a canonical LFA given as the least fixed-
point of R. Existence and uniqueness follow by the Knaster-Tarski theorem using that
(LΣ,v) is a complete lattice (Prop. 15) and that R is monotone (Prop. 22). Since the bottom
LFA 0 ∈ LΣ is consistent with d0 and R preserves consistency of LFAs (Prop. 20), we get
that the canonical LFA is consistent with d. The canonical LFA provides the least restricting
syntactic requirements for the specified operators.

I Proposition 22. R is order-preserving on (LΣ,v).

I Definition 23 (Canonical LFA). Let P = (Σ, A,R) be a PTSS. We call LP = limn→∞Rn(0)
the canonical LFA of P .

Dual to the notion of semantic consistency of LFAs (Def. 16) we introduce now the notion
of syntactic consistency of LFAs. Intuitively, a syntactically consistent LFA ensures that the
Lipschitz factors are compatible with the rules.

I Definition 24 (Syntactic consistency). Let P = (Σ, A,R) be a PTSS and L ∈ LΣ some
LFA. We call L consistent with P (or alternatively L is P -consistent) if R(L) v L.

In other words, all prefixed points of R are consistent with P . In particular, the canonical
LFA LP is consistent with P . Moreover, LP is the least LFA consistent with P . The syntactic
consistency condition R(L) v L of LFA L with a specification P = (Σ, A,R) is a syntactical
invariance condition on P that mimics the semantical bisimulation invariance condition
B(d) v d on the induced model (T(Σ), A,−→).

Semantic consistency of a LFA L (Def. 16) means consistency of L with the bisimilarity
metric d on the induced model (T(Σ), A,−→), whereas syntactic consistency of L (Def. 24)
means consistency of L with the specification P = (Σ, A,R) from which the model is derived.
As expected, syntactic consistency implies semantic consistency.

I Proposition 25 (Syntactic consistency implies semantic consistency). Let P = (Σ, A,R) be
a PTSS and L ∈ LΣ a LFA. If L is consistent with P then L is also consistent with d.

5.2 Uniformly continuous operators
A P -consistent LFA allows for deriving for each operator f an upper bound on the distance
between f -composed terms.

I Definition 26 (Upper bound induced by a LFA). Let P = (Σ, A,R) be a PTSS and L ∈ LΣ a
LFA. We define for any n-ary operator f ∈ Σ the upper bound on the distance of f -composed
processes induced by L as the mapping ωL,f : (R≥0)n → R∞≥0 defined by

ωL,f (ε1, . . . , εn) = inf
k∈N

(
Lk(f)

n∑
i=1

εi + λk

)

If L is consistent with P , then ωL,f is an upper bound on the distance between f -composed
terms wrt. d.

I Theorem 27. Let P = (Σ, A,R) be a PTSS and L ∈ LΣ a LFA consistent with P . Then

d(f(s1, . . . , sn), f(t1, . . . , tn)) ≤ ωL,f (d(s1, t1), . . . ,d(sn, tn)).

Moreover, if L is consistent with P , then ωL,f is a modulus of continuity of f wrt. d if
all Lipschitz factors Lk(f) of f are finite.
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I Theorem 28. Let P = (Σ, A,R) be a PTSS and L ∈ LΣ a LFA consistent with P . An
operator f ∈ Σ is
1. uniformly continuous if Lk(f) <∞ for all k ∈ N,
2. Lipschitz continuous if supk∈N Lk(f) <∞, and
3. K-Lipschitz continuous if Lk(f) ≤ K for all k ∈ N.

Hence, if f is Lipschitz continuous, then supk∈N Lk(f) is a Lipschitz factor of f . Since
the canonical LFA LP is the least LFA consistent with P it suffices to verify the conditions
of Thm. 28 on the canonical LFA.

We provide now an example that shows how to derive the canonical LFA, how to compute
the modulus of continuity, and how to determine the resp. compositionality property.

I Example 29. Let P = (Σ, A,R) be the PTSS specifying the synchronous parallel com-
position operator (Ex. 7) and the copy operator (Ex. 12). Let L ∈ LΣ be defined as
L0(|) = 0 and L0(cp) = 0, and Lk(|) = 1 and Lk(cp) = 2k for any k ∈ N>0. First
we show that L is the canonical LFA LP = limn→∞Rn(0) (Def. 23). Observe that
Rn+1(0)k = Rn(0)k for all k ≤ n. By induction over n. Base case R0(0)0 = 0 =
L0(|) and R0(cp)0 = 0 = L0(cp) is obvious. The induction step is Rn+1(0)n+1(|) =
max(λ · Rn(0)n(µ | ν, x) + Rn(0)n(µ | ν, µ), λ · Rn(0)n(µ | ν, y) + Rn(0)n(µ | ν, ν)) =
(inductive hypthesis) max(λ · Ln(µ | ν, x) + Ln(µ | ν, µ), λ · Ln(µ | ν, y) + Ln(µ | ν, ν)) =

max(0 + 1, 0 + 1) = 1 = Ln+1(|) and Rn+1(0)n+1(cp) = max(Rn(0)n(µ, µ), Rn(0)n(cp(µ) |
cp(ν), µ) + Rn(0)n(cp(µ) | cp(ν), ν)) = (inductive hypthesis) max(Ln(µ, µ), Ln(cp(µ) |
cp(ν), µ) + Ln(cp(µ) | cp(ν), ν)) = max(1, 2n + 2n) = 2n+1 = Ln+1(cp). Hence by Thm. 27
we get that ω(L,|)(ε1, ε2) = ε1 + ε2, ω(L,cp)(ε) = infk∈N(2kε+ λk) are upper bounds for | and
cp wrt. d. By Thm. 28 get that the operator | is 1-Lipschitz continuous and that the operator
cp is uniformly continuous. Moreover, the upper bounds are indeed moduli of continuity.

6 From modulus of continuity to operator specifications

In reverse, we derive now from any modulus of continuity ω a LFA L s.t. any PTSS P

consistent with L specifies an operator that has ω as modulus of continuity.. The derived
LFA depends on ω and the underlying model of process replication. The model of process
replication is given as a mapping χ : R≥0 × N → R≥0 assigning to each step k an upper
bound on the number of spawned process instances. The first argument is a fixed growth
factor.

I Definition 30 (Growth function). We define the following growth functions χ : R≥0 × N→
R≥0:
1. χ(c, k) = c (constant),
2. χ(c, k) = c · k (linear growth),
3. χ(c, k) = ck (exponential growth).

The constant growth function expresses that at most c process instances are spawned
irrespective of the number of steps performed by the combined process (cf. non-recurring
process replication, Ex. 10). The linear growth function will be used to model operators
with bounded stepwise replication (cf. recurring step-bounded process replication, Ex. 11).
Similarly, the exponential growth function allows us to model continuously replicating
operators (cf. recurring step-unbounded process replication, Ex. 12).
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I Definition 31 (LFA induced by ω and χ). Assume a function ω : [0, 1]n → [0, 1] s.t.
ω(0, . . . , 0) = 0 and lim(ε1,...,εn)→(0,...,0) ω(ε1, . . . , εn) = ω(0, . . . , 0), a growth function χ and
an operator f ∈ Σ. The LFA Lfω,χ induced by ω and χ for f is defined by

Lfω,χ,k(g) =
{
χ(C, k) if g = f

∞ if g 6= f

with C = sup{c ∈ R≥0 | ∀L ∈ LΣ. ((∀k ∈ N.Lk(f) = χ(c, k))⇒ ωL,f ≤ ω)}.

The LFA induced by the exponential growth function is the LFA arising from maximal
recurring process replications. The recurring process replication factor C is the maximal
process replication per single transition step (possibly repeated along the evolution of the
combined process).

I Theorem 32. Let P = (Σ, A,R) be a PTSS and Lfω,χ the LFA induced by ω and χ for f .
If there exists a P -consistent LFA L ∈ LΣ with L v Lfω,χ, then P specifies f s.t. f admits ω
as modulus of continuity.

I Example 33. To define an operator that may not increase the behavioral distance of its
argument, assume the modulus of continuity ω(ε) = ε (1-Lipschitz continuity). The LFA
Lfω,χ induced by ω and χ(1, k) = 1 for f (Def. 30.1, Def. 31, Def. 26) gives Lfω,χ,k(f) = 1.
Let the operator f be specified by the rule (with θ ∈ DT(Σ) be any distribution term):

x
a−→ µ

f(x) a−→ θ
.

Clearly, θ = µ specifies operator f s.t. Lfω,χ is consistent with P (Def. 24) and that operator
f admits ω as modulus of continuity (Thm. 32). Let t ∈ T(Σ) be any closed term describing
some alternative process behavior. With the same argument, also θ = δ(µ | µ) ⊕p δ(t)
with p ≤ 1/2 (2 instances proceed with probability at most 1/2), θ = δ(x | x)⊕p δ(t) with
p ≤ 1/(2λ) (2 instances proceed with one step delay with probability at most 1/(2λ)), and
θ = δ(an.(x | x)) ⊕p δ(t) with p ≤ 1/(2λn+1) (an._ is action prefix operator performing
n-times action a followed by the argument process) specify each operator f admitting ω as
modulus of continuity (Thm. 32).

We conclude by observing that θ = f(µ) | µ specifies operator f s.t. P is consistent with
Lfω,χ whereby Lfω,χ,k(f) = 2k is obtained from the linear growth function χ(2, k) = 2k and the
modulus of continuity ω(ε) = infk∈N(2kε+λk). In the same way we can derive that θ = f(µ) |
f(µ) specifies operator f s.t. P is consistent with Lfω,χ,k = 2k obtained from exponential
growth function χ(2, k) = 2k and the modulus of continuity ω(ε) = infk∈N(2kε+ λk).

7 Syntactic and semantic compositionality

LFAs induced by moduli of continuity and growth functions (Def. 31) are compositional.
This allows us to determine the LFA for multiple operators separately, and then to specify
those operators simultaneously in a specification consistent with the composed LFAs.

I Theorem 34. Let P = (Σ, A,R) be a PTSS and G ⊆ Σ be a set of operators. For each
g ∈ G let Lgωg,χg

be the LFA induced by some ωg and χg for g. If for each g ∈ G the LFA
Lgωg,χg

is consistent with P , then also the LFA infg∈G Lgωg,χg
is consistent with P .



D. Gebler and S. Tini 167

Upper bounds of operators (Def. 5) are compositional. Hence, we define now an upper
bound on the distance between two closed instances of a term by composing the moduli of
continuity of the operators of that term. In essence, the following theorem lifts Thm. 27 to
terms.

I Theorem 35. Let P = (Σ, A,R) be a PTSS, L ∈ LΣ a LFA consistent with P and t ∈ T(Σ)
any open term. For all closed substitutions σ1, σ2 : V → T(Σ) we get

d(σ1(t), σ2(t)) ≤ inf
k∈N

(∑
x∈Vs

Lk(t, x) · d(σ1(x), σ2(x)) + λk

)
.

I Example 36. We start by exemplifying Thm. 34. We consider the specification P =
(Σ, A,R) of operators G = {_ | _, cp(_)}. As shown in Ex. 29 the LFAs L|ω|,χ|,k

(|) = 1,
L
|
ω|,χ|,k

(cp) = ∞ and Lcp
ωcp,χcp,k

(cp) = 2k, Lcp
ωcp,χcp,k

(|) = ∞ (Def. 31) are consistent with P .
Then by Thm. 34 L = infg∈G Lgωg,χg

with Lk(|) = 1 and Lk(cp) = 2k is consistent with P .
We proceed by exemplifying Thm. 35. Consider terms t = cp(x | x). By using Lk(|) = 1

and Lk(cp) = 2k (Ex. 29), we get Lk(cp(x | x), x) = Lk(cp) · Lk(x | x, x) = 2k · (Lk(|) ·
(Lk(x, x) + Lk(x, x)) = 2k+1 and Lk(cp(x) | cp(x), x) = 2k+1. Hence, by Thm. 35 we get
d(σ1(t), σ2(t)) ≤ infk∈N(2k+1 · d(σ1(x), σ2(x)) + λk) for all closed substitutions σ1, σ2 : V →
T(Σ). Equally, for t = cp(x) | cp(x) we get Lk(cp(x) | cp(x), x) = 2k+1 and d(σ1(t), σ2(t)) ≤
infk∈N(2k+1 · d(σ1(x), σ2(x)) + λk). The nesting of the copy operator cp(cp(x)) induces
Lk(cp(cp(x)), x) = 22k with distance bound d(σ1(cp(cp(x))), σ2(cp(cp(x)))) ≤ infk∈N(22k ·
d(σ1(x), σ2(x)) + λk).

8 Conclusion

We developed a SOS specification format that allows us to specify simultaneously uniformly
continuous operators of arbitrary (and possibly different) moduli of continuity. Our format
and results pave the way for a robust and modular approach to specify and verify probabilistic
systems using probabilistic process algebras and probabilistic programming languages [9, 14].

We will continue this line of research by developing SOS specification formats for uniformly
continuous operators wrt. weak metric semantics [10] and metric variants of branching
bisimulation equivalence [2]. Our case studies (partially published in [12]) indicated that
concepts such as encapsulation and abstraction are fundamental to perform the metric
compositional analysis of systems described by probabilistic process algebras in a scalable
manner. A second research direction we plan to investigate is the distance between operators
(instead of terms) to describe the behavioral distance whenever one operator needs to
be replaced or approximated by another. Intuitively, if an operator becomes unavailable,
the distance between operators will suggest an optimal replacement operator to build an
alternative system which is closest to the original system.
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Abstract
We study the problem of finite-horizon probabilistic invariance for discrete-time Markov pro-
cesses over general (uncountable) state spaces. We compute discrete-time, finite-state Markov
chains as formal abstractions of general Markov processes. Our abstraction differs from existing
approaches in two ways. First, we exploit the structure of the underlying Markov process to
compute the abstraction separately for each dimension. Second, we employ dynamic Bayesian
networks (DBN) as compact representations of the abstraction. In contrast, existing approaches
represent and store the (exponentially large) Markov chain explicitly, which leads to heavy mem-
ory requirements limiting the application to models of dimension less than half, according to our
experiments.

We show how to construct a DBN abstraction of a Markov process satisfying an independence
assumption on the driving process noise. We compute a guaranteed bound on the error in the
abstraction w.r.t. the probabilistic invariance property; the dimension-dependent abstraction
makes the error bounds more precise than existing approaches. Additionally, we show how
factor graphs and the sum-product algorithm for DBNs can be used to solve the finite-horizon
probabilistic invariance problem. Together, DBN-based representations and algorithms can be
significantly more efficient than explicit representations of Markov chains for abstracting and
model checking structured Markov processes.
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1 Introduction

Markov processes over general uncountable state spaces appear in many areas of engineering
such as power networks, transportation, biological systems, robotics, and manufacturing
systems. The importance of this class of stochastic processes in applications has motivated a
significant research effort into their foundations and their verification.

We study the problem of algorithmically verifying finite-horizon probabilistic invariance
for Markov processes, which is the problem of computing the probability that a stochastic
process remains within a given set for a given finite time horizon. For finite-state stochastic
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processes, there is a mature theory of model checking discrete-time Markov chains [5], and a
number of probabilistic model checking tools [14, 18] that compute explicit solutions to the
verification problem. On the other hand, stochastic processes taking values over uncountable
state spaces may not have explicit solutions and their numerical verification problems are
undecidable even for simple dynamics [1]. A number of studies have therefore explored
abstraction techniques that reduce the given stochastic process (over a general state space) to
a finite-state process, while preserving properties in a quantitative sense [1, 7]. The abstracted
model allows the application of standard model checking techniques over finite-state models.
The work in [1] has further shown that an explicit error can be attached to the abstraction.
This error is computed purely based on continuity properties of the concrete Markov process.
Properties proved on the finite-state abstraction can be used to reason about properties of
the original system. The overall approach has been extended to linear temporal specifications
[24] and software tools have been developed to automate the abstraction procedure [10].

In previous works, the structure of the underlying Markov process (namely, the interdepen-
dence among its variables) has not been actively reflected in the abstraction algorithms, and
the finite-state Markov chain has been always represented explicitly, which is quite expensive
in terms of memory requirements. In many applications, the dynamics of the Markov process,
which are characterized by a conditional kernel, often exhibit specific structural properties.
More specifically, the dynamics of any state variable depends on only a small number of other
state variables and the process noise driving each state variable is assumed to be independent.
Examples of such structured systems are models of power grids and sensor-actuator networks
as large-scale interconnected networks [23] and mass-spring-damper systems [3, 4].

We present an abstraction and model checking algorithm for discrete-time stochastic
dynamical systems over general (uncountable) state spaces. Our abstraction constructs
a finite-state Markov abstraction of the process, but differs from previous work in that
it is based on a dimension-dependent partitioning of the state space. Additionally, we
perform a precise dimension-dependent analysis of the error introduced by the abstraction,
and our error bounds can be exponentially smaller than the general bounds obtained in
[1]. Furthermore, we represent the abstraction as a dynamic Bayesian network (DBN) [15]
instead of explicitly representing the probabilistic transition matrix. The Bayesian network
representation uses independence assumptions in the model to provide potentially polynomial
sized representations (in the number of dimensions) for the Markov chain abstraction for
which the explicit transition matrix is exponential in the dimension. We show how factor
graphs and the sum-product algorithm, developed for belief propagation in Bayesian networks,
can be used to model check probabilistic invariance properties without constructing the
transition matrix. Overall, our approach leads to significant reduction in computational and
memory resources for model checking structured Markov processes and provides tighter error
bounds.

The material is organized in six sections. Section 2 defines discrete-time Markov processes
and the probabilistic invariance problem. Section 3 presents a new algorithm for abstracting a
process to a DBN, together with the quantification of the abstraction error. We discuss efficient
model checking of the constructed DBN in Section 4, and apply the overall abstraction
algorithm to a case study in Section 5. Section 6 outlines some further directions of
investigation. Proofs of statements can be found in [9].
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2 Markov Processes and Probabilistic Invariance

2.1 Discrete-Time Markov Processes
We write N for the non-negative integers N = {0, 1, 2, . . .} and Nn = {1, 2, . . . , n}. We use
bold typeset for vectors and normal typeset for one-dimensional quantities.

We consider a discrete-time Markov process Ms defined over a general state space, and
characterized by the tuple (S,B, Ts): S is the continuous state space, which we assume to
be endowed with a metric and to be separable1; B is the Borel σ-algebra associated to S,
which is the smallest σ-algebra containing all open subsets of S; and Ts : S × B → [0, 1] is a
stochastic kernel, so that Ts(·, B) is a non-negative measurable function for any set B ∈ B,
and Ts(s, ·) is a probability measure on (S,B) for any s ∈ S. Trajectories (also called traces
or paths) of Ms are sequences (s(0), s(1), s(2), . . .) which belong to the set Ω = SN. The
product σ-algebra on Ω is denoted by F . Given the initial state s(0) = s0 ∈ S of Ms, the
stochastic Kernel Ts induces a unique probability measure P on (Ω,F) that satisfies the
Markov property: namely for any measurable set B ∈ B and any t ∈ N

P (s(t+ 1) ∈ B|s(0), s(1), . . . , s(t)) = P (s(t+ 1) ∈ B|s(t)) = Ts(s(t), B).

We assume that the stochastic kernel Ts admits a density function ts : S × S → R≥0, such
that Ts(s, B) =

∫
B
ts(s̄|s)ds̄.

A familiar class of discrete-time Markov processes is that of stochastic dynamical systems.
If {ζ(t), t ∈ N} is a sequence of independent and identically distributed (iid) random variables
taking values in Rn, and f : S × Rn → S is a measurable map, then the recursive equation

s(t+ 1) = f(s(t), ζ(t)), ∀t ∈ N, s(0) = s0 ∈ S, (1)

induces a Markov process that is characterized by the kernel

Ts(s, B) = Tζ (ζ ∈ Rn : f(s, ζ) ∈ B) ,

where Tζ is the distribution of the r.v. ζ(0) (in fact, of any ζ(t) since these are iid random
variables). In other words, the map f together with the distribution of the r.v. {ζ(t)}
uniquely define the stochastic kernel of the process. The converse is also true as shown in [13,
Proposition 7.6]: any discrete-time Markov process Ms admits a dynamical representation
as in (1), for an appropriate selection of function f and distribution of the r.v. {ζ(t)}.

Let us expand the dynamical equation (1) explicitly over its states s = [s1, . . . , sn]T , map
components f = [f1, . . . , fn]T , and uncertainly terms ζ = [ζ1, . . . , ζn]T , as follows:

s1(t+ 1) = f1(s1(t), s2(t), . . . , sn(t), ζ1(t)),
s2(t+ 1) = f2(s1(t), s2(t), . . . , sn(t), ζ2(t)),
...

sn(t+ 1) = fn(s1(t), s2(t), . . . , sn(t), ζn(t)).

(2)

In this article we are interested in exploiting the knowledge of the structure of the dynamics
in (2) for formal verification via abstractions [1, 7, 8]. We focus our attention to continuous
(unbounded and uncountable) Euclidean spaces S = Rn, and further assume that for any
t ∈ N, ζk(t) are independent for all k ∈ Nn. This latter assumption is widely used in the

1 A metric space S is called separable if it has a countable dense subset.
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theory of dynamical systems, and allows for the following multiplicative structure on the
conditional density function of the process:

ts(s̄|s) = t1(s̄1|s)t2(s̄2|s) . . . tn(s̄n|s), (3)

where the function tk : Rn × R→ R≥0 solely depends on the map fk and the distribution of
ζk. The reader is referred to Section 5 for the detailed computation of the functions tk from
the dynamical equations in (2).
I Remark. The results of this article are presented under the structural assumption that
ζk(·) are independent over k ∈ Nn. These results can be generalized to a broader class of
processes by allowing inter-dependencies between the entries of the process noise, which
requires partitioning the set of entries of ζ(·) so that any two entries from different partition
sets are independent, whereas entries within a partition set may still be dependent. This
assumption induces a multiplicative structure on ts(s̄|s) with respect to the partition, which
is similar to (3). The finer the partition, the more efficient is our abstraction process.

I Example 1. Figure 1 shows a system of n masses connected by springs and dampers. For
i ∈ Nn, block i has mass mi, the ith spring has stiffness ki, and the ith damper has damping
coefficient bi. The first mass is connected to a fixed wall by the left-most spring/damper
connection. All other masses are connected to the previous mass with a spring and a damper.
A force ζi is applied to each mass, modeling the effect of a disturbance or of process noise.
The dynamics of the overall system is comprised of the position and velocity of the blocks. It
can be shown that the dynamics in discrete time take the form s(t+ 1) = Φs(t) + ζ(t), where
s(t) ∈ R2n with s2i−1(t), s2i(t) indicating the velocity and position of mass i. The state
transition matrix Φ = [Φij ]i,j ∈ R2n×2n is a band matrix with lower and upper bandwidth 3
and 2, respectively (Φij = 0 for j < i− 3 and for j > i+ 2). J

I Example 2. A second example of structured dynamical systems is a discrete-time large-
scale interconnected system. Consider an interconnected system of Nd heterogeneous linear
time-invariant (LTI) subsystems described by the following stochastic difference equations:

si(t+ 1) = Φisi(t) +
∑
j∈Ni

Gijsj(t) +Biui(t) + ζi(t),

where i ∈ NNd
denotes the ith subsystem and si ∈ Rn×1,ui ∈ Rp×1, ζi ∈ Rm×1 are the

state, the input, and the process noise of subsystem i. The term
∑
j∈Ni

Gijsj(t) represents
the physical interconnection between the subsystems where Ni, |Ni| � Nd, is the set of
subsystems to which system i is physically connected. The described interconnected system
can be found in many application areas including smart power grids, traffic systems, and
sensor-actuator networks [11]. J

2.2 Probabilistic Invariance
We focus on verifying probabilistic invariance, which plays a central role in verifying properties
of a system expressed as PCTL formulae or as linear temporal specifications [5, 22, 24].

I Definition 3 (Probabilistic Invariance). Consider a bounded Borel set A ∈ B, representing
a set of safe states. The finite-horizon probabilistic invariance problem asks to compute the
probability that a trajectory of Ms associated with an initial condition s0 remains within
the set A during the finite time horizon N :

pN (s0, A) = P{s(t) ∈ A for all t = 0, 1, 2, . . . , N |s(0) = s0}.
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Figure 1 n-body mass-spring-damper system.

This quantity allows us to extend the result to a general probability distribution π : B →
[0, 1] for the initial state s(0) of the system as

P{s(t) ∈ A for all t = 0, 1, 2, . . . , N} =
∫
S
pN (s0, A)π(ds0). (4)

Solution of the probabilistic invariance problem can be characterized via the value functions
Vk : S → [0, 1], k = 0, 1, 2, . . . , N , defined by the following Bellman backward recursion [1]:

Vk(s) = 1A(s)
∫
A

Vk+1(s̄)ts(s̄|s)ds̄ for k = 0, 1, 2, . . . , N − 1. (5)

This recursion is initialized with VN (s) = 1A(s), where 1A(s) is the indicator function which
is 1 if s ∈ A and 0 otherwise, and results in the solution pN (s0, A) = V0(s0).

Equation (5) characterizes the finite-horizon probabilistic invariance quantity as the
solution of a dynamic programming problem. However, since its explicit solution is in
general not available, the actual computation of the quantity pN (s0, A) requires N numerical
integrations at each state in the set A. This is usually performed with techniques based on
state-space discretization [6].

3 Formal Abstractions as Dynamic Bayesian Networks

3.1 Dynamic Bayesian Networks
A Bayesian network (BN) is a tuple B = (V, E , T ). The pair (V, E) is a directed Acyclic
Graph (DAG) representing the structure of the network. The nodes in V are (discrete or
continuous) random variables and the arcs in E represent the dependence relationships among
the random variables. The set T contains conditional probability distributions (CPD) in
forms of tables or density functions for discrete and continuous random variables, respectively.
In a BN, knowledge is represented in two ways: qualitatively, as dependences between
variables by means of the DAG; and quantitatively, as conditional probability distributions
attached to the dependence relationships. Each random variable Xi ∈ V is associated with a
conditional probability distribution P(Xi|Pa(Xi)), where Pa(Y ) represents the parent set of
the variable Y ∈ V: Pa(Y ) = {X ∈ V|(X,Y ) ∈ E}. A BN is called two-layered if the set of
nodes V can be partitioned to two sets V1,V2 with the same cardinality such that only the
nodes in the second layer V2 have an associated CPD.

A dynamic Bayesian network [15, 20] is a way to extend Bayesian networks to model
probability distributions over collections of random variables X(0), X(1), X(2), . . . indexed
by time t. A DBN2 is defined to be a pair (B0,B→), where B0 is a BN which defines the

2 The DBNs considered in this paper are stationary (the structure of the network does not change with
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distribution of X(0), and B→ is a two-layered BN that defines the transition probability
distribution for (X(t+ 1)|X(t)).

3.2 DBNs as Representations of Markov Processes

We now show that any discrete-time Markov process Ms over Rn can be represented as a
DBN (B0,B→) over n continuous random variables. The advantage of the reformulation is
that it makes the dependencies between random variables explicit.

The BN B0 is trivial for a given initial state of the Markov process s(0) = s0. The
DAG of B0 has the set of nodes {X1, X2, . . . , Xn} without any arc. The Dirac delta
distribution located in the initial state of the process is assigned to each node of B0.3 The
DAG for the two-layered BN B→ = (V, E , T ) comprises a set of nodes V = V1 ∪ V2, with
V1 = {X1, X2, . . . , Xn} and V2 = {X̄1, X̄2, . . . , X̄n}. Each arc in E connects a node in V1 to
another node in V2; (Xi, X̄j) ∈ E if and only if tj(s̄j |s) is not a constant function of si. The
set T assigns a CPD to each node X̄j according to the density function tj(s̄j |s).

I Example 4. Consider the following stochastic linear dynamical system:

s(t+ 1) = Φs(t) + ζ(t) t ∈ N, s(0) = s0 = [s01, s02, . . . , s0n]T , (6)

where Φ = [aij ]i,j is the system matrix and ζ(t) ∼ N (0,Σ) are independent Gaussian
r.v. for any t ∈ N. The covariance matrix Σ is assumed to be full rank. Consequently, a
linear transformation can be employed to change the coordinates and obtain a stochastic
linear system with a diagonal covariance matrix. Then without loss of generality we assume
Σ = diag([σ2

1 , σ
2
2 , . . . , σ

2
n]), which clearly satisfies the independence assumption on the process

noise raised in Section 2.1. Model (6) for a lower bidiagonal matrix Φ can be expanded as
follows:

s1(t+ 1) = a11s1(t) + ζ1(t)
s2(t+ 1) = a21s1(t) + a22s2(t) + ζ2(t)
s3(t+ 1) = a32s2(t) + a33s3(t) + ζ3(t)

...
sn(t+ 1) = an(n−1)sn−1(t) + annsn(t) + ζn(t),

where ζi(·), i ∈ Nn are independent Gaussian r.v. N (0, σ2
i ). The conditional density function

of the system takes the following form:

ts(s̄|s) = t1(s̄1|s1)t2(s̄2|s1, s2)t3(s̄3|s2, s3) . . . tn(s̄n|sn−1, sn).

The DAG of the two-layered BN B→ associated with this system is sketched in Figure 2 for
n = 4. The BN B0 has an empty graph on the set of nodes {X1, . . . , Xn} with the associated
Dirac delta density functions located at s0i, δd(si(0)− s0i). J

the time index t). They have no input variables and are fully observable: the output of the DBN model
equals to its state.

3 For a general initial probability distribution π : B → [0, 1], a set of arcs must be added to reflect its
possible product structure. This construction is not important at the current stage because of the
backward recursion formulation of the probabilistic safety (please refer to (4) in Section 2.2).
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X1 X2 X3 X4

X̄1 X̄2 X̄3 X̄4

Figure 2 Two-layered BN B→ associated with the stochastic linear dynamical system in (6) for
n = 4.

3.3 Finite Abstraction of Markov Processes as Discrete DBNs

Let A ∈ B be a bounded Borel set of safe states. We abstract the structured Markov process
Ms interpreted in the previous section as a DBN with continuous variables to a DBN with
discrete random variables. Our abstraction is relative to the set A. Algorithm 1 provides the
steps of the abstraction procedure. It consists of discretizing each dimension into a finite
number of bins.

In Algorithm 1, the projection operators Πi : Rn → R, i ∈ Nn, are defined as Πi(s) = si for
any s = [s1, . . . , sn]T ∈ Rn. These operators are used to project the safe set A over different
dimensions, Di

.= Πi(A). In step 2 of the Algorithm, set Di is partitioned as {Dij}ni
j=1

(for any i ∈ Nn, Dij ’s are arbitrary but non-empty, non-intersecting, and Di = ∪ni
j=1Dij).

The corresponding representative points zij ∈ Dij are also chosen arbitrarily. Step 5 of the
algorithm constructs the support of the random variables in B→, V = {Xi, X̄i, i ∈ Nn},
and step 6 computes the discrete CPDs Ti(X̄i|Pa(X̄i)), reflecting the dependencies among
the variables. For any i ∈ Nn, Ξi : Zi → 2Di represents a set-valued map that associates
to any point zij ∈ Zi the corresponding partition set Dij ⊂ Di (this is known as the
“refinement map”). Furthermore, the abstraction map ξi : Di → Zi associates to any point
si ∈ Di the corresponding discrete state in Zi. Additionally, notice that the absorbing states
φ = {φ1, . . . , φn} are added to the definition of BN B→ so that the conditional probabilities
Ti(X̄i|Pa(X̄i)) marginalize to one. The function v(·) used in step 6 acts on (possibly a set
of) random variables and provides their instantiation. In other words, the term v(Pa(X̄i))
that is present in the conditioned argument of ti leads to evaluate function ti(s̄i|·) at the
instantiated values of Pa(X̄i).

The construction of the DBN with discrete r.v. in Algorithm 1 is closely related to the
Markov chain abstraction method in [1, 8]. The main difference lies in partitioning in each
dimension separately instead of doing it for the whole state space. Absorbing states are
also assigned to each dimension separately instead of having only one for the unsafe set.
Moreover, Algorithm 1 stores the transition probabilities efficiently as a BN.

3.4 Probabilistic Invariance for the Abstract DBN

We extend the use of P by denoting the probability measure on the set of events defined
over a DBN with discrete r.v. z = (X1, X2, . . . , Xn). Given a discrete set Za ⊂

∏
i Ωi, the

probabilistic invariance problem asks to evaluate the probability pN (z0, Za) that a finite
execution associated with the initial condition z(0) = z0 remains within the set Za during
the finite time horizon t = 0, 1, 2, . . . , N . Formally,

pN (z0, Za) = P(z(t) ∈ Za, for all t = 0, 1, 2, . . . , N |z(0) = z0).
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Algorithm 1 Abstraction of model Ms as a DBN with B→ = (V, E , T ) over discrete r.v.

Require: input model Ms = (S,B, Ts), safe set A
1: Project safe set A in each dimension Di

.= Πi(A), i ∈ Nn
2: Select finite ni-dimensional partition of Di as Di = ∪ni

j=1Dij , i ∈ Nn
3: For each Dij , select single representative point zij ∈ Dij , zij = ξi(Dij)
4: Construct the DAG (V, E), with V = {Xi, X̄i, i ∈ Nn} and E as per Section 3.2
5: Define Zi = {zi1, . . . , zini

}, i ∈ Nn, and take Ωi = Zi ∪ {φi} as the finite state space of
two r.v. Xi and X̄i, φi being dummy variables as per Section 3.3

6: Compute elements of the set T , namely CPD Ti related to the node X̄i, i ∈ Ni, as

Ti(X̄i = z|v(Pa(X̄i))) =



∫
Ξi(z) ti(s̄i|v(Pa(X̄i)))ds̄i, z ∈ Zi, v(Pa(X̄i)) ∩ φ = ∅

1−
∑
z∈Zi

∫
Ξi(z) ti(s̄i|v(Pa(X̄i)))ds̄i, z = φi, v(Pa(X̄i)) ∩ φ = ∅

1, z = φi, v(Pa(X̄i)) ∩ φ 6= ∅
0, z ∈ Zi, v(Pa(X̄i)) ∩ φ 6= ∅

Ensure: output DBN with B→ = (V, E , T ) over discrete r.v.

This probability can be computed by a discrete analogue of the Bellman backward recursion
(see [2] for details).

I Theorem 5. Consider value functions V dk :
∏
i Ωi → [0, 1], k = 0, 1, 2, . . . , N , computed by

the backward recursion

V dk (z) = 1Za
(z)

∑
z̄∈
∏

i
Ωi

V dk+1(z̄)P(z̄|z) k = 0, 1, 2, . . . , N − 1, (7)

and initialized with V dN (z) = 1Za
(z). Then the solution of the invariance problem is charac-

terized as pN (z0, Za) = V d0 (z0).

The discrete transition probabilities P(z̄|z) in Equation (7) are computed by taking the
product of the CPD in T . More specifically, for any z, z̄ ∈

∏
i Ωi of the form z =

(z1, z2, . . . , zn), z̄ = (z̄1, z̄2, . . . , z̄n) we have

P(z̄|z) =
∏
i

Ti(X̄i = z̄i|Pa(X̄i) = z).

Our algorithm for probabilistic invariance computes pN (z0, Za) to approximate pN (s0, A),
for suitable choices of z0 and Za depending on s0 and A. The natural choice for the initial
state is z0 = (z1(0), . . . , zn(0)) with zi(0) = ξi(Πi(s0)). For A, the n-fold Cartesian product
of the collection of the partition sets {Dij}, i ∈ Nn generates a cover of A as

A ⊂
⋃
{D1j}n1

j=1 × {D2j}n2
j=1 × . . .× {Dnj}nn

j=1

=
⋃
j

{Dj |j = (j1, j2, . . . , jn), Dj
.= D1j1 ×D2j2 × . . .×Dnjn

} .

We define the safe set Za of the DBN as

Za =
⋃
j

{(z1j1 , z2j2 , . . . , znjn
), such that A ∩Dj 6= ∅ for j = (j1, j2, . . . , jn)} , (8)
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which is a discrete representation of the continuous set Ā ⊂ Rn

Ā =
⋃
j

{Dj , such that j = (j1, j2, . . . , jn), A ∩Dj 6= ∅} . (9)

For instance Ā can be a finite union of hypercubes in Rn if the partition sets Dij are intervals.
It is clear that the set Ā is in general different form A.

There are thus two sources of error: first due to replacing A with Ā, and second, due to
the abstraction of the dynamics between the discrete outcome obtained by Theorem 5 and
the continuous solution that results from (5). In the next section we provide a quantitative
bound on the two sources of error.

3.5 Quantification of the Error due to Abstraction
Let us explicitly write the Bellman recursion (5) of the safety problem over the set Ā:

WN (s) = 1Ā(s), Wk(s) =
∫
Ā

Wk+1(s̄)ts(s̄|s)ds̄, k = 0, 1, 2, . . . , N − 1, (10)

which results in pN (s0, Ā) = W0(s0). Theorem 6 characterizes the error due to replacing the
safe set A by Ā.

I Theorem 6. Solution of the probabilistic invariance problem with the time horizon N and
two safe sets A, Ā satisfies the inequality

|pN (s0, A)− pN (s0, Ā)| ≤MNL(A∆Ā), ∀s0 ∈ A ∩ Ā,

where M .= sup
{
ts(s̄|s)

∣∣s, s̄ ∈ A∆Ā
}
. L(B) denotes the Lebesgue measure of any set B ∈ B

and A∆Ā .= (A\Ā) ∪ (Ā\A) is the symmetric difference of the two sets A, Ā.

The second contribution to the error is related to the discretization of Algorithm 1
which is quantified by posing regularity conditions on the dynamics of the process. The
following Lipschitz continuity assumption restricts the generality of the density functions tk
characterizing the dynamics of model Ms.

I Assumption 1. Assume the density functions tk(s̄i|·) are Lipschitz continuous with the
finite positive dij

|tj(s̄j |s)− tj(s̄j |s′)| ≤ dij |si − s′i|,

with s = [s1, . . . , si−1, si, si+1, . . . , sn] and s′ = [s1, . . . , si−1, s
′
i, si+1, . . . , sn], for all sk, s′k, s̄k ∈

Dk, k ∈ Nn, and for all i, j ∈ Nn.

Note that Assumption 1 holds with dij = 0 if and only if (Xi, X̄j) /∈ E in the DAG of the
BN B→. Assumption 1 enables us to assign non-zero weights to the arcs of the graph and
turn it into a weighted DAG. The non-zero weight wij = dijL(Dj) is assigned to the arc
(Xi, X̄j) ∈ E , for all i, j ∈ Nn. We define the out-weight of the node Xi by Oi =

∑n
j=1 wij

and the in-weight of the node X̄j by Ij =
∑n
i=1 wij .

I Remark. The above assumption implies Lipschitz continuity of the conditional density
functions tj(s̄j |s). Since trivially |si − s′i| ≤ ‖s− s′‖ for all i ∈ Nn, we obtain

|tj(s̄j |s)− tj(s̄j |s′)| ≤ Hj‖s− s′‖ ∀s, s′ ∈ Ā, s̄j ∈ Dj ,

where Hj =
∑n
i=1 dij . The density function ts(s̄|s) is also Lipschitz continuous if the density

functions tj(s̄j |s) are bounded, but the boundedness assumption is not necessary for our
result to hold.
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Assumption 1 enables us to establish Lipschitz continuity of the value functions Wk in
(10). This continuity property is essential in proving an upper bound on the discretization
error of Algorithm 1, which is presented in Corollary 8.

I Lemma 7. Consider the value functions Wk(·), k = 0, 1, 2, . . . , N , employed in Bellman
recursion (10) of the safety problem over the set Ā. Under Assumption 1, these value functions
are Lipschitz continuous

|Wk(s)−Wk(s′)| ≤ κ‖s− s′‖, ∀s, s′ ∈ Ā,

for all k = 0, 1, 2, . . . , N with the constant κ =
∑n
j=1 Ij, where Ij is the in-weight of the

node X̄j in the DAG of the BN B→.

I Corollary 8. The following inequality holds under Assumption 1:

|pN (s0, A)− pN (z0, Za)| ≤MNL(A∆Ā) +Nκδ ∀s0 ∈ A,

where pN (z0, Za) is the invariance probability for the DBN obtained by Algorithm 1. The
initial state of the DBN is z0 = (z1(0), . . . , zn(0)) with zi(0) = ξi(Πi(s0)). The set Za and
the constant M are defined in (8) and Theorem 6, respectively. The diameter of the partition
of Algorithm 1 is defined and used as δ = sup{‖s− s′‖,∀s, s′ ∈ Dj ,∀j Dj ⊂ Ā}.

The second error term in Corollary 8 is a linear function of the partition diameter δ,
which depends on all partition sets along different dimensions. We are interested in proving
a dimension-dependent error bound in order to parallelize the whole abstraction procedure
along different dimensions. The next theorem gives this dimension-dependent error bound.

I Theorem 9. The following inequality holds under Assumption 1:

|pN (s0, A)− pN (z0, Za)| ≤MNL(A∆Ā) +N

n∑
i=1
Oiδi ∀s0 ∈ A, (11)

with the constants defined in Corollary 8. Oj is the out-weight of the node Xi in the DAG of
the BN B→. The quantity δi is the maximum diameter of the partition sets along the ith
dimension δi = sup{|si − s′i|,∀si, s′i ∈ Dij ,∀j ∈ Nni

}.

For a given error threshold ε, we can select the set Ā and consequently the diameters δi such
that MNL(A∆Ā) +N

∑n
i=1Oiδi ≤ ε. Therefore, generation of the abstract DBN, namely

selection of the partition sets {Dij , j ∈ Ni} (according to the diameter δi) and computation
of the CPD, can be implemented in parallel. For a given ε and set Ā, the cardinality of the
state space Ωi, i ∈ Nn, of the discrete random variable Xi and thus the size of the CPD Ti,
grow linearly as a function of the horizon of the specification N.

4 Efficient Model Checking of the Finite-State DBN

Existing numerical methods for model checking DBNs with discrete r.v. transform the
DBN into an explicit matrix representation [12, 19, 21], which defeats the purpose of a
compact representation. Instead, we show that the multiplicative structure of the transition
probability matrix can be incorporated in the computation which makes the construction of
P(z̄|z) dispensable. For this purpose we employ factor graphs and the sum-product algorithm
[17] originally developed for marginalizing functions and applied to belief propagation in
Bayesian networks. Suppose that a global function is given as a product of local functions,
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Figure 3 Factor graph of the linear
stochastic system (6) for n = 4.
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Figure 4 Spanning tree of the linear stochastic system
in (6) for n = 4 and two orderings (z̄4, z̄3, z̄2, z̄1) (top
plot) and (z̄1, z̄2, z̄3, z̄4) (bottom plot).

and that each local function depends on a subset of the variables of the global map. In its
most general form, the sum-product algorithm acts on factor graphs in order to marginalize
the global function, i.e., taking summation respect to a subset of variables, exploiting its
product structure [17]. In our problem, we restrict the summation domain of the Bellman
recursion (7) to

∏
i Zi because the value functions are simply equal to zero in the complement

of this set. The summand in (7) has the multiplicative structure

g(z, z̄) .= 1Za
(z)V dk+1(z̄)

∏
i

Ti(X̄i = z̄i|Pa(X̄i) = z), V dk (z) =
∑

z̄∈
∏

i
Zi

g(z, z̄). (12)

The function g(z, z̄) depends on variables {zi, z̄i, i ∈ Nn}. The factor graph of g(z, z̄)
has 2n variable nodes, one for each variable and (n+ 2) function nodes for local functions
1Za

, V dk+1, Ti. An arc connects a variable node to a function node if and only if the variable
is an argument of the local function. The factor graph of Example 4 for n = 4 is presented
in Figure 3 – factor graphs of general functions g(z, z̄) in (12) are similar to that in Figure
3, the only part needing to be modified being the set of arcs connecting variable nodes
{zi, i ∈ Nn} and function nodes {Ti, i ∈ Nn}. This part of the graph can be obtained from
the DAG of B→ of the DBN.

The factor graph of a function g(z, z̄) contains loops for n ≥ 2 and must be transformed
to a spanning tree using clustering and stretching transformations [17]. For this purpose
the order of clustering function nodes {Ti, i ∈ Nn} and that of stretching variable nodes
{zi, i ∈ Nn} needs to be chosen. Figure 4 presents the spanning trees of the stochastic
system in (6) for two such orderings. The variable nodes at the bottom of each spanning
tree specify the order of the summation, whereas the function nodes considered from the
left to the right indicate the order of multiplication of the local functions. The rest of the
variable nodes show the arguments of the intermediate functions, which reflects the required
memory for storing such functions. The computational complexity of the solution carried
out on the spanning tree clearly depends on this ordering.

Algorithm 2 presents a greedy procedure that operates on the factor graph and provides
an ordering of the variables and of the functions, in order to reduce the overall memory usage.
This algorithm iteratively combines the function nodes and selects the next variable node,
over which the summation is carried out. The output of this algorithm implemented on
the factor graph of Example 4 is the orderings κf = (z̄4, z̄3, z̄2, z̄1) and ef = (T4, T3, T2, T1),
started from the outermost sum, which is related to the spanning tree on top of Figure 4.
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Algorithm 2 Greedy algorithm for obtaining the order of stretching variables and clustering
functions in the factor graph

Require: Factor graph of the summand in Bellman recursion
1: Initialize the sets U1 = {zi, i ∈ Nn}, U2 = {z̄i, i ∈ Nn}, U3 = {Ti, i ∈ Nn}, ef = κf = ∅
2: while U1 6= ∅ do
3: For any node u ∈ U3 compute Paf(u) (resp. Chf(u)) as the elements of U1 (resp. U2)

connected to u by an arc in the factor graph
4: Define the equivalence relation R on U3 as uRū iff Paf(u) = Paf(ū)
5: Replace the set U3 with the set of equivalence classes induced by R.
6: Combine all the variable nodes of Chf(u) connected to one class
7: Select u ∈ U3 with the minimum cardinality of Paf(u) and put ef = (u, ef), κf =

(Chf(u), κf)
8: Update the sets U1 = U1\Paf(u), U2 = U2 ∪ Paf(u)\Chf(u), U3 = U3\{u}, and

eliminate all the arcs connected to u
9: end while

Ensure: The order of variables κf and functions ef

5 Comparison with the State of the Art

In this section we compare our approach with the state-of-the-art abstraction procedure
presented in [1] (referred to as AKLP in the following), which does not exploit the structure
of the dynamics. The AKLP algorithm approximates the concrete model with a finite-state
Markov chain by uniformly gridding the safe set. As in our work, the error bound of the
AKLP procedure depends on the global Lipschitz constant of the density function of the
model, however it does not exploit its structure as proposed in this work. We compare the
two procedures on (1) error bounds and (2) computational resources.

Consider the stochastic linear dynamical model in (6), where Φ = [aij ]i,j is an arbitrary
matrix. The Lipschitz constants dij in Assumption 1 can be computed as dij = |aji|/σ2

j

√
2πe,

where e is Euler’s constant. From Theorem 9, we get the following error bound:

eDBN
.= MNL(A∆Ā) + N√

2πe

n∑
i,j=1

|aji|
σ2
j

L(Dj)δi.

On the other hand, the error bound for AKLP is

eAKLP = MNL(A∆Ā) + Ne−1/2

(
√

2π)nσ1σ2 . . . σn
‖Σ−1/2Φ‖2δL(A).

In order to meaningfully compare the two error bounds, select set A = [−α, α]n and
σi = σ, i ∈ Nn, and consider hypercubes as partition sets. The two error terms then become

eDBN = ςnη

(
‖Φ‖1
n
√
n

)
, eAKLP = ςηn‖Φ‖2, η = 2α

σ
√

2π
, ς = Nδ

σ
√
e
,

where ‖Φ‖1 and ‖Φ‖2 are the entry-wise one-norm and the induced two-norm of matrix Φ,
respectively. The error eAKLP depends exponentially on the dimension n as ηn, whereas we
have reduced this term to a linear one (nη) in our proposed new approach resulting in error
eDBN. Note that η ≤ 1 means that the standard deviation of the process noise is larger than
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Table 1 Comparison of the AKLP and the DBN-based algorithms, over the stochastic linear
dynamical model (6). The number of partition sets (or bins) per dimension, the number of marginals,
and the total required number of (addition and multiplication) operations for the verification step,
are compared for models of different dimensions (number of continuous variables n).

dimension n 1 2 3 4 5 6 7 8

# bins/dim AKLP 1.2× 103 1.1× 104 6.0× 104 2.9× 105 1.3× 106 5.8× 106 2.5× 107 1.1× 108

DBN 1.2× 103 3.6× 103 6.0× 103 8.5× 103 1.1× 104 1.3× 104 1.6× 104 1.8× 104

# marginals AKLP 1.5× 106 1.5× 1016 4.8× 1028 4.8× 1043 1.5× 1061 1.5× 1081 4.3× 10103 3.5× 10128

DBN 1.5× 106 4.8× 1010 4.4× 1011 1.8× 1012 5.2× 1012 1.2× 1013 2.3× 1013 4.2× 1013

# operations AKLP 2.9× 107 3.1× 1017 1.0× 1030 1.1× 1045 3.7× 1062 3.7× 1082 1.1× 10105 9.5× 10129

DBN 2.9× 107 1.9× 1012 8.0× 1016 3.5× 1021 1.7× 1026 8.9× 1030 5.2× 1035 3.4× 1040

the selected safe set: in this case the value functions (which characterize the probabilistic
invariance problem) uniformly converge to zero with rate ηn; clearly the case of η > 1 is
more interesting. On the other hand for any matrix Φ we have ‖Φ‖1

n
√
n
≤ ‖Φ‖2. This second

term indicates how sparsity is reflected in the error computation. Denote by r the degree of
connectivity of the DAG of B→ for this linear system, which is the maximum number of
non-zero elements in rows of matrix Φ. We adapt the following inequalities from [16] for the
norms of matrix Φ:

‖Φ‖2 ≤
√
nrmax

i,j
|aij |,

‖Φ‖1
n
√
n
≤ r√

n
max
i,j
|aij |,

which shows that for a fixed dimension n, sparse dynamics, compared to fully connected
dynamics, results in better error bounds in the new approach.

In order to compare computational resources, consider the numerical values N = 10,
α = 1, σ = 0.2, and the error threshold ε = 0.2 for the lower bidiagonal matrix Φ with all
the non-zero entries set to one. Table 1 compares the number of required partition sets
(or bins) per dimension, the number of marginals, and the required number of (addition
and multiplication) operations for the verification step, for models of different dimensions
(number of continuous variables n). The numerical values in Table 1 confirm that for a given
upper bound on the error ε, the number of bins per dimension and the required marginals
grow exponentially in dimension for AKLP and polynomially for our DBN-based approach.
For instance, to ensure the error is at most ε for the model of dimension n = 4, the cardinality
of the partition of each dimension for the uniform gridding and for the structured approach is
2.9× 105 and 8.5× 103, respectively. Then, AKLP requires storing 4.8× 1043 entries (which
is infeasible!), whereas the DBN approach requires 1.8× 1012 entries (∼ 8GB). The number
of operations required for computation of the safety probability are 1.1× 1045 and 3.5× 1021,
respectively. This shows a substantial reduction in memory usage and computational time
effort: with given memory and computational resources, the DBN-based approach in compare
with AKLP promises to handle systems with dimension that is at least twice as large.

6 Conclusions and Future Directions

While we have focused on probabilistic invariance, our abstraction approach can be extended
to more general properties expressed within the bounded-horizon fragment of PCTL [22] or
to bounded-horizon linear temporal properties [24, 25], since the model checking problem for
these logics reduce to computations of value functions similar to the Bellman recursion scheme.
Our focus in this paper has been the foundations of DBN-based abstraction for general
Markov processes: factored representations, error bounds, and algorithms. We are currently
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implementing these algorithms in the FAUST2 tool [10], and scaling the algorithms using
dimension-dependent adaptive gridding [8] as well as implementations of the sum-product
algorithm on top of data structures such as algebraic decision diagrams (as in probabilistic
model checkers [18]).
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Abstract
We study frequency linear-time temporal logic (fLTL) which extends the linear-time temporal
logic (LTL) with a path operator Gp expressing that on a path, certain formula holds with at
least a given frequency p, thus relaxing the semantics of the usual G operator of LTL. Such logic
is particularly useful in probabilistic systems, where some undesirable events such as random
failures may occur and are acceptable if they are rare enough. Frequency-related extensions of
LTL have been previously studied by several authors, where mostly the logic is equipped with an
extended “until” and “globally” operator, leading to undecidability of most interesting problems.

For the variant we study, we are able to establish fundamental decidability results. We show
that for Markov chains, the problem of computing the probability with which a given fLTL
formula holds has the same complexity as the analogous problem for LTL. We also show that for
Markov decision processes the problem becomes more delicate, but when restricting the frequency
bound p to be 1 and negations not to be outside any Gp operator, we can compute the maximum
probability of satisfying the fLTL formula. This can be again performed with the same time
complexity as for the ordinary LTL formulas.
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1 Introduction

Probabilistic verification is a vibrant area of research that aims to formally check properties
of stochastic systems. Among the most prominent formalisms, with applications in e.g.
modelling of network security protocols [19] or randomised algorithms [17], are Markov chains
and Markov decision processes (MDPs). Markov chains are apt for modelling systems that
contain purely stochastic behaviour, for example random failures, while MDPs can also
express nondeterminism, most commonly present as decisions of a controller or dually as
adversarial events in the system.

More technically, MDP is a process that moves in discrete steps within a finite state
space (labelled by sets of atomic propositions). Its evolution starts in a given initial state
s0. In each step a controller chooses an action ai from a finite set A(si) of actions available
in the current state si. The next state si+1 is then chosen randomly according to a fixed
probability distribution ∆(si, ai). The controller may base its choice on the previous evolution
s0a0 . . . ai−1si and may also choose the action randomly. A Markov chain is an MDP where
the set A(s) is a singleton for each state s.

For the systems modelled as Markov chains or MDPs, the desired properties such
as “whenever a signal arrives to the system, the system eventually switches off” can be
often captured by a suitable linear-time logic. The most prominent one in the verification
community is Linear Temporal Logic (LTL). Although LTL is suitable in many scenarios, it
does not allow to capture some important linear-time properties, for example that a given
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event takes place sufficiently often. The need for such properties becomes even more apparent
in stochastic systems, in which probabilities often model random failures. Instead of requiring
that no failure ever happens, it is natural to require that failures are infrequent, while still
having the power of the LTL to specify these failures using a complex LTL formula.

A natural solution to the above problem is to extend LTL with operators that allow us
to talk about frequencies of events. Adding such operators can easily lead to undecidability
as they often allow one to encode values of potentially infinite counters [6, 7]. In both the
above papers this is caused by a variant of a “frequency until” operator that talks about the
ratio of the number of given events happening along a finite path. The undecidability results
from [6, 7] carry over to the stochastic setting easily, and so, to avoid undecidability, care
needs to be taken.

In this paper, we take an approach similar to [21] and in addition to usual operators of
LTL such as X , U , G or F we only allow frequency globally formulae Gpϕ that require the
formula ϕ to hold on p-fraction of suffixes of an infinite path, or more formally, Gpϕ is true
on an infinite path s0a0s1a1 . . . of an MDP if and only if

lim inf
n→∞

1
n
·
∣∣∣{i | i < n and siaisi+1ai+1 . . . satisfies ϕ}

∣∣∣ ≥ p
This logic, which we call frequency LTL (fLTL), is still a significant extension to LTL,

and because all operators can be nested, it allows to express much larger class of properties
(a careful reader will notice that nesting of frequency operators is not the main challenge
when dealing with fLTL as it can be easily removed for the price of exponential blow-up of
the size of the formula).

The problem studied in this paper asks, given a Markov chain and an fLTL formula,
to compute the probability with which the formula is satisfied in the Markov chain when
starting in the initial state. Analogously, for MDPs we study the controller synthesis problem
which asks to compute the maximal probability of satisfying the formula, over all controllers.

s0
w

s1
q

s2
r

s3
m

s4
q,m

w
0.5

m 0.5

0.50.5

Figure 1 An example MDP.

For an example of possible application, suppose a network
service accepts queries by immediately sending back responses,
and in addition it needs to be switched off for maintenance
during which the queries are not accepted. In most states, a
new query comes in the next step with probability 0.5. In the
waiting state, the system chooses either to wait further (action
w), or to start a maintenance (action m) which takes one step
to finish. The service is modelled as an MDP from Figure 1,
leaving some parts of the behaviour unspecified. The aim is to synthesise a control strategy
that meets with a given probability the requirements on the system. Example requirements can
be given by a formula G F m ∧ G F (q→ X r) which will require that the service sometimes
accepts the request, and sometimes goes for maintenance. However, there is no quantitative
restriction on how often the maintenance can take place, and such restriction is inexpressible
in LTL. However, in fLTL we can use the formula G F m ∧ G0.95(q → X r) to restrict
that the service is running sufficiently often, or a strong restriction G F m ∧ G1(q→ X r)
saying that it is running with frequency 1. The formula may also contain several frequency
operators. In order to push the frequency of correctly handled queries towards a bound p,
the controller needs to choose to perform the maintenance less and less frequently during
operation.

Related work. Controller synthesis for ordinary LTL is a well-studied problem solvable
in time polynomial in the size of the model and doubly exponential in the size of the
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formula [2]. Usually, the LTL formula is transformed to an equivalent Rabin automaton,
and the probability of reaching certain subgraphs is computed in a product of the MDP (or
Markov Chain) with the automaton.

A similar approach is taken by [21]. They study a logic similar to our fLTL, where LTL is
extended with a mean-payoff reward constraints in which the reward structures are determined
by validity of given subformulas. The authors show that any formula can be converted to
a variant of non-deterministic Büchi automata, called multi-threshold mean-payoff Büchi
automata, with decidable emptiness problem, thus yielding decidability for model-checking
and satisfiability problems of labelled transition systems. Results of [21] cannot be applied
to probabilistic systems: here one needs to work with deterministic automata, but as pointed
out in [21, Section 4, Footnote 4] the approach of [21] heavily relies on non-determinism, since
reward values depend on complete future, and so deterministic “multi-threshold mean-payoff
Rabin automata” are strictly less expressive than the logic. Another variant of frequency
LTL was studied in [6, 7], in which also a modified until operator is introduced. The work [6]
maintains boolean semantics of the logic, while in [7] the value of a formula is a number
between 0 and 1. Both works obtain undecidability results for their logics, and [6] also yields
decidability for restricted nesting. Another logic that speaks about frequencies on a finite
interval was introduced in [20] but provides analysis algorithm only for a bounded fragment.

Significant attention has been given to the study of quantitative objectives. The work
[5] adds mean-payoff objectives to temporal logics, but only as atomic propositions and
not allowing more complex properties to be quantified. The work [3] extends LTL with
another form of quantitative operators, allowing accumulated weight constraint expressed
using automata, again not allowing quantification over complex formulas. [4] introduces
lexicographically ordered mean-payoff objectives in non-stochastic parity games and [9]
gives a polynomial time algorithm for almost-sure winning in MDPs with mean-payoff and
parity objectives. These objectives do not allow to attach mean-payoff (i.e. frequencies) to
properties more complex than atomic propositions. The solution to the problem requires
infinite-memory strategy which at high level has a form similar to the form of strategies we
construct for MDPs. Similar strategies also occur in [11, 10, 8] although each of these works
deals with a fundamentally different problem.

In branching-time logics, CSL is sometimes equipped with a “steady-state” operator
whose semantics is similar to our Gp (see e.g. [1]), and an analogous approach has been
taken for the logic PCTL [16, 13]. In such logics every temporal subformula is evaluated
over states, and thus the model-checking of a frequency operator can be directly reduced
to achieving a single mean-payoff reward. This is contrasted with our setting in which the
whole formula is evaluated over a single path, giving rise to much more complex behaviour.

Our contributions. To our best knowledge, this paper gives the first decidability results for
probabilistic verification against linear-time temporal logics extended by frequency operators
with complex nested subformulas of the logic.

We first give an algorithm for computing the probability of satisfying an fLTL formula
in a Markov Chain. The algorithm works by breaking the fLTL formula into linearly many
ordinary LTL formulas, and then off-the-shelf verification algorithms can be applied. We
obtain that the complexity of fLTL model-checking is the same as the complexity of LTL
model checking. Although the algorithm itself is very simple, some care needs to be taken
when proving its correctness: as we explain later, the “obvious” proof approach would fail
since some common assumptions on independence of events are not satisfied.

We then proceed with Markov decision processes, where we show that the controller
synthesis problem is significantly more complex. Unlike the ordinary LTL, for fLTL the
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controller-synthesis problem may require strategies to use infinite memory, even for very
simple formulas. On the positive side, we give an algorithm for synthesis of strategies for
formulas in which the negations are pushed to atomic propositions, and all the frequency
operators have lower bound 1. Although this might appear to be a simple problem, it is not
easily reducible to the problem for LTL, and the proof of the correctness of the algorithm
is in fact very involved. This is partly because even if a strategy satisfies the formula, it
can exhibit a very “insensible” behaviour, as long as this behaviour has zero frequency in
the limit. In the proof, we need to identify these cases and eliminate them. Ultimately, our
construction again yields the same complexity as the problem for ordinary LTL. We believe
the contribution of the fragment is both practical, as it gives a “weaker” alternative of the
G operator usable in controller synthesis, and theoretical, giving new insights into many of
the challenges one will face in solving the controller-synthesis problem for the whole fLTL.

2 Preliminaries

We now proceed with introducing basic notions we use throughout this paper.
A probability distribution over a finite or countable set X is a function d : X → [0, 1] such

that
∑
x∈X d(x) = 1, and D(X) denotes the set of all probability distributions over X.

Markov decision processes and Markov chains. A Markov decision process (MDP) is a
tuple M = (S,A,∆) where S is a finite set of states, A is a finite set of actions, and
∆ : S ×A→ D(S) is a partial probabilistic transition function. A Markov chain (MC) is an
MDP in which for every s ∈ S there is exactly one a with ∆(s, a) being defined. We omit
actions completely when we speak about Markov chains and no confusion can arise.

An infinite path, also called run, inM is a sequence ω = s0a0s1a1 · · · of states and actions
such that ∆(si, ai)(si+1) > 0 for all i, and we denote by ω(i) the suffix siaisi+1ai+1 · · · . A
finite path h, also called history, is a prefix of an infinite path ending in a state. Given a
finite path h = s0a0s1a1 · · · si and a finite or infinite path h′ = siaisi+1ai+1 · · · we use h · h′
to denote the concatenated path s0a0s1a1 · · · . The set of paths starting with a prefix h is
denoted by Cyl(h), or simply by h if it leads to no confusion. We overload the notation also
for sets of histories, we simply use H instead of

⋃
h∈H Cyl(h).

A strategy is a function σ that to every finite path h assigns a probability distribution
over actions such that if an action a is assigned a non-zero probability, then ∆(s, a) is
defined where s denotes the last state in h. A strategy σ is deterministic if it assigns Dirac
distribution to any history, and randomised otherwise. Further, it is memoryless if its choice
only depends on the last state of the history, and finite-memory if there is a finite automaton
such that σ only makes its choice based on the state the automaton ends in after reading the
history.

An MDPM, a strategy σ and an initial state sin give rise to a probability space Psin
σ

defined in a standard way [15]. For a history h and a measurable set of runs U starting from
the last state of h, we denote by Phσ(U) the probability Psin

σ ({h · ω | ω ∈ U} | h). Similarly,
for a random variable X we denote by Esin

σ (X) the expectation of X in this probability
space and by Ehσ(X) the expectation Esin

σ (Xh | h). Here, Xh is defined by Xh(h · ω) = X(ω)
for runs of the form h · ω, and by Xh(ω′) = 0 for all other runs. We say that a property
holds almost surely (or for almost all runs, or almost every run) if the probability of the runs
satisfying the property is 1.
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Frequency LTL. The syntax of frequency LTL (fLTL) is defined by the equation:

ϕ ::= α | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | Gpϕ

where α ranges over a set AP of atomic propositions. The logic LTL is obtained by omitting
the rule for Gpϕ. For Markov chains we study the whole fLTL whereas for MDP, we restrict
to a fragment that we call 1-fLTL. In this fragment, negations only occur immediately
preceding atomic propositions, and Gp operators occur only with p = 1.

For an infinite sequence γ = x1x2 . . . of numbers, we set freq(γ) := lim infi→∞ 1
i

∑i
j=1 xi.

Given a valuation ν : S → 2AP , the semantics of fLTL is defined over a path ω = s0a0s1 . . .

of an MDP as follows.

ω |= α iff α ∈ ν(s0) ω |= Xϕ iff ω(1) |= ϕ

ω |= ¬ϕ iff ω 6|= ϕ ω |= ϕ1 Uϕ2 iff ∃k : ω(k) |= ϕ2 ∧ ∀`<k : ω(`) |= ϕ1
ω |= ϕ1∨ϕ2 iff ω|=ϕ1 or ω|=ϕ2 ω |= Gpϕ iff freq(1ϕ,01ϕ,1 . . .) ≥ p

where 1ϕ,i is 1 for ω iff ω(i) |= ϕ, and 0 otherwise. We define true, false, ∧, and → by their
usual definitions and introduce standard operators F and G by putting Fϕ ≡ true Uϕ and
Gϕ ≡ ¬F¬ϕ. Finally, we use Pσ(ϕ) as a shorthand for Pσ({ω | ω |= ϕ}).

I Definition 1 (Controller synthesis). The controller synthesis problem asks to decide, given
an MDPM, a valuation ν, an initial state sin, an fLTL formula ϕ and a probability bound
x, whether Psin

σ (ϕ) ≥ x for some strategy σ.

As an alternative to the above problem, we can ask to compute the maximal possible
x for which the answer is true. In the case of Markov chains, we speak about Satisfaction
problem since there is no strategy to synthesise.

Rabin automata. A (deterministic) Rabin automaton is a tuple R = (Q, qin,Σ, δ,F) where
Q is a finite set of states, Σ is an input alphabet, δ : Q×Σ→ Q is a transition function, and
F ⊆ Q×Q is an accepting condition. A computation of R on an infinite word % = a0a1 . . .

over the alphabet Σ is the infinite sequence R[%] = q0q1 . . . with q0 = qin and δ(qi, ai) = qi+1.
A computation is accepting (or “R accepts %”) if there is (E,F ) ∈ F such that all states
of E occur only finitely many times in the computation, and some state of F occurs in it
infinitely many times. For a run ω = s0a0s1a1 . . . and a valuation ν, we use ν(ω) for the
sequence ν(s0)ν(s1) . . . of sets of atomic propositions.

As a well known result [2], for every MDPM, valuation ν and an LTL formula ϕ there is a
Rabin automaton R over the alphabet 2AP such that R is constructible in doubly exponential
time and ω |= ϕ iff R accepts ν(ω). We say that R is equivalent to ϕ. It is not clear whether
this result and the definition of Rabin automata can be extended to work with fLTL in a
way that would be useful for our goals. The reason for this is, as pointed out in [21, Section
4, Footnote 4], that the frequencies in fLTL depend on the future of a run, and so require
non-determinism, which is undesirable in stochastic verification.

3 Satisfaction problem for Markov Chains

In this section we show how to solve the satisfaction problem for MCs and fLTL. Let us fix a
MCM = (S,∆), an initial state sin and fLTL formula ψ. We will use the notion of bottom
strongly connected component (bscc) ofM, which is a set of states S′ such that for all s ∈ S′
the set of states reachable from s is exactly S′. If s is in a bscc, by bscc(s) we denote the
bscc containing s.
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We first describe the algorithm computing the probability of satisfying ψ from sin, and
then prove its correctness.

The algorithm. The algorithm proceeds in the following steps. First, for each state
contained in some bscc B, we compute the steady-state frequency xs of s within B. It is the
number Es(freq(1s,01s,1 . . .)) where 1s,i(ω) equals 1 if the ith state of ω is s, and 0, otherwise.
Afterwards, we repeat the following steps and keep modifying ψ for as long as it contains
any Gp operators:
1. Let ϕ be a LTL formula and p a number such that ψ contains Gpϕ.
2. Compute Ps(ϕ) for every state s contained in some bscc.
3. Create a fresh atomic proposition αϕ,p which is true in a state s iff s is contained in a

bscc and
∑
t∈bscc(s) xt · Pt(ϕ) ≥ p.

4. Modify ψ by replacing any occurrence of Gpϕ with Fαϕ,p.
Once ψ contains no Gp operators, it is an LTL formula and we can use off-the-shelf techniques
to compute Psin(ψ), which is our desired value.

Correctness. The correctness of the algorithm relies on the fact that αϕ,p labels states in a
bscc B if almost every run reaching B satisfies the corresponding frequency constraint:

I Proposition 2. For every LTL formula ϕ, every number p, every bscc B and almost every
run ω that enters B we have ω |= Gpϕ if and only if

∑
t∈B xt · Pt(ϕ) ≥ p.

The proposition might seem “obviously true”, but the proof is not trivial. The main
obstacle is that satisfactions of ϕ on ω(i) and ω(j) are not independent events in general: for
example if ϕ ≡ Fα and i < j, then ω(j) |= ϕ implies ω(i) |= ϕ. Hence we cannot apply the
Strong law of large numbers (SLLN) for independent random variables or Ergodic theorem
for Markov chains [18, Theorems 1.10.1-2], which would otherwise be obvious candidates.
Nevertheless, we can use the following variant of SLLN for correlated events.

I Lemma 3. Let Y0, Y1 . . . be a sequence of random variables which only take values 0 or
1 and have expectation µ. Assume there are 0 < r, c < 1 such that for all i, j ∈ N we have
E((Yi − µ)(Yj − µ)) ≤ rbc|i−j|c. Then limn→∞

∑n
i=0 Yi/n = µ almost surely.

Using the above lemma, we now prove Proposition 2 for fixed ϕ, B, p. Let R denote the
Rabin automaton equivalent to ϕ andM×R be the Markov chain product ofM and R.

First, we say that a finite path s0 . . . sk ofM is determined if the state qk reached by R
after reading ν(s0 . . . sk−1) satisfies that (sk, qk) is in a bscc ofM×R. We point out that
for a determined path s0 . . . sk, either almost every run of Cyl(s0 . . . sk) satisfies ϕ, or almost
no run of Cyl(s0 . . . sk) satisfies ϕ. Also, the probability of runs determined within k steps
is at least

∑bk/Mc
i=0 (1 − rM )irM = 1 − (1 − rM )bk/Mc where M is the number of states of

M×R and r is the minimum probability that occurs inM×R.
Now fix a state s ∈ B. For all t ∈ B and i ≥ 0 we define random variables Xt

i over runs
initiated in s. We let Xt

i (ω) take value 1 if t is visited at least i times in ω and the suffix of
ω starting from the ith visit to t satisfies ϕ. Otherwise, we let Xt

i (ω) = 0. Note that all Xt
i

have a common expected value µt = Pt(ϕ).
Next, let i and j be two numbers with i ≤ j. We denote by Ω the set of all runs and by

D the set of runs ω for which the suffixes starting from the ith visit to t are determined
before the jth visit to t (note that D can possibly be ∅). Because on these determined runs
Es(Xt

j − µt | D) = 0, we get

Es((Xt
i − µt)(Xt

j − µt)) ≤ 1− Ps(D) ≤ (1− rM )b(i−j)/Mc
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as shown in [14]. Thus, Lemma 3 applies to the random variables Xt
i for a fixed t. Considering

all t ∈ B together, we show in [14] that freq(1ϕ,01ϕ,1 . . .) =
∑
t∈bscc(s) xtPs(ϕ) for almost all

runs initiated in the state s we fixed above. Because almost all runs that enter B eventually
visit s, and because satisfaction of Gpϕ is independent of any prefix, the proof of Proposition 2
is finished, and we can establish the following.

I Theorem 4. The satisfaction problem for Markov chains and fLTL is solvable in time
polynomial in the size of the model, and doubly exponential in the size of the formula.

4 Controller synthesis for MDPs

We now proceed with the controller synthesis problem for MDPs and 1-fLTL. The problem for
this restricted fragment of 1-fLTL is still highly non-trivial. In particular, it is not equivalent
to synthesis for the LTL formula where every G1 is replaced with G . Indeed, for satisfying
any LTL formula, finite memory is sufficient, while for 1-fLTL, the following theorem shows
that infinite memory may be necessary.

I Theorem 5. There is a 1-fLTL formula ψ and a Markov decision processM with valuation
ν such that the answer to the controller synthesis problem is “yes”, but there is no finite-
memory strategy witnessing this.

Proof idea. Consider the MDP from Figure 1 together with the formula ψ = G F m ∧
G1(q → X r). Independent of the strategy being used, no run initiated in s4 satisfies the
subformula q→ X r, while every run initiated in any other state satisfies this subformula.
This means that we need the frequency of visiting s4 to be 0. The only finite-memory
strategies achieving this are those that from some history on never choose to go right in the
controllable state. However, under such strategies the formula G F m is not almost surely
satisfied. On the other hand, the infinite-memory strategy that on i-th visit to s0 picks m if
and only if i is of the form 2j for some j satisfies ψ.

Note that although the above formula requires infinite memory due to “conflicting”
conjuncts, infinite memory is needed already for simpler formulae of the form G1(a U b). J

The above result suggests that it is not possible to easily re-use verification algorithms
for ordinary LTL. Nevertheless, our results allow us to establish the following theorem.

I Theorem 6. The controller-synthesis problem for MDPs and 1-fLTL is solvable in time
polynomial in the size of the model and doubly exponential in the size of the formula.

For the rest of this section, in which we prove Theorem 6, we fix an MDPM, valuation
ν, an initial state sin, and a 1-fLTL formula ψ. The proof is given in two parts. In the first
part, in Section 4.1 we show that the controller-synthesis problem is equivalent to problems
of reaching a certain set Υ and then “almost surely winning” from this set. To prove this, the
“almost surely winning” property will further be reduced to finding certain set of states and
actions on a product MDP (Lemma 13). In the second part of the proof, given in Section 4.2,
we will show that all the above sets can be computed.

4.1 Properties of satisfying strategies
Without loss of generality suppose that the formula ψ does not contain G1 as the outermost
operator, and that it contains n subformulas of the form G1ϕ. Denote these subformulas
G1ϕ1, . . .G1ϕn. For example, ψ = i →

(
G (q → a) ∧ G1(p1 U r ∨G1a)

)
contains ϕ1 =

p1 U r ∨G1a and ϕ2 = a.
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The first step of our construction is to convert these formulae ψ,ϕ1, . . . , ϕn to equivalent
Rabin automata. However, as the formulae contain G1 operators, they cannot be directly
expressed using Rabin automata (and as pointed out by [21], there is a fundamental obstacle
preventing us from extending Rabin automata to capture Gp).

To overcome this, we replace all occurrences of G1ϕi in such formulae by either true
or false, to capture that the frequency constraint is or is not satisfied on a run. Such a
replacement can be fixed only after a point in the execution is reached where it becomes
clear which frequency constraints in ψ can be satisfied. For a formula ξ ∈ {ψ,ϕ1, . . . ϕn},
any subset I ⊆ {1, . . . , n} of satisfied constraints defines a LTL formula ξI obtained from ξ

by replacing all subformulas G1ϕi (not contained in any other G1) with true if i ∈ I and
with false if i 6∈ I. The Rabin automaton for ξI is then denoted by Rξ,I . For the formula ψ
above, we have, e.g., ψ{1} = ψ{1,2} = i→

(
G (q→ a) ∧ true

)
, and ϕ∅1 = p1 U r ∨ false.

We use Q for a disjoint union of the state spaces of these distinct Rabin automata, and
Qψ for a disjoint union of the state spaces of the automata Rψ,I , called main automata, for
all I. Finally, for q ∈ Q belonging to a Rabin automaton R we denote by Rq the automaton
obtained from R by changing its initial state to q.

Let us fix a state s ofM and a state q of Rψ,I for some I ⊆ {1, . . . , n}. We say that a
run s0a0s1a1 . . . reaches (s, q) if for some k we have s = sk and q is the state reached by the
main automaton Rψ,I after reading ν(s0a0s1 . . . sk−1). Once (s, q) is reached, we say that a
strategy σ′ is almost-surely winning from (s, q) if Psσ′ assigns probability 1 to the set of runs
ω such that ν(ω) is accepted by Rqψ,I , and ω |= G1ϕi whenever1 we have i ∈ I.

I Proposition 7. There is a strategy σ such that Pσ(ψ) = x if and only if there is a set
Υ ⊆ S ×Qψ for which the following two conditions are satisfied:
1. There is a strategy σ′ such that Pσ′({ω | ω reaches a pair from Υ}) = x.
2. For any (s, q) ∈ Υ there is σs,q almost-surely winning from (s, q).

Intuitively, the proposition relies on the fact that if G1ϕi holds on a run, then it holds on all
its suffixes, and says that any strategy σ can be altered so that almost surely there will be a
prefix after which we know which of the G1ϕi will be satisfied.

I Example 8. Let us first illustrate the set Υ on a formula X q ∧ G F m ∧ G1(q→ X r)
that can be satisfied on the MDP from Figure 1 with probability 0.5. Figure 2 shows Rabin
automata for the formulae ψ{1} = X q∧G F m∧true (left) and ϕ{1}1 = q→ X r. In this simple
example, the “decision” whether the formula will be satisfied (and which G1 subformulas
will be satisfied) comes after the first step. Thus, we can set Υ = {(s1, q1)}.

q0 q1

q2q3

q4

true ¬q

qm

true

¬m

true

q5 q6

q7

q8

q

¬q r

¬r

true

true

Figure 2 Example Rabin aut.

We now prove Proposition 7. The direction ⇐ is
straightforward. It suffices to define σ so that it behaves
as σ′ initially until it reaches some (s, q) ∈ Υ for the first
time; then it behaves as σs,q.

Significantly more difficult is the direction ⇒ of Pro-
position 7 that we address now. We fix a strategy σ with
Pσ(ψ) = x. The proof is split into three steps. We first
show how to identify the set Υ, and then we show that
items 1 and 2 of Proposition 7 are satisfied. The last part
of the proof requires most of the effort. In the proof, we

1 Note that the product construction that we later introduce does not give us “iff” here. This is also why
we require the negations to only occur in front of atomic propositions
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will need to eliminate some unlikely events, and for this we will require that their probability
is small to start with. For this purpose, we fix a very small positive number λ; to avoid
cluttering of notation, we do not give a precise value of λ, but instead point out that it needs
to be chosen such that any numbers that depend on it in the following text have the required
properties (i.e. are sufficiently small or big; note that such choice is indeed possible). We
should stress that λ is influencing neither the size of representation of our strategy nor the
complexity of our algorithm.

Identifying the set Υ

In the first step, we identify an appropriate set Υ. Intuitively, we put into Υ positions
of the runs satisfying ψ where the way ψ is satisfied is (nearly) decided, i.e. where it is
(nearly) clear which frequency constraints will be satisfied by σ in the future. To this
end, we mark every run ω satisfying ψ with a set Iω ⊆ {1, . . . , n} such that i ∈ Iω iff
the formula G1ϕi holds on the run. We then define a set of finite paths Γ to contain all
paths h for which there is Ih ⊆ {1, . . . , n} such that exactly the frequency constraints from
Ih as well as ψIh are satisfied on (nearly) all runs starting with h. Precisely, such that
Pσ({ω′ | ω′ |= ψIh ∧ Iω′ = Ih} | h) ≥ 1 − λ. Finally, for every h ∈ Γ we add to Υ the pair
(s, q) where h = h′s and q is the state in which Rψ,Ih

ends after reading ν(h′).

Reaching Υ

It suffices to show that the strategy σ itself satisfies Pσ(Γ) = x. We will use the following
variant of Lévy’s Zero-One Law, a surprisingly powerful formalization of the intuitive fact
that “things need to get (nearly) decided, eventually”.

I Lemma 9 (Lévy’s Zero-One Law [12]). Let σ be a strategy and X a measurable set of runs.
Then for almost every run ω we have limn→∞ Pσ(X | hn) = 1X(ω) where each hn denotes
the prefix of ω with n states and the function 1X assigns 1 to ω ∈ X and 0 to ω 6∈ X.

For every I ⊆ {1, . . . , n} we define XI = {ω′ | ω′ |= ψI ∧ Iω′ = I} to be the set of runs that
are marked by I and satisfy the formula ψI . Then by Lemma 9, for almost every run ω that
satisfies ψ and has Iω = I, there must be a prefix h of the run for which Pσ(XI | h) ≥ 1− λ
because ω ∈ XI . Any such prefix was added to Γ, with Ih = I.

Almost-surely winning from Υ

For the third step of the proof of direction ⇒ of Proposition 7 we fix (s?, q?) ∈ Υ and
we construct a strategy σs?,q? that is almost-surely winning from (s?, q?). Furthermore,
let I? ⊆ {1, . . . , n} denote the set such that q? is a state from Rψ,I? . As we have shown
in Theorem 5, strategies might require infinite memory, and this needs to be taken into
consideration when constructing σs?,q? . The strategy cycles through two “phases“, called
accumulating and reaching that we illustrate on our example.

I Example 10. Returning to Example 8, we fix (s?, q?) = (s1, q1) and I? = {1}, with the
corresponding history from Γ being s0ws1. The strategy σs1,q1 we would like to obtain

first “accumulates” arbitrarily many steps from which all ϕ{1}1 can be almost surely
satisfied. I.e., it accumulates arbitrarily many newly started instances of the Rabin
automaton Rϕ1,{1} (all being in state q5) by repeating action w in s0.
Then it “reaches” with all the Rabin automata Rψ,{1} and Rϕ1,{1} accumulated in the
previous phase their accepting states q3 and q7 respectively. For Rϕ1,{1} this happens
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without any intervention of the strategy, but for Rψ,{1} the strategy needs to take the
action m. Then after returning to s0 it comes back to a state where the next accumulating
phase starts. Thus, we need to make sure we make the accumulating phases progressively
longer so that in the long run they take place with frequency 1.

The proof that such a simple behaviour suffices is highly non-trivial. To illustrate this, let us
extend the MDP from Figure 1 with an action decline with ∆(s1, decline) = s0. The strategy
σ from the proof of Theorem 5 satisfies Pσ(ψ) = 1 for ψ = G F m ∧ G1(q→ X r). However,
we can modify σ and obtain a “weird” strategy σ′ that takes the action decline in the i-th
visit to s1 with probability 1/2i. Such a strategy (a) still satisfies Pσ′(ψ) = 1/2 but (b) it
does not guarantee almost sure satisfaction of ϕ{1}1 in s1. Thus, it does not accumulate in
the sense explained above. We will show that any such weird strategy can be slightly altered
to fit into our scheme. J

To show that alternation between such accumulating and reaching suffices (and to make
a step towards the algorithm to construct such σs?,q?), we introduce a tailor-made product
constructionM⊗. The product keeps track of a collection of arbitrarily many Rabin automata
accumulated up to now. We need to make sure that almost all runs of all automata in the
collection are accepting, and we will do this by ensuring that: (i) almost every computation
of all Rabin automata eventually commits to an accepting condition (E,F ), and (ii) from the
point the automaton “commits” to the accepting condition, no more elements of E are visited
and (iii) some element of F is visited infinitely often. To ensure this, we store additional
information along any state q ∈ Q of each automaton:

(q,9) is a new instance that has to commit to an accepting condition soon;
(q, (E,F )◦) is an instance that has to visit a state of F soon;
(q, (E,F )•) is an instance that recently fulfilled the accepting condition by visiting F ;
(q,⊥) is an instance that violated the accepting condition it had committed to.

Let C denote the set of these pairs for all q ∈ Q and all accepting conditions (E,F ) of the
Rabin automaton where the state q belongs. Note that C is finite; because we need to encode
unbounded number of instances of Rabin automata along the run, each element of a collection
C ⊆ C might stand for multiple instances that are in exactly the same configuration. We say
that C ⊆ C is fulfilled if it contains only elements of the form (q, (E,F )•). The aim is to
fulfil the collection infinitely often, the precise meaning of “recently” and “soon” above is
then “since the last fulfilled state” and “before the next fulfilled state”.

Using the product M⊗, we show that if there is a satisfying strategy in M, there is
a strategy in M⊗ with a simple structure that visits a fulfilled state infinitely often (in
Lemma 13). Due to the simple structure, such a strategy can be found algorithmically.
Finally, we show that such a strategy in the product induces a satisfying strategy inM (in
Lemma 12) yielding correctness of the algorithm.

The product. LetM⊗ be an MDP with states S⊗ = S × 2C, actions A⊗ = A × 2C, and
transition function ∆⊗ defined as follows. We first define possible choices of a strategy in
M⊗. Given a state (s, Cs), we say that an action (a,Ca) is legal in (s, Cs) if a is a valid
choice in s in the original MDP, i.e. ∆(s, a) is defined; and Ca satisfies the following:

for all tuples (q,9) ∈ Cs we have (q,9) ∈ Ca or (q, (E,F )◦) ∈ Ca for some accepting
condition (E,F ), (q can “commit” to (E, F ), or keep waiting)
for all (q, x) ∈ Cs with x 6=9 we have (q, x) ∈ Ca, (all q are kept along with the commitments)
all (q, x) ∈ Ca, not added by one of the two above items, are of the form (qin,9) where
qin is the initial state of a Rabin automaton Rϕi,I? for i ∈ I?, (initial states can be added)
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Acc = (∅,{q3})
Acc = (∅,{q7})

s2
(q2,9)

s0
(q2,Acc◦)

(q7,9)

s1
(q2,Acc◦)
(q7,Acc•)

(q7,9)

s2
(q2,Acc◦)
(q7,Acc•)

(q6,9)

s0
(q2,Acc◦)
(q7,Acc•)
(q7,Acc◦)

s4
(q2,Acc◦)
(q7,Acc•)

s0
(q2,Acc•)
(q7,Acc•)

(q2,Acc◦)
(q5,9)

w
(q2,Acc◦)
(q7,Acc◦)

(q5,9)

(q2,Acc◦)
(q7,Acc•)
(q7,Acc◦)

(q5,9)

(q2,Acc◦)
(q7,Acc•)
(q6,Acc◦)

(q5,9)

m
(q2,Acc◦)
(q7,Acc•)
(q7,Acc◦)

(q2,Acc◦)
(q7,Acc•)

Figure 3 Illustration for Example 11. The names of actions fromM are omitted when only a
single action is available.

The randomness inM⊗ comes only fromM. We set ∆⊗((s, Cs), (a,Ca))(t, Ct) = ∆(s, a)(t)
for any state (s, Cs), any action (a,Ca) legal in (s, Cs), and any state (t, Ct) such that Ca
“deterministically evolves” by reading s into Ct. Precisely, we require that Ct is the minimal
set such that for any (q, x) ∈ Ca there is (q′, x′) ∈ Ct with q

ν(s)→ q′ and x q′

 x′ where the
latter relation is defined by 9 q′

 9 and ⊥ q′

 ⊥ and for any · ∈ {•, ◦} by
(E,F )·

q′

 (E,F )· if q′ 6∈ E ∪ F and C is not fulfilled, (no special state visited)

(E,F )·
q′

 (E,F )◦ if q′ 6∈ E ∪ F and C is fulfilled, (resetting back to ◦)

(E,F )·
q′

 (E,F )• if q′ ∈ F , (the accepting condition becomes fulfilled)

(E,F )·
q′

 ⊥ if q′ ∈ E; (the accepting condition is violated)

Finally, a state is called fulfilled if its second component is fulfilled.

I Example 11. Figure 3 shows one path in the productM⊗ for the MDP and the Rabin
automata from Example 8. The path shown illustrates how the initial states can be added
non-deterministically (in the first three steps), and then reaches a fulfilled state.

A very useful property of the product is that any strategy that ensures visiting fulfilled
states infinitely often yields a strategy in the original MDP such that the automata the
strategy added almost surely accept. This is formalised in the following lemma.

I Lemma 12. For a deterministic strategy π inM⊗ there is a strategy π′ inM that for any
h = (s0, C0) · · · (an, Dn)(sn+1, Cn+1) with Phπ({fulfilled state visited infinitely often}) = 1:

Ps0
π′(s0 . . . ansn+1) = P(s0,C0)

π (h), and
for any (q,9)∈Dn where R is the automaton of q, Ps0a0···sn

π′ ({ω | Rq accepts ω}) = 1.

To be able to use above lemma, we need to establish that it is sufficient to look for
a strategy that visits fulfilled states infinitely often. In other words that existence of the
satisfying strategy σ implies existence of a strategy that visits fulfilled states infinitely often.
Here we use the following lemma saying that σ and (s?, q?) give rise to two strategies in
the product M⊗ that can be used to add initial states into the collections, and to reach
fulfilled states. We will show below how these strategies can be used to finish the proof of
Proposition 7.

I Lemma 13. Assume s?, q?, I? are chosen as described on page 192. Then there are sets
M ⊆ S⊗, N ⊆ A⊗ where N contains only “accumulating“ actions, i.e. actions (a,C) with
{(qin,9) | qin is the initial state of Rϕi,I? for i ∈ I?} ⊆ C; and there are finite-memory
deterministic strategies π and ζ such that:
1. When starting in (s, C) ∈M , π only uses actions from N and never leaves M
2. When starting in (s, C) ∈M ∪ {(s?, {(q?,9)})}, ζ almost surely reaches a fulfilled state

(possibly leaving M) and then reaches M .
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Proof idea. The proof is involved and gives a crucial insight into the main obstacles of the
proof of Theorem 6. Due to the space constraints we only sketch it here.

We first prove that for any fixed `, almost every ω that satisfies all G1ϕI
?

i has infinitely
many good prefixes. Intuitively, a finite path h is good if, when starting from h, all the
automata Rϕi,I? for i ∈ I? started within ` first steps accept with probability at least 1− λ.

In the second step, we show how to avoid actions that cause that any Rϕi,I? does not
accept. To do so, we inductively start labelling the prefixes of runs of the MDP with elements
of C. Having fixed a label for a prefix, the label for its extension is obtained by “deterministic
evolving” as in the definition of the product MDP, and by (non-deterministically) adding
(qin,9). The latter part is performed by switching between a “pseudo-accumulating” and
“pseudo-reaching” phase. Initially, we start in a pseudo-reaching phase, only with singletons
corresponding to the current state of Rψ,I? , and do not add any (qin,9). When a good prefix
is reached (which happens almost surely), we switch to a pseudo-accumulating phase for the
next ` steps and we keep adding “initial states” (qin,9) of Rϕi,I? for each i ∈ I?. After `
steps, we switch back to a pseudo-reaching phase and do not add any new elements to the
label until we pass through a state whose label is fulfilled and get to a good prefix again, in
which point another pseudo-accumulating phase starts.

Along the way, we might obtain tuples of the form (q,⊥) in the label, or we might not
ever visit a fulfilled state. Indeed, if we repeated our steps to infinity, such an “error” might
take place almost surely. However, before an error happens with too high probability, the
labels start repeating because C is finite. We show that supposing ` was large enough and our
tolerance λ was small enough, there must be a strategy that almost-surely traverses such a
cycle without any error. We can extract from the pseudo-accumulating and pseudo-reaching
phases of such a strategy the setsM (and N), given by the tuples of the MDP states (actions)
and their labels. J

We are now ready to finish the proof of Proposition 7. We show that Lemma 13 allows
us to construct a strategy σ⊗ forM⊗ that almost surely (i) visits fulfilled states, and (ii)
with frequency 1 it takes actions from N . By Lemma 12 this strategy yields an almost-surely
winning strategy σs?,q? inM.

The strategy σ⊗ is constructed as follows. Inductively, for path h inM⊗, we say that
its first accumulating phase starts in the first step, ith accumulating phase takes i steps,
and the (i+ 1)th accumulating phase starts when the set M is reached through a fulfilled
state after the ith accumulating phase ended. Within every accumulating phase started in a
history h, σ⊗ is defined to play as π initiated after h. Similarly, outside every accumulating
phase ended in a history h, σ⊗ is defined to play as ζ.

4.2 The algorithm
To conclude the proof of Theorem 6, we need to give a procedure for computing the optimal
probability of satisfying ψ. It works in the following steps (for details, see [14]):
1. Initialize Υ := ∅, and construct Rξ,I for all ξ ∈ {ψ,ϕ1, . . . , ϕn} and I ⊆ {1, . . . , n}.
2. For every I find the largest sets (MI , NI) satisfying the conditions 1–2 of Lemma 13, and

add to Υ all pairs (s, q) such that MI can be almost-surely reached from (s, {(q,9)}).
3. Compute an optimal strategy σ′ for “reaching” Υ and return the probability. Intuitively,

we build the “naive” product ofM with all the main automata Rψ,I for I ⊆ {1, . . . , n};
reaching Υ is reduced to ordinary reachability of all states of the form (s, q1, . . . , qm)
such that (s, qi) ∈ Υ for some i.
By standard algorithms for reachability in MDP, we find an optimal strategy σ′′ in
the naive product that easily induces the strategy σ′ inM.
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By connecting Proposition 7, Lemmas 12 and 13, and the construction of σ⊗ above, there is
a strategy σ inM yielding probability ≥ p iff the set Υ computed by the algorithm can also
be reached with probability ≥ p.

We briefly discuss the complexity of the algorithm. Each of the Rabin automata in step 1
above can be computed in time 22poly(|ϕ|) , and since there is exponentially many such automata
(in |ϕ|), step 1. takes time 22poly(|ϕ|) . Step 2 can be performed in time poly(S) · 22poly(|ϕ|) . In
step 3 we are computing reachability probability in the naive product MDP which is of size
poly(S) · 22poly(|ϕ|) , and so also this step can be done in time poly(S) · 22poly(|ϕ|) .

5 Conclusions

We have given algorithms for controller synthesis of the logic LTL extended with an operator
expressing that frequencies of some events exceed a given bound. For Markov chains we gave
an algorithm working with the complete logic, and for MDPs we require the formula to be
from a certain fragment. The obvious next step is extending the MDP results to the whole
fLTL. This will require new insights. Our product construction relies on the (non-trivial)
observation that given G1ϕ, the formula ϕ is almost surely satisfied from any history of
an accumulating phase. This is no longer true when the frequency bound is lower than 1.
In such cases different histories may require different probability of satisfying ϕ. However,
both authors strongly believe that even for these cases the problem is decidable. Another
promising direction for future work is implementing the algorithms into a probabilistic model
checker and evaluating their time requirements experimentally.
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Abstract
We define a uniform semantic substrate for a wide variety of process calculi where states and
action labels can be from arbitrary nominal sets. A Hennessy-Milner logic for these systems
is introduced, and proved adequate for bisimulation equivalence. A main novelty is the use of
finitely supported infinite conjunctions. We show how to treat different bisimulation variants
such as early, late and open in a systematic way, and make substantial comparisons with related
work. The main definitions and theorems have been formalized in Nominal Isabelle.
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1 Introduction

Transition systems. Transition systems are ubiquitous in models of computing, and spe-
cifications to say what may and must happen during executions are often formulated in a
modal logic. There is a plethora of different versions of both transition systems and logics,
including a variety of higher-level constructs such as updatable data structures, new name
generation, alias generation, dynamic topologies for parallel components etc. In this paper
we formulate a general framework where such aspects can be treated uniformly, and define
accompanying modal logics which are adequate for bisimulation. This is related to, but
independent of, our earlier work on psi-calculi [4], which proposes a particular syntax for
defining behaviours. The present paper does not depend on any such language, and provides
general results for a large class of transition systems.

In any transition system there is a set of states P,Q, . . . representing the configurations a
system can reach, and a relation telling how a computation can move between them. Many
formalisms, for example all process algebras, define languages for expressing states, but in
the present paper we shall make no assumptions about any such syntax.

In systems describing communicating parallel processes the transitions are labelled with
actions α, β, representing the externally observable effect of the transition. A transition
P

α−→ P ′ thus says that in state P the execution can progress to P ′ while conducting the
action α, which is visible to the rest of the world. For example, in CCS these actions are
atomic and partitioned into output and input communications. In value-passing calculi the
actions can be more complicated, consisting of a channel designation and a value from some
data structure to be sent along that channel.

Scope openings. With the advent of the pi-calculus [19] an important aspect of transitions
was introduced: that of name generation and scope opening. The main idea is that names (i.e.,
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atomic identifiers) can be scoped to represent local resources. They can also be transmitted
in actions, to give a parallel entity access to this resource. In the monadic pi-calculus such
an action is written a(νb), to mean that the local name b is exported along the channel a.
These names can be subjected to alpha-conversion: if P a(νb)−−−→ P ′ and c is a fresh name
then also P a(νc)−−−→ P ′{c/b}, where P ′{c/b} is P ′ with all bs replaced by cs. Making this idea
fully formal is not entirely trivial and many papers gloss over it. In the polyadic pi-calculus
several names can be exported in one action, and in psi-calculi arbitrary data structures may
contain local names. In this paper we make no assumptions about how actions are expressed,
and just assume that for any action α there is a finite set of names bn(α), the binding names,
representing exported names. In our formalization we use nominal sets, an attractive theory
to reason about objects depending on names on a high level and in a fully rigorous way.

State predicates. The final general components of our transition systems are the state
predicates ranged over by ϕ, representing what can be concluded in a given state. For example
state predicates can be equality tests of expressions, or connectivity between communication
channels. We write P ` ϕ to mean that in state P the state predicate ϕ holds.

A structure with states, transitions, and state predicates as discussed above we call a
nominal transition system.

Hennessy-Milner Logic. Modal logic has been used since the 1970s to describe how facts
evolve through computation. We use the popular and general branching time logic known as
Hennessy-Milner Logic [15] (HML). Here the idea is that an action modality 〈α〉 expresses a
possibility to perform an action α. If A is a formula then 〈α〉A says that it is possible to
perform α and reach a state where A holds. With conjunction and negation this gives a
powerful logic shown to be adequate for bisimulation equivalence: two processes satisfy the
same formulas exactly if they are bisimilar. In the general case, conjunction must take an
infinite number of operands when the transition systems have states with an infinite number
of outgoing transitions. The fully formal treatment of this requires care in ensuring that such
infinite conjunctions do not exhaust all names, leaving none available for alpha-conversion.
All previous works that have considered this issue properly have used uniformly bounded
conjunction, i.e., the set of all names in all conjuncts is finite.

Contributions. Our definition of nominal transition systems is very general since we leave
open what the states, transitions and predicates are. The only requirement is that transitions
satisfy alpha-conversion. A technically important point is that we do not assume the usual
name preservation principle, that if P α−→ P ′ then the names occurring in P ′ must be a subset
of those occurring in P and α. This means that the results are applicable to a wide range of
calculi. For example, the pi-calculus represents a trivial instance where there are no state
predicates. CCS represent an even more trivial instance where bn always returns the empty
set. In the fusion calculus and the applied pi-calculus the state contains an environmental
part which tells what expressions are equal to what. In the general framework of psi-calculi
the states are processes with assertions describing their environments.

We define a modal logic with the 〈α〉 operator that binds the names in bn(α), and
contains operators for state predicates. In this way we get a logic for an arbitrary nominal
transition system such that logical equivalence coincides with bisimilarity. We also show
how variants of the logic correspond to late, open and hyperbisimilarity in a uniform way.
The main technical difficulty is to ensure that formulas and their alpha-equivalence classes
throughout are finitely supported, i.e., only depend on a finite set of names, even in the
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presence of infinite conjunction. Instead of uniformly bounded conjunction we use the notion
of finite support from nominal sets. This results in greater generality and expressiveness. For
example, we can now define quantifiers and the next step modalities as derived operators.

Formalization. Our main definitions and theorems have been formalized in Nominal Isa-
belle [27]. This has required significant new ideas to represent data types with infinitary
constructors like infinite conjunction and their alpha-equivalence classes. As a result we
corrected several details in our formulations and proofs, and now have very high confidence
in their correctness. The formalization effort has been substantial, but certainly less than
half of the total effort, and we consider it a very worthwhile investment.

Exposition. In the following section we provide the necessary background on nominal sets.
In Section 3 we present our main definitions and results on nominal transition systems and
modal logics. In Section 4 we derive useful operators such as quantifiers and fixpoints, and
indicate some practical uses. Section 5 shows how to treat variants of bisimilarity such as late
and open in a uniform way, and in Section 6 we compare with related work and demonstrate
how our framework can be applied to recover earlier results uniformly. Finally Section 7
concludes with some remarks on the formalization in Nominal Isabelle. All full proofs are
contained in the appendix of the technical report [22].

2 Background on nominal sets

Nominal sets [25] is a general theory of objects which depend on names, and in particular
formulates the notion of alpha-equivalence when names can be bound. The reader need not
know nominal set theory to follow this paper, but some key definitions will make it easier to
appreciate our work and we recapitulate them here.

We assume an infinitely countable multi-sorted set of atomic identifiers or names N
ranged over by a, b, . . .. A permutation is a bijection on names that leaves all but finitely
many names invariant. The singleton permutation which swaps names a and b and has no
other effect is written (a b), and the identity permutation that swaps nothing is written id.
Permutations are ranged over by π, π′. The effect of applying a permutation π to an object
X is written π ·X. Formally, the permutation action · can be any operation that satisfies
id ·X = X and π · (π′ ·X) = (π ◦ π′) ·X, but a reader may comfortably think of π ·X as the
object obtained by permuting all names in X according to π.

A set of names N supports an object X if for all π that leave all members of N invariant
it holds π ·X = X. In other words, if N supports X then names outside N do not matter
to X. If a finite set supports X then there is a unique minimal set supporting X, called
the support of X, written supp(X), intuitively consisting of exactly the names that matter
to X. As an example the set of names textually occurring in a datatype element is the
support of that element, and the set of free names is the support of the alpha-equivalence
class of the element. Note that in general, the support of a set is not the same as the union
of the support of its members. An example is the set of all names; each element has itself as
support, but the whole set has empty support since π · N = N for any π.

We write a#X, pronounced “a is fresh for X”, for a 6∈ supp(X). The intuition is that if
a#X then X does not depend on a in the sense that a can be replaced with any fresh name
without affecting X. If A is a set of names we write A#X for ∀a ∈ A . a#X.

A nominal set S is a set with a permutation action such that X ∈ S ⇒ π ·X ∈ S, and
where each member X ∈ S has finite support. A main point is that then each member
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has infinitely many fresh names available for alpha-conversion. Similarly, a set of names
N supports a function f on a nominal set if for all π that leave N invariant it holds
π · f(X) = f(π ·X), and similarly for relations and functions of higher arity. Thus we extend
the notion of support to finitely supported functions and relations as the minimal finite
support, and can derive general theorems such as supp(f(X)) ⊆ supp(f) ∪ supp(X).

An object that has empty support we call equivariant. For example, a unary function f
is equivariant if π · f(X) = f(π ·X) for all π,X. The intuition is that an equivariant object
does not treat any name special.

3 Nominal transition systems and Hennessy-Milner logic

I Definition 1. A nominal transition system is characterized by the following
states: A nominal set of states ranged over by P,Q.
pred: A nominal set of state predicates ranged over by ϕ.
An equivariant binary relation ` on states and pred. We write P ` ϕ to mean that in
state P the state predicate ϕ holds.
act: A nominal set of actions ranged over by α.
An equivariant function bn from act to finite sets of names, which for each α returns a
subset of supp(α), called the binding names.
An equivariant transition relation → on states and residuals. A residual is a pair of
action and state. For → (P, (α, P ′)) we write P α−→ P ′. The transition relation must
satisfy alpha-conversion of residuals: If a ∈ bn(α), b#α, P ′ and P

α−→ P ′ then also
P

(a b)·α−−−−→ (a b) · P ′.

I Definition 2. A bisimulation R is a symmetric binary relation on states in a nominal
transition system satisfying the following two criteria: R(P,Q) implies
1. Static implication: P ` ϕ implies Q ` ϕ.
2. Simulation: For all α, P ′ such that bn(α)#Q there exist Q′ such that if P α−→ P ′ then

Q
α−→ Q′ and R(P ′, Q′)

We write P ·∼ Q to mean that there exists a bisimulation R such that R(P,Q).

Static implication means that bisimilar states must satisfy the same state predicates; this
is reasonable since these can be tested by an observer. The simulation requirement is familiar
from the pi-calculus.

I Proposition 1. ·∼ is an equivariant equivalence relation.

The minimal HML for nominal transition systems is the following.

I Definition 3. The nominal set of formulas A ranged over by A is defined by induction as
follows:

A ::=
∧
i∈I

Ai | ¬A | ϕ | 〈α〉A

Support and name permutation are defined as usual (permutation distributes over all formula
constructors). In

∧
i∈I Ai it is assumed that the indexing set I has bounded cardinality,

by which we mean that |I| ≤ κ for some fixed infinite cardinal κ at least as large as the
cardinality of states, act and pred. It is also required that the set of conjuncts {Ai | i ∈ I}
has finite support; this is then the support of the conjunction. Alpha-equivalent formulas are
identified; the only binding construct is in 〈α〉A where bn(α) binds into A.
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Compared to previous work there are two main novelties in Definition 3. The first is that
we use conjunction of a possibly infinite and finitely supported set of conjuncts. In comparison,
the earliest HML for CCS, Hennessy and Milner (1985) [15], uses finite conjunction, meaning
that the logic is adequate only for finite branching transition systems. In his subsequent book
(1989) [18] Milner admits arbitrary infinite conjunction, disregarding the danger of running
into paradoxes. Abramsky (1991) [3] employs a kind of uniformly bounded conjunction, with
a finite set of names that supports all conjuncts, an idea that is also used in the first HML for
the pi-calculus (1993) [20]. All subsequent developments follow one of these three approaches.
Our main point is that both finite and uniformly bounded conjunction are expressively weak,
in that the logic is not adequate for the full range of nominal transition systems, and in that
quantifiers over infinite structures are not definable. In contrast, our use of finitely supported
sets of conjuncts is adequate for all nominal transition systems (cf. Theorems 6 and 9 below)
and admits quantifiers as derived operators (cf. Section 4 below). As a simple example,
universal quantification over names ∀x ∈ N .A(x) is usually defined to mean that A(n) must
hold for all n ∈ N . We can define this as the (infinite) conjunction of all these A(n). This
set of conjuncts is not uniformly bounded if n ∈ supp(A(n)). But it is supported by supp(A)
since, for any permutation π not affecting supp(A) we have π ·A(n) = A(π(n)) which is also
a conjunct; thus the set of conjuncts is unaffected by π.

The second novelty is the use of a nominal set of actions α with binders, and the formal
definition of alpha-equivalence. We define it by structural recursion over formulas. Two
conjunctions

∧
i∈I Ai and

∧
i∈I Bi are alpha-equivalent if for every conjunct Ai there is an

alpha-equivalent conjunct Bj , and vice versa. The other cases are standard; two formulas
〈α〉A and 〈β〉B are alpha-equivalent if there exists a permutation π, renaming the binding
names of α to those of β, such that π ·A and B are alpha-equivalent, and π ·α = β. Moreover,
π must leave names that are free in A invariant. The free names in a formula are also defined
by structural recursion. Most cases are standard again; a name is free in 〈α〉A if it is in
supp(α) or free in A, and not contained in bn(α). However, the free names in a conjunction
are given by the support of its alpha-equivalence class (rather than by the union of free
names in all conjuncts). This is analogous to the situation for nominal sets in general, whose
support is not necessarily the same as the union of the support of its members. Fortunately,
our formalization proves that we need not keep the details of this construction in mind, but
can simply identify alpha-equivalent formulas. The notions of free names and support then
coincide.

The validity of a formula A for a state P is written P |= A and is defined by recursion
over A as follows.

I Definition 4.

P |=
∧
i∈I Ai if for all i ∈ I it holds that P |= Ai

P |= ¬A if not P |= A

P |= ϕ if P ` ϕ
P |= 〈α〉A if there exists P ′ such that P α−→ P ′ and P ′ |= A

In the last clause we assume that 〈α〉A is a representative of its alpha-equivalence class such
that bn(α)#P . It is easy to show that |= is an equivariant relation.

I Definition 5. Two states P and Q are logically equivalent, written P ·= Q, if for all A it
holds that P |= A iff Q |= A

I Theorem 6. P ·∼ Q =⇒ P
·= Q
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The proof is by induction over formulas. The converse result uses the idea of distinguishing
formulas.

I Definition 7. A distinguishing formula for P and Q is a formula A such that P |= A and
not Q |= A.

The following lemma says that we can find such a formula where, a bit surprisingly, the
support does not depend on Q.

I Lemma 8. If P 6 ·= Q then there exists a distinguishing formula B for P and Q such that
supp(B) ⊆ supp(P ).

The proof is by direct construction. If P 6 ·= Q then there exists a distinguishing formula
A for P and Q. Let ΠP be the group of finite permutations that leave names in supp(P )
invariant, i.e., ΠP = {π | ∀n ∈ supp(P ). π(n) = n}. Then {π ·A | π ∈ ΠP } is supported by
supp(P ). Since |= is equivariant we have that for all π ∈ ΠP it holds P = π · P |= π ·A. Let
B =

∧
π∈ΠP

π ·A, thus P |= B but Q 6|= B since the identity is in ΠP and Q 6|= A. Note that
B here uses a conjunction which is not uniformly bounded.

I Theorem 9. P ·= Q =⇒ P
·∼ Q

The main idea of the proof is to establish that ·= is a bisimulation. The simulation
requirement is by contradiction: Assume that ·= does not satisfy the simulation requirement.
Then there exist P,Q, P ′, α such that P ·= Q and P α−→ P ′ and, letting Q = {Q′ |Q α−→ Q′},
for all Q′ ∈ Q it holds P ′ 6 ·= Q′. By Lemma 8 we can find a distinguishing formula BQ′ for P ′
and Q′ with supp(BQ′) ⊆ supp(P ′). Therefore the formula B =

∧
Q′∈QBQ′ is well-formed

with support included in supp(P ′). We thus get that P |= 〈α〉B but not Q |= 〈α〉B,
contradicting P ·= Q.

This proof of the simulation property is different from other such proofs in the literature.
For finite branching transition systems, Q is finite so finite conjunction is enough to define
B. For transition systems with the name preservation property, i.e., that if P α−→ P ′ then
supp(P ′) ⊆ supp(P )∪supp(α), uniformly bounded conjunction suffices with common support
supp(P ) ∪ supp(Q) ∪ supp(α). Without the name preservation property, we here use a not
uniformly bounded conjunction in Lemma 8.

4 Derived formulas

Dual connectives. We define logical disjunction
∨
i∈I Ai in the usual way as ¬

∧
i∈I ¬Ai,

when the indexing set I has bounded cardinality and {Ai | i ∈ I} has finite support. A
special case is I = {1, 2}: we then write A1 ∧A2 instead of

∧
i∈I Ai, and dually for A1 ∨A2.

We write > for the empty conjunction
∧
i∈∅, and ⊥ for ¬>. The must modality [α]A is

defined as ¬〈α〉¬A, and requires A to hold after every possible α-labelled transition from the
current state. For example, [α](A ∧B) is equivalent to [α]A ∧ [α]B, and dually 〈α〉(A ∨B)
is equivalent to 〈α〉A ∨ 〈α〉B.

Quantifiers. Let S be any finitely supported set of bounded cardinality and use v to range
over members of S. Write A{v/x} for the substitution of v for x in A, and assume this
substitution function is equivariant. Then we define ∀x ∈ S .A as

∧
v∈S A{v/x}. There

is not necessarily a common finite support for the formulas A{v/x}, for example if S is
some term algebra over names, but the set {A{v/x} | v ∈ S} has finite support bounded by
{x} ∪ supp(S) ∪ supp(A). In our examples in Section 6, substitution is defined inductively
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on the structure of formulas, based on primitive substitution functions for actions and state
predicates, avoiding capture and preserving the binding names of actions.

Existential quantification ∃x ∈ S .A is defined as the dual ¬∀x ∈ S .¬A. When X is a
metavariable used to range over a nominal set X , we simply write X for “X ∈ X ”. As an
example, ∀a .A means that the formula A{n/a} holds for all names n ∈ N .

New name quantifier. The new name quantifier Nx.A intuitively states that P |= A{n/x}
holds where n is a fresh name for P . For example, suppose we have actions of the form a b

for input, and a b for output where a and b are free names, then the formula Nx.[a x]〈b x〉>
expresses that whenever a process inputs a fresh name x on channel a, it has to be able to
output that name on channel b. If the name received is not fresh (i.e., already present in P )
then P is not required to do anything. Therefore this formula is weaker than ∀x . [a x]〈b x〉>.

To define this formally we use name permutation rather than substitution. Since A and
P have finite support, if P |= (xn) ·A holds for some n fresh for P , by equivariance it also
holds for almost all n, i.e., all but finitely many n. Conversely, if it holds for almost all n, it
must hold for some n# supp(P ). Therefore Nx is often pronounced “for almost all x”. In
other words, P |= Nx.A holds if {x | P |= A(x)} is a cofinite set of names [25, Definition 3.8].
Letting cof = {S ⊆ N |N \ S is finite} we thus encode Nx.A as

∨
S∈cof

∧
n∈S(xn)·A. This

formula states there is a cofinite set of names such that for all of them A holds. The support
of

∧
n∈S(xn)·A is bounded by (N \ S) ∪ supp(A) where S ∈ cof, and the support of the

encoding
∨
S∈cof

∧
n∈S(xn)·A is bounded by supp(A).

Next step. We generalise the action modality to sets of actions in the following way. If T
is a finitely supported set of actions such that bn(α)#A for all α ∈ T , we write 〈T 〉A for∨
α∈T 〈α〉A. The support of the set {〈α〉A | α ∈ T} is bounded by supp(T ) ∪ supp(A) and

thus finite. Dually, we write [T ]A for ¬〈T 〉¬A, denoting that A holds after all transitions
with actions in T .

To encode the next-step modality, let actA = {α | bn(α)#A}. Note that supp(actA) ⊆
supp(A) is finite. We write 〈 〉A for 〈actA〉A, meaning that we can make some (non-capturing)
transition to a state where A holds. As an example, 〈 〉> means that the current state is
not deadlocked. The dual modality [ ]A = ¬〈 〉¬A means that A holds after every transition
from the current state. Larsen [17] uses the same approach to define next-step operators
in HML, though his version is less expressive since he uses a finite action set to define the
next-step modality.

Fixpoints. Fixpoint operators are a way to introduce recursion into a logic. For example,
they can be used to concisely express safety and liveness properties of a transition system,
where by safety we mean that some invariant holds for all reachable states, and by liveness
that some property will eventually hold. Kozen (1983) [16] introduced the least (µX.A) and
the greatest (νX.A) fixpoints in modal logic. Intuitively, the least fixpoint states a property
that holds for states of a finite path, while the greatest holds for states of an infinite path.

I Theorem 10. The least and greatest fixpoint operators are expressible in our HML.

For the full proofs and definitions, see the appendix of [22]. The idea is to start with an
extended language with the forms µX.A and X, where X ranges over a countable set of
variables and all occurrences of X in A are in the scope of an even number of negations.
Write A(B) for the capture-avoiding substitution of B for X in A, and let A0(B) = B and
Ai+1(B) = A(Ai(B)). Then the encoding of a least fixpoint µX.A is

∨
i∈NA

i(⊥), given that
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fixpoints have been recursively expanded in A. The disjunction has finite support supp(A),
since substitution is equivariant. When interpreting formulas as elements of the power-set
lattice of states, this encoding yields a fixpoint of A(·): the sequence of formulas Ai(⊥)
yields an approximation from below. We define the greatest fixpoint operator νX.A in terms
of the least as ¬µX.¬A(¬X).

Using the greatest fixpoint operator we can state global invariants: νX.[α]X∧A expresses
that A holds along all paths labelled with α. Temporal operators such as eventually can also
be encoded using the least fixpoint operator: the formula µX.〈α〉X ∨A states that eventually
A holds along some path labelled with α. We can freely mix the fixpoint operators to obtain
formulas like νX.[α]X ∧ (µY.〈β〉Y ∨ A) which means that for each state along any path
labelled with α, a state where A holds is reachable along a path labelled with β. Formulas
with mixed fixpoint combinators are very expressive, and with the next operator they can
encode the branching-time logic CTL∗ [11].

5 Logics for variants of bisimilarity

The bisimilarity of Section 3 is of the early kind: any substitutive effect of an input (typically
replacing a variable with the value received) must have manifested already in the action
corresponding to the input, since we apply no substitution to the target state. Alternative
treatments of substitutions include late-, open- and hyperbisimilarity, where the input action
instead contains the variable to be replaced, and there are different ways to make sure that
bisimulations are preserved by relevant substitutions.

In our definition of nominal transition systems there are no particular input variables
in the states or in the actions, and thus no a priori concept of “substitution”. We therefore
choose to formulate the alternatives using so called effect functions. An effect is simply a
finitely supported function from states to states. For example, in the monadic pi-calculus the
effects would be the functions replacing one name by another. In a value-passing calculus the
effects would be substitutions of values for variables. In the psi-calculi framework the effects
would be sequences of parallel substitutions. Our definitions and results are applicable to
any of these; our only requirement is that the effects form a nominal set which we designate
by F . Variants of bisimilarity then correspond to requiring continuation after various effects.
For example, if the action contains an input variable x then the effects appropriate for late
bisimilarity would be substitutions for x.

We will formulate these variants as F/L-bisimilarity, where F (for first) represents the set
of effects that must be observed before following a transition, and L (for later) is a function
that represents how this set F changes depending on the action of a transition, i.e., L(α, F )
is the set of effects that must follow the action α if the previous effect set was F . In the
following let Pfs(F) ranged over by F be the finitely supported subsets of F , and L range
over equivariant functions from actions and Pfs(F) to Pfs(F).

I Definition 11. An L-bisimulation where L : act× Pfs(F)→ Pfs(F) is a Pfs(F)-indexed
family of symmetric binary relations on states satisfying the following:

If RF (P,Q) then:
1. Static implication: for all f ∈ F it holds that f(P ) ` ϕ implies f(Q) ` ϕ.
2. Simulation: For all f ∈ F and α, P ′ such that bn(α)#f(Q) there exist Q′ such that

if f(P ) α−→ P ′ then f(Q) α−→ Q′ and RL(α,F )(P ′, Q′)

We write P F/L∼ Q, called F/L-bisimilarity, to mean that there exists an L-bisimulation
R such that RF (P,Q).
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Most strong bisimulation varieties can be formulated as F/L-bismilarity. Write idstates
for the identity function on states, ID for the singleton set {idstates} and allID for the
constant function λ(α, F ).ID.

Early bisimilarity, precisely as defined in Definition 2, is ID / allID-bisimilarity.
Early equivalence, i.e., early bisimilarity for all possible effects, is F / allID-bisimilarity.
Late bisimilarity is ID /L-bisimilarity, where L(α, F ) yields the effects that represent
substitutions for variables in input actions α (and ID for other actions).
Late equivalence is similarly F /L-bisimilarity.
Open bisimilarity is F /L-bisimilarity where L(α, F ) is the set F minus all effects that
change bound output names in α.
Hyperbisimilarity is F / λ(α, F ).F-bisimilarity.

All of the above are generalizations of known and well-studied definitions. The original
value-passing variant of CCS [18] uses early bisimilarity. The original bisimilarity for the
pi-calculus is of the late kind [19], where it also was noted that late equivalence is the
corresponding congruence. Early bisimilarity and equivalence and open bisimilarity for the
pi-calculus were introduced in 1993 [20, 26], and hyperbisimilarity for the fusion calculus in
1998 [23].

In view of this we only need to provide a modal logic adequate for F/L-bisimilarity; it
can then immediately be specialized to all of the above variants. For this we introduce a new
kind of logical operator as follows.

I Definition 12. For each f ∈ F the logical unary effect consequence operator 〈f〉 has the
definition

P |= 〈f〉A if f(P ) |= A

Thus the formula 〈f〉A means that A holds if the effect f is applied to the state. Note that
by definition this distributes over conjunction and negation, e.g. P |= ¬〈f〉A iff P |= 〈f〉¬A
iff not f(P ) |= A etc. The effect consequence operator is similar in spirit to the action
modalities: both 〈f〉A and 〈α〉A assert that something (an effect or action) must be possible
and that A holds afterwards. Indeed, effects can be viewed as a special case of transitions (as
formalised in Definition 16 below) which is why we give the operators a common syntactic
appearance.

Now define the formulas that can directly use effects from F and after actions use effects
according to L, ranged over by AF/L, in the following way:

I Definition 13. Given L as in Definition 11, for all F ∈ Pfs(F) define AF/L as the set of
formulas given by the mutually recursive definitions:

AF/L ::=
∧
i∈I

A
F/L
i | ¬AF/L | 〈f〉ϕ | 〈f〉〈α〉AL(α,F )/L

where we require f ∈ F and that the conjunction has bounded cardinality and finite support.

Let P F/L= Q mean that P and Q satisfy the same formulas in AF/L.

I Theorem 14. P F/L∼ Q ⇔ P
F/L= Q

Proof: The direction ⇒ is a generalization of Theorem 6. The other direction is a gener-
alization of Theorem 9: we prove that F/L= is an F/L-bisimulation. It needs a variant of
Lemma 8:
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I Lemma 15. If A ∈ AF/L is a distinguishing formula for P and Q, then there exists a
distinguishing formula B ∈ AF/L for P and Q such that supp(B) ⊆ supp(P, F ).

The proof is an easy generalisation of Lemma 8.
An alternative to the effect consequence operators is to transform the transition system

such that standard (early) bisimulation on the transforms coincides with F/L-bisimilarity.
The idea is to let the effect function be part of the transition relation, thus f(P ) = P ′

becomes P f−→ P ′.

I Definition 16. Assume F and L as above. The L-transform of a nominal transition system
T is a nominal transition system where:

The states are of the form ac(F, f(P )) and ef(F, P ), for f ∈ F ∈ Pfs(F) and states P
of T. The intuition is that states of kind ac can perform ordinary actions, and states of
kind ef can commit effects.
The state predicates are those of T.
ac(F, P ) ` ϕ if in T it holds P ` ϕ, and ef(F, P ) ` ϕ never holds.
The actions are the actions of T and the effects in F .
bn is as in T, and additionally bn(f) = ∅ for f ∈ F .
The transitions are of two kinds. If in T it holds P α−→ P ′, then there is a transition
ac(F, P ) α−→ ef(L(α, F ), P ′). And for each f ∈ F it holds ef(F, P ) f−→ ac(F, f(P )).

I Theorem 17. P F/L∼ Q in T if and only if ef(F, P ) ·∼ ef(F,Q) in the L-transform of T.

The proof idea is that from an F/L-bisimulation in T it is easy to construct an (ordinary)
bisimulation in the L-transform of T, and vice versa. A direct consequence is that P F/L∼ Q

iff ef(F, P ) ·= ef(F,Q) in the L-transform of T. Here the actions in the logic would include
effects f ∈ F .

6 Related work and examples

In this first part of this section we discuss other modal logics for process calculi, with a focus
on how their constructors can be captured by finitely supported conjunction in our HML.
This comparison is by necessity somewhat informal; a fully formal correspondence would
fail to hold in many cases due to differences in the conjunction operator of the logic (finite,
uniformly bounded or unbounded vs. bounded support). In the later part of this section, we
obtain novel, adequate HMLs for more recent process calculi.

HML for CCS. The first published HML is Hennessy and Milner (1985) [15]. They use
finite (binary) conjunction with the assumption of image-finiteness for ordinary CCS. The
same goes for the value-passing calculus and logic by Hennessy and Liu (1995) [14], where
image-finiteness is due to a late semantics and the logic contains quantification over data
values. A similar idea and argument is in a logic for LOTOS by Calder et al. (2002) [8],
though that only considers stratified bisimilarity up to ω.

Hennessy and Liu’s value-passing calculus is based on abstractions (x)P and concretions
(v, P ) where v is drawn from a set of values. To encode the modalities of their logic in
ours, we add effects idstates and ?v, with ?v((x)P ) = P{v/x}, and transitions (v, P ) !v−→ P .
Letting L(a?,_) = {?v | v ∈ values} and L(α,_) = {idstates} otherwise, late bisimilarity
is {idstates}/L-bisimilarity as defined in Section 5. We can then encode their universal
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quantifier ∀x.A as
∧
v〈?v〉A{v/x}, which has support supp(A)\{x}, and their output modality

〈c!x〉A as 〈c!〉
∨
v〈!v〉A{v/x}, with support {c} ∪ (supp(A) \ {x}).

An infinitary HML for CCS is discussed in Milner’s book (1989) [18], where also the
process syntax contains infinite summation. There are no restrictions on the indexing sets
and no discussion about how this can exhaust all names. The adequacy theorem is proved by
stratifying bisimilarity and using transfinite induction over all ordinals, where the successor
step basically is the contraposition of the argument in Theorem 9, though without any
consideration of finite support. A more rigorous treatment of the same ideas is by Abramsky
(1991) [3] where uniformly bounded conjunction is used throughout.

Pi-calculus. The first HML for the pi-calculus is by Milner et al. (1993) [20], where infinite
conjunction is used in the early semantics and conjunctions are restricted to use a finite set of
free names. The adequacy proof is of the same structure as in this paper. The logic defined
in this paper, applied to the pi-calculus transition system omitting bound input actions x(y),
contains the logic F of Milner et al., or the equipotent logic FM if we take the set of name
matchings [a = b] as state predicates.

Spi Calculus. Frendrup et al. (2002) [12] provide three Hennessy-Milner logics for the spi
calculus [2]. The action modalities in Frendrup’s logic only use parts of the labels: on process
output, the modality 〈a〉 tests only the channel used. On process input, the modality 〈aξ〉
describes how the observer σ computed the received message M = e(ξσ), where ξ is an
expression that may contain decryptions and projections, and supp(ξ) \ dom(σ) is fresh for
P and σ. Simplifying the labels of the transition system to τ and the aforementioned a and
aξ labels, our minimal HML applied to the particular nominal transition system of the spi
calculus has the same modalities as the logic F of Frendrup et al., although the latter uses
infinite conjunction without any mechanism to prevent formulas from exhausting all names,
leaving none available for alpha-conversion. Thus their notion of substitution is not formally
well defined.

Their logic EM replaces the simple input modality by an early input modality 〈a(x)〉EA,
which (after a minor manipulation of the input labels) can be encoded as the conjunction∧
ξ〈aξ〉A{ξ/x}, which has support supp(A) \ {x}. We do not consider their logic LM that

uses a late input modality, since its application relies on sets that do not have finite support
[12, Theorem 6.12], which are not meaningful in nominal logic.

Applied Pi-calculus. A more recent work is a logic by Pedersen (2006) [24] for the applied
pi-calculus [1], where the adequacy theorem uses image-finiteness of the semantics in the
contradiction argument. The logic contains atomic formulae for equality in the frame of a
process, corresponding to our state predicates. The main difference to our logic is an early
input modality and a quantifier ∃x.

Their early input modality 〈a(x)〉A can be straightforwardly encoded as the conjunc-
tion

∧
M 〈aM〉A{M/x}, with support {a} ∪ (supp(A) \ {x}). For the existential quantifier,

there is a requirement that the received term M can be computed from the current know-
ledge available to an observer of the process, which we here write M ∈ S(P ). We add
actions M/x with bn(M/x) = x and transitions P M/x−−−→ P | {M/x} if M ∈ S(P ) and x#P .
We can then encode ∃x.A as

∨
M 〈M/x〉A, which has support supp(A) \ {x}.

Fusion calculus. In an HML for the fusion calculus by Haugstad et al. (2006) [13] the
fusions (i.e., equality relations on names) are action labels ϕ. The corresponding modal
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operator 〈ϕ〉A has the semantics that the formula A must be satisfied for all substitutive
effects of ϕ (intuitively, substitutions that map each name to a fixed representative for its
equivalence class). By making the substitutive effects of fusion actions visible in the transition
system, we can encode this modal operator. Their adequacy theorem uses the contradiction
argument with infinite conjunction, with no argument about finiteness of names for the
distinguishing formula.

Nominal transition systems. De Nicola and Loreti (2008) [10] define a general format for
nominal transition systems and an associated modal logic, that is adequate for image-finite
transition systems only and uses several different modalities for name revelation and resource
consumption. In contrast, we seek a small and expressive HML for general nominal transition
systems. Indeed, the logic of De Nicola and Loreto can be seen as a special case of ours:
their different transition systems can be merged into a single one, and we can encode their
quantifiers and fixpoint operator as described in Section 4. Nominal SOS of Cimini et
al. (2012) [9] is also a special case of nominal transition systems.

In each of the final two examples below, no HML has to our knowledge yet been proposed,
and we immediately obtain one by instantiating the logic in the present paper.

Concurrent constraint pi calculus. The concurrent constraint pi calculus (CC-pi) by Bus-
cemi and Montanari (2007) [6] extends the explicit fusion calculus [28] with a more general
notion of constraint stores c. The reference equivalence for CC-pi is open bisimulation [7]
(closely corresponding to hyperbisimulation in the fusion calculus [23]), which differs from
labelled bisimulation in two ways: First, two equivalent processes must be equivalent under
all store extensions. To encode this, we let the effects F be the set of constraint stores c
different from 0, and let c(P ) = c | P . Second, when simulating a labelled transition P α−→ P ′,
the simulating process Q can use any transition Q β−→ Q′ with an equivalent label, as given
by a state predicate α = β. As an example, if α = a〈x〉 is a free output label then P ` α = β

iff β = b〈y〉 where P ` a = b and P ` x = y. To encode this, we transform the labels of the
transition system by replacing them with their equivalence classes, i.e., P α−→ P ′ becomes
P

[α]P−−−→ P ′ where β ∈ [α]P iff P ` β = α. Hyperbisimilarity (Definition 11) on this transition
system then corresponds to open bisimilarity, and the modal logic defined in Section 5 is
adequate.

Psi-calculi. In psi-calculi by Bengtson et al. (2011) [4], the labelled transitions take the
form Ψ . P

α−→ P ′, where the assertion environment Ψ is unchanged after the step. We
model this as a nominal transition system by letting the set of states be pairs (Ψ, P ) of
assertion environments and processes, and define the transition relation by (Ψ, P ) α−→ (Ψ, P ′)
if Ψ . P

α−→ P ′. The notion of bisimulation used with psi-calculi also uses an assertion
environment and is required to be closed under environment extension, i.e., if Ψ . P ∼ Q,
then Ψ ⊗ Ψ′ . P ∼ Q for all Ψ′. We let the effects F be the set of assertions, and
define Ψ((Ψ′, P )) = (Ψ⊗Ψ′, P ). Hyperbisimilarity on this transition system then subsumes
the standard psi-calculi bisimilarity, and the modal logic defined in Section 5 is adequate.

7 Conclusion

We have given a general account of transition systems and Hennessy-Milner Logic using
nominal sets. The advantage of our approach is that it is more expressive than previous
work. We allow infinite conjunctions that are not uniformly bounded, meaning that we can
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encode e.g. quantifiers and the next-step operator. We have given ample examples of how
the definition captures different variants of bisimilarity and how it relates to many different
versions of HML in the literature.

We have formalized the results of Section 3, including Theorems 6 and 9, using Nominal
Isabelle [27].1 Nominal Isabelle is an implementation of nominal logic in Isabelle/HOL [21],
a popular interactive proof assistant for higher-order logic. It adds convenient specification
mechanisms for, and automation to reason about, datatypes with binders.

However, Nominal Isabelle does not directly support infinitely branching datatypes.
Therefore, the mechanization of formulas (Definition 3) was challenging. We construct
formulas from first principles in higher-order logic, by defining an inductive datatype of raw
formulas (where alpha-equivalent raw formulas are not identified). The datatype constructor
for conjunction recurses through sets of raw formulas of bounded cardinality, a feature made
possible only by a recent re-implementation of Isabelle/HOL’s datatype package [5].

We then define alpha-equivalence of raw formulas. For finitely branching datatypes,
alpha-equivalence is based on a notion of free variables. Here, to obtain the correct notion of
free variables of a conjunction, we define alpha-equivalence and free variables via mutual
recursion. This necessitates a fairly involved termination proof. (All recursive functions
in Isabelle/HOL must be terminating.) To obtain formulas, we quotient raw formulas by
alpha-equivalence, and finally carve out the subtype of all terms that can be constructed from
finitely supported ones. We then prove important lemmas; for instance, a strong induction
principle for formulas that allows the bound names in 〈α〉A to be chosen fresh for any finitely
supported context.

Our development, which in total consists of about 2700 lines of Isabelle definitions and
proofs, generalizes the constructions that Nominal Isabelle performs for finitely branching
datatypes to a type with infinite branching. To our knowledge, this is the first mechanization
of an infinitely branching nominal datatype in a proof assistant.

Acknowledgements. We thank Andrew Pitts for enlightening discussions on nominal data-
types with infinitary constructors, and Dmitriy Traytel for providing a formalization of
cardinality-bounded sets.
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Abstract
We show how to use Howe’s method to prove that context bisimilarity is a congruence for process
calculi equipped with their usual semantics. We apply the method to two extensions of HOπ,
with passivation and with join patterns, illustrating different proof techniques.
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1 Introduction

Process equivalence relates processes whose behavior may not be distinguished, even when
inserted in arbitrary contexts. Equivalent processes may thus be used interchangeably in any
larger system, with no observable difference. This property is quite strong, and to prove it
directly, one has to consider every possible context. Much effort has thus been applied to
techniques that simplify the proofs of process equivalence. Such techniques often involve the
definition of a relation between processes that is easier to establish. The relation, typically a
form of bisimilarity, is then shown to characterize process equivalence. This characterization
has two parts: bisimilarity is sound – bisimilar processes are equivalent – and complete –
equivalent processes are bisimilar.

As process equivalence is generally intended to be preserved by every context, it is often
a congruence. Hence a sound and complete bisimilarity also has to be a congruence. Even
when considering sound (but not complete) bisimilarities, it is very convenient that they be
congruences. Indeed, to prove that two processes are equivalent, one can then simply show
they have the same external structure (context) with bisimilar processes inside. Proving
congruence is thus a crucial step when working with process equivalence.

Howe’s method [7] is a powerful approach to show that a bisimilarity is a congruence.
In a nutshell, it reverses the problem: first define a relation, called “Howe’s closure”, that
includes the bisimilarity of interest and is a congruence by definition. Second, show it is a
bisimulation. As bisimilarity contains every bisimulations, Howe’s closure is thus included in
bisimilarity. Third, conclude that the bisimilarity and its Howe’s closure coincide, thus the
former is a congruence.

This approach works well in a functional setting. Until now, its application to higher-order
process calculi has required significant adjustments, either yielding a sound but not complete
bisimilarity [5], or requiring the definition of a new semantics [11]. We present a direct
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application of Howe’s method for the higher-order π calculus (HOπ) with its usual semantics,
and state the central pseudo-simulation property that enables the application of the method
(Section 2). We then detail two approaches to prove this lemma for two extensions of HOπ:
one with passivation (Section 3), the other with join-patterns (Section 4). The complete
proofs are available in an accompanying research report [10].

2 Howe’s Method in HOπ with Contextual Semantics

2.1 Syntax and Contextual Semantics

We recall the syntax and contextual semantics of (the process-passing fragment of) HOπ [14]
in Figure 1, omitting the symmetric rules for Par and HO. We use a, b, c to range over
channel names, a, b, c to range over conames, γ to range over names and conames, and X,
Y to range over process variables. We define a as a. Multisets {x1 . . . xn} (where x ranges
over some entities) are written x̃. Finally, we write ] for multiset union.

An input a(X)P binds X in P , and a restriction νa.P binds a in P . We write fv(P ) for
the free variables of a process P and fn(P ) for its free names. A closed process has no free
variable. We identify processes up to α-conversion of names and variables: processes and
agents are always chosen such that their bound names and variables are pairwise distinct,
and distinct from their free names and variables. We write P{Q/X} for the capture-free
substitution of X by Q in P . Structural congruence ≡ equates processes up to reorganization
of their sub-processes and their name restrictions; it is the smallest congruence verifying
the rules of Figure 1. Because the ordering of restrictions does not matter, we abbreviate
νa1. . . . νan.P as νã.P ; since bound names are pairwise distinct, ã is a set.

We define a labeled transition system (LTS), where agents transition to processes, ab-
stractions F of the form (X)Q, or concretions C of the form νb̃.〈R〉S. Like for processes,
the ordering of restrictions does not matter for a concretion, therefore we write them using a
set of names b̃; in particular, we write 〈R〉S if b̃ = ∅. Labels of the LTS are ranged over by α.
Transitions are either an internal action P

τ−→ P ′, a message input P a−→ F , or a message
output P a−→ C. The transition P a−→ (X)Q means that P may receive a process R on a to
continue as Q{R/X}. The transition P a−→ νb̃.〈R〉S means that P may send the process R
on a and then continue as S, and the scope of the names b̃ has to be expanded to encompass
the recipient of R. A higher-order communication takes place when a concretion interacts
with an abstraction (rule HO).

2.2 Behavioral Equivalences

Barbed congruence relates processes based on their observable actions, or barbs. The observable
actions γ of a process P , written P ↓γ , are unrestricted names or conames on which a
communication may immediately occur (P γ−→ A, for some A). A context C is a term with
a single hole �, that may be filled with a process P , written C{P}; the free names or free
variables of P may be captured by C. An equivalence relation R is a congruence if P R Q

implies C{P} R C{Q} for all contexts C.

I Definition 1. A symmetric relation R on closed processes is a strong barbed bisimulation
if P R Q implies:

P ↓γ implies Q ↓γ ;
if P τ−→ P ′, then there exists Q′ such that Q τ−→ Q′ and P ′ R Q′.
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Syntax: P ::= 0 | X | P |P | a(X)P | a〈P 〉P | νa.P

Agents: A,B ::= P | F | C

Abstractions F,G ::= (X)P Concretions C,D ::= 〈P 〉Q | νa.C

Extension of operators to abstractions and concretions

(X)Q |P ∆= (X)(Q |P ) if X /∈ fv(P )

P |(X)Q ∆= (X)(P |Q) if X /∈ fv(P )

νa.(X)P ∆= (X)νa.P

(νb̃.〈Q〉R) |P ∆= νb̃.〈Q〉(R |P ) if b̃ ∩ fn(P ) = ∅

P |(νb̃.〈Q〉R) ∆= νb̃.〈Q〉(P |R) if b̃ ∩ fn(P ) = ∅

νa.(νb̃.〈Q〉R) ∆= νa, b̃.〈Q〉R if a ∈ fn(νb̃.Q)

νa.(νb̃.〈Q〉R) ∆= νb̃.〈Q〉νa.R if a /∈ fn(νb̃.Q)

Pseudo-application and process application

(X)P • νb̃.〈R〉Q ∆= νb̃.(P{R/X}|Q) if b̃ ∩ fn(P ) = ∅ (X)P ◦ Q ∆= P{Q/X}

Structural congruence

(P |Q) |R ≡ P |(Q |R) P |Q ≡ Q |P P |0 ≡ P νa.νb.P ≡ νb.νa.P

P |νa.Q ≡ νa.(P |Q) if a /∈ fn(P ) νa.P ≡ P if a /∈ fn(P )

LTS rules: α ::= τ | a | a

a(X)P a−→ (X)P In a〈Q〉P a−→ 〈Q〉P Out
P

α−→ A

P |Q α−→ A |Q
Par

P
α−→ A α /∈ {a, a}
νa.P

α−→ νa.A
Restr

P
a−→ F Q

a−→ C

P |Q τ−→ F • C
HO

Figure 1 Contextual LTS for HOπ.

Two processes P,Q are strong barbed congruent, written P ∼b Q, if for all context C, there
exists a strong barbed bisimulation R such that C{P} R C{Q}.

A relation R is sound with respect to ∼b if R ⊆ ∼b; R is complete with respect to ∼b
if ∼b ⊆ R. In [14], barbed congruence is characterized by a (strong) context bisimilarity,
defined as follows.

I Definition 2. A relation R on closed processes is a context simulation if P R Q implies:
for all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ R Q′;
for all P a−→ F , for all C, there exists F ′ such that Q a−→ F ′ and F • C R F ′ • C;
for all P a−→ C, for all F , there exists C ′ such that Q a−→ C ′ and F • C R F • C ′.

A relation R is a context bisimulation if R and R−1 are context simulations. Context
bisimilarity, written ∼, is the largest context bisimulation.

The definition is written in the early style, because the answer Q a−→ F ′ depends on the
particular C considered in the input case, and Q a−→ C ′ depends on F in the output case. In
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the late style, this dependency is broken by moving the universal quantification on C or F
after the existential one on F ′ or C ′.

We extend the equivalences to open terms by defining the open extension of a relation R.

I Definition 3. For two open processes P and Q, P R◦ Q holds if Pσ R Qσ holds for all
process substitutions σ that close P and Q.

Conversely, we write Rc for the relation R restricted to closed processes.
In the following, we use (bi)simulation up to structural congruence, a (bi)simulation proof

technique which allows to use ≡ when relating processes.

I Definition 4. A relation R is a context simulation up to ≡ if P R Q implies the clauses
of Definition 2, where R is changed into ≡R≡.

Since ≡ is a context bisimulation, the resulting proof technique is sound.

I Lemma 5. If R is a context bisimulation up to ≡, then R ⊆ ∼.

Context bisimilarity is sound and complete. The congruence proof of [14] does not apply,
however, to certain process calculi, such as the ones with passivation [11]. For this reason,
other congruence proof techniques, such as Howe’s method [7], have been considered.

2.3 Howe’s Method
We sketch the principles behind Howe’s method and recall why its application to (early)
context bisimilarity has been deemed problematic.

Howe’s method [7, 6] is a systematic proof technique to show that a bisimilarity B (and
its open extension B◦) is a congruence. The method can be divided in three steps: first,
prove some basic properties on the Howe’s closure B• of the relation. By construction, B•
contains B◦ and is a congruence. Second, prove a simulation-like property for B•. Finally,
prove that B and B• coincide on closed processes. Since B• is a congruence, then so is B.

Given a relation R, Howe’s closure is inductively defined as the smallest congruence which
contains R◦ and is closed under right composition with R◦.

I Definition 6. Howe’s closure R• of a relation R is defined inductively by the following
rules, where op ranges over the operators of the language.

P R◦ Q
P R• Q

P R• P ′ P ′ R◦ Q
P R• Q

P̃ R• Q̃
op(P̃ ) R• op(Q̃)

Instantiating R as B, B• is a congruence by definition. The composition with B◦ enables
some transitivity and additional properties. In particular, we can prove that B• is substitutive:
if P B• Q and R B• S, then P{R/X} B• Q{S/X}. By definition, we have B◦ ⊆ B•; for
the reverse inclusion to hold, we prove that B• is a bisimulation, hence it is included in the
bisimilarity. To this end, we first prove that B• (restricted to closed terms) is a simulation,
using a pseudo-simulation lemma (second step of the method, discussed below). We then use
the following result on the reflexive and transitive closure (B•)∗ of B•.

I Lemma 7. Let R be an equivalence. Then (R•)∗ is symmetric.

If B• is a simulation, then (B•)∗ (restricted to closed terms) is also a simulation. By Lemma 7,
(B•)∗ is in fact a bisimulation. Consequently, we have B ⊆ B• ⊆(B•)∗⊆ B on closed terms,
and we conclude that B is a congruence.
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The main challenge is stating and proving a simulation-like property for the Howe’s closure
B• of a bisimilarity B. The labels λ of a LTS λ−→ of a higher-order language usually contain or
depend on terms (e.g., in the λ-calculus, λ-abstractions are labels), so the technique generally
extends B• to labels. The simulation-like property then follows the pattern below, similar to
a higher-order bisimilarity clause as in Plain CHOCS [18].

If P B• Q and P
λ−→ A, then for all λ B• λ′, there exists B such that Q λ′

−→ B and
A B• B.

Stating and proving such a result for a Howe’s closure built from an early context
bisimilarity ∼, where inputs and outputs depend on respectively concretions and abstractions,
is problematic. Indeed, we would like to prove that P ∼• Q implies:

for all P a−→ F , for all C ∼• C ′, there exists F ′ such that Q a−→ F ′ and F • C ∼• F ′ • C ′;

for all P a−→ C, for all F ∼• F ′ there exists C ′ such that Q a−→ C ′ and F • C ∼• F ′ • C ′.
These clauses raise several issues. First, we have to find extensions of Howe’s closure to
abstractions and concretions which fit an early style. Even assuming such extensions, we
cannot use this result to show ∼• is a simulation. Indeed, suppose we are in the higher-order
communication case: the processes are a parallel composition (P = P1 |P2, Q = Q1 |Q2,
P1 ∼• Q1, and P2 ∼• Q2) and the transition is a higher-order communication (P τ−→ F • C,
P1

a−→ F , and P2
a−→ C). We thus need to find F ′ and C ′ such that Q τ−→ F ′ • C ′, and

F • C ∼• F ′ • C ′. However, we cannot apply the input clause with P1 ∼• Q1: to have a
F ′ such that Q1

a−→ F ′, we have to find first a concretion C ′ such that C ∼• C ′. We cannot
use the output clause with P2 and Q2 either: to have a C ′ such that Q2

a−→ C ′, we have
to find first an abstraction F ′ such that F ∼• F ′. Taking C ∼• C to obtain F ′ such that
F • C ∼• F ′ • C, then F ′ ∼• F ′ to yield C ′ and F ′ • C ∼• F ′ • C ′ would not work either:
to conclude we would need to show that ∼• is transitive. Transitivity is the reason usual
congruence proof techniques fail with weak bisimulations, and the very motivation to turn
to Howe’s method [11, Section 3.1]. As we cannot bypass this mutual dependency nor this
transitivity requirement, the proof fails in the communication case.

In [5], the authors break the mutual dependency by partially dropping the early style:
they write the output clause in the late style. The resulting input-early bisimilarity is
complete in the strong case, but not in the weak case. In [11], we propose to make the output
clause a little less early: instead of first requiring the abstraction to provide a matching
output, we only require the process that does the reception – that reduces to the abstraction.
This small change is sufficient to break the mutual dependency. Indeed, the concretion C ′

from Q2 matching the P2
a−→ C step depends only on P1, which is known, and not on some

unknown abstraction. We can then obtain the abstraction F ′ from Q2 that matches the
P1

a−→ F step. This abstraction depends fully on C ′, in the usual early style.
Unfortunately, we do not directly use abstractions and concretions in [11], we define

instead a complementary LTS, and its bisimilarity. Such a LTS implements the change above
as follows: when P sends a message to Q, this becomes a transition from P using Q as a
label. As a result, in the corresponding bisimilarity, an output action depends on a process
that performs the input instead of the input itself. The LTS we obtain is serialized compared
to the contextual one: in a communication, we do not have two parallel derivation trees for
the output and the input, as with rule HO, but a single one, where we first look for the
output, and then look for the input. But creating such a complementary LTS can be difficult,
especially to handle scope extrusion properly, as we observed with passivation [11]. In the
next section, we show that we can in fact apply Howe’s method with the regular LTS.
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2.4 Congruence Proof Using Howe’s Method
As explained in Section 2.3, the main challenge to apply Howe’s method is stating and
proving a pseudo-simulation lemma for the Howe’s closure ∼•. With contextual semantics,
the challenge is to avoid mutual dependencies between the input and output clauses. Following
the main idea behind the complementary semantics, we propose to keep the usual LTS but
change the definition of the pseudo-simulation property to make the output depend on a
process performing an input, and not the input itself. Conversely, the input now depends on
a process performing an output, and not the output itself. Formally, if P1 ∼• Q1, then

for all P1
a−→ F1, for all P2 ∼• Q2 such that P2

a−→ C1, there exist F2, C2, such that
Q1

a−→ F2, Q2
a−→ C2, and F1 • C1 ∼• F2 • C2;

for all P1
a−→ C1, for all P2 ∼• Q2 such that P2

a−→ F1, there exist F2, C2, such that
Q1

a−→ C2, Q2
a−→ F2, and F1 • C1 ∼• F2 • C2.

This definition offers two advantages. First, we do not have to define an extension of ∼•
to abstractions and concretions as we relate only processes. Second, the clauses for the input
and the output are identical, exchanging only the roles of P1 and P2, and of Q1 and Q2.
Therefore, we can capture the input and output clause as a single symmetric clause. This
gives us the up-to ≡ pseudo-simulation lemma we will prove for ∼•c (the restriction of ∼• to
closed processes).

I Lemma 8 (Pseudo-Simulation Lemma). Let P1 ∼•c Q1 and P2 ∼•c Q2. If P1
a−→ C1 and

P2
a−→ F1, then there exist C2, F2 such that Q1

a−→ C2, Q2
a−→ F2, and F1 • C1 ≡∼•c≡ F2 • C2.

With this formulation of the pseudo-simulation lemma, we easily dispatch the commu-
nication case. Suppose P = P1 | P2 and Q = Q1 |Q2 with P1 ∼•c Q1 and P2 ∼•c Q2. If
P

τ−→ F • C, with P1
a−→ F1 and P2

a−→ C1, then we immediately have F2, C2 such that
Q

τ−→ F2 • C2 and F1 • C1 ≡∼•c≡ F2 • C2.
Lemma 8 can be proved in several ways, using either serialized inductions, or a simul-

taneous induction on P1 ∼•c Q1 and P2 ∼•c Q2. We discuss here the former, with proofs
detailed in [10, Appendix A]. We then adapt this approach to a calculus with passivation
(Section 3). The simultaneous induction approach is presented in Section 4 for a calculus
with join patterns.

Using serialized inductions, we can start with P1 ∼•c Q1 or with P2 ∼•c Q2. Suppose we
start with an induction on the sending processes P1 ∼•c Q1. Most cases consist in using the
induction hypothesis, followed by congruence properties of ∼•c . There are two exceptions: (1)
the base case P1 ∼ Q1, and (2) the case P1 = a〈P 1

1 〉P 2
1 , Q1 = a〈Q1

1〉Q2
1, with P 1

1 ∼•c Q1
1 and

P 2
1 ∼•c Q2

1. In these cases, we know which concretion C2 the process Q1 reduces to (either
using ∼ in case (1), or by construction of P1 and Q1 in case (2)), but we have to find the
abstraction F2 the process Q2 reduces to. To do so, we prove the following.

I Lemma 9. Let P 1
1 ∼•c Q1

1 and P2 ∼•c Q2 such that P2
a−→ F1. There exists F2 such that

Q2
a−→ F2, and F1 ◦ P 1

1 ∼•c F2 ◦ Q1
1.

The proof of this lemma is by induction on the derivation of P2 ∼•c Q2. Lemma 9 deals with
case (2) directly (just add the continuations P 2

1 and Q2
1 using congruence), but it also handles

case (1) (P1 ∼ Q1). Indeed, if R is the message of C1, applying Lemma 9 with P 1
1 = Q1

1 = R

gives F1 ◦ R ∼•c F2 ◦ R, which implies F1 • C1 ∼•c F2 • C1 by congruence of ∼•c . Since
P1 ∼ Q1, there exists C2 such that Q1

a−→ C2, and F2 • C1 ∼ F2 • C2. We therefore have
F1 • C1 ∼•c∼ F2 • C2, which implies F1 • C1 ∼•c F2 • C2 by right transitivity with ∼.
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Alternatively, we can prove Lemma 8 by starting with the induction on the receiving
processes P2 ∼•c Q2. To handle the two cases (3) P2 ∼ Q2 and (4) P2 = a(X)P , Q2 = a(X)Q,
P ∼• Q, we need the following result.

I Lemma 10. Let P ∼• Q such that fv(P )∪ fv(Q) ⊆ {X}, and P1 ∼•c Q1 such that P1
a−→ C1.

There exists C2 such that Q1
a−→ C2 and (X)P • C1 ≡∼•c≡ (X)Q • C2.

I Remark. Lemmas 8 and 10 are defined up to ≡ while Lemma 9 is not. Structural
congruence is needed to move name restriction: suppose we have P1 ∼•c Q1, νb.P2 ∼•c νb.Q2,
with P2 ∼•c Q2, P1

a−→ F1, and νb.P2
a−→ νb.C2 (which comes from P2

a−→ C2). Using the
induction with P1, Q1, P2, and Q2, there exist F2 and C2 such that Q1

a−→ F2, Q2
a−→ C2,

and F1 • C1 ∼•c F2 • C2. We also have νb.Q2
a−→ νb.C2. Note that, by our convention on

bound names, b is neither in F1 nor in F2.
We want to prove F1 • (νb.C1) ∼•c F2 • (νb.C2), but from F1 • C1 ∼•c F2 • C2, we can

deduce νb.(F1 • C1) ∼•c νb.(F2 • C2) by congruence of ∼•c . Depending on whether the scope
of b has to be extended or not, it is not the same as F1 • (νb.C1) ∼•c F2 • (νb.C2); at best, we
have F1 • (νb.C1) ≡ νb.(F1 • C1) ∼•c νb.(F2 • C2) ≡ F2 • (νb.C2), hence the need for ≡. We
do not have this issue in Lemma 9, since only messages, and not concretions, are involved.

For ∼•c to be a simulation, we have to prove the following result on τ -actions (by induction
on the derivation of P ∼•c Q), using Lemma 8 in the communication case.

I Lemma 11. If P ∼•c Q and P
τ−→ P ′, then there exists Q′ such that Q τ−→ Q′ and

P ′ ≡∼•c≡ Q′.

We can then prove ∼•c is a simulation up to ≡. Suppose P ∼•c Q. If P a−→ F , then for all
C = νb̃.〈R〉S, we apply Lemma 8 with P2 = P , Q2 = Q, and P1 = Q1 = νb̃.a〈R〉S. This
yields an F ′ such that Q a−→ F ′ and F • C ≡∼•c≡ F ′ • C. Similarly, if P a−→ C, then for
all F = (X)R, we apply Lemma 8 with P1 = P , Q1 = Q, and P2 = Q2 = a(X)R. We can
then deduce that (≡∼•c≡)∗ is a bisimulation, and finally conclude ∼=≡∼•c≡, as explained in
Section 2.3. Since ≡∼•c≡ is a congruence, then ∼ is a congruence.

3 Application to a Calculus with Passivation

3.1 The HOπP Calculus
HOπP [11] extends HOπ with passivation, an operation that may stop a running process
and capture its state. The granularity of passivation is the locality a[P ], a new construct
added to the syntax of HOπ. The semantics of a[P ] is as follows: P can freely reduce and
communicate with any other process; it may also be captured at any time by a process
a(X)R, substituting its contents P for X in R. Formally, we extend the locality construct to
all agents, and we add the rules Loc and Passiv to the LTS of Figure 1.

a[(X)P ] ∆= (X)a[P ] a[νb̃.〈P 〉Q] ∆= νb̃.〈P 〉a[Q] if a /∈ b̃

a[P ] a−→ 〈P 〉0 Passiv
P

α−→ A

a[P ] α−→ a[A]
Loc

The rule Loc and the definition of a[C] imply that the scope of restricted names may cross
locality boundaries, but structural congruence is left unchanged. In particular, νb.a[P ] is not
congruent to a[νb.P ]. Indeed, the combination of lazy scope extrusion and passivation may
generate two distinct behaviors from these terms. See [11, Section 2.3] for more details.
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3.2 Context Bisimilarity
The definition of context bisimulation is more complex in HOπP than in HOπ because of the
discriminating power added by passivation. We briefly explain the differences; more details
and examples can be found in [11, Section 2.4]. First, we can distinguish between processes
with different free names using passivation and lazy scope extrusion [2]. Indeed, suppose
a is free in P but not in Q, and consider the context b[νa.c〈�〉R]. Then a communication
on c extends the scope of a outside b for P but not for Q, which gives us processes of the
form νa.(b[R] |P ′) and b[νa.R] |Q′ for some P ′ and Q′. If we then capture the locality b
and duplicate its content, we obtain νa.(R |R |P ′) in one case, and (νa.R) | (νa.R) |Q′ in
the other: for the first process, a is shared, but not for the second one, and by choosing R
accordingly, we obtain different behavior. Therefore, two processes P and Q are equivalent
only if fn(P ) = fn(Q).

Next, when a message is sent outside a locality, the continuation stays in the locality (by
definition of a[C]). The continuation can then be put into a completely different context
using passivation. As a result, the message and its continuation may end up in different
contexts, but still share a common information (the extruded names). To be able to express
this situation specific to calculi with passivation, we introduce bisimulation contexts E, i.e.,
evaluation contexts used for observational purposes.

E ::= � | νa.E | E |P | P |E | a[E]

Instead of comparing F • C with F • C ′ in the output case, we now compare F • E{C} with
F • E{C ′}. The extra context E represents the potential passivation of the continuations of
C and C ′. The definition of context bisimulation for HOπP is then as follows.

I Definition 12. A relation R on closed processes is a context simulation if P R Q implies
fn(P ) = fn(Q) and:

for all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ R Q′;
for all P a−→ F , for all C, there exists F ′ such that Q a−→ F ′ and F • C R F ′ • C;
for all P a−→ C, for all F , E, there exists C ′ such that Q a−→ C ′ and F • E{C} R F • E{C ′}.

A relation R is a context bisimulation if R and R−1 are context simulations. Context
bisimilarity, written ∼, is the largest context bisimulation.

The usual approach to prove soundness of ∼ consists in proving that its transitive and
congruence closure is a context bisimulation. This proof technique does not carry to the weak
case. In [11], we prove soundness of a weak complementary bisimilarity, which coincides with
a weak variant of ∼, by defining a weak complementary LTS for HOπP, with elaborate labels
and subtle side-conditions in the LTS rules to handle lazy scope extrusion. The resulting
LTS has almost twice as many rules as the contextual one.

We show here how to directly apply Howe’s method with the contextual semantics, as
in HOπ. We give these results for the strong bisimilarity ∼ to ease the presentation; the
proofs for the weak case are in [10, Appendix B]. As usual when adapting Howe’s method to
calculi with passivation [5, 11], we have to extend Howe’s closure to bisimulation contexts.
We define E1 ∼• E2 as the smallest congruence satisfying the following rules.

E1 ∼• E2 P1 ∼• P2

E1 |P1 ∼• E2 |P2

P1 ∼• P2 E1 ∼• E2

P1 |E1 ∼• P2 |E2

We can then write a pseudo-simulation lemma similar to Lemma 8, as follows.
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I Lemma 13 (Pseudo-Simulation Lemma). Let P1 ∼•c Q1 and P2 ∼•c Q2. If P1
a−→ C1 and

P2
a−→ F1, then for all E1 ∼•c E2, there exist C2, F2 such that Q1

a−→ C2, P2
a−→ F2, and

F1 • E1{C1} ∼•c F2 • E2{C2}.

Unlike the case with HOπ, we do not have a choice in the induction strategy for the
proof of Lemma 13: we cannot prove it by doing first the induction on the derivation for the
receiving processes P2 ∼•c Q2. Indeed, suppose F1 • E1{C1} ∼•c F2 • E2{C2} holds for all
E1 ∼•c E2, and we want to prove b[F1] • E1{C1} ∼•c b[F2] • E2{C2}. With congruence of ∼•c ,
we can only deduce b[F1 • E1{C1}] ∼•c b[F2 • E2{C2}], and we cannot move the boundaries
of b with ≡. Therefore, when reasoning by induction on the receiving processes P2 ∼•c Q2,
we cannot apply the resulting abstractions F1, F2 to concretions. However, we can apply
them to messages, as in the following lemma, identical to Lemma 9.

I Lemma 14. Let P 1
1 ∼•c Q1

1 and P2 ∼•c Q2 such that P2
a−→ F1. There exists F2 such that

Q2
a−→ F2, and F1 ◦ P 1

1 ∼•c F2 ◦ Q1
1.

Indeed, if F1 ◦ P 1
1 ∼•c F2 ◦ Q1

1, then b[F1 ◦ P 1
1 ] ∼•c b[F2 ◦ Q1

1] by congruence of ∼•c . We
then prove Lemma 13 by induction on the derivation for the sending processes P1 ∼•c Q1.
We do not have problems with localities when doing the induction on the derivation of
P1 ∼•c Q1, thanks to the bisimulation contexts: if F1 • E1{C1} ∼•c F2 • E2{C2} holds for all
E1 ∼•c E2, then it also holds for E1{b[�]} ∼•c E2{b[�]}, and we have F1 • E1{b[C1]} ∼•c F2 •
E2{b[C2]}, as wished. Note that it also implies F1 • E1{νb.C1} ∼•c F2 • E2{νb.C2} by taking
E1{νb.�} ∼•c E2{νb.�}, therefore restriction poses no problem, and Lemma 13 is formulated
without structural congruence, unlike Lemma 8. In addition to Lemma 13, we also prove
a lemma similar to Lemma 11 for τ -actions, and then deduce that ∼•c is a simulation. We
conclude as for HOπ.

Completeness. The strong and weak variants of the context bisimilarity ∼ coincide with
respectively the strong and weak complementary bisimilarities of [11], which are themselves
complete (see [11, Section 5.2]). Consequently, the strong and weak context bisimilarities are
also complete.

4 Application to a Calculus with Join Patterns

4.1 Syntax and Semantics
Join patterns allow several messages to be received at once by the same process. The
syntax of HOπJ is given in Figure 2. We replace the receiving process a(X)P of HOπ by a
process π B P , where π is a join pattern a1(X1) | . . . |an(Xn). A higher-order communication
takes place when messages are available simultaneously on the names a1 . . . an. We write∏
i∈{1..n} xi or

∏
x̃ (where x ranges over some entity) for the parallel composition x1 | . . . |xn

if n > 1, or for simply x1 if n = 1. We also abbreviate π = a1(X1) | . . . | an(Xn) as∏
ã(X). The syntax of abstractions is changed accordingly (F ∆= (π)P ), and concretions

now accumulate the messages of several emitting processes in parallel. A concretion is of the
form νb̃.〈a1, P1〉 . . . 〈an, Pn〉Q, meaning that each process Pi is sent on the name ai, and the
scope of the names b̃ has to be extended to encompass the recipient of the messages. We
abbreviate νb̃.〈a1, P1〉 . . . 〈an, Pn〉Q as νb̃.〈ã, P 〉Q.

The semantics of HOπJ is given by the LTS rules of Figure 2, where the symmetric of
rules Par, HO, and Part-HO are omitted. An input P ã−→ F is labelled with the multiset ã
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Syntax: P ::= 0 | X | P |P | νa.P | a〈P 〉P | π B P π ::= π |π | a(X)

Agents: F ::= (π)P C ::= D | νa.D D ::= 〈a, P 〉Q | 〈a, P 〉D

Parallel composition of concretions

νb̃.〈ã, R〉P |νb̃′.〈ã′, R′〉Q ∆= νb̃ ∪ b̃′.〈ã, R ] ã′, R′〉(P |Q)

if b̃ ∩ fn(Q) = b̃′ ∩ fn(P ) = b̃ ∩ b̃′ = ∅

Structural congruence for join patterns

π1 |π2 ≡ π2 |π1 π1 |(π2 |π3) ≡ (π1 |π2) |π3

Pseudo-application

(
∏

ã(X))P • νb̃.〈ã, R〉Q ` νb̃.(P{R̃/X̃}|Q) if b̃ ∩ fn(P ) = ∅

(
∏

ã(X) |π)P • νb̃.〈ã, R〉Q ` (π)νb̃.(P{R̃/X̃}|Q) if b̃ ∩ fn(P ) = ∅

LTS rules: αj ::= τ | ã | ã

π B P
ã−→ (π)P In a〈Q〉P a−→ 〈a,Q〉P Out

P
αj−→ A

P |Q αj−→ A |Q
Par

P
ã−→ C1 Q

b̃−→ C2

P |Q ã]̃b−−→ C1 |C2

Par-Out
P

ã−→ F Q
ã−→ C F • C ` P ′

P |Q τ−→ P ′
HO

P
αj−→ A a /∈ αj

νa.P
αj−→ νa.A

Restr
P

ã]̃b−−→ F Q
b̃−→ C ã 6= ∅ F • C ` F ′

P |Q ã−→ F ′
Part-HO

Figure 2 Syntax and operational semantics of HOπJ.

of names on which messages are expected, and an output P ã−→ C is labelled by the multiset
ã of conames on which messages are sent. Operators are extended to all agents as in HOπ,
with the addition of parallel composition of concretions, to deal with the case where two
processes P and Q in parallel reduce to C1 and C2. The parallel composition of C1 and C2
is defined as a concretion C which merges the messages and extruded names of C1 and C2,
and composes in parallel their continuations (Figure 2, rule Par-Out).

A process P , receiving on names ã (i.e., such that P ã−→ (π)P ′), may communicate with

a process Q emitting on names b̃ (i.e., such that Q b̃−→ C) if b̃ ⊆ ã. We have two possible
outcomes: either b̃ = ã and the resulting agent is a process (rule HO), or b̃ ( ã – some inputs
of the join patterns are not filled with Q – and we obtain an abstraction (rule Part-HO).
For instance, we have a〈R〉0 | (a(X) | b(Y )) B P b−→ (b(Y ))P{R/X}. The definition of • in
Figure 2 takes into account these two cases. Besides, the pseudo-application of an abstraction
to a concretion may generate several results, depending on how the matching between the
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outputs and the input is done. For instance, a〈R1〉0 |a〈R2〉0 |(a(X) |a(Y ))BP can reduce to
either P{R1/X}{R2/Y }, or P{R2/X}{R1/Y } (assuming R1 and R2 closed). Consequently,
we write • as a predicate F • C ` P (respectively F • C ` F ′), meaning that P (respectively
F ′) can be obtained as a result of the pseudo-application of F to C.

4.2 Context Bisimilarity
The definition of context bisimilarity for HOπJ is the same as for HOπ, adapted to the fact
that • may generate several results for a given F and C.

I Definition 15. A relation R on closed processes is a context simulation if P R Q implies:
for all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ R Q′;
for all P ã−→ F , for all C, for all P ′ such that F • C ` P ′, there exist F ′, Q′ such that
Q

ã−→ F ′, F ′ • C ` Q′, and P ′ R Q′;

for all P ã−→ C, for all F , for all P ′ such that F • C ` P ′, there exist C ′, Q′ such that

Q
ã−→ C ′, F • C ′ ` Q′, and P ′ R Q′.

A relation R is a context bisimulation if R and R−1 are context simulations. Context
bisimilarity, written ∼, is the largest context bisimulation.

A similar context bisimulation has been defined for Kell [17], a higher-order calculus with
passivation and join patterns. It is sound and complete in the strong case; the soundness
proof of [17] does not rely on Howe’s method, but instead shows that the reflexive, transitive,
and congruence closure of the bisimilarity is itself a bisimulation. This direct method
unfortunately does not scale to the weak case, as explained in [11]. Here, we prove that ∼ is
a congruence using Howe’s method. As in the previous section, even though we present the
results in the strong case for simplicity, the complete proofs in [10, Appendix C] are for the
weak case. To our knowledge, it is the first proof of soundness of a weak bisimilarity for a
higher-order calculus with join patterns.

Bisimulation up to ≡ is defined as in HOπ, by replacing R by ≡R≡ in the clauses. To
prove that ∼ is sound with Howe’s method, we use the following pseudo-simulation lemma.

I Lemma 16 (Pseudo-Simulation Lemma). Let P ∼•c Q and R̃ ∼•c R̃′ such that P ã−→ F ,

Ri
ãi−→ Ci for all i, ã =

⊎
i ãi, and let P ′ such that F •

∏
i Ci ` P ′. Then there exist F ′, C̃ ′,

and Q′ such that we have Q ã−→ F ′, R′i
ãi−→ C ′i for all i, F ′ •

∏
i C
′
i ` Q′, and P ′ ≡∼•c≡ Q′.

We extend relations to multisets of same size in a pointwise way: R̃ ∼•c R̃′ means the two
multisets are of the same size, and Ri ∼•c R′i holds for every i. Note that Lemma 16 is a
direct extension of Lemma 8 to multisets of sending processes; indeed, if we replace R̃ and
R̃′ with single processes, we obtain the same formulation as Lemma 8 (with the exception
that • is a predicate).

The proofs by serialization of Lemma 8, where we proceed by induction on the derivations
for the the sender and then on the receiver (or conversely), do not apply to a calculus with
join patterns, where a receiver communicates with several emitters – we cannot focus on a
sender in particular, we have to consider them together. As a result, we consider another
proof method, where we reason by induction on the derivations of P ∼•c Q and all the
R̃ ∼•c R̃′ simultaneously. We distinguish two kinds of cases, depending on whether we need
the induction hypothesis (detailed proofs are in [10, Appendix C]). Using the same definitions
as in Lemmas 8 and 9, the cases where we do not need induction are those where each
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Ri ∼•c R′i verifies either (1) or (2) (bisimilar, or congruent outputs), and P ∼•c Q verifies
either (3) or (4) (bisimilar, or congruent inputs). In these cases, we can conclude using
substitutivity of ∼•c and the definition of ∼. The remaining cases are dealt with by using
the induction hypothesis, and then congruence of ∼•c and ≡. Again, we rely on structural
congruence to change the scope of names when needed (we have the same issue as described
in Remark 2.4).

Using Lemma 16, we can prove that ∼•c is a simulation up to ≡, and then conclude that
≡∼•c≡ = ∼ as in HOπ.

Completeness. In [10, Appendix D], we prove that a weak variant of ∼ is complete, using
the usual technique of [16]. We can prove completeness in the strong case with a similar
proof.

I Remark. Proving Lemma 8 in HOπ is possible by reasoning simultaneously on P1 ∼•c Q1 and
P2 ∼•c Q2, as described above. However, this method does not work for HOπP (Lemma 13) as
pseudo-application and locality contexts do not commute (even up to structural congruence).
One way to make the simultaneous induction works in calculi with passivation would be to
add bisimulation contexts in the input clause, as follows:

for all P a−→ F , for all C, there exists F ′ such that Q a−→ F ′ and for all E, we have
E{F} • C R E{F ′} • C.

With such a definition, we can prove soundness of the resulting bisimilarity in a calculus
with passivation and join patterns (such as Kell) with the simultaneous induction. However,
this extra use of bisimulation context adds complexity to the bisimulation. We conjecture
they are not necessary in the input case.

5 Related Work

Howe’s method in process calculi. Howe’s method has been originally used to prove
congruence in a lazy functional programming language [7]. Baldamus and Frauenstein [1]
are the first to adapt the method to process calculi for variants of Plain CHOCS [18], and
prove in particular the soundness of a weak late delay context bisimilarity. Hildebrandt and
Godskesen [5] then adapt Howe’s method for their calculus Homer, to prove the congruence
of a (delay) input-early context bisimilarity (see Section 2.3). In [11], we use Howe’s method
to prove congruence of strong and weak complementary bisimilarities in HOπ and HOπP.
The Howe’s proof of [11] is somewhat similar to the serialized proof of Sections 2 and 3,
except for the symmetric formulation of the pseudo-simulation lemma. However, there is no
equivalent to the simultaneous induction proof of Section 4 in [11].

Bisimilarities in calculi with passivation. In addition to the context (or complementary)
bisimilarities already discussed for Kell [17], Homer [5], and HOπP [11], environmental
bisimilarities [15] have also been defined by Piérard and Sumii for calculi with passivation [12,
13]. Such relations compare P and Q using an environment E , which represents the knowledge
that an observer has about these processes, like the messages they have sent. The observer
then uses E to challenge P and Q. For instance, the observer is able to compare inputs
from P and Q with any messages built from the processes inside E . In [12], the authors
propose a sound weak environmental bisimilarity for HOπP. Their approach is not complete,
seemingly because of the interplay between “by need” scope extrusion and passivation.
In [13], they consider a variant of HOπP with name creation instead of name restriction,
for which they define a sound and complete weak environmental bisimilarity. With name
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creation, a name generated in a given locality becomes automatically known from the whole
system. Name creation is therefore less expressive than name restriction with lazy scope
extrusion, where we can control more finely the scope of generated names. In particular, it
is not possible to implement internal choice or recursion using name creation, as shown in
[8]. Finally, Koutavas and Hennessy recently developed a correct and complete symbolic
bisimulation for a higher-order process calculus with passivation [8]. Their approach avoids
the quantification over contexts at the cost of a more complex calculus, with local ports to
recover the expressivity lost by using name creation.

Bisimilarities in calculi with join patterns. In [4], Fournet and Laneve define bisimilarities
for the Join-Calculus, a first-order process calculus with join patterns. They define a weak
bisimilarity which is sound w.r.t. the weak barbed congruence defined in [3], and also complete
if name matching is added to the calculus. To our knowledge, only Kell [17] combines higher-
order communication with join patterns. In [9], we define a weak complementary bisimilarity
for Kell, which tests inputs by passing them messages one by one. This strategy requires
processes to choose which input to perform without having all the necessary information
(i.e., all the messages they are going to receive), and the resulting bisimilarity is therefore
too discriminating (i.e., not complete).

6 Conclusion

In this paper, we showed how to directly use Howe’s method to prove congruence properties
of a context bisimilarity, without relying on an auxiliary relation such as complementary
bisimilarity. We proposed a symmetric formulation of the pseudo-simulation lemma, which
we can prove either with a serialized or with a simultaneous induction on the derivations
for the emitting and receiving processes. The latter seems necessary in calculi with join
patterns, while the former seems more appropriate for calculi with passivation. The resulting
soundness proofs are much simpler than in complementary semantics [11], and they scale
better to calculi with join patterns. Indeed, we compare receiving patterns by passing them
several messages at once, and not only one by one as in the complementary case [9]. Finally,
the bisimilarities of this paper are also complete in the weak case, unlike the input-early
bisimilarity of [5], or the bisimilarity of [9] for join patterns. The use of Howe’s method
remains an open problem for calculi with both passivation and join patterns, such as Kell, if
we do not want to make the definition of the bisimilarity more complex by using bisimulation
contexts in the input case (see the remark at the end of Section 4).
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Abstract
We present two quantitative behavioral equivalences over species of a chemical reaction network
(CRN) with semantics based on ordinary differential equations. Forward CRN bisimulation iden-
tifies a partition where each equivalence class represents the exact sum of the concentrations
of the species belonging to that class. Backward CRN bisimulation relates species that have
identical solutions at all time points when starting from the same initial conditions. Both no-
tions can be checked using only CRN syntactical information, i.e., by inspection of the set of
reactions. We provide a unified algorithm that computes the coarsest refinement up to our bisim-
ulations in polynomial time. Further, we give algorithms to compute quotient CRNs induced
by a bisimulation. As an application, we find significant reductions in a number of models of
biological processes from the literature. In two cases we allow the analysis of benchmark models
which would be otherwise intractable due to their memory requirements.
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1 Introduction

At the interface between computer science and systems biology is the idea that biological
systems can be interpreted as computational processes [23, 12], leading to a number of formal
methods applied to study biomolecular systems [5, 18, 25]. In this context, chemical reaction
networks (CRNs), a popular mathematical model of interaction in natural sciences, can also
be seen as a kernel concurrent language for natural programming.

In this paper we present, for the first time to our knowledge, quantitative bisimulation
equivalences for CRNs with the well-known interpretation based on ordinary differential
equations (ODEs). (To make the paper self-contained, all background is given in Section 2.)
In this semantics, each species is associated with an ODE giving the deterministic evolution
of its concentration starting from an initial condition. Our bisimulations are equivalences
over species that induce a reduced CRN that exactly preserves the dynamics of the original
one. This is an important goal, especially in order to cope with the potentially very large
number of species and reactions in many biological networks [16, 17].

We study two equivalences, developed in the Larsen-Skou style of probabilistic bisim-
ulation [29], that are based on two distinct ideas of observable behavior. Forward CRN
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bisimulation yields an aggregated ODE where the solution gives the exact sum of the concen-
trations of the species belonging to each equivalence class. In backward CRN bisimulation,
instead, equivalent species have the same solution at all time points; in other words, backward
CRN bisimulation relates species whose ODE solutions are equal whenever they start from
identical initial conditions. The use of “forward” and “backward” has a long tradition in
models of computation based on labelled transition systems [19]. In the case of quantitative
variants, for instance those defined for process algebra with a continuous-time Markov chain
(CTMC) semantics [26, 27, 8, 4], forward bisimulations are equivalences that induce a CTMC
aggregation in the sense of ordinary lumpability [7], where the probability of an equivalence
class is equal to the sum of the probabilities of the states belonging to that class. This is found
by checking conditions on the outgoing transitions of related states in the transition diagram.
A backward bisimulation induces a CTMC aggregation in the sense of weak lumpability [21],
where all states in the same equivalence class have a time-invariant conditional probability
distribution; exact lumpability is a special case where the conditional probability distribution
is uniform, in the sense that any two states of each equivalence class have the same probability
at any point in time whenever they have the same initial probabilities. It is found by relating
states according to conditions on their predecessor states [21, 34, 7].

Despite being similar in spirit, technically our bisimulations are fundamentally different
for two reasons. First, they concern a continuous-state semantics based on ODEs instead of
a discrete-state CTMC. Second, they operate at the structural, syntactical level, because
they are defined with quantities that can be computed by only inspecting the reactions
of a CRN. Still, the repercussions of our bisimulations on the semantics are explained
according to certain theories of aggregation. In particular, forward CRN bisimulation yields
an aggregated system in the sense of ODE lumpability [36, 30]. This theory covers linear
transformations of the original state variables in general; here we consider an instance, which
we call ordinary fluid lumpability, where the transformation is induced by a partition of
state variables. (Forward bisimulation is presented in Section 3.1.) Backward bisimulation
(presented in Section 3.2) is related to exact fluid lumpability, introduced in the context
of process algebra with fluid semantics [37], identifying process terms with the same ODE
solution when initialized equally. The disadvantage of forward CRN bisimulation is that it is
lossy (yet exact) because, similarly to the forward stochastic analogues, from the aggregated
ODE system in general it is not possible to recover the solutions for the individual species
within the same equivalence class. On the other hand, it does not impose restrictions on the
initial conditions, which instead are present in our backward variant. As a further important
difference, forward CRN bisimulation (again, like its stochastic analogues) turns out to be
a sufficient condition for ODE lumpability. Instead, backward CRN bisimulation enjoys a
full characterization, in the sense that there exists a backward CRN bisimulation between
two species if and only if they have the same ODE solutions (provided that they start from
equal initial conditions). More in general, by means of a number of examples we will show
that the two equivalences are complementary because not comparable. In other words, there
exist models that can be reduced up to forward CRN bisimulation but not by the backward
variant, and vice versa; at the same time, there are models that can be reduced by both.

To enhance the usefulness of these notions, we present (in Section 5) a template partition-
refinement algorithm that is parametric with respect to the equivalence of interest, computing
the coarsest refinement up to either variant in polynomial time. To use our equivalences as
an automatic model reduction tool, we further give two algorithms (in Section 4) that provide
the quotient CRN induced by either bisimulation. With a prototype implementation available
at http://sysma.imtlucca.it/crnreducer/, we show (in Section 6) that we are able to
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reduce a number of case studies taken from the literature. Our bisimulations yielded quotient
CRNs with number of reactions and species up to four orders of magnitude smaller than the
original CRNs, leading to speed-ups in the ODE solution runtimes of up to five orders of
magnitude. In two cases, it was possible to analyze models that were otherwise intractable
directly within our experimental environment due to excessive memory requirements.

Related work. Behavioral equivalences have been recently proposed in [32] for comparing
CRNs; however, the analysis is carried out at the qualitative level, i.e., ignoring the dynamical
evolution. In [37] is introduced the notion of label equivalence for process algebra with fluid
semantics, which captures exact fluid lumpability (processes are equivalent whenever their
ODE solutions are equal at all time points). However, unlike backward CRN bisimulation,
label equivalence is only a sufficient condition for ODE reduction. Indeed, it works at a
coarser level of granularity as it relates sets of ODE variables, each corresponding to the
behavior of a sequential process. Instead, backward CRN bisimulation relates individual
ODE variables. Further, the conditions for equivalence, specific to the process algebra, are
difficult to check automatically because of the universal quantifiers over the ODE variables.
More important, no algorithm for computing the coarsest partition was developed. Similar
considerations apply to the process-algebra specific ordinary fluid lumpability in [38].

Cardelli’s notion of emulation between two CRNs is a (structural) mapping of species and
reactions that, like backward CRN bisimulation, guarantees the equality between the ODE
solutions at all time points [11]. An emulation requires a source and a target CRN — the
modeler is intended to have the suspicion that, for some given CRN, another CRN might be
related to it. But emulation cannot be used when one wants to discover equivalences between
species within the same given CRN. Thus, emulation is not useful for model reduction because
a-priori information about the structure of a quotient CRN is not available. Furthermore,
no algorithm is provided in [11] to find emulations automatically. Since backward CRN
bisimulation fully characterizes exact fluid lumpability, it is not difficult to show that backward
CRN bisimulation generalizes emulation in the sense that any emulation between two CRNs
can be understood in terms of a backward CRN bisimulation over the species of a “union
CRN” that contains all the reactions of the two CRNs of interest.

Model reductions have been studied in related models for biomolecular networks (e.g. [17,
22, 10]), most notably for rule-based systems such as BioNetGen [5] and the κ calculus [18].
These offer an intensional modeling approach, by providing graph-rewrite rules of interaction
instead of a complete enumeration of all chemical reactions involved. Differential fragments
for κ are self-consistent aggregates found by a static analysis on the model, identifying sums
of chemical species for which an ODE system can be explicitly written [17]. In this sense, they
are analogous to our CRN bisimulations, but with notable differences. First, fragmentation
works directly at the rule-based level. This has the advantage that the analysis is performed on
a set of rewrite rules, which is typically much more compact than the fully enumerated CRN.
However, fragmentation is domain-specific, hence the model must be conveniently expressed
as a biomolecular system (e.g., with complex formation or internal state modification). On
the other hand, CRN bisimulations work for a generic language-independent CRN, which
however must be explicitly given. Further, unlike CRN bisimulations, fragmentation is
performed on a “static” view of the model, without information on the reaction rates. The
ODE aggregations of both forward CRN bisimulation and fragmentation introduce loss of
information (in contrast to backward CRN bisimulation). But, unlike our forward variant, in
fragmentation the same species may be present in more than one fragment. Additionally,
species may occur in fragments with multiplicity numbers. Thus, fragmentation can be seen
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as a form of improper lumping that is not necessarily induced by a partition of the original
state-space variables [30]. Overall, because of these differences, it is not difficult to find
models that can be reduced by our CRN bisimulations and not by fragmentation, and vice
versa. This is presented in detail in Section 6.

2 Background

Notation. We write A→ B and BA for the functions from A to B. When f ∈ A→ B and
a ∈ A, we set fa := f(a). Moreover, for any X ⊆ A and b ∈ B, we define f(X) := {b ∈ B |
∃a ∈ X.(f(a) = b)}. Sets and multisets are denoted by {. . .} and {| . . . |}, respectively. Also,
we shall not distinguish among an equivalence relation and the partition induced by it, and
shall use the symbol ∼H to denote the equivalence relation with H = S/∼H. Finally, given
two partitions H1 and H2 of a given set S, we say that H1 is a refinement of H2 if for any
H1 ∈ H1 there exists a (unique) H2 ∈ H2 such that H1 ⊆ H2.

2.1 Chemical Reaction Networks
Formally, a CRN (S,R) is a pair consisting of a finite set of species S taken from a countable
infinite universe of all species, and a finite set of chemical reactions R. A reaction is a
triple written in the form ρ

α−−→ π, where ρ and π are the multisets of speciese reactants
and products, respectively, and α > 0 is the reaction rate. In particular, we focus on basic
chemistry where only elementary reactions are considered, where at most two reactants
(possibly of the same species) interact. No restrictions are instead imposed on products.
Several models found in the literature (including those discussed in Section 6) belong to this
class. Also, this is consistent with the physical considerations which stipulate that reactions
with more than two reactants are very unlikely to occur in nature [24]. We denote by ρ(X)
the multiplicity of species X in the multiset ρ, and byMS(S) the set of finite multisets of
species in S. To adhere to standard chemical notation, we shall use the operator + to denote
multiset union, e.g., X + Y + Y (or just X + 2Y ) denotes the multiset {|X,Y, Y |}. We may
also use X to denote either the species X or the singleton {|X|}.

The (autonomous) ODE system V̇ = F (V ) underlying a CRN (S,R) is F : RS≥0 → RS ,
where each component FX , with X ∈ S is defined as:

FX(V ) :=
∑

ρ
α−−→π∈R

(π(X)− ρ(X)) · α ·
∏
Y ∈S

V
ρ(Y )
Y .

This represents the well-known mass-action kinetics, where the reaction rate is proportional
to the concentrations of the reactants involved. Since the ODE system of a CRN is given by
polynomials, the vector field F is locally Lipschitz. Hence, the theorem of Picard-Lindelöf
ensures that for any V (0) ∈ RS≥0 there exists a unique non-continuable solution of V̇ = F (V ).
I Example 1. We now provide a simple CRN, (Se, Re), with Se = {A,B,C,D,E} and
Re = {A 6−−→ E,B

6−−→D,A+B 2−−→ C,C+D 5−−→ 2C+D,E+D 5−−→ 2E+D}, which will be
used as a running example throughout the paper. Its ODE system is given by

V̇A = −6VA − 2VA VB V̇B = −6VB − 2VA VB V̇C = 2VA VB + 5VC VD
V̇D = 6VB V̇E = 6VA + 5VE VD
In the following, we shall assume that the universe of all species is well-ordered with

respect to v. We then say that a function µ : S → S is a choice function of a partition H
of S, if µ(X) = minvH for all H ∈ H and X ∈ H. Also, choice functions can be trivially
lifted to multisets applying them element-wise, e.g., µ(X + Y ) = µ(X) + µ(Y ).
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2.2 Fluid Lumpability
Ordinary Fluid Lumpability. We start by defining the notion of ordinary fluid lumpability,
which is an instance of ordinary lumpability for ODEs [36] specialized to CRNs.

I Definition 2 (Ordinary fluid lumpability). Let (S,R) be a CRN, F be its vector field,
and H = {H1, . . . ,Hm} a partition of S. Then, H is ordinary fluid lumpable if for
all H ∈ H there exists a polynomial ℘H in |H| variables such that

∑
X∈H FX(V ) =

℘H(
∑
X∈H1

VX , . . . ,
∑
X∈Hm VX) for all V ∈ RS≥0.

Informally, a partition H is ordinary fluid lumpable if, for each H ∈ H, the polynomial∑
X∈H FX(V ) in the variables {VX | X ∈ S} can be rewritten into a polynomial ℘H in the

variables {
∑
X∈H VX | H ∈ H}. In particular, if H is known to be an ordinary fluid lumpable

partition of (S,R) and V denotes the solution of V̇ = F (V ) subject to V (0) ∈ RS≥0, the
solution of the aggregated ODE system (ẆH1 , . . . , ẆHm) = (℘H1(W ), . . . , ℘Hm(W )) with
WH(0) =

∑
X∈H VX(0) is such that WH(t) =

∑
X∈H VX(t) for all t ∈ domain(V ).

I Example 3. Consider the ODEs of (Se, Re) of Example 1, and letHO = {{A}, {B}, {C,E},
{D}}. By applying a variable renaming consistent with the blocks of HO, i.e., VCE = VC+VE ,
and by exploiting the linearity of the differential operator we get

V̇A=−6VA−2VAVB V̇B=−6VB−2VAVB V̇CE=2VAVB+6VA+5VDVCE V̇D=6VB

That is, we obtained an ODE system in terms of block variables only. J

Exact Fluid Lumpability. We extend to CRNs the notion of exact fluid lumpability in [37].

I Definition 4 (Exact fluid lumpability). Let (S,R) be a CRN, F its vector field, and H a
partition of S. We call V ∈RS constant on H if VXi = VXj for all H ∈ H, and all Xi, Xj ∈ H.
Then, H is exactly fluid lumpable if F (V ) is constant on H whenever V is constant on H.

I Example 5. Consider the ODEs of (Se, Re) of Example 1, and letHE = {{A,B}, {C}, {D},
{E}}. It is easy to see that A and B have same concentrations at all time points if initialized
equally. In these cases, we can replace the ODEs of (Se, Re) with the ones aggregated
according to HE , obtained by removing V̇B and replacing all occurrences of VB with VA:

V̇A = −6VA − 2VA VA V̇C = 2VA VA + 5VC VD V̇D = 6VA V̇E = 6VA + 5VE VD

That is, we obtained a (lossless) aggregated ODE system written in terms of a variable
per block, chosen according to v. J

We remark that the above definition expresses exact fluid lumpability in terms of properties
of the ODE vector field of a CRN. Instead, in [37] exactly fluid lumpability was defined
directly in terms of the desired dynamical property, i.e., that the ODE solutions within any
equivalence class be equal at all time points. The following result is a new contribution
showing that this dynamical property is fully characterized by the vector-field based definition.

I Theorem 6. Let (S,R) be a CRN and F its vector field. A partition H of S is exactly
fluid lumpable if and only if, for any V (0) ∈ RS≥0 that is constant on H, the underlying
solution of V̇ = F (V ) is such that V (t) is constant on H for all t ∈ domain(V ).1

1 All proofs are provided in the extended technical report [13].
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3 CRN Bisimulations

Both notions of fluid lumpability given in Section 2 are not convenient to be used directly
because they involve a universal quantifier over the (uncountable) state space. We address
this problem by providing structural conditions that concern only the reactions of a CRN.

3.1 Forward CRN Bisimulation
We now introduce forward CRN bisimulation, an equivalence on species that will turn out
to induce ordinary fluid lumpability. We start with the notions of reaction and production
rate. The former collects the rates at which the concentration of a species X decreases when
reacting with a given partner. The latter collects the positive contribution that X exerts to
the concentration of a species Y , again when reacting with a certain partner.

I Definition 7 (Reaction and production rates). Let (S,R) be a CRN, X,Y ∈ S, and
ρ ∈ MS(S). The ρ-reaction rate of X, and the ρ-production rate of Y-elements by X are
defined respectively as

crr[X, ρ] := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α, pr(X, ρ, Y ) := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α · π(Y )

Finally, for H ⊆ S we define pr[X, ρ,H] :=
∑
Y ∈H pr(X, ρ, Y ).

I Definition 8 (Forward CRN Bisimulation). Let (S,R) be a CRN, R an equivalence relation
over S and H = S/R. Then, R is a forward CRN bisimulation (abbreviated FB) if for all
(X,Y ) ∈ R, all ρ ∈MS(S), and all H ∈ H it holds that

crr[X, ρ] = crr[Y, ρ] and pr[X, ρ,H] = pr[Y, ρ,H] (1)

I Example 9. Consider HO = {{A}, {B}, {C,E}, {D}} of Example 3. It can be shown that
HO is an FB, as, e.g., crr[C,D] = crr[E,D] = 5, and pr[C,D, {C,E}] = pr[E,D, {C,E}] =
10. J

We are interested in the coarsest FB, as well as in the coarsest one refining a given initial
partition of species.

I Proposition 10. Let (S,R) be a CRN, I a set of indices, and Ri an FB for (S,R), for all
i ∈ I. The transitive closure of their union R=(

⋃
i∈I Ri)∗ is an FB for (S,R). In particular,

if each Ri is such that S/Ri refines some partition G of S, then so does S/R.

I Theorem 11 (Forward bisimulation implies ordinary fluid lumpability). Let (S,R) be a CRN.
Then, H is an ordinarily fluid lumpable partition of S if H is an FB of S.

FB is only a sufficient condition for lumpability, as discussed in the next example. (However,
Section 6 shows that FB can be effectively applied to interesting existing models.)

I Example 12. Consider the CRN ({F,G}, {F α1−−→ G,G
α2−−→ F}), having ODEs

V̇F = −α1 VF + α2 VG V̇G = −α2 VG + α1 VF

If α1 6= α2, Hc = {{G,F}} is not an FB, as crr[F, ∅] = α1 and crr[G, ∅] = α2. Nevertheless,
the above ODE system is lumpable. Indeed, by applying the variable renaming consistent
with Hc, i.e., VFG = VF + VG, we get a single ODE for VFG, i.e., V̇FG = 0. J
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3.2 Backward CRN Bisimulation
We now introduce backward CRN bisimulation, an equivalence on species that will turn out
to characterize exact fluid lumpability. We start with the notion of cumulative flux rate,
which collects the overall contribution that reactions with a given multiset of reactants ρ
exert to the concentration of a species X.

I Definition 13 (Cumulative flux rate). Let (S,R) be a CRN, X ∈ S, ρ ∈ MS(S), and
M⊆MS(S). Then, we define

fr(X, ρ) :=
∑

ρ
α−−→π∈R

(π(X)− ρ(X)) · α, fr[X,M] :=
∑
ρ∈M

fr(X, ρ).

We call fr(X, ρ) and fr[X,M] ρ-flux rate and cumulativeM-flux rate of X, respectively.

I Definition 14 (Backward CRN bisimulation). Let (S,R) be a CRN, R an equivalence
relation over S, H = S/R and µ the choice function of H. Then, R is a backward CRN
bisimulation (BB) if for any (X,Y ) ∈ R it holds that

fr[X,M] = fr[Y,M] for all M∈ {ρ | ρ α−−→ π ∈ R}/ ≈H, (2)

where any two ρ, σ ∈MS(S) satisfy ρ ≈H σ if µ(ρ) = µ(σ).

I Example 15. Consider HE = {{A,B}, {C}, {D}, {E}} of Example 5. We first note that
{|A|} ≈HE {|B|}, as ≈HE relates multisets with same number ofHE-equivalent species. Also, it
can be shown thatHE is a BB, as, e.g., fr[A,M] = fr[B,M] = −6 forM = {{|A|}, {|B|}}. J

As for FB, there exists a coarsest BB (that refines a given partition of S).

I Proposition 16. Let (S,R) be a CRN, I a set of indices, and Ri a BB for (S,R), for all
i ∈ I. The transitive closure of their union R=(

⋃
i∈I Ri)∗ is a BB for (S,R). In particular,

if each Ri is such that S/Ri refines some partition G of S, then so does S/R.

We now state the mentioned characterization of exact fluid lumpability in terms of BB.

I Theorem 17 (Backward bisimulation characterizes exact fluid lumpability). Let (S,R) be a
CRN. Then, H is an exactly fluid lumpable partition of S if and only if H is a BB of S.

I Remark. We wish to stress that FB and BB are not comparable: First,HO is not a BB,
as fr[C,{A+B}]=2 and fr[E,{A+B}]=0; Second,HE is not an FB, as crr(A,B)=2 and
crr(B,B)=0; Third, for the same reasons, {{A,B}, {C,E}, {D}} is neither an FB nor a BB.
Similar examples on models of biological relevance are provided in Section 6. J

4 Reduced Chemical Reaction Networks up to CRN Bisimulations

We have shown that, given a CRN and a CRN bisimulation R, we can analyze the aggregated
ODE system according to R. We now provide the notion of reduced CRN from which the
aggregated ODEs can be directly generated, as depicted in Figure 1.

I Definition 18 (Forward reduction). Let (S,R) be a CRN, H an FB, and µ its choice
function. The (H, F )-reduction of (S,R) is given by (S,R)(H,F ) = (S(H,F ), R(H,F )), where
S(H,F ) = µ(S) and R(H,F ) is defined as follows: (F1) Discard all reactions ρ α−−→ π such
that ρ 6= µ(ρ); (F2) Replace all remaining reactions ρ α−−→ π with ρ α−−→ µ(π); (F3) Fuse all
reactions that have the same reactants and products by summing their rates.
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CRN reduced CRN

ODEs lumped ODEs
semantics

reduce wrt H

lump wrt H

semantics

Figure 1 Relation among (H-reduced) CRNs and (H-lumped) semantics, with H a bisimulation.

The idea underlying forward reduction is to discard all reactions having non-representative
reagents, and to replace the products of the remaining reactions with their representatives.
This can be seen as a special case of Theorem 4.4 of [10].

I Example 19. Consider the FB HO = {{A}, {B}, {C,E}, {D}} used in Example 3. The
(HO, F )-reduction of (Se, Re) is (with C being the representative of its block) Se(HO,F ) =
{A,B,C,D}, Re(HO,F ) = {A 6−−→ C,B

6−−→D,A+B 2−−→ C,C+D 5−−→ 2C+D}. Note that the
reaction E+D 5−−→2E+D is discarded, as E is not a representative species. J

We now state that the (H, F )-reduction of an FB H induces the ODEs aggregated
according to H. For example, the (HO, F )-reduction of (Se, Re) induces the ODEs shown in
Example 3, if applying the renaming VC = VCE .

I Theorem 20 (Forward reduction induces aggregation). Let (S,R) be a CRN, H an FB and µ
its choice function. Then, (S,R)(H,F ) is computed in at most O

(
|R| · |S| ·(log(|R|)+log(|S|))

)
steps. Crucially, if F is the vector field of (S,R) and F̂ the one of (S,R)(H,F ), then∑

X∈H FX(V ) = F̂µ(Y )(
∑
X∈H1

VX , . . . ,
∑
X∈Hm VX) for all V ∈ RS≥0, H ∈ H and Y ∈ H.

For the backward reduction, the underlying idea is to keep track only of differential
contributions that affect the representative species µ(S).

I Definition 21 (Backward reduction). Let (S,R) be a CRN, H a BB, and µ its choice
function. The (H, B)-reduction of (S,R) is given by (S,R)(H,B) = (S(H,B), R(H,B)), where
S(H,B) = µ(S) and R(H,B) is obtained as follows: (B1) Replace all reactions ρ α−−→ π with
ρ

α−−→ π̃ where π̃(Xi) := π(Xi) if Xi ∈ µ(S) and π̃(Xi) := ρ(Xi) otherwise; (B2) Replace all
such obtained reactions ρ α−−→ π with µ(ρ) α−−→ µ(π); (B3) Fuse all reactions that have the
same reactants and products by summing their rates.

I Example 22. Considering the CRN (Se, Re) and the BB HE , (B1) changes B 6−−→D in
B

6−−→D+B, and A+B 2−−→C in A+B 2−−→C+B, while(B2)yields{A 6−−→E,A 6−−→D+A,A+A 2−−→
C+A,C+D 5−−→2C+D,E+D 5−−→2E+D}. Finally, (B3) does not introduce any change. J

I Theorem 23 (Backward reduction induces aggregation). Let (S,R) be a CRN, H a BB and µ
its choice function. Then, (S,R)(H,B) is computed in at most O

(
|R| · |S| ·(log(|R|)+log(|S|))

)
steps. Crucially, if F̂ denotes the vector field induced by (S,R)(H,B), it holds that FX(V ) =
F̂X(V ) for all X ∈ µ(S) and V ∈ RS≥0 that are constant on H.

5 Partition Refinement Algorithms for CRN Bisimulations

We study a polynomial-time algorithm for the computation of the coarsest bisimulations that
refine an arbitrary input partition. We start introducing two auxiliary equivalence relations.

I Definition 24 (Splitter equivalences). Let (S,R) be a CRN and H a partition over S. Then,
we write X ∼FH Y if (1) is fulfilled by (X,Y ). Similarly, write X ∼BH Y if (X,Y ) satisfies (2).
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Algorithm 1 Template partition refinement algorithm for the construction of the coarsest
CRN bisimulations that refine some given initial partition G.
Require: A CRN (S,R), a partition G of S and χ ∈ {F,B}.
H ←− G
while true do
H′ ←− S/(∼χH ∩ ∼H)
if H′ = H then

return H
else
H ←− H′

end if
end while

Algorithm 1 iteratively computes the coarsest forward or backward bisimulation (when
χ = F or χ = B, respectively) that refines a given input partition of species of a CRN.
Note that, contrary to CRN reduction algorithms, one (parametric) algorithm suffices for
both bisimulations. Using the above splitter equivalences, at each iteration the blocks of the
current partition S/∼H are split in sub-blocks of ∼χH-equivalent species S/(∼

χ
H ∩ ∼H). The

algorithm terminates when no refinement is performed.
The freedom in choosing the initial partition G is useful in both bisimulations. For FB it

allows to single out species that are the “observables” of the CRN. These are the species for
which the modeler is interested in obtaining distinct ODE solutions, information which would
otherwise be lost if such species are found in larger equivalence classes. BB is lossless, hence
this issue does not arise. However BB requires the same initial conditions for equivalent
species. In this case, an appropriate input partition may tell apart species for which it is
known that the initial conditions are different.

I Theorem 25 (Correctness). Given a CRN (S,R) and a partition G of S, Algorithm 1
calculates the coarsest forward and backward bisimulation that refines G. In both cases, the
number of steps needed is polynomial in the number of species and reactions.

Note that, due to space constraints, we only focussed on the existence of a polynomial-time
algorithm, and in the next section we provide numerical evidence of its scalability. The
proof of this theorem gives a bound of O(|R|2 · |S|5) on the number of steps. Tighter bounds
could be obtained by extending classical partition refinement approaches available for labeled
transitions systems [31, 1] to CRNs, which is however the subject of future work.

6 Evaluation

We now evaluate FB and BB. We first study their effectiveness in reducing the ODEs of a
number of biochemical models from the literature given in the .net format of BioNetGen [5],
version 2.2.5-stable. Using selected models we discuss how FB and BB relate with each
other, and provide a biological interpretation of the aggregations. Finally, we compare them
against κ’s fragmentation. All experiments are replicable using a prototype available at
http://sysma.imtlucca.it/crnreducer/.

Numerical results. Table 1 lists our case studies: four synthetic benchmarks to obtain
combinatorially larger CRNs by varying the number of phosphorylation sites (M1–M4) [33];
a model of pheromone signaling (M5, [35]); two signaling pathways through the Fcε complex

http://sysma.imtlucca.it/crnreducer/
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Table 1 Forward and backward reductions and corresponding speed-ups in ODE analysis. Speed-
up entries “—” indicate that the original model could not be solved; entries “x” indicate that the
coarsest bisimulation did not reduce the original model.

Original model Forward reduction Backward reduction

Id |R| |S| Red.(s) |R| |S| Speed-up Red.(s) |R| |S| Speed-up

M1 3538944 262146 4.61E+4 990 222 — 7.65E+4 2708 222 —
M2 786432 65538 1.92E+3 720 167 — 3.68E+3 1950 167 —
M3 172032 16386 8.15E+1 504 122 1.16E+3 1.77E+2 1348 122 5.34E+2
M4 48 18 1.00E–3 24 12 1.00E+0 2.00E–3 45 12 1.00E+0
M5 194054 14531 3.72E+1 142165 10855 1.03E+0 1.32E+3 93033 6634 1.03E+0
M6 187468 10734 3.07E+1 57508 3744 1.92E+1 2.71E+2 144473 5575 3.53E+0
M7 32776 2506 1.26E+0 16481 1281 6.23E+0 1.66E+1 32776 2506 x
M8 41233 2562 1.12E+0 33075 1897 1.12E+0 1.89E+1 41233 2562 x
M9 5033 471 1.91E–1 4068 345 1.04E+0 4.35E–1 5033 471 x
M10 5797 796 1.61E–1 4210 503 1.47E+0 7.37E–1 5797 796 x
M11 5832 730 3.89E–1 1296 217 1.32E+1 6.00E–1 2434 217 7.55E+0
M12 487 85 2.00E–3 264 56 1.88E+0 6.00E–3 426 56 1.31E+0
M13 24 18 1.20E–2 24 18 x 7.00E–3 6 3 1.00E+0

(M6–M7, [20, 33]); two models of enzyme activation (M8–M9, [2]); a model of a tumor
suppressor protein (M10, [3]); a model of tyrosine phosphorylation and adaptor protein
binding (M11, [14, 15]); a MAPK model (M12, [28]); and an influence network (M13, [11]).

Headers |R| and |S| give the number of reactions and species of the CRN (and of its
reductions), respectively. The reduction times (Red.) account also for the computation of the
quotient CRNs. The speed-up is the ratio between the time to solve the ODEs of the original
CRN and that of the reduced one including the time to reduce the CRN. Measurements
were taken on a 2.6 GHz Intel Core i5 with 4GB of RAM. The time interval of the ODE
solution was taken from the original papers; for M1–M4, where this data was not available,
time point 50.0 was used as an estimate of steady state. The initial conditions for the ODEs
were also taken from the original papers. The initial partition for FB was chosen to be the
trivial one containing the singleton block {S} (i.e., no species was singled out). Instead, the
initial partition for BB was chosen consistently with the ODE initial conditions; that is, two
species may be equivalent only if they have the same initial conditions in the original CRN.
This ensured that the backward reduced CRN was a lossless aggregation of the original CRN.

We make three main observations: (i) FB and BB can reduce a significant number of
models. In the two largest models of our case studies, M1 and M2, the bisimulations were
able to provide a compact aggregated ODE system which could be straightforwardly analyzed,
while the solutions of the original models did not terminate due to out-of-memory errors,
consistently with [33]. (ii) FB and BB are not comparable in general. For instance, both
reduce M5 to 10855 and 6634 species, respectively, while M6 is reduced to 3744 species by FB,
and to 5574 by BB. Also, FB was able to reduce M7–M10, while BB did not aggregate. The
influence network M13 shows the opposite; in fact, none of the influence networks presented
in [11] can be reduced up to FB (here we showed M13, which is the largest one from [11]).
(iii) Models M1–M4 and M12 show that the intersection between FB and BB is nonempty.

Biological interpretation. Models M1 and M2 enjoy significant reductions and ODE analysis
speed-ups. Here we use them to explain that FB and BB are effective at aggregating species
representing symmetric sites in a complex. For this, let us consider M4, chosen for space
reasons. A typical equivalence class is for instance {E(s!1).S(p1∼P, p2∼U !1), E(s!1).S(p1∼
U !1, p2∼P )}. According to the syntax of the BioNetGen language, the CRN species are
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formed from basic molecules S and E. Molecule S has two binding sites (p1, and p2) which
can be either in phosphorylated state (P ) or not (U); E has one stateless binding site (s) which
can bind to those of S to form a complex. The two sites of S have equivalent capabilities in
terms of binding with other species or changing state. For instance, the above equivalence
class contains two species composed by S and E, with E bound to the unphosphorylated
site of S (here the exclamation mark links the binding sites used to form the species).
Models M1 and M2 exhibit a fast growth of the number of species due to a larger number of
symmetric sites, requiring distinct species to track exactly which site exhibits a particular
phosphorylation state. This form of symmetry has also been studied in [9] where the authors
propose an approach to detect it directly at the κ level. However, an experimental comparison
could not be performed because [9] is not yet implemented. Although both bisimulations
give the same equivalence classes in these cases, the reduced CRNs have different reactions,
since FB provides the dynamics of the sums of equivalent species, while BB considers the
distinct dynamics of representative species. Instead, aggregation of identical binding sites
is supported by BioNetGen. This can be seen in models M6 and M7, since they both have
Lig(l, l), a ligand with two copies of site l. Intuitively, the rule

Rec(a) + Lig(l, l)→ Rec(a!1).Lig(l!1, l) (3)

gives rise to only one chemical complex in the underlying CRN, Rec(a!1).Lig(l!1, l). This
represents the (forward and backward) canonical representative of a ligand bound to a single
receptor Rec(a). To see this, let us rename the two sites and expand the rule appropriately:

Rec(a) + Lig(l1, l2)→ Rec(a!1).Lig(l1!1, l2)
Rec(a) + Lig(l1, l2)→ Rec(a!1).Lig(l1, l2!1) (4)

Then, this underlying CRN will distinguish the two sites. However, applying either of our
CRN bisimulations leads to the CRN for Equation (3).

We remark that the original CRN sizes of M6 and M7 already account for the aggreg-
ations obtained with BioNetGen. Nevertheless, our CRN bisimulations allow for further
(significant) reductions. For instance, part of the reductions for M6 are due to the presence
of Rec(a, b, g1, g2), a molecule with symmetric sites g1 and g2, similarly to those of M4.

Symmetric sites are not the only property captured by our bisimulations. For instance in
both M8 and M9 one of the FB equivalence classes is given by:{

J(k!1).R(x!1, i∼on, l), J(k!1).L(r1!2, r2).R(x!1, i∼on, l!2),
J(k!1).L(r1, r2!2).R(x!1, i∼on, l!2),
J(k!1).L(r1!2, r2!3).R(x!1, i∼on, l!3).R(x, i∼on, l!2)

}
.

A biological interpretation is that a species containing the molecule J behaves in the same
way as long as it is bound to a molecule R having binding site i in state “on”. This is
independent of whether R is further complexed with other molecules via its binding site l;
For instance, the first species models that R is only bound to J , while in the second and
third species it is also bound to L. Finally, in M5, one of the BB equivalence classes is{

Dig2(p!1).Ste12(dig1,dig2,dna!1,mapk), Fus3(p!1).Ste12(dig1,dig2,dna!1,mapk),
Msg5(p!1).Ste12(dig1,dig2,dna!1,mapk), Sst2(p!1).Ste12(dig1,dig2,dna!1,mapk),
Ste12(p!1).Ste12(dig1,dig2,dna!1,mapk), Ste2(p!1).Ste12(dig1,dig2,dna!1,mapk)

}
.

It captures that genes Dig2, Fus3, Msg5, Sst2, Ste12, and Ste2, bind to the protein Ste12
with equal rates. This yields equivalent dynamics for these Ste12-gene complexes, and all
those formed by them which are equal up to the gene bound to Ste12.
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Experimental comparison with κ-based reduction techniques. We now experimentally
compare our CRN bisimulations and fragmentation in the case of rule-based biochemical
models for which the underlying CRN can be fully enumerated. All models in Table 1 belong
to this class; however, none of them was originally available in κ, the only language that
supports fragmentation. Thus, we performed a manual translation of a selection of the case
studies from the BioNetGen language into κ.2

We found:
Models that can be reduced by CRN bisimulations but not by fragmentation. The κ
encoding of M12 (a case where only cosmetic syntactical changes are required) returned
85 fragments, equal to the size of the CRN, while both FB and BB reduced to 56 species.
The encodings of M6 and M7 necessitated expansions analogous to Equation (4) because
κ does not currently support distinct sites with the same name. This led to bigger initial
CRNs, for which fragmentation returned 58040 fragments for M6 and 10930 for M7.
Models that can be reduced by fragmentation but not by our bisimulations. The κ model of
early events of the EGF pathway in [6] is reduced from 356 species to 38 fragments [17],
while no aggregation is obtained with either FB or BB.
Models that can be reduced by both our bisimulations and fragmentation. The κ encodings
of models M1–M4 present different reductions than using either bisimulation, specifically
38, 34, 30 and 10 fragments (versus 222, 167, 122, and 12 FB and BB equivalence
classes, respectively). It can be shown that, in the latter examples, the reductions are
complementary, in the sense that no two bisimilar species are included in the same
fragment. While our bisimulations captured symmetric sites, fragments explain that the
sites of S are independent, i.e., the state of a site does not affect the dynamics of the
other. For instance, one of the fragments for model M4 is

{S(p1∼P, p2∼P ), S(p1∼P, p2∼U), E(s!1).S(p1∼P, p2∼U !1), F (s!1).S(p1∼P, p2∼P !1)}

which essentially collects all species where the p1 site of molecule S is phosphorylated.

7 Conclusion

Forward and backward bisimulations are equivalence relations over the species of a chemical
reaction network inducing a partition of the underlying mass-action system of ordinary
differential equations. An experimental evaluation has demonstrated their usefulness by
showing their complementarity as well as significant model reductions in a number of
biochemical models available in the literature. This has been supported by a prototype,
which currently allows a ready-to-use tool-chain with BioNetGen, a state-of-the-art tool.

Ongoing work is studying stochastic counterparts of both forward and backward bisimula-
tions, to obtain model reductions when the semantics of chemical reaction networks based on
continuous-time Markov chains is considered. Also, we plan to investigate the applicability
of our bisimulations in other model repositories, e.g., those using the well-known SBML
interchange format (http://sbml.org).
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Abstract
Up-to techniques are useful tools for optimising proofs of behavioural equivalence of processes.
Bisimulations up-to context can be safely used in any language specified by GSOS rules. We
showed this result in a previous paper by exploiting the well-known observation by Turi and
Plotkin that such languages form bialgebras. In this paper, we prove the soundness of up-to
contextual closure for weak bisimulations of systems specified by cool rule formats, as defined by
Bloom to ensure congruence of weak bisimilarity. However, the weak transition systems obtained
from such cool rules give rise to lax bialgebras, rather than to bialgebras. Hence, to reach our
goal, we extend our previously developed categorical framework to an ordered setting.
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1 Introduction

Bisimilarity (∼) is a fundamental equivalence for concurrent systems: two processes are
(strongly) bisimilar if they cannot be distinguished by an external observer interacting with
them. Formally, it is defined by coinduction, as the greatest fixpoint of a suitable predicate
transformer B – a monotone function on binary relations. In particular, to prove processes
bisimilar, it suffices to exhibit a bisimulation relating them, i.e., a relation R such that
R ⊆ B(R); this latter requirement codes for the standard game where the processes must
answer to the labelled transitions of each other.

Up-to techniques are enhancements of this coinduction principle; they were introduced
by Milner to simplify behavioural equivalence proofs of CCS processes, see [16]. The range
of applicability of up-to techniques goes well beyond concurrency theory: they have been
used to obtain decidability results [8], to optimise state-of-the-art automata algorithms [7] or
in conjuction with parameterized coinduction for mechanizations of coinductive proofs [13].

An up-to technique is a monotone map A on the poset of relations, and a bisimulation
up-to A is a relation R such that R ⊆ B(A(R)). If A is sound, that is, if every bisimulation
up-to A is included in a bisimulation, one can prove bisimilarity results by exhibiting
bisimulations up to A. This may be computationally less expensive than finding actual
bisimulations. Typical examples for (strong) bisimilarity include up-to bisimilarity, where A
is given by A(R) = ∼R∼, and up-to transitive closure, where A(R) is the least transitive
relation containing R. When the systems at hand are specified in some process algebra, via
an algebraic signature, a third example is up-to context – where one maps a relation to its
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closure with respect to the contexts of the language. Such a technique is sound in CCS, for
instance.

In practice, one is often interested in weak bisimilarity, a coarser notion allowing to abstract
over internal transitions, labelled with the special action τ . When the player proposes a
transition a→, the opponent must answer with a saturated transition a⇒, which is roughly a
transition a→ possibly combined with internal actions τ→. This slight dissymmetry results in
a much more delicate theory of up-to techniques. For instance, up-to weak bisimilarity and
up-to transitive closure are no longer sound for weak bisimulations. And up-to contextual
closure has to be restricted: the external choice from CCS cannot be freely used [20].

Simpler properties also become harder with weak bisimilarity. Consider structural
operational semantics [1]: if the semantics of a language is specified by rules adhering
to certain formats, then certain well-behavedness properties are automatically inferred.
For instance, in languages specified using De-Simone or GSOS rule formats [9, 5], strong
bisimilarity is guaranteed to be a congruence. However, those two formats do not ensure
congruence of weak bisimilarity, and more advanced formats had to be designed to this end,
like Bloom’s cool GSOS format [4].

Proving soundness of up-to techniques can be rather complicated. To simplify this
task, Sangiorgi and Pous devised the stronger notion of compatible up-to techniques, which
are always sound and, moreover, closed under composition. Proving compatibility of a
composite technique can thus be broken into simpler, independent proofs [18, 19]. We
recently generalised this framework to a fibrational setting [6], allowing to obtain once and
for all the compatibility of a wide range of techniques for strong bisimulation and simulation,
for systems modelled as bialgebras.

Concerning weak bisimilarity, we proved in [6] that for positive GSOS specification, if
the strong → and saturated ⇒ transition systems form bialgebras, then up-to context is
a compatible technique. Unfortunately, the bearing of this result in practical situations is
rather limited, since in many important cases the saturated transition system does not form
a bialgebra. Intuitively, in a bialgebra all and only the transitions of a composite system can
be derived by transitions of its components. For⇒, one implication fails: a composite system
performs weak transitions which are not derived from transitions of its components (see
Example 2). These systems give rise to so called lax bialgebras; this is the key observation
that lead to the rather involved refinement of the theory we propose here.

Contributions. In this paper: a) We extend the previously developed framework [6] to an
ordered setting, b) we prove that up-to context is compatible for lax models of positive [1]
GSOS specifications, and, c) as an application, we obtain soundness of up-to context for
weak bisimulations of systems specified by the cool rule format from [23].

Outline. We give some necessary preliminaries in Section 2. Then we move to an ordered
setting in Section 3, where we use lax bialgebras. In Section 4 we consider the special case
of lax bialgebras stemming from (lax models of) positive GSOS specifications. We finally
assemble in Section 5 all the technical pieces into our main result, Theorem 20.

2 Preliminaries

2.1 Transitions systems and bisimulations
A labelled transition system (LTS) with labels in L consists of a set of states X and a
transition function ξ : X → (PωX)L that, for every state x ∈ X and label a ∈ L, assigns a
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finite set of possible successor states. We write x a→ y whenever y ∈ ξ(x)(a). A (strong)
bisimulation is a relation R ⊆ X2 on the states of an LTS such that for every pair (x, y) ∈ R:
(1) if x a−→ x′ then y a→ y′ for some y′ with (x′, y′) ∈ R, and (2) vice versa. A weak bisimulation
is a relation R ⊆ X2 such that for every pair (x, y) ∈ R: (1) if x a−→ x′ then y a⇒ y′ for some
y′ with (x′, y′) ∈ R and (2) if y a−→ y′ then x a⇒ x′ for some x′ with (x′, y′) ∈ R. Here ⇒ is
the saturation [16] of →, defined by the following rules where τ denotes a special label in L.

x
a→ y

x
a⇒ y x

τ⇒ x

x
τ⇒ y

τ⇒ z

x
τ⇒ z

x
τ⇒ x′

a⇒ y′
τ⇒ y

x
a⇒ y

(1)

Transition systems are an instance of the abstract notion of coalgebras: given a functor
F : C → C on some category C, an F -coalgebra is a pair (X, ξ) where X is an object and
ξ : X → FX a morphism. Indeed, LTSs are coalgebras for the functor (Pω−)L : Set→ Set.

Next, we recall the basic infrastructure of relations that allows us to study both strong
and weak bisimulations within a coalgebraic setting. Consider the category Rel whose objects
are relations R ⊆ X2 and morphisms from R ⊆ X2 to S ⊆ Y 2 are maps from X to Y sending
pairs in R to pairs in S. For each set X we denote by RelX the category (which in this case
is just a preorder) of binary relations on X, ordered by subset inclusion. For a function
f : X → Y in Set, we have the following situation in Rel:

Rel RelX RelY

Set X Y

p

∐
f

⊥

f∗

f

where p maps a relation R ⊆ X2 to X, and the functors (monotone maps) f∗ and
∐
f , which

we will call reindexing and direct image, are given by inverse and direct image, respectively:
f∗(S) = (f × f)−1(S) for all S ∈ RelY and

∐
f (R) = (f × f)[R] for all R ∈ RelX . Moreover

we have that
∐
f is a left adjoint for f∗.1

A functor F : Rel→ Rel is a lifting of F : Set→ Set whenever p ◦ F = F ◦ p; this means
that F maps a relation on X to a relation on FX. Any lifting F can thus be restricted
to a functor FX : RelX → RelFX , which is just a monotone function between posets. For
every functor F : Set → Set, there is a canonical lifting denoted by Rel(F ) : Rel → Rel. In
this paper the canonical lifting will play an important role but, for the sake of simplicity, we
avoid giving the general definition and refer the interested reader to [14]. As an example,
the canonical lifting of (Pω−)L is defined for all relations R ⊆ X2, and f, g ∈ (PωX)L as

f Rel((Pω−)L)(R) g iff ∀a ∈ L.∀x ∈ f(a). ∃y ∈ g(a).xRy
∀a ∈ L.∀y ∈ g(a). ∃x ∈ f(a).xRy (2)

We can now define bisimulations for any Set-functor F in terms of its canonical lifting.
For an F -coalgebra (X, ξ), a (Hermida-Jacobs) bisimulation [11] is a coalgebra for the functor

Rel(F )ξ , ξ∗ ◦ Rel(F )X : RelX → RelX .

1 The categorically minded reader may observe that the forgetful functor p : Rel→ Set is a bifibration, but
the concrete definitions given above suffice for understanding the forthcoming technical developments.
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The functor Rel(F )ξ is also called a predicate transformer. Bisimilarity is defined as the
largest bisimulation or, in other terms, as the final Rel(F )ξ-coalgebra. Since morphisms in
RelX are just inclusions, a coalgebra for Rel(F )ξ is a relation R such that R ⊆ Rel(F )ξ(R)
and, with (2), it is easy to check that for FX = (PωX)L this corresponds to the usual
definition of strong bisimulations on transition systems.

The above notion can be further generalised by taking an arbitrary lifting F : Rel→ Rel
of F : an F ξ-bisimulation then is a coalgebra for the endofunctor

F ξ , ξ∗ ◦ FX : RelX → RelX .

With this more abstract approach, we can capture various interesting coinductive predicates
other than strong bisimilarity, such as simulations [12] and weak bisimulations. Indeed,
weak bisimulations are coalgebras for the functor F × F ξ : RelX → RelX where F = (Pω−)L,
ξ = 〈→,⇒〉 : X → FX × FX is the pairing of the strong transition system → and its
saturation ⇒, and the functor F × F is the lifting of F × F to Rel given for a relation R by

(f, g) F × F (R) (f ′, g′) iff ∀a ∈ L.∀x ∈ f(a). ∃y ∈ g′(a).xRy
∀a ∈ L.∀x ∈ f ′(a). ∃y ∈ g(a).xRy (3)

2.2 Up-To techniques and Compatible functors
In the previous section we have seen how bisimulations can be regarded as coalgebras
(post-fixpoints) for a functor (monotone map) F ξ : RelX → RelX . In this perspective, an
up-to technique is a functor A : RelX → RelX and an F ξ-bisimulation up to A is an F ξA-
coalgebra. For instance, a bisimulation up to equivalence is a Rel(F )ξE-coalgebra, where
E : RelX → RelX is the functor mapping a relation to its equivalence closure.

We say that A is F ξ-compatible if there exists a distributive law (natural transformation)
ρ : AF ξ ⇒ F ξA. If A is F ξ-compatible then A is a sound up-to technique: every F ξ-
bisimulation up-to A is included in an F ξ-bisimulation. This is stated in [19, Theorem 6.3.9]
for the case of lattices, but it holds more generally in any category with countable coproducts
and, rather than considering just endofunctors F on Set and their liftings F to Rel, one
can take endofunctors and liftings in arbitrary fibrations [6]. For the sake of simplicity we
will avoid using fibrations: the reader should only know that the above result holds also for
Pre-endofunctors and their liftings to the category Rel↑ which we introduce in Section 3.

By tuning F , F and A one can consider different sorts of, respectively, state-based
systems (such as LTSs, deterministic or weighted automata), coinductive predicates (such
as bisimilarity, similarity or language equivalence) and up-to techniques (such as up-to
transitivity, up-to equivalence, up-to bisimilarity). In [6], we provided several techniques
for proving the compatibility of particular techniques. For up-to context, the state space
of the coalgebra needs to have some algebraic structure, for instance, the LTSs of process
algebras. This is captured systematically by bialgebras: given functors F, T : Set→ Set and
a distributive law ρ : TF ⇒ FT , a ρ-bialgebra consists of a set X, an algebra α : TX → X

and a coalgebra ξ : X → FX such that the following diagram commutes.

TX
α //

Tξ
��

X
ξ // FX

TFX
ρX

// FTX

Fα

OO

The function mapping a relation on X to its contextual closure can be obtained as

Ctx ,
∐
α ◦ Rel(T )X : RelX → RelX .
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To prove the compatibility of Ctx w.r.t. different F ξ, we showed the theorem below, where we
adopt the following terminology: a natural transformation σ : F ⇒ G between Rel-functors
is a lifting of σ : F ⇒ G when for every R ∈ Rel we have that p(σR) = σp(R).

I Theorem 1 (see [6]). Let (X,α, ξ) be a ρ-bialgebra and T , F : E → E be liftings of T and
F . If ρ : T F ⇒ F T is a lifting of ρ, then

∐
α ◦T is F ξ-compatible.

2.3 Abstract GSOS specifications and their models
Abstract GSOS specifications are natural transformations of the form λ : S(F × Id)⇒ FT ,
where T is the free monad over S. As shown in [22], they generalise the concrete GSOS
rules, for which FX = (PωX)L, and S is a polynomial functor – a coproduct of products –
representing an algebraic signature, and hence TX is the set of terms over this signature
with variables in X. A model of a specification λ is a triple (X,α, ξ), where ξ : X → FX

and α : SX → X, making the following diagram commute:

SX
α //

S〈ξ,id〉
��

X
ξ // FX

S(FX ×X)
λX

// FTX

Fα]

OO

(4)

I Example 2. Consider the parallel operator of CCS [16], whose semantics is defined by the
following GSOS rules

p
µ→ p′

p|q µ→ p′|q
q
µ→ q′

p|q µ→ p|q′
p

a→ p′ q
a→ q′

p|q τ→ p′|q′

where µ ranges over arbitrary actions, namely inputs a, b, . . . outputs a, b, . . . or the internal
action τ . Take SX = X×X (for the binary parallel operator) and F = (Pω−)L where L is the
set of all actions. For every setX, the corresponding distributive law λX : S(FX×X)→ FTX

maps (f, x, g, y) ∈ (PωX)L ×X × (PωX)L ×X to the function

µ 7→

{
{(x′, y) | x′ ∈ f(µ)} ∪ {(x, y′) | y′ ∈ g(µ)} µ 6= τ

{(x′, y) | x′ ∈ f(τ)} ∪ {(x, y′) | y′ ∈ g(τ)} ∪ {(x′, y′) | ∃a. x′ ∈ f(a), y′ ∈ g(a)} µ = τ

Now take X to be the set of all CCS processes, ξ : X → (PωX)L the LTS generated by
the standard semantics of CCS [16] and α : X ×X → X to be the algebra mapping a pair of
processes (p, q) to their parallel composition p|q. It is easy to see that diagram (4) commutes,
i.e., (X,α, ξ) is a model for λ.

On the contrary, if we take ξ to be the saturation of the standard CCS semantics,
diagram (4) does not commute anymore: take the pairs of CCS processes (a.b.0, a.b.0) ∈ SX.
Following the topmost line, one first maps it to a.b.0|a.b.0 in the weak LTS that, for instance,
contains the transition τ⇒ 0|0. Following the other path in the diagram one obtains first the
tuple (((a 7→ {b.0}), a.b.0), ((a 7→ {b.0}), a.b.0)) where µ 7→ S denotes the function assigning
to the action µ the set S and to all the others actions the empty set. This tuple is mapped
by λX to the function

a 7→ {(b.0, a.b.0)} a 7→ {(a.b.0, b.0)} τ 7→ {(b.0, b.0)}

and then by Fα] to

a 7→ {b.0|a.b.0} a 7→ {a.b.0|b.0} τ 7→ {b.0|b.0}

Observe that with τ , one cannot reach the state 0|0.
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An abstract GSOS specification λ and a model (X,α, ξ) for it induce respectively a
distributive law ρ : T (F × Id)⇒ (F × Id)T of the monad T over the copointed functor F × Id
and a bialgebra (X,α], 〈ξ, id〉) for ρ [22, 15]. Using these facts and the characterization of
weak bisimulations given in (3) we were able to prove the following result.

I Proposition 3 (see [6]). Let FX = (PωX)L, and let λ : S(F × Id)⇒ FT be a GSOS spe-
cification with two models (X,α, ξ1) and (X,α, ξ2). If λ is positive (see, e.g., [1]) then:
1. There exists a distributive law ρ : T (F × F × Id)⇒ (F × F × Id)T s.t. (X,α], 〈ξ1, ξ2, id〉)

is a ρ-bialgebra.
2. There exists ρ : Rel(T )(F × F × Id) ⇒ (F × F × Id)Rel(T ) lifting ρ, where F × F is

defined as in (3).
3. By the previous points and Theorem 1, Ctx =

∐
α] ◦ Rel(T )X is (F × F × Id)〈ξ1,ξ2,id〉-

compatible.

The above result ensures compatibility w.r.t. (F × F × Id)〈ξ1,ξ2,id〉, which is not exactly
F × F 〈ξ1,ξ2〉. As discussed in [6], weak bisimulations are coalgebras for either of these two
predicate transformers. The extra Id is harmless for the above result and for Theorem 20.

Proposition 3 gives us compatibility of up-to Ctx for weak bisimulation whenever ξ2,
given by the saturation of ξ1, is a model for the GSOS specification. However, Example 2
shows that already for the simple case of parallel composition in CCS, ξ2 is not a model for
the GSOS specification. This motivates the need for relaxing the hypothesis of Proposition 3:
in the rest of the paper, we will introduce the notions of lax bialgebras and lax models and
we will show the analogues of Theorem 1 and Proposition 3 in an ordered setting.

3 Bialgebras and compatibility in an ordered setting

We recalled how to prove soundness of up-to techniques in a modular way, by considering
lifting functors and distributive laws along p : Rel→ Set. Now we extend those results to an
ordered setting. The first step (Section 3.1) consists in replacing the base category Set with
Pre, the category of preorders. (An object in Pre is a set equipped with a preorder, that is,
a reflexive and transitive relation; morphisms are monotone maps.) Accordingly, we move
from the category Rel of relations to its subcategory Rel↑ of up-closed relations (Section 3.2).
We finally obtain the ordered counterpart to Theorem 1, using the notion of lax bialgebra
(Section 3.3, Theorem 15).

3.1 Lifting functors from sets to preorders
We first explain how to lift functors and distributive laws from Set to Pre. Extensions of
Set-functors to preorders or posets have been studied via relators as in [12, 21] and using
presentations of functors and (enriched) Kan extensions [2, 3]. We are interested in extending
not only functors, but also natural transformations to an ordered setting. The description
using (lax) relation liftings [12] allows us to leverage some of our results in [6] to extend
natural transformations.

For a weak pullback preserving Set-endofunctor T we can consider its canonical relation
lifting Rel(T ) : Rel→ Rel. Then, using the following well-known result, we obtain an extension
of T to Pre, hereafter called the canonical Pre-lifting of T and denoted by Pre(T ).

I Lemma 4. If T preserves weak pullbacks then Rel(T ) restricts to a functor Pre(T ) on Pre.

However, sometimes we are interested in liftings of functors to Pre that are not restrictions
of the canonical relation lifting. One such example is the lifting of the LTS functor (Pω−)L
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to Pre that maps a preordered set (X,≤) to ((PωX)L,v), where v is given by

f v g iff ∀a ∈ L : if x ∈ f(a) then there is y ∈ g(a) such that x ≤ y . (5)

This lifting is also a restriction to Pre of relation lifting for (Pω−)L,
albeit not the canonical one, but the lax relation lifting, as defined
in [12]. To describe it, recall from [12] that a Set-functor F is called
ordered when it factors through a functor F⊆ : Set→ Pre.

Pre

��
Set

F
//

F⊆
<<

Set

We denote by ⊆FX the order on FX given by F⊆(X). The lax relation lifting of F is
defined as the functor Rel⊆(F ) : Rel→ Rel that maps a relation R on X to ⊆FX⊗Rel(F )(R)⊗
⊆FX , where ⊗ denotes composition of relations. In [12, Lemma 5.5] it is shown that Rel⊆(F )
restricts to a functor Pre⊆(F ) on Pre, if the order ⊆FX has an additional property, namely
it is stable, see [12, Definition 4.3]. This property is duly satisfied by all the ordered functors
considered in this paper. We call the restriction of Rel⊆(F ) to Pre the lax Pre-lifting of F
and denote it by Pre⊆(F ).

I Example 5 (see [12]). The LTS functor (Pω−)L has a stable order ⊆(PωX)L given by
pointwise inclusion. The lax Pre-lifting of (Pω−)L with respect to this order coincides with
the lifting described above in (5).

We now show how to lift a natural transformation ρ : F ⇒ G between Set-functors to a
natural transformation % : F ⇒ G between Pre-functors. If F and G preserve weak pullbacks
and F and G are the canonical Pre-extensions Pre(F ) and Pre(G), then % is obtained via
the restriction of the natural transformation Rel(ρ) between the corresponding canonical
relation liftings (Rel(−) is functorial, see [14]). The situation is slightly more complex for
non-canonical liftings, such as the lax lifting of the LTS functor. In this case we can use
Lemma 7 below whenever ρ enjoys the following monotonicity property.

I Definition 6. Let F,G : Set→ Set be ordered functors that factor through F⊆, G⊆ : Set→
Pre respectively. We say that a natural transformation ρ : F ⇒ G is monotone if it lifts to a
natural transformation % : F⊆ ⇒ G⊆ defined by %X = ρX .

Spelling out Definition 6 we obtain that ρ is monotone iff for every t, u ∈ FX:

t ⊆FX u implies ρ(t) ⊆GX ρ(u)

where ⊆FX and ⊆GX denote the orders on FX and GX given by F⊆ and G⊆ respectively.

I Lemma 7. Let F,G : Set→ Set be ordered functors with orders given by F⊆, G⊆ : Set→ Pre
respectively, and assume ρ : F ⇒ G is a monotone natural transformation. Then ρ lifts to
a natural transformation ρ : Rel⊆(F ) ⇒ Rel⊆(G). Furthermore, if the lax relation liftings
of F and G restrict to Pre-endofunctors Pre⊆(F ) and Pre⊆(G) then ρ lifts to a natural
transformation % : Pre⊆(F )⇒ Pre⊆(G).

3.2 Relation liftings for Pre-endofunctors
In the previous section we have seen how to extend Set functors, such as those involved in
GSOS specifications, to preorders. To reason about relation liftings in this setting we ought
to consider a category of relations with a forgetful functor to Pre. On a preorder (X,≤) we
consider relations that are up-closed with respect to ≤, as defined next.



F. Bonchi, P. Petrişan, D. Pous, and J. Rot 247

I Definition 8. Given a preorder (X,≤) we define an up-closed relation on X as a relation
R ⊆ X2 such that for every x′, x, y, y′ ∈ X with x ≤ x′, y ≤ y′ and xRy we have that
x′Ry′. A morphism between up-closed relations R and S on (X,≤), respectively (Y,≤), is a
monotone map f : (X,≤)→ (Y,≤) such that R ⊆ (f × f)−1(S).

We denote by Rel↑ the category of up-closed relations. We have an obvious forgetful
functor þ : Rel↑ → Pre mapping every up-closed relation to its underlying preorder. For each
preorder (X,≤) we denote by Rel↑X the subcategory of Rel↑ whose objects are mapped by þ
to (X,≤) and morphisms are mapped by þ to the identity on (X,≤). Notice that Rel↑X is a
category, with morphisms given by inclusions of relations, hence, a preorder.

For a monotone map f : (X,≤)→ (Y,≤) in Pre, we have the following situation in Rel↑,
similar to the situation described for Rel in Section 2:

Rel↑ Rel↑X Rel↑Y

Pre (X,≤) (Y,≤)

þ

∐
f

⊥

f∗

f

Here, the reindexing functor f∗ is given by inverse image, i.e., f∗(S) = (f × f)−1(S) for all
S ∈ Rel↑Y while the direct image functor

∐
f is defined on a up-closed relation R ∈ Rel↑X as

the least up-closed relation containing (f × f)[R]. Just as in the case of Rel, the functor
∐
f

is a left adjoint of f∗, and þ : Rel↑ → Pre is a bifibration. Observe that if the preorder on Y
is discrete, then

∐
f is given simply by direct image.

I Remark 9. For every discrete preorder (X,∆X), any relation on X is automatically
up-closed. We can reformulate this in a conceptual way, using that the forgetful functor
U : Pre → Set has a left adjoint D : Set → Pre mapping a set X to the discrete preorder
(X,∆X). Then the adjunction D a U lifts to an adjunction D a U : Rel↑ → Rel.

Pre has an enriched structure, in the sense that the homsets are equipped with an order
themselves. Given morphisms f, g : (X,≤)→ (Y,≤) we say that f ≤ g if f(x) ≤Y g(x) for
every x ∈ X. This order is preserved by the reindexing functors:

I Lemma 10. For any Pre-morphisms f, g : (X,≤)→ (Y,≤) such that f ≤ g there exists a
(unique) natural transformation f∗ ⇒ g∗.

We now show how to port liftings of functors from Rel and Pre to Rel↑.

I Lemma 11. For a weak pullback preserving Set-functor T , the canonical Pre-lifting Pre(T )
has a lifting Pre(T ) to Rel↑ acting on a relation as the canonical relation lifting Rel(T ).

Some of the liftings used in Section 5 to describe weak bisimulations are not canonical, nor
lax relation liftings. In Equation (3) we saw how to obtain the weak bisimulation game via a
relation lifting F × F of the functor F × F with FX = (PωX)L. The next example gives a
lifting of F × F to Pre, such that the relation lifting (3) restricts to up-closed relations, thus
yielding a functor on Rel↑ for the weak bisimulation game.

I Example 12. For F = (Pω−)L we consider the Pre-endofunctor Pre(F )× Pre⊆(F ), where
Pre(F ) is the canonical Pre-lifting of F and Pre⊆(F ) is the lax Pre-lifting of Example 5. In
Appendix A, we show that for any preorder (X,≤) and R ∈ Rel↑(X,≤) we have that F × F (R)
as defined in (3) is an up-closed relation on Pre(F )(X,≤)× Pre⊆(F )(X,≤).
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Thus we obtain a lifting Pre(F )× Pre⊆(F ) of Pre(F ) × Pre⊆(F ) to Rel↑ such that
U Pre(F )× Pre⊆(F ) = (F × F ) U . This means that coalgebras for Pre(F )× Pre⊆(F )〈ξ1,ξ2〉
correspond to weak bisimulations, whenever ξ2 is the saturation of ξ1.

In Theorem 20 we will need liftings of natural transformations to Rel↑. We show next how
to obtain them leveraging existing liftings to Rel and Pre introduced in Sections 2 and 3.1.

I Lemma 13. Consider Set-functors F, T with respective liftings F , T on Rel; F , T on Pre.
Assume that F and T lift to F and T on Rel↑, such that UT = TU and UF = FU , as in
the diagram

Rel↑

��

U //F,T 88 Rel

��

F,Tff

Pre
U
//F,T 88 Set F,Tff

Assume further that we have a natural transformation ρ : TF ⇒ FT that lifts to both
% : T F ⇒ FT and ρ : TF ⇒ FT . Then % also lifts to a natural transformation % : T F ⇒ FT .

In the sequel, we use notations for liftings as in the above lemma: for a functor F , we
denote by calligraphic F a lifting along Pre→ Set and by F a lifting of F along Rel↑ → Pre;
for natural transformations, we use % for a lifting of ρ to Pre and % for a lifting of % to Rel↑.

3.3 Lax bialgebras and compatibility of contextual closure
As explained in the Introduction, we moved to an order enriched setting because we want to
reason about systems for which the saturated transition system forms a lax bialgebra:

I Definition 14. Given T ,F : Pre→ Pre such that there is a distributive law % : T F ⇒ FT ,
a lax bialgebra for % consists of a preorder X, an algebra α : T X → X and a coalgebra
ξ : X → FX such that we have the next lax diagram, with ≤ denoting the order on FX.

T X α //

T ξ
��

X
ξ //

≥

FX

T FX
%X

// FT X

Fα

OO

In this setting, the contextual closure of an up-closed relation is defined by the functor

Ctx ,
∐
α ◦ Pre(T )X : Rel↑X → Rel↑X

where Pre(T ) is the lifting of Pre(T ) to Rel↑ that, by Lemma 11, exists whenever T preserves
weak-pullbacks. For any Pre-functor F and lifting F , we can prove Fξ-compatibility of up-to
Ctx using the following result which extends Theorem 1 to a lax setting.

I Theorem 15. Let T ,F be Pre-endofunctors with liftings T ,F to Rel↑. Assume that
% : T F ⇒ FT is a natural transformation such that there exists a lifting % : T F ⇒ FT of %.
If (X,α, ξ) is a lax %-bialgebra, then the functor

∐
α ◦ T is Fξ-compatible.

4 Monotone GSOS in an ordered setting

In this section we describe how to obtain a distributive law in Pre and a lax bialgebra from an
abstract GSOS specification in Set and a lax model for it. The key property is monotonicity
(Definition 6) of the abstract GSOS specification.
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Let λ : S(F × Id)⇒ FT be an abstract GSOS specification. Suppose F has a stable order
given by a factorization through F⊆ : Set→ Pre and let ⊆FX denote the induced order on
FX. Then the functors F × Id, S(F × Id) and FT are ordered, as follows:

Pre

��
Set

F×Id
//

F⊆×D
??

Set

Pre

��
Pre

Pre(S) 77

Set
S(F×Id)

//

F⊆×D 77

Set

Pre

��
Set

F⊆ 77

Set
FT

//

T 77

Set

(6)

where D : Set→ Pre is the functor assigning to a set the discrete order (Remark 9). Recall
that Pre⊆(F ) is the lax Pre-lifting of F with respect to the order given by F⊆ and consider
the canonical Pre-lifting Pre(T ) of the monad T ; then the lax Pre-liftings of the functors
F × Id, S(F × Id) and FT with respect to the orders in (6) are given by Pre⊆(F ) × Id,
Pre(S)(Pre⊆(F )× Id), respectively Pre⊆(F )Pre(T ).

If the GSOS specification λ is monotone with respect to the orders in (6) (recall Defini-
tion 6) then, by Lemma 7, λ lifts to λ̇ : Pre(S)(Pre⊆(F )× Id)⇒ Pre⊆(F )Pre(T ).

If S is a polynomial functor representing a signature, then λ is monotone if and only if
for any operator σ (of arity n) we have

b1 ⊆FX c1 . . . bn ⊆FX cn
λX(σ(b,x)) ⊆FTX λX(σ(c,x)) (7)

where b,x = (b1, x1), . . . , (bn, xn) with xi ∈ X and similarly for c,x. When F = (Pω−)L
with the pointwise inclusion order ⊆(PωX)L from Example 5, then condition (7) corresponds
to the positive GSOS format [10] which, as expected, is GSOS without negative premises.

I Lemma 16. A monotone GSOS specification induces a distributive law ρ : T (F × Id)⇒
(F × Id)T that lifts to a distributive law % : Pre(T )(Pre⊆(F )× Id)⇒ (Pre⊆(F )× Id)Pre(T ).

I Definition 17. Let λ : S(F × Id)⇒ FT be a monotone abstract GSOS specification. A
lax model for λ is a triple (X,α, ξ) such that the next diagram is lax w.r.t. the order ⊆FX .

SX
α //

S〈ξ,id〉
��

X
ξ //

≥

FX

S(FX ×X)
λX

// FTX

Fα]

OO

(8)

I Example 18. Consider the GSOS specification λ given in Example 2. Since in the
corresponding rules there are no negative premises, it conforms to condition (7), namely
it is a positive GSOS specification. Lemma 16 ensures that we have a distributive law
% : Pre(T )(Pre⊆(F )× Id)⇒ (Pre⊆(F )× Id)Pre(T ).

Recall that ξ2 is the saturation of the standard semantics of CCS and that (X,α, ξ2) is not
a model for λ, since not all the weak transitions of a composite process p|q can be deduced
by the ones of the components p and q. However, (X,α, ξ2) is a lax model. Intuitively, the
fact that the inequality (8) holds means that only the weak transitions of p|q can be deduced
by those of p and q, i.e., p|q contains all the weak transitions that can be deduced from those
of p and q and the rules for parallel composition.

By unfolding the definitions of α and ⊆(PωX)L , (8) is equivalent to

Fα]λX(ξ2(p), p, ξ2(q), q)(µ) ⊆ ξ2(p|q)(µ)
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for all CCS processes p, q and actions µ ∈ L. When µ = τ (the others cases are simpler) this
is equivalent to

{p′|q | p τ⇒ p′} ∪ {p|q′ | q τ⇒ q′} ∪ {p′|q′ | p a⇒ p′, q
a⇒ q′} ⊆ {r | p|q τ⇒ r} (9)

which holds by simple calculations. Notice that (9) means exactly that the weak transition
system should be closed w.r.t. the rule of the GSOS specification: whenever ⇒ satisfies the
premises of a rule, then it should also satisfy its consequences.

For a non-example, consider the GSOS rules for the non-deterministic choice of CCS.

p
µ→ p′

p+ q
µ→ p′

q
µ→ q′

p+ q
µ→ q′

This specification is also positive, but the saturated transition system ξ2 is not a lax model.
Intuitively, not only the weak transitions of p+ q can be deduced by the weak transitions of
p and q: indeed from p

τ⇒ p one can infer that p+ q
τ⇒ p which is not a transition of p+ q.

The inclusion (9) in the previous example suggests a more concrete characterization for
the validity of (8): every transition that can be derived by instantiating a GSOS rule to the
transitions in ξ should be already present in ξ, namely, the transition structure is closed
under the application of GSOS rules. In contrast to (strict) models (see (4)), in a lax model
the converse does not hold: not all the transitions are derivable from the GSOS rules.

Lax models for a monotone GSOS specification λ induce lax bialgebras for the distributive
law % obtained as in Lemma 16.

I Lemma 19. Let (X,α, ξ) be a lax model for a monotone specification λ : S(F × Id)⇒ FT .
Then we have a lax bialgebra in Pre for the induced distributive law % carried by (X,∆X),
i.e., the set X with the discrete order, with the algebra map given by α] : Pre(T )X → X and
the coalgebra map given by 〈ξ, id〉 : X → Pre⊆(F )X ×X.

5 Weak bisimulations up-to context for cool GSOS

We put together the results of Sections 3 and 4 to obtain our main result: if the saturation
of a model of a positive GSOS specification is a lax model, then up-to context is compatible
for weak bisimulation.

I Theorem 20. Let λ : S(F × Id) ⇒ FT be a positive GSOS specification. Let ξ2 be the
saturation of an LTS ξ1. If (X,α, ξ1) and (X,α, ξ2) are, respectively, a model and a lax
model for λ, then Ctx is (Pre(F )× Pre⊆(F )× Id)〈ξ1,ξ2,id〉-compatible.

Proof. We apply Theorem 15. To this end we have to provide the following ingredients:
1. a distributive law % between Pre-endofunctors;
2. a lax bialgebra for %;
3. a lifting % of % between Rel↑-liftings of the aforementioned functors.

We will explain each step in turn.
1. From a monotone λ : S(F × Id)⇒ FT we first obtain a natural transformation λ̃ : S(F ×

F×Id)⇒ (F×F )T by pairing the natural transformations λ◦S〈π1, π3〉 : S(F×F×Id)⇒
FT and λ ◦ S〈π2, π3〉 : S(F × F × Id) ⇒ FT . Let G : Set → Set denote the functor
F ×F × Id. From the GSOS specification λ̃ we obtain a distributive law ρ : TG⇒ GT in
Set. Since λ is monotone w.r.t. the order given by F⊆, we have that λ̃ can be seen as a
monotone abstract GSOS specification for the functor F × F with the order ∆FX× ⊆FX
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on FX × FX given by the product of the discrete order and the one obtained from F⊆.
We consider the Pre-lifting G of G defined as G = Pre⊆(F ×F )× Id where Pre⊆(F ×F ) is
the lax Pre-lifting of F × F w.r.t. the order given above.2 By Lemma 16 we get a lifting
% : Pre(T )G → GPre(T ) of ρ, with Pre(T ) the canonical Pre-extension of T .

2. Since (X,α, ξ1) and (X,α, ξ2) are, respectively, a model and a lax model for λ, we have

SX
α //

S〈ξ1,id〉
��

X
ξ1 // FX

S(FX ×X)
λX

// FTX

Fα]

OO SX
α //

S〈ξ2,id〉
��

X
ξ2 //

≥
FX

S(FX ×X)
λX

// FTX

Fα]

OO

(10)

Notice that the left model is strict, yet we can also see it as a lax model for the discrete
order on F . Hence we can pair the two coalgebra structures to obtain a lax model

SX
α //

S〈ξ1,ξ2,id〉
��

X
〈ξ1,ξ2〉 //

≥

FX × FX

S(FX × FX ×X)
λ̃X

// (F × F )TX
Fα]×Fα]

OO

(11)

for the monotone GSOS specification λ̃ considered above. We apply Lemma 19 for the lax
model in (11) to obtain a lax bialgebra as in the next diagram with the carrier (X,∆X).

Pre(T )X α]
//

Pre(T )〈ξ1,ξ2,id〉
��

X
〈ξ1,ξ2,id〉 //

≥

GX

Pre(T )GX
%X

// GPre(T )X

Gα]

OO

3. We consider the Rel↑ liftings Pre(T ) and G of Pre(T ) and G obtained from Lemma 11,
respectively Example 12. Using Proposition 3 we know that the distributive law ρ lifts
to a distributive law ρ : TG ⇒ GT in Rel. To obtain the lifting of % to Rel↑ we apply
Lemma 13 for the liftings T , G, Pre(T ) and G and the liftings ρ and % of ρ to Rel,
respectively Pre. J

By Remark 9, since the order on X is discrete, we have that Rel↑X ∼= RelX . Hence the
functor Ctx is indeed the usual predicate transformer for contextual closure and coalgebras
for (Pre(F )× Pre⊆(F )× Id)〈ξ1,ξ2,id〉 correspond to the usual weak bisimulations.

I Example 21. Recall from Example 18 that → and ⇒ are, respectively, a model and a lax
model for the positive GSOS specification of Example 2. By Theorem 20, it follows that
up-to context (for the parallel composition of CCS) is compatible for weak bisimulation.

We can apply Theorem 20 to prove analogous results for the other operators of CCS with
the exception of + which is not part of a lax model, see Example 18. More generally, for any
process algebra specified by a positive GSOS, one simply needs to check that the saturated
transistion systems is a lax model. As explained in Section 4, this means that whenever
⇒ satisfies the premises of a rule, it also satisfies its consequence. By [23, Lemma WB],

2 Notice that G = Pre(F )× Pre⊆(F )× Id where Pre(F ) and Pre⊆(F ) are the canonical, respectively the
lax Pre-liftings of F w.r.t. the order given by F⊆.
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this holds for all calculi that conform to the so-called simply WB cool format [4], amongst
which it is worth mentioning the fragment of CSP consisting of action prefixing, internal and
external choice, parallel composition, abstraction and the 0 process ([23, Example 1]).

I Corollary 22. For a simply WB cool GSOS language, up-to context is a compatible technique
for weak bisimulation.

6 Conclusion

We have shown that up-to context is compatible (and thus sound) for weak bisimulation
whenever the strong and the weak transition systems are a model and a lax model for a
positive GSOS specification, as it is the case for calculi adhering to the cool GSOS format
[4, 23]. For our proof, we construct a tool-kit of abstract results that can be safely reused for
proving compatibility for other coinductive notions. For instance, with our technology it is
trivial to show that up-to context is compatible for bisimilarity and similarity for lax models
of positive GSOS specifications, while in [6] this was proved just for (strict) models. For
dynamic bisimilarity [17], one can use the lifting in (3) with a different saturated transition
system that is obtained as in (1) but without the axiom x

τ⇒ x. Then for all the rules of CCS
(including +), whenever this system satisfies the premises, it also satisfies its consequence,
so it is a lax model; hence up-to context is compatible for dynamic bisimulation. We leave
branching bisimilarity [24] for future work.
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A Details for Example 12

Assume we have the following situation

(h, k)
Rel(F )(≤)×Rel⊆(F )(≤)

F×F (R)
(h′, k′)

Rel(F )(≤)×Rel⊆(F )(≤)

(f, g)
F×F (R)

(f ′, g′)

This means that for all a ∈ L we have the following

(f, g) F × F (R) (f ′, g′) ⇔ ∀x ∈ f(a). ∃y ∈ g′(a).xRy

∀x ∈ f ′(a). ∃y ∈ g(a).xRy

(f, g) Rel(F )(≤)× Rel⊆(F )(≤) (h, k)
m

∀x ∈ f(a). ∃y ∈ h(a).x ≤ y

∀y ∈ h(a). ∃x ∈ f(a).x ≤ y

∀x ∈ g(a). ∃y ∈ k(a).x ≤ y

(f ′, g′) Rel(F )(≤)× Rel⊆(F )(≤) (h′, k′)
m

∀x ∈ f ′(a). ∃y ∈ h′(a).x ≤ y

∀y ∈ h′(a). ∃x ∈ f ′(a).x ≤ y

∀x ∈ g′(a). ∃y ∈ k′(a).x ≤ y

(12)

and we need to show

∀x ∈ h(a). ∃y ∈ k′(a).xRy
∀x ∈ h′(a). ∃y ∈ k(a).xRy

(13)

Using the fact the R is up-closed we can prove this using (12).
I Remark. Notice that some of the relations in (12) were not actually used in the proof. In
order for the lifting F × F (R) to restrict to up-closed relations, we need to carefully choose
the Pre-liftings for F × F . Indeed, we could replace the lifting Pre(F ) with the lax relation
lifting given by pointwise reverse inclusion Pre⊇(F ). However the proof would break if we
would consider instead the Pre-lifting of F ×F given by Pre⊆(F )×Pre⊆(F ), since the functor
Pre⊆(F )× Pre⊆(F ) does not have a Rel↑ lifting that also extends F × F .
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Abstract
Indexed Linear Temporal Logics (ILTL) are an extension of standard Linear Temporal Logics
(LTL) with quantifications over index variables which range over a set of process identifiers. ILTL
has been widely used in specifying and verifying properties of parameterised systems, e.g., in
parameterised model checking of concurrent processes. However there is still a lack of theoretical
investigations on properties of ILTL, compared to the well-studied LTL. In this paper, we start
to narrow this gap, focusing on the satisfiability problem, i.e., to decide whether a model exists
for a given formula. This problem is in general undecidable. Various fragments of ILTL have
been considered in the literature typically in parameterised model checking, e.g., ILTL formulae
in prenex normal form, or containing only non-nested quantifiers, or admitting limited temporal
operators. We carry out a thorough study on the decidability and complexity of the satisfiability
problem for these fragments. Namely, for each fragment, we either show that it is undecidable,
or otherwise provide tight complexity bounds.
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of process identifiers, giving rise to various indexed versions of temporal logics. This dates
back to [22] which introduced an extension of LTL with spatial operators ranging over the
processes of a parameterised system. It was shown that the satisfiability problem of this logic
is undecidable. After that, there has been a large body of work on indexed temporal logics.
To name just a few, indexed CTL∗/X, an extension of CTL∗ with quantifiers over process
identifiers but excluding the “next” operator X, was introduced by Browne et al. in [5].
They studied the relation between indexed CTL∗/X and bisimulation among parameterised
systems. Emerson et al. investigated the parameterised model checking problem of fragments
of indexed CTL∗/X in prenex normal form over rings [12]. They also studied symmetry
properties in model-checking systems against indexed LTL and indexed CTL∗ with non-nested
index quantifiers and only local atomic propositions [13]. German et al. showed that the
parameterised model-checking problem of indexed LTL without global atomic propositions
or nested quantifiers is undecidable [16]. Clarke et al. considered the parameterised model
checking problem of indexed LTL/X over token passing systems with respect to general
topologies [6]. Very recently, Aminof et al. studied the same problem for indexed CTL∗/X
[1] unifying and extending the results in [12, 6].

Since indexed temporal logics play a fundamental role in specification and verification of
parameterised systems, it is of great importance to investigate their basic (meta-)properties,
along the same line as LTL, CTL, or CTL∗. In this paper, we focus on one such property, i.e.,
the satisfiability problem of the indexed LTL (ILTL), which, given an ILTL formula, aims to
determine whether there exists a model satisfying the formula. In theory, satisfiability is
probably one of the first questions one intends to answer, especially when the computational
aspect of the logic is concerned. In practice, decision procedures for satisfiability have
potential applications in synthesis of concurrent programs from their logical specifications,
and play an important role in checking the consistency of specifications in an early stage of
system design [27, 28]. However, in spite of its importance, to the best of our knowledge, the
satisfiability problem of ILTL has not been studied systematically. The current work aims to
fill in such a gap.

One immediate result is that ILTL is undecidable in general (see Proposition 1 in Section 2).
We then consider the following two natural fragments of ILTL, i.e.,

ILTLpnf , the ILTL formulae in prenex normal form, and
NN-ILTL, the ILTL formulae where the quantifiers are non-nested.

We remark these two fragments are largely disjoint (module some trivial cases), and they
are two representative classes of properties which are indeed extensively used in the verification
of parameterised systems [12, 16]. Furthermore, in most of the work on parameterised model
checking, e.g., [1, 11, 12, 14], indexed temporal logics are considered excluding the global
atomic propositions, or with only a limited subset of temporal operators (for instance, the
“next” operator X is usually disallowed). From this practical point of view, it is of paramount
importance to consider these fragments, which are the main objects of the current paper.

In this paper, we mainly focus on the decidability and complexity of the satisfiability
problem of ILTLpnf and NN-ILTL. For each of these two fragments, we further study the
impact of global atomic propositions and temporal operators on the decidability/complexity.
These results implicitly depict that what kind of specifications can be automatically checked
for consistency at the early stage of parameterised system design, and how efficiently this
can be done.

Contribution. The results obtained in this paper are summarised in Figure 1 which is
organised hierarchically in term of syntax inclusion. In particular we show that
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ILTL
Und.(P. 1)

Undecidability Decidability

∀∃ − ILTLpnf

Und.(T. 2)

∀∃ − (ILTL(F,G))pnf

Und.(T. 3)
∃∀∃ − ILTLloc

pnf

Und.(P. 5)

∃
∗
∀
∗
− ILTLpnf

EXPSPACE(T. 6)

∃
∗
∀
∗
− (ILTL/X)pnf

EXPSPACE(T. 7)

∃
∗
∀
∗
− (ILTL(F,G))pnf

NEXPTIME(T. 7)
Q − (ILTL(O1))pnf

PSPACE(C. 8)

Q − (ILTL(F,G))pnf

NPTIME(C. 8)

NN − ILTL
EXPSPACE(T. 21)

NN − ILTLloc

EXPSPACE([16, 19, 20])
NN − ILTL(O2)

EXPSPACE(T. 21)

Figure 1 Summary of the results: Und. (Undecidable), T. (Theorem), C. (Corollary), Q ∈
{∃∀

∗
} ∪ {∃

∗
∀

k
∣ k ∈ N}, O1 is {X,F,G} or {U,R}, O2 is {X,F,G} or {U,R} or {F,G}.

the satisfiability problem of formulae in prenex normal form starting with ∀∃ is undecidable
even with only “future” and “global” temporal operators (∀∃− (ILTL(F,G))pnf in Figure
1). This extends to formulae starting with ∃∀∃ with only local atomic propositions
(∃∀∃ − ILTLlocpnf in Figure 1),
the satisfiability problem of the formulae in prenex normal form starting with ∃∗∀∗ is
decidable with an exponential blow-up in complexity comparing to their counterparts
of LTL w.r.t. various combinations of temporal operators (∃∗∀∗ − ILTLpnf , ∃∗∀∗ −
(ILTL/X)pnf , and ∃∗∀∗ − (ILTL(F,G))pnf in Figure 1),
the satisfiability problem of the formulae in prenex normal form starting with ∃∀∗,∃∗∀k,
where k ≥ 0 is a fixed number, is decidable with the same complexity as their counterparts
of LTL w.r.t. various combinations of temporal operators (Q − (ILTL(O1))pnf and Q −
(ILTL(F,G))pnf in Figure 1),
the satisfiability problem of the formulae with non-nested quantifiers is EXPSPACE-
complete, and this even holds for formulae allowing the “future” and “global” temporal
operators only (NN − ILTL(O2) in Figure 1).

We outline some techniques we use to obtain the aforementioned results. The upper bound
of ILTLpnf with the quantifier prefixes ∃∗∀∗ is obtained by instantiating the universal quan-
tifiers with all the possible combinations of existentially quantified ones, thus, removing
the universal quantifiers (Theorem 6). For the upper bound of NN − ILTL, a concept of
potentially Eulerian directed graphs is introduced which plays an essential role in the decision
procedure (Theorem 21). Moreover, we exploit the index quantifiers and a property regarding
the expressiveness of “future” and “global” temporal operators (cf. Lemma 4) to obtain
undecidability and complexity lower bounds (Theorem 3 and Theorem 21).

Related work. We have already discussed various indexed extensions of standard temporal
logics and the related results [22, 5, 14, 16]. Since process identifiers can also be seen as a
sort of data values, ILTL is also related to temporal logics over data words or words over
infinite alphabets.

The most relevant work includes: LTL with freeze quantifiers (i.e. registers) over a singly
attributed data word [9, 15]; LTL with navigation mechanisms for a single (or a tuple of)
data attribute(s) over multi-attributed data words (i.e., data words where each position
carries multiple data values which can be referred to by a fixed set of attributes) [21, 8, 7];
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LTL, CTL and CTL∗ with variable quantifications (called variable LTL/CTL/CTL∗), where
the variables range over an infinite data domain [17, 18, 10, 25]. Decidability and complexity
issues of these logics and variants thereof were studied.

These logics are interpreted over data words where each position carries only a fixed
number of data values, whereas ILTL is interpreted over computation traces in parameterised
systems. While computation traces can also be seen as data words by treating process
identifiers as data values, these data words are significantly different than the traditional
ones studied before. Namely, each position of these data words carries an unbounded number
of data values, and all the data values occur in every position. To our best knowledge,
data words of this special structure and their logics have not been considered in the infinite
alphabet community.

Structure. The rest of the paper is organised as follows. Section 2 presents the preliminaries.
Section 3 is devoted to ILTL formulae in prenex normal form, and Section 4 is for ILTL formulae
with non-nested quantifiers. Due to space limitation, most of the proofs are omitted and will
appear in the journal version of this paper.

2 Preliminaries

For k ∈ N, let [k] = {0, . . . , k − 1}. For a sequence α = α0α1 . . . and j ∈ N, we use α[j] to
denote the element of α at position j.

Let I be an infinite set of process identifiers and X be a set of index variables which
range over I. Let AP be a finite set of global atomic propositions and AP ′ be a finite set of
local atomic propositions. We assume that AP ∩AP ′ = ∅. The intention of AP ′ is to specify
process-specific properties, so each occurrence of AP ′ in formulae is parameterised with an
index variable from X .

The formulae of indexed LTL (ILTL) are defined by the following BNF,

ϕ ∶∶= true ∣ false ∣ p ∣ ¬p ∣ p′(x) ∣ ¬p′(x) ∣ ϕ ∨ ϕ ∣ ϕ ∧ ϕ ∣Xϕ ∣ ϕ U ϕ ∣ ϕ R ϕ ∣ ∃x.ϕ ∣ ∀x.ϕ,

where p ∈ AP,p′ ∈ AP ′, x ∈ X .
Moreover, standard “future” (F ) and “global” (G) temporal operators can be introduced

as abbreviations: Fψ ≡ true U ψ, Gψ ≡ false R ψ.
Let free(ϕ) denote the set of free variables occurring in ϕ. An ILTL formula containing

no free variables is called a closed ILTL formula. In addition, the size of ϕ, denoted by
∣ϕ∣, is defined as the number of symbols occurring in ϕ. For an ILTL formula ϕ, let ¬ϕ
denote its complement (negation), and let ϕ denote the positive normal form of ¬ϕ, that is
obtained by pushing the negation inside of operators. For instance, if ϕ = ∃x. Fp′(x), then
ϕ = ∀x. G¬p′(x).

ILTL formulae are typically used to specify and verify parameterised systems. Naturally,
ILTL formulae are interpreted over computation traces of parameterised systems. In the
present paper, we adopt the definition of the computation traces from [16]. A computation
trace over AP ∪AP ′ is a tuple trc = (α, I, (βi)i∈I), where α ∈ (2AP )ω is an ω-sequence of
valuations over the global atomic propositions from AP , I ⊆ I is a finite set of process
identifiers, and for each i ∈ I, βi ∈ (2AP ′)ω is a local computation trace, i.e. an ω-sequence of
valuations over the local atomic propositions from AP ′.

Let ϕ be an ILTL formula, trc = (α, I, (βi)i∈I) be a computation trace, θ ∶ free(ϕ)→ I be
an assignment of the process identifiers (from I) to the free variables in ϕ, and n ∈ N. Then
(trc, θ, n) satisfies ϕ, denoted by (trc, θ, n) ⊧ ϕ, is defined as follows.
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(trc, θ, n) ⊧ p (resp. ¬p) if p ∈ α[n] (resp. p ∉ α[n]),
(trc, θ, n) ⊧ p′(x) (resp. ¬p′(x)) if p′ ∈ βθ(x)[n] (resp. p′ ∉ βθ(x)[n]),
(trc, θ, n) ⊧ ∃x.ϕ1 if there is i ∈ I such that (trc, θ[i/x], n) ⊧ ϕ1, where θ[i/x] is the same
as θ, except for assigning i to x,
(trc, θ, n) ⊧ ∀x.ϕ1 if for each i ∈ I, (trc, θ[i/x], n) ⊧ ϕ1,
(trc, θ, n) ⊧ ϕ1 ∨ ϕ2 if (trc, θ, n) ⊧ ϕ1 or (trc, θ, n) ⊧ ϕ2,
(trc, θ, n) ⊧ ϕ1 ∧ ϕ2 if (trc, θ, n) ⊧ ϕ1 and (trc, θ, n) ⊧ ϕ2,
(trc, θ, n) ⊧Xϕ if (trc, θ, n + 1) ⊧ ϕ,
(trc, θ, n) ⊧ ϕ1 U ϕ2 if there is k ≥ n s.t. (trc, θ, k) ⊧ ϕ2, and for all j ∶ n ≤ j < k,
(trc, θ, j) ⊧ ϕ1,
(trc, θ, n) ⊧ ϕ1 R ϕ2 if for all k ≥ n, (trc, θ, k) ⊧ ϕ2, or there is k ≥ n s.t. (trc, θ, k) ⊧ ϕ1,
and for all j ∶ n ≤ j ≤ k, (trc, θ, j) ⊧ ϕ2.

Note that if ϕ is a closed ILTL formula, then θ has an empty domain and thus is omitted.
Namely we simply write (trc, n) ⊧ ϕ. In addition, for a closed ILTL formula ϕ, we use
trc ⊧ ϕ to abbreviate (trc,0) ⊧ ϕ. For a closed ILTL formula ϕ, let L(ϕ) denote the set of
computation traces trc such that trc ⊧ ϕ. The satisfiability problem of ILTL is:

Given a closed ILTL formula ϕ, decide whether L(ϕ) is empty.

As a warm-up, we show that the satisfiability problem of ILTL is undecidable in general1,
which is obtained by a reduction from the PCP problem [29]. Recall that PCP problem is,
given an instance (uj , vj)1≤j≤n, where uj , vj are finite words over an alphabet Σ, to decide
whether there exists a sequence of indices j1 . . . jm such that uj1 . . . ujm = vj1 . . . vjm . The main
idea of the reduction is to encode a solution j1 . . . jm of the PCP problem as a computation
trace trc = (α, I, (βi)i∈I) such that α = wj1wj2 . . .wjmatom(#) wj1 . . .wjm(atom($))ω, where
wj1wj2 . . .wjm corresponds to uj1 . . . ujm , wj1 . . .wjm corresponds to vj1 . . . vjm , and a local
atomic proposition p′ is used in (βi)i∈I to guarantee the equality of uj1 . . . ujm and vj1 . . . vjm .

I Proposition 1. The satisfiability problem of ILTL is undecidable.

In this paper, we shall consider the following fragments of ILTL with abbreviations:
ILTLpnf denotes the fragment of ILTL where formulae are in prenex normal form, that
is {∀,∃} quantifications appear only at the beginning of the formula. In particular, let
Q ⊆ {∃,∀}∗. Then Q − ILTLpnf denotes the fragment of ILTLpnf where the quantifier
prefixes belong to Q.
NN − ILTL denotes the fragment of ILTL where the quantifiers are not nested, that is, for
each formula Q1x.ϕ1 such that Q2y.ϕ2 is a subformula of ϕ1, it holds that x is not a free
variable of ϕ2, where Q1,Q2 ∈ {∀,∃}.
ILTL(O) for O ⊆ {X,F,G,U,R} denotes the fragment of ILTL where only temporal
operators from O are used. Moreover, we use ILTL/X as an abbreviation of ILTL(U,R),
where the X operator is forbidden.
ILTLloc denotes the fragment of ILTL where there are no global atomic propositions, that
is, AP = ∅.

1 Proposition 1 is subsumed by Theorem 2 and Theorem 3 in the next section. We choose to present the
weaker and easier result first, instead of giving the strongest result (Theorem 3) directly. This might
hopefully illustrate the idea of the proof and facilitate readers’ understanding.
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These notations might be combined to define more (refined) fragments, e.g. (ILTL(F,G))pnf
denotes the fragment of ILTLpnf where only temporal operators F and G are used.

For establishing the complexity lower-bounds, we shall use the tiling problems, which have
various versions to capture different complexity classes [4]. Among others, the exponential-size
square tiling problem is specified by a tuple (n,∆,H,V, tS , tF ), where n ∈ N is encoded in
unary, ∆ is a finite set of tiles, H,V ⊆ ∆×∆ are called the horizontal and vertical constraints,
tS , tF ∈ ∆ are the initial tile and final tile respectively. The task is to decide whether there
is a tiling of the square [2n] × [2n], that is, a function f ∶ [2n] × [2n] → ∆, satisfying the
following conditions,

horizontal constraint: for every j1, j2 ∶ j1 ∈ [2n], 0 ≤ j2 < 2n−1, (f(j1, j2), f(j1, j2+1)) ∈H,
vertical constraint: for every j1, j2 ∶ 0 ≤ j1 < 2n − 1, j2 ∈ [2n], (f(j1, j2), f(j1 + 1, j2)) ∈ V ,
initial and final constraint: f(0,0) = tS , f(2n − 1,2n − 1) = tF .

This problem is known to be NEXPTIME-complete.
Likewise, the exponential-size corridor tiling problem is given by a tuple (n,∆,H,V, tS , tF ).

The task is to decide whether there is k ≥ 1 such that the integer plane of size k × 2n can be
tiled, that is, by a function f ∶ [k] × [2n]→∆, so that the following conditions hold,

horizontal constraint: for each j1 ∈ [k],0 ≤ j2 < 2n − 1, (f(j1, j2), f(j1, j2 + 1)) ∈H,
vertical constraint: for each 0 ≤ j1 < k − 1, j2 ∈ [2n], (f(j1, j2), f(j1 + 1, j2)) ∈ V ,
initial and final constraint: f(0,0) = tS , f(k − 1,2n − 1) = tF .

This problem is known to be EXPSPACE-complete.

3 Formulae in Prenex Normal Form

In this section, we focus on ILTLpnf formulae in prenex normal form, i.e., formulae of the
form Q1x1 . . .Qkxk.ψ, where Qj ∈ {∀,∃} for all 1 ≤ j ≤ k, and ψ is quantifier free.

3.1 Undecidability
Our first (negative) result states that even with one alternation of the existential and universal
quantifiers, the satisfiability problem of ILTLpnf is already undecidable.

I Theorem 2. The satisfiability problem of ∀∃ − ILTLpnf is undecidable.

The ILTL formulae used in the proof of Proposition 1 are not in ∀∃− ILTLpnf . In the proof
of Theorem 2, we adapt the reduction in Proposition 1 so that only formulae from ∀∃−ILTLpnf
are used in the reduction. We then investigate whether restricting certain temporal operators
leads to decidability. Unfortunately, this is not the case. Indeed, the undecidability stands
even when only the “future” and “global” temporal operators are present. Clearly, this
implies that the satisfiability of indexed temporal logics without “next” temporal operators,
which are prevailing in the study of parameterised model checking (e.g. ICTL∗/X in [1]), is
undecidable in general.

I Theorem 3. The satisfiability problem of ∀∃ − (ILTL(F,G))pnf is undecidable.

To prove this result, we first show the undecidability of ∀∃ − (ILTL/X)pnf , which is
obtained by adapting the proof of Theorem 2 and encoding the “next” operator with the
“until” operator. As the next step, we further encode the “until” operator with the “global”
and “future” operators, with the help of the index quantifiers and the following Lemma 4
[24]. Lemma 4 shows that F,G are sufficiently strong to express some properties that could
only be defined by the “until” operator at the first sight, although in a more technical and
less intuitive way.
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I Lemma 4 ([24]). Let Z ⊆ X be a finite set of variables and Σ = 2AP∪(AP
′
×Z). Suppose L =

A∗

1B1A
∗

2B2 . . .A
∗

kBkA
ω
k+1 such that A1,B1, . . . ,Ak,Bk,Ak+1 ⊆ Σ, and for each j ∶ 1 ≤ j ≤ k,

Bj ⊆ (Aj ∖Aj+1). Then L can be defined by an LTL(F,G) formula ϕ over the set of atomic
propositions AP ∪(AP ′×Z). Moreover, if for each j ∶ 1 ≤ j ≤ k+1, Aj is defined by a formula
ψj, and for each j ∶ 1 ≤ j ≤ k, Bj is defined by a formula ξj, then the LTL(F,G) formula ϕ
can be constructed from these formulae in linear time w.r.t. ∑

1≤j≤k+1
∣ψj ∣ + ∑

1≤j≤k
∣ξj ∣.

To give an idea how the languages L in Lemma 4 can be expressed in LTL(F,G), let us
look at the following example: Suppose Σ = 2{p

′

1(x),p
′

2(x)}, and L = A∗

1B1A
ω
2 , where A1 = B1 =

{{p′1(x)}}, and A2 = {{p′2(x)}}. Intuitively, L specifies that p′1(x)∧¬p′2(x) always holds until
¬p′1(x)∧p′2(x) holds, and the latter holds forever afterwards. If the “until” operator is allowed,
then L can be defined easily by p′1(x) ∧ ¬p′2(x) ∧ (p′1(x) ∧ ¬p′2(x)) U (G(¬p′1(x) ∧ p′2(x))).
On the other hand, without the “until” operator, L can be defined by

ϕ = p′1(x) ∧ ¬p′2(x) ∧G[(p′1(x) ∧ ¬p′2(x)) ∨G(¬p′1(x) ∧ p′2(x))] ∧ FG(¬p′1(x) ∧ p′2(x)).

As mentioned in the introduction, we are also interested in the influence of the global atomic
propositions (which are needed in the above reductions). What happens to Theorem 3 if
only local atomic propositions are allowed? We show that in this case the undecidability
stands at the cost of a higher level of alternations of quantifiers. Namely, we have

I Proposition 5. The satisfiability problem of ∃∀∃ − ILTLloc
pnf is undecidable.

The proof is obtained by encoding global atomic propositions with local atomic proposi-
tions, with the aid of the additional existential quantifier. Similar results also hold when the
set of temporal operators is restricted.

3.2 Decidability
From Theorem 2, we know that the satisfiability problem of ILTLpnf is undecidable, even
with the quantifier prefix ∀∃. In this section, we will show that the undecidability result of
Theorem 2 is tight in the sense that the satisfiability problem of ∃∗∀∗ − ILTLpnf is decidable
(more precisely, EXPSPACE-complete).

I Theorem 6. The satisfiability problem of ∃∗∀∗ − ILTLpnf is EXPSPACE-complete.

Proof sketch. The EXPSPACE upper bound is obtained by instantiating the universal
quantifiers with all the possible combinations of existentially quantified ones. Let ϕ =
∃x1 . . . xk∀y1 . . . yl. ψ be an ∃∗∀∗ − ILTLpnf formula, where ψ is quantifier-free. We construct
an ∃∗ − ILTLpnf formula ϕ′ as ∃x1 . . . xk. ⋀

f
ψf , where f ranges over all the functions from

{1, . . . , l} to {1, . . . , k}, and ψf is obtained from ψ by replacing each occurrence of p′(yj)
with p′(xf(j)), for every j ∶ 1 ≤ j ≤ l and p′ ∈ AP ′. Note that the size of ϕ′ is exponential in
∣ϕ∣. Moreover, it is not hard to see that the satisfiability of ∃∗ − ILTLpnf can be reduced in
linear time to that of LTL. Therefore, as the satisfiability of LTL is PSPACE-complete [23],
we get the EXPSPACE upper bound for ∃∗∀∗ − ILTLpnf .

For the lower bound, we reduce from the exponential-size corridor tiling problem. Let
(n,∆,H,V, tS , tF ) be an instance of the exponential-size corridor tiling problem. Suppose
m = ⌈log(∣∆∣)⌉. Let AP ′ = {p′, p′1, . . . , p′n, q′1, . . . , q′m} be the set of local atomic propositions,
where p′1, . . . , p′n are used to encode the addresses of each row (that is, the elements of [2n])
of the tiling problem, q′1, . . . , q′m are used to encode the set of tiles in ∆, and p′ is used
as a marker. The reduction also uses two existential variables x1, x2 such that for each
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j ∶ 1 ≤ j ≤ n, exactly one of p′j(x1) or p′j(x2) holds at each position. Intuitively, for each
address ` ∈ [2n], p′j(x1) (resp. p′j(x2)) holds iff the j-th bit of the binary encoding of ` is 0
(resp. 1). In addition, the universally quantified variables y1, . . . , yn are used to specify the
horizontal and universal constraints of the tiling problem. J

As before, we now examine whether restricting temporal operators is beneficial to reduce
the complexity. An easy observation is that since the lower bound proof of Theorem 6
only uses the operators X,F,G, the satisfiability problem of ∃∗∀∗ − (ILTL(X,F,G))pnf is
EXPSPACE-complete. For the other restrictions of temporal operators, we obtain the
following results.

I Theorem 7. The satisfiability problem is
EXPSPACE-complete for ∃∗∀∗ − (ILTL/X)pnf ,
NEXPTIME-complete for ∃∗∀∗ − (ILTL(F,G))pnf .

The upper-bounds are obtained by the similar argument of Theorem 6 and the complexity
of respective fragments of LTL [23]. The lower bounds are obtained by (refined) reductions
from the exponential-size corridor and exponential-size square tiling problems respectively.

Moreover, by a refined analysis of the proof of Theorem 6 and the complexity of various
fragments of LTL [23], we obtain the following result.

I Corollary 8. For each Q ∈ {∃∀∗} ∪ {∃∗∀k ∣ k ∈ N}, the satisfiability problem is
PSPACE-complete for Q − (ILTL(X,F,G))pnf and Q − (ILTL/X)pnf ,
NP-complete for Q − (ILTL(F,G))pnf .

4 Non-Nested Quantifiers

In this section, we focus on the satisfiability of NN − ILTL, i.e., the fragment of ILTL where
quantifiers are not nested. A “folklore” theorem, concerning NN − ILTLloc (i.e., NN − ILTL
with local atomic propositions solely), states that the satisfiability problem is EXPSPACE-
complete. In [16], the authors attributed this result to [19], where the temporal logics with
knowledge operators were studied. Among others, the complexity upper bound for the
satisfiability of LKT(m) (m ≥ 1) over synchronous unbounded memory models2 was given
by introducing a concept called k-trees and reducing to the nonemptiness of Büchi tree
automata (cf. Theorem 4.1 in [19]). As pointed out in [16], NN − ILTLloc corresponds to
LKT(1) in [19] (note in this case, only 1-trees are needed). Nevertheless, the EXPSPACE
result of NN − ILTLloc via [19] is unsatisfactory in that: (1) the construction of [19] is for
temporal logics with knowledge operators which have specific syntax and semantics, and
is rather technical and only sketched (referred to [26] indeed), hence it is fair to see the
result for NN − ILTLloc is not self-contained and difficult to access; (2) more importantly, the
correctness proof of the construction in [19] is not available, and based on our efforts in
discovering the proof and the results presented in the rest of this section, the correctness of
the construction in [19] is not clear, at least to us. We propose a self-contained proof for the
complexity results of NN − ILTL satisfiability (which also extends the result for NN − ILTLloc).
Our construction for the EXPSPACE upper bound is different from that in [19]. Some
new concepts, e.g., the potential Eulerian directed graphs (Definition 14), are needed for
us. Moreover, we strengthen the EXPSPACE lower bound to NN − ILTL(F,G), that is, the

2 where m is the number of “knowers”.
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fragment of NN − ILTL where only “future” and “global” temporal operators are available.
This result, together with Theorem 3, shows that with index quantifiers, even very weak
temporal operators are powerful enough to exhibit undecidability or complexity lower bounds.

Throughout this section, we assume ϕ to be an NN − ILTL formula. In addition, we
assume that only one variable x occurs in ϕ (i.e., x is reused in distinct quantifiers). Without
loss of generality, we assume that AP (resp. AP ′) is the set of global (resp. local) atomic
propositions occurring in ϕ (otherwise, it is sufficient to consider the restriction of AP and
AP ′ to those occurring in ϕ). We first introduce some notations.

A directed multigraph G is a pair (V,E) where V is a set of vertices, E is a multiset of
ordered pairs (v, v′) ∈ V × V . The elements of E are called arcs. The distinct copies of the
same pair (v, v′) in E are called parallel arcs. For an arc e ∈ E which is a copy of (v, v′), v
and v′ are called the tail and the head of e respectively. An arc-labelled directed multigraph
is a tuple (V,E,L), where (V,E) is a directed multigraph and L ∶ E → A (where A is a
finite set) is an arc-labelling function. A (finite) path in a directed multigraph G = (V,E)
is a sequence v0e1v1 . . . vn−1envn (where n ≥ 1) such that for each j ∶ 1 ≤ j ≤ n, ej is an arc
with the tail vj−1 and the head vj . The length of a path is the number of arcs in the path.
A cycle in G is a path v0e1v1 . . . vn−1envn such that v0 = vn. A directed graph is a directed
multigraph (V,E) without parallel arcs, that is, E is a set of pairs (v, v′) ∈ V × V . For a
directed graph G = (V,E), since each arc is uniquely identified by its head and its tail, a path
can also be seen as a vertex sequence v0v1 . . . vn such that for each j ∶ 0 ≤ j < n, (vj , vj+1) ∈ E.
In addition, later on, sometimes we also write an arc-labelled directed graph G = (V,E,L)
as a pair (V,E′) such that E′ = {(v,L(v, v′), v′) ∣ (v, v′) ∈ E}. A directed multigraph G is
said to be acyclic if there are no cycles in G, and is said to be strongly connected if for every
pair of vertices v, v′, there is a path from v to v′ and vice versa. A directed multigraph G is
connected if the underlying undirected multigraph G, i.e. the multigraph obtained from G by
ignoring the directions of arcs, is connected.

We then introduce some definitions related to ϕ. Let cl(ϕ) denote the closure of formulae
including the set of subformulae in ϕ, their complements, as well asX(ψ1Uψ2) andX(ψ1Rψ2)
for ψ1Uψ2, ψ1Rψ2 ∈ cl(ϕ) respectively. It is not difficult to observe that the size of cl(ϕ)
(the number of formulae in cl(ϕ)), denoted by ∣cl(ϕ)∣, satisfies that ∣cl(ϕ)∣ = O(∣ϕ∣).

I Definition 9 (Atom). Ψ ⊆ cl(ϕ) is an atom over ϕ if the following conditions hold:
For each ψ ∈ cl(ϕ), ψ ∈ Ψ iff ψ /∈ Ψ.
For each ψ1 ∧ ψ2 ∈ cl(ϕ), ψ1 ∧ ψ2 ∈ Ψ iff ψ1 ∈ Ψ and ψ2 ∈ Ψ.
For each ψ1 ∨ ψ2 ∈ cl(ϕ), ψ1 ∨ ψ2 ∈ Ψ iff ψ1 ∈ Ψ or ψ2 ∈ Ψ.
For each ψ1Uψ2 ∈ cl(ϕ), ψ1Uψ2 ∈ Ψ iff ψ2 ∈ Ψ or ψ1,X(ψ1Uψ2) ∈ Ψ.
For each ψ1Rψ2 ∈ cl(ϕ), ψ1Rψ2 ∈ Ψ iff ψ2, ψ1 ∈ Ψ or ψ2,X(ψ1Rψ2) ∈ Ψ.
For each ∀x.ψ ∈ cl(ϕ), if ∀x.ψ ∈ Ψ, then ψ ∈ Ψ.
For each ∃x.ψ ∈ cl(ϕ), if ψ ∈ Ψ, then ∃x.ψ ∈ Ψ.

I Remark. For formulae of the form ∃x.ψ ∈ cl(ϕ), it is possible that ∃x.ψ ∈ Ψ, but ψ ∉ Ψ.
Let A denote the set of all atoms. It is not hard to see that ∣A∣ ≤ 2∣cl(ϕ)∣.

I Definition 10 (Macro state). A macro state S w.r.t. ϕ is a nonempty set of atoms satisfying
the following conditions:
1. for each p ∈ AP and Ψ,Ψ′ ∈ S, p ∈ Ψ iff p ∈ Ψ′,
2. for each Qx.ψ ∈ cl(ϕ) and Ψ,Ψ′ ∈ S, Qx.ψ ∈ Ψ iff Qx.ψ ∈ Ψ′, where Q ∈ {∃,∀},
3. for each ∃x.ψ ∈ cl(ϕ) and Ψ ∈ S, ∃x.ψ ∈ Ψ iff ψ ∈ Ψ′ for some Ψ′ ∈ S.
I Remark. In the above definition, all atoms Ψ in S agree on the satisfaction of global atomic
propositions (item 1) and sentences, i.e., formulae containing no free variables (item 2).
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Let S denote the set of all macro states w.r.t. ϕ.

I Definition 11 (Successor). We have the following definitions:
Assume two atoms Ψ,Ψ′ ⊆ cl(ϕ). Then Ψ′ is a successor of Ψ, denoted by Ψ→ Ψ′, if for
each Xψ ∈ cl(ϕ), Xψ ∈ Ψ iff ψ ∈ Ψ′.
Assume two macro states S and S′ w.r.t. ϕ. Then S′ is a successor of S if there is a total
and surjective relation η ⊆ S × S′ such that for each (Ψ,Ψ′) ∈ η, Ψ′ is a successor of Ψ.
[Recall that η ⊆ S × S′ is total (resp. surjective) iff for each Ψ ∈ S (resp. Ψ′ ∈ S′), there is
Ψ′ ∈ S′ (resp. Ψ ∈ S) such that (Ψ,Ψ′) ∈ η.]
For any two macro states S and S′, we write S η↣ S′ to highlight the relation η associated
with the transition.

The pairs (A,→) and (S,↣) constitute a directed graph and multigraph respectively.
Let’s first give some intuition of our decision procedure. One may easily observe: Let
trc = (α, I, (βi)i∈I) be a computation trace satisfying ϕ. For each j ∈ N and i ∈ I, define
Φj,i = {ψ ∈ cl(ϕ) ∣ (trc, [x → i], j) ⊧ ψ}. Then for each j ∈ N, the tuple of atoms (Φj,i)i∈I
can be abstracted into a macro state Sj (which is a set of atoms), and trc is accordingly
abstracted into an infinite path S0S1 . . . in (S,↣). From this observation, a natural idea to
decide the satisfiability of ϕ is to search for a path in (S,↣) which satisfies some constraints
(as obviously not all such paths give a valid computation trace). However, it seems nontrivial
to specify these constraints. We use the following example to illustrate the difficulties.

I Example 12. Suppose ϕ = G(∃x.(p(x)∧XG¬p(x))) (for simplicity, let ξ = p(x)∧XG¬p(x)).
It is not hard to see that ϕ is unsatisfiable (an obvious “model” of ϕ requires infinitely many
process identifiers). The closure of ϕ is

cl(ϕ) = {p(x),¬p(x),G¬p(x), Fp(x),XG¬p(x),XFp(x), ξ, ξ,
∃x. ξ, ∀x. ξ, G(∃x. ξ), F (∀x. ξ),XG(∃x. ξ),XF (∀x. ξ)}.

Let S = {Ψ1,Ψ2,Ψ3}, where

Ψ1 = {p(x), Fp(x),XG¬p(x), ξ, ∃x. ξ, G(∃x. ξ),XG(∃x. ξ)},
Ψ2 = {p(x), Fp(x),XFp(x), ξ, ∃x. ξ,G(∃x. ξ),XG(∃x. ξ)},
Ψ3 = {¬p(x),G¬p(x),XG¬p(x), ξ, ∃x. ξ,G(∃x. ξ),XG(∃x. ξ)}.

It is a routine to check that S satisfies all the constraints in Definition 10 and is thus a macro
state. In addition, let η = {(Ψ1,Ψ3), (Ψ2,Ψ1), (Ψ2,Ψ2), (Ψ3,Ψ3)}. It is easy to verify that
each pair of atoms in η satisfies the successor relation between atoms (item 1 of Definition 11),
moreover, η is total and surjective, and thus S η↣ S. Hence π = S η↣ S

η↣ S . . . is an infinite
path in (S,↣). Moreover, since both Fp(x) and p(x) occur in Ψ1 and Ψ2, and Fp(x) does
not occur in Ψ3, it is not hard to observe that over every path of atoms in π, that is, every
infinite path in Figure 2, all the occurrences of Fp(x) on the path are fulfilled. Therefore, to
decide the satisfiability it is far from enough to simply search for a lasso in (S,↣) where
over every path of atoms, all the occurrences of the “until” formulae are fulfilled, as that
would lead to the wrong conclusion that ϕ is satisfiable. J

The unsatisfiability of ϕ in Example 12 is due to the fact that the “satisfaction” of
ϕ requires infinitely many process identifiers (recall that as a model, we require the set
of process identifier to be finite). To rule out such cases, we introduce a concept called
potentially Eulerian.

Suppose G = (V,E) is a directed multigraph. An Eulerian cycle in G is a cycle in G

that traverses each arc in E exactly once. A directed multigraph G is Eulerian if it has
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Ψ1 Ψ2 Ψ3

Figure 2 The directed graph (S, η) in Example 12.

an Eulerian cycle. For v ∈ V , let indeg(v) and outdeg(v) denote respectively the number of
incoming arcs of v (i.e. the arcs with v as the head) and the number of outgoing arcs of v
(i.e. the arcs with v as the tail) in G.

I Proposition 13 ([3]). Let G = (V,E) be a directed multigraph. Then G is Eulerian iff G

is connected and for each vertex v ∈ V , indeg(v) = outdeg(v).

I Definition 14 (Potentially Eulerian). A directed multigraph G = (V,E) is said to be
potentially Eulerian if G can become Eulerian by adding parallel arcs.

Note that in the above definition, only parallel arcs can be added. For instance, let G =
({v1, v2, v3},{(v1, v2), (v2, v1), (v2, v3), (v3, v1)}), then G is not Eulerian, but G is potentially
Eulerian since adding a parallel arc (v1, v2) makes G Eulerian.

I Proposition 15. Let G = (V,E) be a directed multigraph. Then G is potentially Eulerian
iff G is strongly connected.

I Example 16 (Example 12 continued). Let G be the directed graph (S, η) in Example 12,
that is, vertices are the atoms in S, and the arc relation is given by η (see Figure 2). Then it
is easy to check that G is connected but not strongly connected, that is, G is not potentially
Eulerian. J

Example 16 illustrates that the concept of “potentially Eulerian” may be used to deal
with the situation that the satisfaction of ϕ requires infinitely many process identifiers, which
is indeed the case in our construction, as we shall see.

Another difficulty is to formulate a proper constraint to guarantee all occurrences of
“until” formulae are fulfilled somehow (which would be much easier for LTL). One natural
candidate might be to require that over each path of atoms in the desired lasso of (S,↣),
each “until” formula occurring in the path is fulfilled at least once. However, it turns out
this would be too restrictive (see Example 19), and indeed we introduce a mechanism to
relax this constraint; cf. L(⋅) function in Definition 17 and Definition 18, item 4.

In the following, we construct an arc-labelled directed graph Gϕ from (S,↣) so that
searching for a desired lasso in (S,↣) (for the satisfiability of ϕ) can be reduced to a
reachability problem in Gϕ.

I Definition 17 (The graph Gϕ). The arc-labelled directed graph Gϕ = (Vϕ,Eϕ) is construc-
ted from (S,↣) as follows:

Vϕ is the union of S and the set of tuples (S,S′,G) such that S,S′ ∈ S, and G =
(S ∪ S′,E,L) is an arc-labelled directed graph such that E ⊆ S × S′ and L ∶ E → 2A×A.
Eϕ is the union of

the set of tuples (S, η,S′) such that S η↣ S′,
the set of tuples (S, η, (S,S′,G)) such that S η↣ S′, and G = (S ∪ S′, η,L), where for
each (Ψ,Ψ′) ∈ η, L((Ψ,Ψ′)) = {(Ψ,Ψ′)},
the set of tuples ((S,S′,G), η, (S,S′′,G′)) with
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∗ S′
η↣ S′′,

∗ let G = (S ∪ S′,E,L), then G′ = (S ∪ S′′,E ⋅ η,L′), where for each (Ψ,Ψ′′) ∈ E ⋅ η
(note that this implies that there exists some Ψ′ ∈ S′ such that (Ψ,Ψ′) ∈ E and
(Ψ′,Ψ′′) ∈ η)

L′((Ψ,Ψ′′)) = ⋃
Ψ′∈S′,(Ψ,Ψ′)∈E,(Ψ′,Ψ′′)∈η

L((Ψ,Ψ′)) ∪ {(Ψ′,Ψ′′)}.

We explain the intuition of the arc labeling function L(⋅) in G as follows: Suppose π is a
path from S to S′ in (S,↣), and accordingly the vertex (S,S′,G) with G = (S ∪ S′,E,L) is
reached from S in Gϕ when going along π, then for each arc (Ψ,Ψ′) ∈ E, L((Ψ,Ψ′)) is the
set of all the possible arcs (Ψ′′,Ψ′′′) on the paths from Ψ to Ψ′ in the subgraph over the set
of atoms induced by π.

Our goal is to reduce the satisfiability problem of ϕ to a reachability problem in Gϕ,
more specifically, to decide whether a vertex (S,S′,G) satisfying some proper constraints in
Gϕ can be reached from a vertex S0 that contains ϕ. In order to specify these constraints,
we need another notation.

Given G = (S ∪ S′,E,L) where E ⊆ S × S′ and L ∶ E → 2A×A, and (Ψ,Ψ′) ∈ E, the
directed graph GL((Ψ,Ψ′)) is defined by taking the set of atoms appearing in L((Ψ,Ψ′)) as
the set of vertices and L((Ψ,Ψ′)) as the set of arcs (To put in a different way, GL((Ψ,Ψ′))

is the graph corresponding to the relation given by L((Ψ,Ψ′)) ⊆ S × S). In addition, for a
connected component C of G, a directed graph GC,L is defined as the union of the directed
graphs GL((Ψ,Ψ′)), where (Ψ,Ψ′) is an arc in C.

I Definition 18 (ϕ-witnessing path). A path in Gϕ is ϕ-witnessing if it is of the form

S0
η1↣ S1⋯

ηm−1↣ Sm−1
ηm↣ Sm

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
π1

η′1↣ (Sm, S′1,G1)
η′2↣ ⋯

η′n−1↣ (Sm, S′n−1,Gn−1)
η′n↣ (Sm, S′n,Gn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
π2

and satisfies the following conditions. Let Gn = (Sm,En, Ln).
1. There exists some Ψ ∈ S0 such that ϕ ∈ Ψ,
2. Sm = S′n,
3. each connected component C of Gn is potentially Eulerian (i.e. strongly connected),
4. each connected component C of Gn satisfies that for each ψ1Uψ2 ∈ cl(ϕ), if ψ1Uψ2 occurs

in some atom in GC,Ln , then ψ2 occurs in some atom in GC,Ln as well.

We use the following example to illustrate the concept of ϕ-witnessing paths.

I Example 19. Consider the formula ϕ = G(∃x.(p′(x) ∧XF¬p′(x))) (For convenience, let
ξ = p′(x) ∧XF¬p′(x)).

cl(ϕ) = {p′(x),¬p′(x), F¬p′(x),Gp′(x),XF¬p′(x),XGp′(x), ξ, ξ, ∃x.ξ,∀x.ξ,
G(∃x. ξ), F (∀x. ξ),XG(∃x. ξ),XF (∀x. ξ)}.

Let

Ψ1 = {p′(x), F¬p′(x),XF¬p′(x), ξ,∃x.ξ,G(∃x. ξ),XG(∃x.ξ)},
Ψ2 = {¬p′(x), F¬p′(x),XF¬p′(x), ξ,∃x.ξ,G(∃x. ξ),XG(∃x.ξ)},

and S1 = {Ψ1,Ψ2}, S2 = {Ψ1}, η1 = {(Ψ1,Ψ1), (Ψ2,Ψ1)}, η2 = {(Ψ1,Ψ1), (Ψ1,Ψ2)}. Suppose
π = S1

η1↣ (S1, S2,G1)
η2↣ (S1, S1,G2), where G1 = ({Ψ1,Ψ2}, η1, L1), G2 = ({Ψ1,Ψ2}, η1 ⋅

η2, L2),
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L1((Ψ1,Ψ1)) = {(Ψ1,Ψ1)} and L1((Ψ2,Ψ1)) = {(Ψ2,Ψ1)},
L2((Ψ1,Ψ1)) = {(Ψ1,Ψ1)}, L2((Ψ2,Ψ2)) = {(Ψ2,Ψ1), (Ψ1,Ψ2)}, moreover, L2(e) =
{(Ψ1,Ψ1), e} for e = (Ψ1,Ψ2), (Ψ2,Ψ1).

Then π is a path in Gϕ. Moreover, we notice that G2 satisfies the following conditions: 1)
G2 is strongly connected; 2) let C be the unique connected component of G2 (that is, G2
itself), then F¬p′(x) occurs in GC,L2 , and ¬p′(x) occurs in GC,L2 as well. Therefore, π is a
ϕ-witnessing path in Gϕ.

On the other hand, π does not satisfy the constraint that over every path of atoms
in π, F¬p′(x) is fulfilled at least once: Ψ1Ψ1Ψ1 is a path of atoms in π, F¬p′(x) occurs
everywhere on the path, but ¬p′(x) never appears. This justifies to some extent the use of
the labelling function L in our construction, which facilitates a less restrictive constraint
than requiring that over every path of atoms, each “until” formula occurring in the path is
fulfilled at least once. J

The following lemma paves the way to the complexity upper bound and is crucial.

I Lemma 20. ϕ is satisfiable iff there is a ϕ-witnessing path in Gϕ.

I Theorem 21. The satisfiability problem of NN − ILTL, NN − ILTL(X,F,G), NN − ILTL/X,
and NN − ILTL(F,G) is EXPSPACE-complete.

By Lemma 20, the satisfiability of NN − ILTL can be reduced to the reachability problem
in Gϕ. Then the EXPSPACE upper bound in Theorem 21 follows from the fact that Gϕ
is a directed graph of doubly exponential size in ∣ϕ∣ and the Savitch’s theorem [2]. For the
lower bound, we strengthen the lower bound in [16, 20] by providing a reduction from the
exponential size corridor tiling problem to the satisfiability problem of NN− ILTL(F,G), with
the help of Lemma 4.

5 Conclusion

In this paper, we have drawn a relatively complete picture on the decidability and complexity
of the satisfiability of various fragments of ILTL. To the best of our knowledge, this is the
first systematic work on the satisfiability of indexed temporal logics. We believe that these
results will deepen the understanding of the meta-properties of this class of logics, and will
be instrumental for, e.g., parameterised model checking.

Future work includes investigating satisfiability for indexed branching-time temporal
logics like indexed CTL and CTL∗, and other meta-property including expressive power. It is
also interesting to see whether some techniques can be applied to the extensions of temporal
logics with data variable quantifications.
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Abstract
This paper presents a range of expressiveness and complexity results for the specification, com-
putation, and verification of Nash equilibria in multi-player non-zero-sum concurrent games in
which players have goals expressed as temporal logic formulae. Our results are based on a novel
approach to the characterisation of equilibria in such games: a semantic characterisation based on
winning strategies and memoryful reasoning. This characterisation allows us to obtain a number
of other results relating to the analysis of equilibrium properties in temporal logic.

We show that, up to bisimilarity, reasoning about Nash equilibria in multi-player non-zero-
sum concurrent games can be done in ATL∗ and that constructing equilibrium strategy profiles in
such games can be done in 2EXPTIME using finite-memory strategies. We also study two simpler
cases, two-player games and sequential games, and show that the specification of equilibria in
the latter setting can be obtained in a temporal logic that is weaker than ATL∗. Based on these
results, we settle a few open problems, put forward new logical characterisations of equilibria,
and provide improved answers and alternative solutions to a number of questions.
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1 Introduction

In the last decade, there has been an increasing interest in game-theoretic models of concurrent
and distributed systems as well as in temporal logic formalisms to reason about the complex
behaviour of such systems. These logical formalisms are used to reason about linear-time or
branching-time properties of the systems, and usually extend logics such as LTL or CTL. The
alternating-time temporal logic ATL∗ of Alur, Henzinger, and Kupferman [1] is an extension
of CTL∗ that is intended to support, in addition, reasoning about strategic behaviour. ATL∗
replaces the path quantifiers of CTL∗ with agent/strategy modalities that can be used to
express properties of coalitions of agents in game-like concurrent and multi-agent systems.
ATL∗ is probably the most popular and widely used temporal logic for strategic reasoning in
computer science, artificial intelligence, and multi-agent systems research [8, 16].

The theory of ATL∗ is well understood. In particular, it is known that satisfiability and
model checking for ATL∗ are 2EXPTIME-complete [1, 15] – theoretically better than for many
of its extensions, where these problems are non-elementary, or even undecidable [3, 10, 11].
ATL∗ is a natural logic to reason about winning strategies in game-like systems, which makes
it sufficiently powerful for many computational purposes. For instance, several design and
verification problems can be reduced to questions about the existence and computation of
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winning strategies [1]. In fact, from a game-theoretic point of view, these problems are
usually reduced to a rather simple setting: two-player zero-sum sequential games [17].

However, when considering multi-player non-zero-sum concurrent games, the notion of a
winning strategy does not seem to be the most appropriate analytical concept [2]. In such
settings, we need richer game-theoretic solution concepts, such as Nash equilibrium [14].
However, at first sight, ATL∗ may not seem to be appropriate to reason about solution
concepts such as Nash equilibrium, and in fact, it seems to be widely assumed that winning
strategies cannot be used to study equilibria in multi-player non-zero-sum games.

Indeed, in the quest for a formalism expressive enough to capture game-theoretic equilibria,
many temporal logics have been developed, including: Strategy Logic (SL [3, 11]); an extension
of ATL with strategy contexts (ATLsc [10]); Quantified CTL∗ (QCTL∗ [9]); and Coordination
Logic (CL [4]). All these logical formalisms, however, have undecidable satisfiability and
non-elementary model checking problems in the general case. These undesirable properties
present substantial challenges from a computational point of view when applying these
temporal logics for synthesis or verification purposes. In fact, only very few practical model
checking tools support logical specifications with formalisms more powerful than ATL∗.

For some of the reasons given above, a number of studies have been conducted, partly
because better results can be obtained in restricted scenarios, for instance, when considering
sequential (also called turn-based) games or two-player games. For example, it is known
that with respect to two-player sequential games, Nash equilibria can be expressed in a
fragment of SL that is as expressive as ATL∗; see [3] for further details. As a consequence,
reasoning about Nash equilibria in this class of games can be done in 2EXPTIME. With
respect to multi-player sequential games, Nash equilibria can be expressed in both ATL∗sc and
Quantified CTL∗ while keeping the logics decidable [9]. Model checking is still non-elementary.
In addition, until recently, the simplest fragment of SL known to be powerful enough to
express Nash equilibria was the Boolean goal fragment [12], which may require, so-called,
non-behavioural strategies [12] to realise a profile of strategies.1 Such a fragment is not
known to have a decidable satisfiability problem [11], but can be used to model check Nash
equilibrium properties in 2EXPTIME given the characterisation of Nash equilibria in SL.
These are all very interesting results, which suggest that further work should be done.

In this paper, we will show that under a suitable set of necessary and sufficient conditions,
ATL∗ can be used to reason about the existence of various kinds of equilibria in multi-player
non-zero-sum concurrent games. In particular, we will be interested in how to:
1. verify if a given game has a Nash equilibrium (NE model checking);
2. check if there is a game where a desired Nash equilibrium exists (NE satisfiability);
3. synthesise a profile of strategies that realises a particular Nash equilibrium;
4. express Nash equilibria in a number of types of games.

Let us now explain how ATL∗ can be used to address the above questions. We say that
a property can be expressed in a given logic L if there is a formula φ of L such that φ is
satisfied in all and only the models having such a property. Moreover, we say that a problem
can be characterised in a given logic L if every instance of the problem can be specified in L.
Letting P be the property of having a Nash equilibrium (formally defined later on), we show
that using ATL∗ one can both express P in multi-player sequential games and characterise
the NE model checking and NE satisfiability problems for these games. In fact, we can do so

1 It was recently discovered how to express Nash equilibria in a fragment of SL that is simpler than the
Boolean goal fragment and which can be given an interpretation in terms of behavioural strategies.
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using a logic that is strictly weaker than ATL∗. Moreover, we show that using ATL∗ one
can characterise the NE satisfiability problem for multi-player concurrent games and the NE
model checking problem for a subclass of games that we call Moore with deterministic past.

An interesting aspect of our results with respect to ATL∗ is that the class of Moore games
with deterministic past is complete for the whole family of multi-player concurrent games
in the following sense: every formula φ of ATL∗ is satisfiable if and only if it is satisfied
by some model representing a game that is Moore with deterministic past. Then, Moore
games with deterministic past can be seen as canonical within the class of multi-player
concurrent games and therefore be used as an underlying model with respect to which define
games and synthesise profiles of strategies. Using these results we can, in the end, perform a
computational analysis of Nash equilibrium properties for various types of games.

Our results build on a novel semantic characterisation of Nash equilibria which combines
the concepts of winning strategies and memoryful reasoning. Informally, in this paper we use
techniques from repeated game theory (more specifically, punishment strategies as used in
the literature about the Folk Nash theorems for repeated games [5, 14]) and combine them
with recent developments in the study of strategic reasoning in logic and computer science:
a memoryful extension of ATL∗ called mATL∗ [13]. Our results also indicate why an ATL∗
specification that allows one to reason about the existence of Nash equilibrium may be so
hard to find: it can be obtained via a non-elementary reduction from mATL∗, which was
recently shown to be as expressive as ATL∗, a result that partly builds on quite sophisticated
automata-theoretic techniques developed for a memoryful extension of CTL∗ [7].

Based on what is currently known about some of the computational properties of mATL∗,
(for instance, 2EXPTIME satisfiability, synthesis, and model checking problems as well as a
non-elementary reduction to ATL∗), we are able to obtain a number of subsequent results.
We also studied the two important special cases of two-player games and sequential games.
In the latter setting, we show that the existence of Nash equilibria can be expressed in
m−ATL∗ [13], a (memoryful) temporal logic that is known to be strictly weaker than ATL∗,
which improves previous results in the literature [3, 9] and shows that concurrent behaviour,
even in the two-player case, appears to complicate matters considerably.

Moreover, given the translation from mATL∗ to ATL∗, we show that Nash equilibrium
can be realised with respect to finite-memory strategies [15], which in turn also answers a
question about the nature of Nash equilibrium strategy profiles and improves other results in
the literature [12]. Finally, we extend all of our main findings to strong Nash equilibrium, a
game-theoretic solution concept designed to deal with coalitions of players in a game – a
very natural situation in concurrent and multi-agent scenarios. Interestingly, the results for
this more complex game-theoretic setting are obtained using virtually the same techniques
as in the case for Nash equilibria, where only single-player deviations are considered.

Finally, the table below summarises some of the results mentioned before, i.e., the logics
that can be used to study NE satisfiability and NE model checking for each type of games.

2P-SG 2P-CG MP-SG MP-CG
NE satisfiability m−ATL∗ ATL∗ m−ATL∗ ATL∗
NE model checking m−ATL∗ SL m−ATL∗ SL

Notation: 2P (2-player), MP (multi-player), SG (sequential game), CG (concurrent game).

Structure of the paper. Section 2 introduces the models, logics, and games that we will
consider throughout the paper. Section 3 presents the semantic characterisation of equilibria
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in terms of punishment strategies, and Section 4 defines Moore games with deterministic past.
Section 5 shows how to construct an mATL∗ specification of the semantic characterisation of
equilibria given before in order to solve NE satisfiability, and Section 6 studies the special
cases of sequential games and two-player games. Section 8 concludes the paper.

2 Preliminaries

Sets. Given any set S = {s, q, r, . . .}, we use S∗, Sω, and S+ for, respectively, the sets of
finite, infinite, and non-empty finite sequences of elements in S. If w1 = s′s′′ . . . sk ∈ S∗ and
w2 is any other (finite or infinite) sequence, we write w1w2 for their concatenation s′s′′ . . . skw2.
For Q ⊆ S, we write S−Q for S \Q and S−i if Q = {i}. We extend this notation to tuples
u = (s1, . . . , sk, . . . , sn) in S1 × . . .× Sn, and write u−k for (s1, . . . , sk−1, sk+1, . . . , sn), and
similarly for sets of elements, that is, by u−Q we mean u without each sk, for k ∈ Q. Given
a sequence w, we write w[t] for the element in position t+ 1 in the sequence; for instance,
w[0] is the first element of w. We also write w[l . . .m] for the sequence w[l] . . . w[m], and
w[l . . .m) for w[l] . . . w[m− 1]; if m = 0, we let w[l . . .m) be the empty sequence, denoted ε.

Games. Let Ag = {1, . . . , n} be a set of players and St a set of states. For each player i ∈ Ag
we have a set of actions Aci and with every state s and player i we associate a set Aci(s) ⊆ Aci
of actions that i can perform at s. We write Ac for

⋃
i∈Ag Aci and assume that

⋃
i∈Ag Aci

is a partition of Ac. We call a profile of actions (a1, . . . , an) ∈ Ac1 × · · · × Acn a direction,
and denote it by d. We let D be the set of directions – also called decisions – with respect
to Ac, and write di for the ai of d that is in Aci. Furthermore, we have a (deterministic)
transition function δ : St × Ac1 × · · · × Acn → St, which indicates the system transitions
when d = (a1, . . . , an) is performed at a state s. A state s′ is accessible from another
state s whenever there is some d = (a1, . . . , an) such that δ(s, a1, . . . , an) = s′. A run
is an infinite sequence ρ = s0s1s2 . . . such that for every t ≥ 0 we have that st+1 is
accessible from st. The set of runs is denoted by R. By a (finite) history we mean a finite
sequence π = s0s1s2 . . . sk of accessible states. By prefix(ρ) we denote the set of finite prefixes
of ρ, i.e., prefix(ρ) = {π ∈ St∗ : ρ = πρ′ for some ρ′ ∈ Stω}. Given π ∈ St+, by last(π) we
denote the last state in π, i.e., if π = π′s, then last(π) = s. By s0 we denote the initial state.

A strategy for a player i is a function fi : St+ → Aci such that fi(πs) ∈ Aci(s) for every
π ∈ St∗ and s ∈ St. That is, a strategy for a player i specifies for every finite history π
an action available to i in last(π). The set of strategies for player i is denoted by Fi. A
strategy profile is a tuple ~f = (f1, . . . , fn) in F1 × · · · × Fn. Observe that given a state s
and a transition function δ : St × Ac1 × · · · × Acn → St, each strategy profile ~f defines a
unique run ρ where ρ[0] = s and ρ[t+ 1] = δ(ρ[t], f1(ρ[0 . . . t]), . . . , fn(ρ[0 . . . t])), for all t ≥ 0.
We write ρ(~f(s)) for such a run, and simply ρ(~f) if s = s0. Furthermore, each player i is
assumed to have an associated dichotomous preference relation over runs, which is modelled
as a subset Γi of the set of runs R. Intuitively, a player i strictly prefers all runs in Γi to
those that are not in Γi and is indifferent otherwise. Thus, Γi represents the goal or objective
of player i. We also write ρ %i ρ′ to indicate that player i weakly prefers run ρ to ρ′ and
ρ �i ρ′ for player i strictly preferring ρ to ρ′, i.e., if ρ %i ρ′ but not ρ′ %i ρ.

Now we are in a position to define the concept of a Nash equilibrium strategy profile as a
strategy profile ~f = (f1, . . . , fn) such that for all players i and all strategies gi in Fi,

ρ(~f) %i ρ(~f−i, gi).

We say that a run ρ is sustained by a Nash equilibrium strategy profile if there is some Nash
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equilibrium strategy profile ~f with ρ = ρ(~f). Then, we know that

ρ(~f−i, gi) ∈ Γi implies ρ(~f) ∈ Γi.

A game is played by each player i selecting a strategy fi with the aim that the induced
run ρ(~f) belongs to its goal/objective set Γi. If ρ(~f) ∈ Γi we say that i has its goal satisfied
or achieves its objective. Otherwise, we say that i does not have its goal satisfied.

Memoryful Alternating Temporal Logics

Memoryful ATL∗ (mATL∗ [13]) is an extension of ATL∗ that allows for memoryful reasoning.
At the syntactic level, mATL∗ simply adds a propositional variable present to the standard
ATL∗ language. More specifically, given a set of atomic propositions AP and a set of
agents Ag, the language of mATL∗ formulae is given by the following grammar:

φ ::= present | p | ¬φ | φ ∨ φ | Xφ | φUφ | 〈〈C〉〉φ

such that p ∈ AP and C ⊆ Ag, and the formulae present, X, and U are in the scope of 〈〈C〉〉.
We use the following abbreviations: we write > for p ∨ ¬p, ⊥ for ¬>, Fφ for >Uφ, Gφ for
¬F¬φ, Eφ for 〈〈Ag〉〉φ, Aφ for 〈〈∅〉〉φ, and [[C]]φ for ¬ 〈〈C〉〉 ¬φ; we also use the conventional
abbreviations for the other propositional logic operators. We write φ ∈ L(AP,Ag) if φ is an
mATL∗ formula in this language. When either AP or Ag, or both, are known, we may omit
them. With AP′ ⊆ AP, we may write φ|AP′ if φ ∈ L(AP′,Ag) for some set of agents Ag.

The denotation of mATL∗ formulae is given by concurrent game structures. We let a tuple
M = (AP,Ag,Ac,St, s0, λ, δ) be a concurrent game structure (CGS), where λ : St → 2AP

is a labelling function, and all other components of M are as defined before. The size
of M is defined to be |St| × |Ac||Ag|. Moreover, in particular, we write R∗s and Rωs for,
respectively, the finite and infinite runs of M that start at state s. We simply write R∗ and
Rω if s = s0. Moreover, we will write ~fC for (fi, . . . , fk), with C = {i, . . . , k} ⊆ Ag, that is,
a joint strategy for the players in C. Similarly, we will write ~g−C for a joint strategy for
the players in Ag−C . For simplicity, we will assume that all strategies are defined on all
finite runs of M , and hence at all states. We define the set of ~fC-runs from state s to be
{ρ′ ∈ Rωs : ρ′ = ρ(~fC(s), ~g−C(s)) for some joint strategy ~g−C for Ag−C}.

We can now define the semantics of mATL∗ formulae based on the rules given below. Let
M be a concurrent game structure, ρ ∈ Rω be an infinite run, π ∈ R∗ be a finite run, and
t ∈ N be a temporal index. The semantics of mATL∗ is defined by the following rules:

ρ, t, π |=M present iff ρ[0 . . . t] = π.
ρ, t, π |=M p iff p ∈ λ(ρ[t]).
ρ, t, π |=M ¬φ iff ρ, t, π |=M φ does not hold.
ρ, t, π |=M φ ∨ φ′ iff ρ, t, π |=M φ or ρ, t, π |=M φ′.
ρ, t, π |=M Xφ iff ρ, t+ 1, π |=M φ.
ρ, t, π |=M φUφ′ iff ρ, t′, π |=M φ′ , for some t′ ≥ t, and

ρ, k, π |=M φ , for all t ≤ k < t′.
ρ, t, π |=M 〈〈C〉〉φ iff there is some ~fC such that for all ~fC-runs ρ′ from state ρ[t],

it is the case that ρ[0 . . . t)ρ′, 0, ρ[0 . . . t] |=M φ holds.

We say that M is a model of φ (denoted M |= φ) if ρ, 0, s0 |=M φ for some ρ ∈ Rω. We
also say that φ is satisfiable ifM |= φ for some CGSM . Moreover, we say that φ is equivalent
to φ′ if M |= φ⇐⇒M |= φ′ for all M . Finally, the size of φ is its number of subformulae.

The interpretation of the tense and boolean operators is, essentially, as for LTL. The
difference is with respect to the present proposition and the agent/strategy quantifier 〈〈C〉〉.
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On the one hand, the atomic proposition present holds whenever the history of the current
run under consideration (i.e., the finite run ρ[0 . . . t]) is the same as the history of the run
leading to the state where present last was true – that is, π. On the other hand, the agent
quantifier does three important things: firstly, it considers the runs ρ′ that are consistent
with ~fC , but adds to them the history of play seen so far – thus, obtaining the run ρ[0 . . . t)ρ′;
secondly, it resets the evaluation of temporal formulae by letting the temporal index t be 0;
and, thirdly, it resets the history with respect to which the atomic proposition present will
now hold – then, letting π be ρ[0 . . . t]. A few examples are in order (also see, e.g., [13]).

Examples. Because the quantifiers of mATL∗ reset the temporal index t, CTL∗ formulae,
such as E F(p =⇒ A G q), cannot be interpreted in the same way in mATL∗: the subfor-
mula G q will be evaluated from t = 0 regardless of the value of t when p holds. There is a
standard way to remedy this problem. Any subformula starting with a path quantifier can
be evaluated “in the usual CTL∗ sense” in the following way: M |=CTL∗ Aφ if and only if
M |= A F(present ∧ φ); and similarly for E. Therefore, in order to be interpreted as a CTL∗
expression, the formula above can be rewritten as E F(p =⇒ A F(present ∧G q)).

But, of course, mATL∗ is interesting because it can express, in a relatively simple way,
properties that refer both to the past and to the future within a strategic environment. For
instance, suppose an agent i has two objectives: satisfy LTL goal formula γ1 and if i sees
proposition p satisfied, then try to satisfy LTL goal formula γ2 too. What is important is
that both γ1 and γ2 are “goals” that were set from the beginning of the computation, not
from the point where, potentially, proposition p is encountered. Expressing that i can ensure
that its goals are satisfied can be done in the following way: 〈〈i〉〉(γ1 ∧G(p =⇒ 〈〈i〉〉 γ2)).
Then, player i must be more careful when playing the game. It has to play in such a way
that if p is seen while trying to satisfy γ1, then it is in a position to satisfy γ2 too. Seen as
a formula in ATL∗ instead, the situation is rather different: while γ1 has to hold from the
beginning of the computation, γ2 has to hold from the moment proposition p is seen.

Logical and Computational Properties. Using the abbreviations E and A and the atomic
proposition present as explained in the first example, it can be shown that CTL∗ is a sublogic
of mATL∗. Thus, CTL and LTL are also sublogics of mATL∗. Moreover, none of these
logics is as powerful as mATL∗, as might be expected. What is surprising is that, in fact,
ATL∗ is as expressive as mATL∗. However, the translation from mATL∗ to ATL∗ formulae
is non-elementary [13]. An interesting case is the fragment of mATL∗ without the present
proposition. Such a fragment, called m−ATL∗ is not as expressive as ATL∗, and incomparable
with CTL/CTL∗. The proof is simple and has to do with the fact that present is needed for
mATL∗ to be able to capture “memoryless” properties such as those given by CTL∗ (cf. the
first example above and [13]). Letting L1 < L2 mean that logic L1 is strictly less expressive
than logic L2, and L1 ≡ L2 that L1 is as expressive as L2, we have the following:

m−ATL < mATL∗ ≡ ATL∗ < {SL, CL, ATLsc, QCTL∗}.

With respect to the complexity of mATL∗, it is known that it has model checking,
satisfiability and synthesis problems in 2EXPTIME, thus no harder than ATL∗. These
results sharply contrast with those for other logics such as Strategy Logic, ATL with
strategy contexts, or Coordination Logic, in which satisfiability and synthesis are undecidable
and model checking is non-elementary [4, 9, 11]. The complexity properties of logics for
strategic reasoning present a substantial challenge for practical purposes. In fact, a very
simple fragment of Strategy Logic – where Nash equilibrium can be specified – may require
non-behavioural strategies as models [12], which is not the case in ATL∗ and mATL∗.

CONCUR’15



274 Expressiveness and Complexity Results for Strategic Reasoning

Games with Temporal Logic Goals

Finally, we are in a position to define a game with temporal logic goals. Given a concurrent
game structure M = (AP,Ag,Ac,St, s0, λ, δ) and a set of temporal logic formulae (γi)i∈Ag,
a tuple G = (M, (γi)i∈Ag) is a game with temporal logic goals. We say that G is a game with
LTL goals if each γi ∈ L(AP) is an LTL formula, and simply call G a game. The idea is that
each γi ∈ L(AP) is a formula that succinctly represents the goal of player i, that is, γi is a
logical representation of Γi. Then, we have that a run ρ satisfies goal γi if and only if ρ ∈ Γi.

3 From Winning Strategies to Nash Equilibria

In order to characterise the existence of Nash equilibrium in terms of winning strategies, we
will introduce the concept of punishment strategies. These are a type of winning strategies
that a group of players may want to use against a player j who wants to refrain from following
a given sequence of actions – a situation that is commonly known as a deviation by j.

A finite history π is a deviation from a run ρ if π = π′s for some state s ∈ St such that
π′ ∈ prefix(ρ) and π /∈ prefix(ρ). We also use dev(ρ) to refer to the set of deviations from ρ.
A finite history π is a deviation from a set R if π ∈ dev(ρ) for some ρ ∈ R and π ∈ prefix(ρ′)
for no ρ′ ∈ R. The set of deviations from R is denoted by dev(R).

If a run ρ is intended to be sustained by a Nash equilibrium strategy profile ~f , punishment
may be successful deterring agents from adopting deviating strategies – strategies that do not
comply with ρ. However, if a deviation is observed, it is generally not necessary to punish all
players but rather only those that the deviation can be attributed to in order to prevent such
undesirable behaviour. We thus introduce the following formal concept of attributability.

I Definition 1 (Attributability). Let ρ be a run and π ∈ dev(ρ) a deviation from ρ. Then,
the deviation π is attributable to a set C of players if there are profiles ~f = (f1, . . . , fn)
and ~g = (g1, . . . , gn) such that ρ(~f) = ρ and π ∈ prefix(ρ(~f−C , ~gC)). We also say that π is
attributable to j for π being attributable to C = {j}. A deviation π is said to be individual
if π is attributable to some player j. Moreover, a deviation π from ρ is said to be uniquely
attributable to C if C is the only set that the deviation π can be attributed to. A deviation
that is uniquely attributable to a player j (a set C) is called a j-deviation (a C-deviation).

The necessity of the concept of attributability is rather clear: in order to define punishable
players and punishment strategies the least that one needs to know is who should be punished
once a deviation arises. Some equally important information in order to define punishment
strategies is the history of play so far, since players’ goals are defined with respect to the
beginning of the game. Then, at every stage of the game one must be able to “remember”
the history of play so far – that is, we need some memoryful power within the game. In
order to formalise the above notions and, in particular, to make precise how we will deal
with memoryful reasoning later on, let us introduce some notations first.

Given a finite history π, each strategy profile ~f induces a unique run ρ(~f, π) = s0s1s2 . . .

defined inductively as follows, with t ≥ 0,

st =


s0 if t = 0 and π = ε,

δ(last(π), f1(π), . . . , fn(π)) if t = 0 and π 6= ε,
δ(st−1, f1(s0 . . . st−1), . . . , fn(s0 . . . st−1)) otherwise.

We omit ε in ρ(~f, ε) and simply write ρ(~f). Then, π can be seen as the history of play with
which a strategy or a profile of strategies can be made to agree, so that it is taken into
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account when playing beyond π. We are now in a position to formulate the central concept
of this section, namely that of a player, or a set of players, being punishable.

I Definition 2 (Punishable players, punishment strategies). A set C of players is punishable at
run ρ if there is a profile ~fC = (fC1 , . . . , fCn ) – also called a profile of punishment strategies
against C – such that for every profile of strategies ~gC of C and every deviation π from ρ

that is uniquely attributable to C we have, for some j ∈ C,

πρ((~fC−C , ~gC), π) /∈ Γj .

One thing to observe in this definition is that a profile of punishment strategies may punish
different players at different C-deviations. Moreover, as we will see, for a set C of players
to be punishable, it is sufficient to punish only one player in C at each C-deviation. More
importantly, Definition 2 shows the strong link between two important components: firstly,
the need to consider/remember π and, secondly, the existence of a winning strategy ~fC−C for
the set of players not in C against the goal of at least one of the players in C.

Thus, a careful analysis of the definition of punishability we proposed shows the following
facts. That if one is interested in that every player j whose goal is not satisfied by ρ must be
punishable, then one has to guarantee, in particular, that at every stage of the game those
in the set of players in Ag−j (i) must have a winning strategy against the goal of player j,
and such a winning strategy (ii) must agree with ρ up to the time point when j deviates.
These two conditions for a player j to be punishable are key to answering the next question:

When can a player j be guaranteed to be punishable
so that a desired Nash equilibrium can be rationally sustained?

Formally, punishability with respect to a desired run ρ can be fully characterised in terms
of a number of winning strategies against the goal of j, as shown by the following lemma.

I Lemma 3 (Punishability – semantic characterisation). Player j is punishable at run ρ

if and only if for every deviation π from ρ that is uniquely attributable to j there is a
profile ~fπ = (fπ1 , . . . , fπn ) such that for every strategy gj of j we have that

π ρ((~fπ−j , gj), π) /∈ Γj.

The above lemma supports the claim that punishability can be understood as a simple
combination of winning strategies (given by ~fπ−j to achieve ¬γj) with memory (given by π).
Because the concept of punishability will be central to the characterisation of the existence of
Nash equilibrium strategy profiles, the above claim about winning strategies and memoryful
reasoning can be naturally extended to the more complex concept of Nash equilibria.

Indeed, the manipulation of the three main concepts introduced in this section, namely
deviations, attributability, and punishment, can be used to provide a semantic characterisation
of the fundamental concept of Nash equilibrium. More importantly, they can be used to show
that Nash equilibria can be characterised by the existence of punishment strategies, which,
by definition, are winning strategies against players to which deviations can be attributed.
Formally, the following result can be shown.

I Lemma 4 (Nash equilibrium – semantic characterisation). Let ρ be a run and assume that
all individual deviations from ρ are uniquely attributable. Then, ρ is sustained by a Nash
equilibrium strategy profile if and only if all players j with ρ 6∈ Γj are punishable at ρ.
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Lemma 4 shows that, provided that every j-deviation can be uniquely attributable to
player j, the following condition is both necessary and sufficient for the existence of a Nash
equilibrium ρ: that every player j whose goal is not satisfied by ρ must be punishable.

The necessary and sufficient conditions for the existence of Nash equilibria are both
formulated in terms of our notion of punishability (Lemma 4). To be able to punish a
deviating player, however, a coalition also has to keep track of the run that leads to the
deviation. This idea could informally be summarised as follows:

Nash equilibrium = Punishability + Memory

The concept of punishability is closely related to that of a winning strategy. Thus, the above
results prepare the ground for the characterisation of Nash equilibrium in temporal logics
like mATL∗ that can reason about both winning strategies and memoryfulness.

4 Model Transformations

In order to logically describe the semantic characterisation of Nash equilibria presented in
Section 3, we first define two structure-preserving transformations on CGSs, which can be
used to map any CGS into another CGS in a desired canonical form. The first map is used to
transform a CGS into a CGS with deterministic past. The second map is used to transform a
CGS M into a CGS M ′ where all information about players’ choices in M is explicitly given
via labels in the states of M ′. This transformation is similar to the well known translation
used to obtain Moore from Mealy machines. For this reason, we call such a translation a
Moore transformation, and the resulting CGS M ′ a Moore CGS.

Let us now formally define the class of CGS with deterministic past. A CGS M is said to
be a CGS with deterministic past if whenever δ(s′, d′) = s and δ(s′′, d′′) = s then d′ = d′′.
The first map above mentioned, namely detp :M→M, called a deterministic-past map,
transforms a CGSM into a CGSM ′ which can be shown to be a CGS with deterministic past.
The map detp is defined as follows. Given M ∈ M, where M = (AP,Ag,Ac,St, s0, λ, δ),
the structure detp(M) is defined to be the tuple (AP,Ag,Ac,St′, q0, λ′, δ′) such that

St′ = {sd : s ∈ St & d ∈ D}, and q0 = s0
d for any d ∈ D;

λ′(sd) = λ(s), for all d ∈ D; and δ′(sd, d′) = s′d′ if and only if δ(s, d′) = s′, for all d ∈ D;
where sd is an abbreviation for the pair (s, d) and D is the set of directions/decisions.

I Lemma 5 (Deterministic past). Let M be a CGS and detp be a deterministic-past map.
Then detp(M) is a CGS with deterministic past of size O(|D| × |M |).

The second map, namely moore :M→M, for consistency called aMoore map, is defined
as follows. Given M ∈ M, with M = (AP,Ag,Ac,St, s0, λ, δ), the structure moore(M),
called a Moore CGS, is defined to be the tuple (AP′,Ag,Ac,St, s0, λ′, δ) such that

AP′ = AP ]APi ]APo, where
APi = {ǎxi : i ∈ Ag & x ∈ Aci} and APo = {âxi : i ∈ Ag & x ∈ Aci};
if δ(s, d) = s′, with d = (x1, . . . , yn), then there are propositions ǎx1 , . . . , ǎyn ∈ APi and
âx1 , . . . , â

y
n ∈ APo, such that {ǎx1 , . . . , ǎyn} ⊆ λ′(s′) ∩APi and {âx1 , . . . , âyn} ⊆ λ′(s) ∩APo.

I Lemma 6 (Moore CGS). Let M be a CGS and moore be a Moore map. Then moore(M)
is a Moore CGS of size O(|M |).

Composing these two maps one can obtain, from a CGS M = (AP,Ag,Ac,St, s0, λ, δ),
a CGS M ′′ = (AP ] APi ] APo,Ag,Ac,St′, q0, λ′′, δ′) of size polynomial in |M | which
preserves all mATL∗ properties that can be defined by formulae in L(AP), provided that
both AP ∩APi = ∅ and AP ∩APo = ∅ – which is, by definition, ensured by both maps.
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I Lemma 7. Let M = (AP,Ag,Ac,St, s0, λ, δ) be a CGS and M ′ = moore(detp(M)).
Then, M ′ is a Moore CGS with deterministic past of size O(|D| × |M |) which is such that
M |= φ if and only if M ′|AP |= φ, for all formulae φ ∈ L(AP).

Informally, Lemma 7 relies on the fact that, because of the definition of δ′ in detp, the
branching structure of every s of M is preserved in each sd ∈ {sd : d ∈ D} of M ′|AP. In
particular, note that, for any given M ∈ M, the map detp(M) simply makes up to |D|
(bisimilar) copies of each state of M where all players’ choices are preserved in each sd.
Moreover, for any given M ∈M, the structures M and moore(M)|AP are isomorphic. Also,
since both detp and moore are total maps on CGSs, it can easily be shown from the above
lemmas the following result with respect to the properties that can be expressed in mATL∗.

I Corollary 8 (Model completeness). For every φ ∈ L(AP), it is the case that φ is satisfiable
if and only if there is a Moore CGS with deterministic past model M such that M |= φ.

5 Nash Equilibria in Memoryful Logical Form

We now show that, up to bisimilarity, the concepts introduced in Section 3 can be given a
logical characterisation in mATL∗. Without much further introduction, we first present an
mATL∗ formula that can be used to reason about Nash equilibria, and then describe how
each part of the specification relates to the conditions given in Section 3. Some notation first.

Given a set of players W ⊆ Ag, a set of actions Ac =
⋃
i∈Ag Aci for such players,

and a set of atomic propositions AP, we write L for Ag \W , and APi =
⋃
i∈Ag APii and

APo =
⋃
i∈Ag APoi for two sets of atomic propositions constructed based on Ac as follows:

x ∈ Aci ⇐⇒ ǎxi ∈ APii ⇐⇒ âxi ∈ APoi,

such that AP ]APi ]APo is a set we denote by AP′. Then, the formula NormForm, defined
below, logically describes the labelling pattern found in the class of CGSs that satisfy the
conditions to be a Moore CGS with deterministic past, just as we studied them in Section 4:

NormForm = A G
∧
i∈Ag

((∨
ǎx

i
∈APi ǎ

x
i

)
∧
∧
ǎx

i
∈APii

(
ǎxi =⇒ (

∧
ǎy

i
∈APii\{ǎx

i
} ¬ǎ

y
i )
)
∧∧

âx
i
∈APoi

(
âxi ⇐⇒ E F(present ∧X ǎxi )

))
.

Then, the mATL∗ formula φNE below is satisfiable iff there is a Moore with deterministic
past CGS M = (AP,Ag,Ac,St, s0, λ, δ) such that G = (M, (γi)i∈Ag) has a Nash equilibrium:

φNE =
(

E
∨

W⊆Ag

(
NEGoal(W ) ∧ AllPunishable(L)

))
∧ NormForm

such that
NEGoal(W ) =

∧
i∈W

γi ∧
∧
j∈L
¬γj

and

AllPunishable(L) = G
∧

d∈Ac1×...×Acn

(
InRun(d) =⇒

∧
j∈L

A Punishable(j, d)
)

where
InRun(d) =

∧
i∈Ag

X ǎdi
i
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and

Punishable(j, d) = F
(

present ∧X
(
AttDev(j, d) =⇒ Punish(j)

))
with

AttDev(j, d) =
( ∧
i∈Ag−j

ǎdi
i

)
∧ ¬ǎdj

j and Punish(j) = 〈〈Ag−j〉〉 ¬γj

Formula φNE simply describes the conditions given by Lemmas 3 and 4 to characterise
the existence of Nash equilibria within the canonical class of game models given by the family
of Moore CGSs with deterministic past. Let us now describe each formula in more detail.

The first line of NormForm indicates that every state must be labelled by one, and only
one, profile of players’ choices in APi (deterministic past); the second line, indicates that
every player’s choice available at some state is recorded in such a state (Moore). Note that
because in mATL∗ path quantifiers reset the present, the CTL formula E X ǎxi must be
written as E F(present ∧X ǎxi ) – a standard mechanism to interpret formulae in the present.

The rest of the specification deals with Lemmas 3 and 4. It first indicates that for some
set of players W (the “winners”) there is a run that satisfies their goals, while the players not
in W (the “losers”) do not. That the goals are satisfied or not is checked by NEGoal. The
formula also indicates that all “losers” must be punishable, which is specified by AllPunishable.
This captures Lemma 4 provided that all individual deviations are uniquely attributable.

To check that all players in L are punishable in the same run and at every time point, we
first check the profile of players’ choices currently used (“d”). Because NormForm guarantees
deterministic past, formula InRun will be necessarily satisfied by exactly one d, which is used
to check, for every player in L, if it can be punished should it deviate. Since to consider a
potential deviation one has to use a universal path quantifier, then the semantics of the logic
dictates that the present is reset. This is the reason why the present formula must be used
in Punishable. Finally, we need to check two conditions. On the one hand, that an individual
deviation is uniquely attributable to j: formula AttDev does precisely that. On the other
hand, that if this was the case, then player j can be effectively punished: formula Punish does
exactly that. Note that memory is used in a different way for the first time; formula 〈〈Ag−j〉〉
resets the present again, but this time we do not use the present proposition. Instead, we
consider (the negation of) player j’s goal from the beginning – i.e., it is evaluated from the
first time point, not from the present. Then, with respect to Lemma 3, formula 〈〈Ag−j〉〉
represents ~fπ−j , while π is being naturally captured by the semantics of the logic.

Formally, appealing to Lemmas 3 and 4, the following result can be shown:

I Theorem 9. Let (γi)i∈Ag, with each γi ∈ L(AP), be the goals of a set of players Ag with
action set Ac =

⊎
i∈Ag Aci. Then, the formula φNE constructed from (AP,Ag,Ac, (γi)i∈Ag)

is satisfiable iff there is a Moore CGS with deterministic past M = (AP,Ag,Ac,St, s0, λ, δ)
such that the game G = (M, (γi)i∈Ag) has a Nash equilibrium.

Because ATL∗ is as expressive as mATL∗ – there is a non-elementary translation from
mATL∗ to ATL∗ – the following result easily follows from Theorem 9.

I Corollary 10. NE satisfiability in multi-player non-zero-sum perfect-information concurrent
games can be characterised in ATL∗.

Some complexity results follow from Theorem 9. Since satisfiability and model checking
for mATL∗ are 2EXPTIME, it follows that, given a tuple (AP,Ag,Ac, (γi)i∈Ag), deciding
whether there is a CGS M = (AP,Ag,Ac,St, s0, λ, δ) such that the game G = (M, (γi)i∈Ag)
has a Nash equilibrium – the problem we call NE satisfiability – is a 2EXPTIME problem.
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The other important decision problem, namely checking the existence of a Nash equilibrium
over a given CGS M – the problem we call NE model checking – is already known to be
2EXPTIME and solved, for instance, using the Boolean goal fragment of SL. Then, we focus
on NE satisfiability instead. Formally, the following complexity result can be shown.

I Corollary 11. NE satisfiability is 2EXPTIME-complete.

Regarding NE model checking, we would like to note that because φNE is an ATL∗
formula, it cannot distinguish between bisimilar models. Then, in order to do NE model
checking with φNE, one has to necessarily ensure that the game being analysed already has
deterministic past – for instance, such as the games studied in [5] – so that the map detp,
which introduces bisimilar states to the model to be checked, need not be used.

In order to improve, or simplify, the results obtained in this section, in the next section
we will study special cases where the problems under consideration may be less complex. In
particular, we will consider two interesting, and frequently found, scenarios in the games
literature: sequential games (sometimes also called turn-based games) and two-player games.

6 Special Cases

Sequential Games

The fact that in a sequential (turn-based) game only one player makes a non-trivial move
greatly simplifies the way to reason about Nash equilibria using mATL∗. In fact, we can
express the existence of a Nash equilibrium in the logic m−ATL∗ (mATL∗ without present),
which is strictly weaker than mATL∗. The formula to express Nash equilibria in m−ATL∗ is:

φSG
NE = E

∧
j∈Ag

(
¬γj =⇒ G 〈〈Ag−j〉〉 ¬γj

)
from which, again using Lemmas 3 and 4, the next expressivity result can be shown.

I Theorem 12. Let (γi)i∈Ag, with each γi ∈ L(AP), be the goals of a set of players Ag. Then,
the m−ATL∗ formula φSG

NE constructed from (AP,Ag, (γi)i∈Ag) is satisfiable in a sequential
game if and only if there is some CGSM = (AP,Ag,Ac,St, s0, λ, δ) such that the multi-player
non-zero-sum sequential game G = (M, (γi)i∈Ag) has a Nash equilibrium.

In this case, one can see that the formula G 〈〈Ag−j〉〉 ¬γj is almost an explicit logical
description of π ρ((~fπ−j , gj), π) /∈ Γj , from Lemma 3, as the expression must hold for every π.
There are two reasons why the expression for sequential games is so much simpler than the
general case: firstly, only one player can deviate at each state – thus any deviation is uniquely
attributable – and, secondly, winning (punishment) strategies can be defined directly on the
Nash equilibrium run being followed, rather than on paths taken by deviations.

Two-player Games

The complexity of both checking the existence (NE satisfiability) and verifying the satisfaction
(NE model checking) of Nash equilibria cannot be improved in the two-player case. However,
an explicit and conceptually simple algorithm for NE satisfiability can be defined in the
two-player case, which can be solved using CTL∗ synthesis, as usual, by associating the
action set Ac = Ac1 ] Ac2 with the set of atomic propositions AP. We write SAT(ψ) for
LTL satisfiability and SYN(ψ, In, Out) for CTL∗ synthesis, where player 1 plays first trying
to realise ψ, controls In, and with In and Out the sets of input and output variables; cf. [5].
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TWO-NE-SATISFIABILITY(AP1,AP2, γ1, γ2)
1. if SAT(γ1 ∧ γ2) return “yes”
2. if SYN(γ1, AP1, AP2) or SYN(γ2, AP2, AP1) return “yes”
3. if SYN(¬γ2, AP1, AP2) and SYN(¬γ1, AP2, AP1) return “yes”
4. if SYN(E γ1 ∧A¬γ2, AP1, AP2) or SYN(E γ2 ∧A¬γ1, AP2, AP1) return “yes”
5. return “no”

The above algorithm, inspired by the results obtained in [6], suggests a simple and intuitive
mATL∗ characterisation of the NE satisfiability problem in two-player games:

φ2G
NE =

(
E(γ1 ∧ γ2)

)
∨
(
〈〈1〉〉 γ1 ∨ 〈〈2〉〉 γ2

)
∨
(
〈〈1〉〉 ¬γ2 ∧ 〈〈2〉〉 ¬γ1

)
∨
(

NormForm ∧
(

E
(
γ1 ∧ ¬γ2 ∧G

∧
p∈AP1

(X ǎp1 =⇒ [[2]] F(present ∧X(ǎp1 =⇒ 〈〈1〉〉 ¬γ2)))
)
∨

E
(
γ2 ∧ ¬γ1 ∧G

∧
p∈AP2

(X ǎp2 =⇒ [[1]] F(present ∧X(ǎp2 =⇒ 〈〈2〉〉 ¬γ1)))
) ))

.

That NE satisfiability for two-player turn-based games can be characterised in ATL∗ was
known [3]. Our result is instead in the concurrent setting. The specification requires present
and we do not see how to avoid it, which suggests that concurrency makes things harder.

I Theorem 13. NE satisfiability for two-player non-zero-sum concurrent games can be solved
using CTL∗ synthesis and characterised in ATL∗ using a translation from formula φ2G

NE.

7 Further Implications

Strong Nash Equilibrium

The solution concept we have focused so far, namely Nash equilibrium, assumes that deviations
are only possible by single players. In the concurrent and multi-agent world, however, it is
natural to assume that players may deviate in groups in order to achieve a common goal.
Such kind of behaviour is captured by the notion of strong Nash equilibrium where, informally,
a strategy profile is a strong Nash equilibrium whenever no coalition/group of players who do
not get their goals achieved can deviate in a beneficial way for all deviating players. Formally,
a strong Nash equilibrium strategy profile is a strategy profile ~f = (f1, . . . , fn) such that for
all groups C of players and all strategies gC in FC , for all j ∈ C we have ρ(~f) %j ρ(~f−C , gC).
We say that a run ρ can be sustained by a strong Nash equilibrium strategy profile if there is
some strong Nash equilibrium strategy profile ~f such that ρ = ρ(~f).

Our study of punishability in Section 3 can be extended to deviations by groups of
players, and therefore to strong Nash equilibrium. Similarly, the logical specification given in
Section 5 can also be easily modified to capture the new setting, in particular, by letting∧
C⊆L A Punishable(C, d) in AllPunishable, and re-defining AttDev and Punish as follows:

AttDev(C, d) =
( ∧
i∈Ag−C

ǎdi
i

)
∧
( ∧
j∈C
¬ǎdj

j

)
and Punish(C) = 〈〈Ag−C〉〉

∨
j∈C
¬γj .

We write φSNE for the characterisation in mATL∗ of satisfiability for strong Nash equilibrium.

I Theorem 14. Let (γi)i∈Ag, with each γi ∈ L(AP), be the goals of a set of players Ag with
action set Ac =

⊎
i∈Ag Aci. Then, the formula φSNE constructed from (AP,Ag,Ac, (γi)i∈Ag)

is satisfiable iff there is a Moore CGS with deterministic past M = (AP,Ag,Ac,St, s0, λ, δ)
such that the game G = (M, (γi)i∈Ag) has a strong Nash equilibrium.
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We would like to note that even though φSNE is more complex than φNE, the latter
formula can still characterise the satisfiability problem for strong Nash equilibrium in the two
simpler settings we studied in the previous section. Firstly, note that in the sequential case,
trivially, the same specification works for both Nash equilibrium and strong Nash equilibrium
since only one player can deviate at a time. Likewise, with respect to two-player games the
same specification also works for both solution concepts since the only deviation for a group
of players greater than one, is to a run that satisfies all players’ goals, which, by definition, is
a Nash equilibrium. Formally, we have the following expressivity result.

I Theorem 15. Formula φNE characterises the satisfiability problems for both Nash and
strong Nash equilibria in two-player concurrent games and multi-player sequential games.

Synthesis

Finally, we study the nature – memoryless, finite-memory, etc. – of the strategies in the
equilibrium strategy profiles discussed so far, should one intend to synthesise them. This has
been an open question for some time: because the logics known to be able to express equilibria
in multi-player games have an undecidable synthesis problem (and a non-elementary model
checking problem), strategy synthesis is not fully understood in the most general case. On
the contrary, in our setting the problem can be reduced to ATL∗ synthesis, which is known
to be solvable using (one-bit) finite-memory strategies [15]. Formally, we have:

I Corollary 16. Every (strong) Nash equilibrium can be realised using a (strong) Nash
equilibrium profile ~f = (f1, . . . , fn), where each fi is a finite-memory strategy.

8 Analysis

We have presented various expressivity and complexity results for the specification, com-
putation, and verification of (strong) Nash equilibria, as well as particular results for two
special scenarios, namely two-player games and sequential games. Our results build on a
novel approach: a semantic characterisation of equilibria based on winning strategies and
memoryful reasoning, which is amenable to a further temporal logic characterisation.

Our results suggest that a logic for strategic reasoning where memoryful reasoning and
attributability can be explicitly captured may ease the logical description of the existence of
Nash equilibria. Otherwise, having a model of games where deviations can be more easily
recognised should help when reasoning about Nash equilibria within a logical framework.
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Abstract
This paper studies safety, progress, and non-zeno properties of Communicating Timed Automata
(CTAs), which are timed automata (TA) extended with unbounded communication channels,
and presents a procedure to build timed global specifications from systems of CTAs. We define
safety and progress properties for CTAs by extending properties studied in communicating finite-
state machines to the timed setting. We then study non-zenoness for CTAs; our aim is to prevent
scenarios in which the participants have to execute an infinite number of actions in a finite amount
of time. We propose sound and decidable conditions for these properties, and demonstrate the
practicality of our approach with an implementation and experimental evaluations of our theory.
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1 Introduction

Meeting deadlines is part of our everyday life; this is also the case for distributed software
systems that have real-time constraints, such as e-business and financial systems, where
exchanges of agreements and data transmissions need to be completed within specified time-
frames. Guaranteeing that a single entity will finish its assigned task within an upcoming
deadline is a crucial requirement that is generally difficult to attain. It is even harder to ensure
that several, distributed, and interdependent entities will work together in a timely fashion to
meet each other’s deadlines. To model such real-time distributed behaviours, communicating
timed automata (CTAs) [17] have been introduced as an extension of communicating finite-
state machines (CFSMs) [9] with time constraints. A system of CTAs consists of several
automata that exchange messages through unbounded FIFO channels and must comply with
time constraints on emission/reception of messages. These two features (unbounded channels
and time) make CTAs difficult to verify, e.g., reachability is undecidable in general [12].

This paper tackles the following two shortcomings of the current state-of-the-art of CTAs.
First, to the best of our knowledge, safety and progress properties, such as absence of
deadlocks and unspecified reception (type) errors, which are standard in the literature on
CFSMs [10], and essential for distributed systems, have not been studied in the context
of CTAs. Moreover, customary properties for TAs such as time-divergence [2] and non-
zenoness [21, 7] (preventing that some participant’s only possible way forward is by firing
actions at increasingly short intervals of time) have not been investigated for CTAs.

Second, while global specifications such as message sequent charts (MSC) and choreograph-
ies [8, 16] are useful to model protocols from a global viewpoint, there has not been any work
to build global specifications from CTAs. The top-down approach [6] alone, which requires a
preexisting global specification, is not satisfactory in agile development life-cycles [23], in
refinement and reverse-engineering of existing systems, or to compose real-time distributed
components, possibly dynamically (see [18, 19, 14]).
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Figure 1 Scheduled Task Protocol (System Sst).

This work introduces classical properties of CFSMs and TAs to the world of CTAs,
and investigates the interplay between asynchronous communications through unbounded
channels and time constraints. We define the classes of CTAs that enjoy four properties –
safety, progress, non-zenoness, and eventual reception – and give a sound decision procedure
for checking whether a system of CTAs belongs to these classes. This procedure does
not rely on any other information than the CTAs themselves. Interestingly, a property
of CFSMs called multiparty compatibility (MC) [14], which characterises a sound and
complete correspondence with multiparty session types in the untimed setting [16], soundly
characterises safe CTAs and offers a basis for decidable decision procedures for progress and
non-zenoness in the timed setting. We give: (i) a sound characterisation for progress by
checking the satisfiability of first order logic formulae (thus verifiable by generic SMT solvers),
and (ii) a sound characterisation of non-zenoness by using a synchronous execution of CTAs.
Eventual reception follows from (i) and (ii). In addition, we present an algorithm to build a
timed global type [6] from CTAs, whose traces are equivalent to the original system. Thus,
if a system validates some of the properties discussed above, then the CTAs obtained by
projecting its timed global type onto its participants will preserve these properties.

The system Sst in Fig. 1 (Scheduled Task Protocol) will be used to illustrate our approach
throughout the paper. Sst consists of three participants (or machines): a user U, a worker
W, and an aggregator A, who exchange messages through unbounded FIFO buffers. Each
machine is equipped with one or more clocks, initially set to 0 and possibly reset during the
protocol. Time elapses at the same pace for all clocks, which is a standard assumption [17].
The protocol is as follows: U sends a task to W, W progressively sends intermediary data to A,
and finally A sends the aggregated result to U. The time constraints are:

U must send a task to W within one time unit, reset its clock x, and expects to receive the
result within 15 time units.
W must consume U’s task message at time 1, reset its clocks y and y′, and repeatedly
send data to A, waiting less than 1 time unit between each emission (modelled by the
constraint and reset on y). The overall iteration cannot last more than 10 time units
(modelled by the constraint on y′, which is not reset in the loop). When W has finished, it
must send a notification stop to A.
A must read intermediary data every 1 time unit, reset each time its clock z, and send
the overall result to U within 5 time units after receiving stop.

This example, albeit small, models a complex interaction where each machine has its own,
interdependent, deadlines; e.g., U relies on the other machines’ deadlines to receive the final
result within 15 time units. Note that the channel between W and A is unbounded: W can send to
A an arbitrary number of messages before A receives them, cf. WA!data(y < 1∧y′ < 10, y := 0).

Contribution and synopsis. In the rest of the paper, we give several conditions that
guarantee that no participant misses its deadlines, that every message sent is eventually
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received on time, and that no participant is forced to perform actions infinitely fast, i.e.,
forced into a zeno behaviour. In § 2 we recall basic definitions on CTAs. In § 3 we extend
the standard safety properties of CFSMs to the timed setting, and show that multiparty
compatibility (MC) is a sound condition for safety (Theorem 6). MC CTAs still allow
undesirable scenarios when, e.g., (1) the system gets stuck because of unmeetable deadlines,
(2) the system’s only possibility to meet its deadlines is through zeno behaviours, or (3)
sent messages are never received. We give sound and decidable conditions to rule out (1) in
§ 4 (Theorem 13) and (2-3) in § 5 (Theorem 17 and Theorem 19). In § 6, we discuss the
applications of our theory and its implementation. The work in [6] studies a correspondence
between timed local types (projected from timed global types) and CTAs, focusing on type-
checking timed π-calculus processes. The present work studies CTAs directly, i.e., without
relying on a priori global knowledge of the system, and gives more general conditions for
safety, progress, and non-zenoness. None of the previous works [18, 19, 14] on building
global specifications from local ones caters for time constraints. Unlike existing work on the
properties of CTAs (e.g., reachability) our results do not set limitations to channel size or to
network topologies [17, 12]. We discuss related work further in § 7. The proofs, additional
material, and the implementation are available online [3].

2 Communicating Timed Automata

We introduce communicating timed automata (CTA) following definitions from [14, 17]. Fix
a finite setP of participants (ranged over by p, q, r, s, etc.). Let A be a finite alphabet of
messages ranged over by a, b, etc. The set of finite words on A is denoted by A∗, ww′ is the
concatenation of w and w′, and ε is the empty word (overloaded on any alphabet). The set
of channels is C def= {pq

∣∣ p, q ∈P and p/=q}. Given a (finite) set of clocks X (ranged over by
x, y, etc.), the set of actions (ranged over by `) is ActX

def= C × {!, ?} × A× Φ(X )× 2X , and
the set of guards (ranged over by g) Φ(X ) is

g ::= true | x ≤ c | c ≤ x | ¬g | g1 ∧ g2

where c ranges over constants in Q≥0, and from which we derive the usual abbreviations.
We write fc(g) for the set of clocks in g and sr!a(g, λ) or sr?a(g, λ) for an element of ActX .
Action sr!a(g, λ) says that s sends a message a to r, provided that guard g is satisfied, and
resets the clocks in λ ⊆ X ; the dual receiving action is sr?a(g, λ). Given ` = sr!a(g, λ) or
` = sr?a(g, λ), we define: msg(`) = a, guard(`) = g, and reset(`) = λ. We define the subject
of an action: subj(pr!a(g, λ)) = subj(sp?a(g, λ)) def= p.

A communicating timed automaton, or machine, is a finite transition system given by a
tuple M = (Q, q0,X , δ) where Q is a finite set of states, q0 ∈ Q is the initial state, X is a set
of clocks, and δ ⊆ Q×ActX ×Q is a set of transitions. We write q `−⇁ q′ when (q, `, q′) ∈ δ.

A machine M = (Q, q0,X , δ) is deterministic if for all states q ∈ Q and all actions
`, `′ ∈ ActX , if (q, `, q′), (q, `′, q′′) ∈ δ and msg(`) = msg(`′), then q′ = q′′ and ` = `′. A
state q ∈ Q is: final if it has no outgoing transitions; sending (resp. receiving) if it is not
final and each of its outgoing transitions is of the form sr!a(g, λ) (resp. sr?a(g, λ)); and
mixed if it is neither final, sending, nor receiving. We say that q is directed if it contains
only sending/receiving actions to/from the same participant. Hereafter, we only consider
deterministic machines, whose states are directed and not mixed. These assumptions, adapted
from [14], ensure that a machine corresponds to a syntactic local session type [16]. We discuss
how to lift some of these restrictions in § 7.

A timed communicating system consists of a finite set of machines and a set of queues (one
for each channel) used for asynchronous message passing. Given a valuation ν : X → R≥0 of
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the clocks in X , ν |= g denotes that the guard g is satisfied by ν and λ(ν) denotes a valuation
where all clocks in λ are set to 0 (reset) and clocks not in λ keep their values in ν.

I Definition 1 (Timed communicating system). A timed communicating system (or system),
is a tuple S = (Mp)p∈P where each Mp = (Qp, q0p,Xp, δp) is a CTA and for all p/=q ∈
P : Xp ∩ Xq = ∅. A configuration of S is a triple s = (~q; ~w; ν) where: ~q = (qp)p∈P is the
control state and qp ∈ Qp is the local state of machine Mp; ~w = (wpq)pq∈C with wpq ∈ A∗ is
a vector of queues; ν :

⋃
p∈PXp → R≥0 is a clock valuation. The initial configuration of S

is s0 = (~q0; ~ε; ν0) with ~q0 = (q0p)p∈P, ~ε being the vector of empty queues, and ν0(x) = 0 for
each clock x ∈

⋃
p∈PXp. J

Hereafter, we fix a machine Mp = (Qp, q0p,Xp, δp) for each participant p ∈P (assuming
that ∀p ∈P : (q, `, q′) ∈ δp =⇒ subj(`) = p), and let S = (Mp)p∈P be the corresponding
system. We write X for

⋃
p∈PXp and ν + t for the valuation mapping each x ∈ X to ν(x) + t.

The definition below is from [17, Definition 1], omitting internal transitions.

I Definition 2 (Reachable configuration). Configuration s′ = (~q′; ~w′; ν′) is reachable from
configuration s = (~q; ~w; ν) by firing the transition α, written s α−→s′ (or s−→s′ when the label
is immaterial), if either:
1. (qs, sr!a(g, λ), q′s) ∈ δs and (a) q′p = qp for all p/=s; (b) w′sr = wsra and w′pq = wpq for all

pq/=sr; (c) ν′ = λ(ν); (d) α = sr!a(g, λ), and ν |= g;
2. (qr, sr?a(g, λ), q′r) ∈ δr and (a) q′p = qp for all p/=r; (b) wsr = aw′sr and w′pq = wpq for all

pq/=sr; (c) ν′ = λ(ν); (d) α = sr?a(g, λ) and ν |= g; or
3. α = t ∈ R≥0, ν′ = ν + t, w′pq = wpq for all pq ∈ C, and q′p = qp for all p ∈P.
We let ρ range over sequences of labels α1 · · ·αk and write −→∗ for the reflexive transitive
closure of −→. The reachability set of S is RS(S) def= {s

∣∣ s0 −→∗ s}. J

Condition (1) allows a machine s to put a message a on queue sr, if the time constraints
in g are satisfied by ν; dually, (2) allows r to consume a message from the queue, if g is
satisfied; and (3) models the elapsing of time (or a delay).

3 Safety in CTAs

This section defines safe CTAs and gives a sufficient condition for safety, called multiparty
compatibility (MC) [14], in the timed setting. Here, we present a new approach based
on synchronous transition systems (STS); the STS is also useful for defining progress and
non-zeno properties in § 4.

Let n range over vectors of local states; and e range over events, which are elements of
the set C ×A×Φ(X )× 2X ×Φ(X )× 2X , and write (s→r : a; gs, λs; gr, λr) for the event in
which s sends message a to r, with s (resp. r) having guard gs (resp. gr) and resets λs (resp.
λr). We introduce the synchronous transition system of S, following [19].

I Definition 3 (Synchronous transition system). The synchronous transition system of S,
written STS(S), is a tuple (N,n0, ↪−→, E) such that:

↪−→ is the relation defined as n e
↪−→ n′ with e = (s→ r : a; gs, λs; gr, λr) iff n = ~q, n′ =

~q ′, qs
sr!a(gs,λs)−−−−−−−⇁ q′s, qr

sr?a(gr,λr)−−−−−−−⇁ q′r, and ∀p ∈P\ {s, r} : qp = q′p (write ↪−→ when e is
unimportant and ↪−→∗ for the reflexive and transitive closure of ↪−→);
n0 = ~q0 is the initial node; N = {n

∣∣ n0↪−→∗n} is the (finite) set of nodes; and E =
{e
∣∣ ∃n, n′ ∈ N and n e

↪−→ n′} is the set of events.
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We write n1
e1···ek
↪−−→ nk+1, when, for some n2, . . . , nk ∈ N , n1

e1
↪−→ n2 · · ·nk

ek
↪−→ nk+1. Let ϕ range

over (possibly empty) sequences of events e1 · · · ek, and ε denote the empty sequence. J

The STS of the Scheduled Task Protocol (Sst) is given in Fig. 2; essentially, it models all
the synchronous executions of Sst. In the following, we fix STS(S) = (N,n0, ↪−→, E).

Given e = (s→r : a; gs, λs; gr, λr), we define sid(e) def= s, rid(e) def= r, and id(e) def= {s, r}.
The projection of e on p (written e�p) is given by: (s→r : a; gs, λs; gr, λr)�s= sr!a(gs, λs);
(s→r : a; gs, λs; gr, λr)�r= sr?a(gr, λr); and (s→r : a; gs, λs; gr, λr)�p= ε, if p /∈{s, r}. We
extend ϕ�p to sequences of events and, given n ∈ N , define ids(n) def=

⋃
{id(e)

∣∣ n↪−→∗ e
↪−→}.

I Definition 4 (Multiparty compatibility (MC)). System S is multiparty compatible if for all
p ∈P, for all q ∈ Qp, and for all n = ~q ∈ N , if qp = q, then
1. if q is a sending state, then ∀(q, `, q′) ∈ δp : ∃ϕ, ∃e ∈ E : n

ϕ·e
↪−→ ∧ e�p= ` ∧ ϕ�p= ε;

2. if q is a receiving state, then ∃(q, `, q′) ∈ δp : ∃ϕ, ∃e ∈ E : n
ϕ·e
↪−→ ∧ e�p= ` ∧ ϕ�p= ε. J

Intuitively, condition (1) ensures that for every sending state, all messages that can be
sent can also be received, while (2) guarantees that, for every receiving state, at least one
transition will be eventually fireable, i.e., an expected message will eventually be received.
System Sst, in Fig. 1, is multiparty compatible.

(U0, W0, A0) (U1, W1, A0)

(U1, W2, A1)(U2, W2, A2)

(U→W : task; x < 1, {x}; y = 1, {y, y′})

(W→A : stop; y < 1, ∅; z = 1, {z})

(A→U : result; z ≤ 5, ∅; x ≤ 15, ∅)

(W→A : data; y < 1 ∧ y′ < 10, {y}; z = 1, {z})

Figure 2 STS for Scheduled Task, cf. Fig. 1.

Observe that STS(S) and MC do not ad-
dress time constraints. In fact, STS(S) might
include interactions forbidden by time con-
straints. These can be ruled out at a later
stage when analysing time properties in § 4.
We deliberately kept communication and time
properties separated, so that we can provide
simpler and modular definitions in § 7. Cru-
cially, MC guarantees that any asynchronous
execution can be mapped to a path in STS(S),
i.e., it can be simulated by STS(S).

We recall two types of errors from the CFSM model, which are ruled out by MC also
in the timed setting. Let s = (~q; ~w; ν) be a configuration of a system S; s is a deadlock
configuration [10, Def. 12] if ~w = ~ε, there is r ∈P such that qr is a receiving state, and for
every p ∈P, qp is a receiving or final state, i.e., all machines are blocked waiting for messages;
and s is an orphan message configuration if all qp ∈ ~q are final but ~w/=~ε, i.e., there is at
least a non-empty buffer and all the machines are in a final state.

I Definition 5 (Safe system). S is safe if for all s ∈ RS(S), s is not a deadlock, nor an
orphan message configuration. J

I Theorem 6 (Safety). If S is multiparty compatible, then it is safe.

The proof follows from the fact that (i) MC guarantees safety in CFSMs [14] and (ii)
time constraints imply that a subset of the configurations reachable in the untimed setting
are reachable in the timed setting (modulo clock valuations). Thus, if there is a deadlock or
an orphan message configuration in the timed setting, there is one in the untimed setting,
which contradicts the results in [14].

The projection STS(S)�p of a synchronous transition system STS(S) on a machine p
is given by substituting each event e ∈ E with its projection e�p, then minimising the
automaton w.r.t. language equivalence. For example, the projections of STS(S) onto U, W,
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and A are isomorphic to the system Sst in Fig. 1. Below ∼ denotes the standard timed
bisimulation [15].

I Theorem 7 (Equivalence). If S = (Mp)p∈P is MC then S ∼ (STS(S)�p)p∈P.

Theorem 7 says that the behaviour of the original system is preserved by STS(S), this result
is crucial to be able to construct a global specification that is equivalent to a system of CTAs.
It follows from the fact that, (i) if the system is MC, then all the machine’s behaviour is
preserved except for the receive actions that are never executed; and (ii) since we assume
that the machines are deterministic w.r.t. messages, the projections of STS(S) also preserve
all required transitions.

4 Progress with Time Constraints

This section introduces a progress property for CTAs, ensuring that no communication
mismatch prevents the progress of the overall system (cf. § 4.1). In § 4.2, we give a sufficient
condition to guarantee progress in CTAs (cf. Theorem 13).

4.1 Progress Properties
We identify several types of errors, inspired by their counterparts in the (untimed) CFSM
model, which may arise in timed communicating systems. Let s = (~q; ~w; ν) ∈ RS(S);
s is an unsuccessful reception configuration if there exists r ∈ P such that qr is a
receiving state, and for all (qr, sr?a(g, λ), q′r) ∈ δr either (i) wsr /=ε and wsr /∈ aA∗ or (ii)
∀t ∈ R≥0 : ν + t /|= g (i.e., r cannot receive messages from any of its queues, as they either
contain an unexpected message or none of the transition guards will ever be satisfied); and
s is an unfeasible configuration if there exists s ∈P such that qs is a sending state, and
(qs, sr!a(g, λ), q′s) ∈ δs implies that ∀t ∈ R≥0 : ν + t /|= g (i.e., s is unable to send a message
because none of its guards will ever be satisfied).

I Definition 8 (Progress). S satisfies the progress property if for all s ∈ RS(S), s is not a
deadlock, an orphan message, an unsuccessful reception, nor an unfeasible configuration. J

Observe that the original semantics of CTAs in [17] and in Def. 2 do not allow us to
identify unsuccessful reception or unfeasible configurations. From Def. 2, a system may take
a time transition which permanently prevents a machine from firing further actions. Below,
we adjust the semantics of CTAs and give examples of “undesirable” scenarios it prevents.

I Definition 9 (Reachable configuration (2)). s α−→s′ is defined as Def. 2, replacing (3) with:
3. α = t ∈ R>0, ν′ = ν + t, ∀ pq ∈ C : w′pq =wpq, and ∀ p ∈P : q′p = qp and

a. qp sending =⇒ ∃(qp, `, q
′′
p ) ∈ δp : ∃t′ ∈ R≥0 : ν′ + t′ |= guard(`)

b. ∀(qp, sp?a(g, λ), q′′p ) ∈ δp : (wsp ∈ aA∗ =⇒ ∃t′ ∈ R≥0 : ν′ + t′ |= g)
Unless stated otherwise, we only consider this semantics hereafter. J

Condition (3a) handles the case of machines waiting to perform send actions, and (3b)
handles receive transitions, as illustrated by the examples below:

s : q0 q1

sr!a(x < 3)

sr!b(x < 2)

r : q2 q3

sr?a(y = 4)

sr?b(y = 5)

Consider configuration ((q0, q2); ~ε; ν0) in which s must send a message within 3 time units.
Condition (3a) prevents a time transition with delay t = 3. Indeed, with a clock valuation



L. Bocchi, J. Lange, and N. Yoshida 289

ν0 +3, none of the action of s from q0 can be fired. Consider now configuration ((q1, q2); ~w; ν)
with wsr = a and ν(x) = ν(y) = 3.5. Condition (3b) rules out a time transition with t = 1.
Indeed, even if r has a transition whose guard will be enabled after time ν(y) + 1 = 4.5, i.e.,
(q2, sr?b(y = 5), q3), this transition cannot be fired due to the content of queue wsr /∈ bA∗; on
the other hand transition (q2, sr?a(y = 4), q3) is no longer fireable, due to its time constraint.

4.2 A Sound Characterisation of Progress
Roadmap. We give a sound condition that guarantees progress in the presence of time
constraints. The main property, interaction-enabling (IE) in Def. 12, essentially checks that
future actions are possible. IE guarantees that: (1) whatever the past, each machine that is
in a sending state is eventually able to fire one of its transitions and (2) for every message
that is sent, there exists a (future) time where this message can be received. IE relies on
checking whether an action ` is progress enabling (Def. 11) which ensures that, for all possible
past clock valuations, there exists a future time where the guard of ` is satisfied.

In the rest of this section, we give (i) a procedure for understanding the past of a
configuration, based on a graph modelling the causal dependencies between previously
executed actions; and (ii) a procedure to check that, for any reachable configuration, there
is always a future time where an available action can be fired.

Understanding the past. We check that S has progress by analysing paths, i.e., sequences
of events, in STS(S). Since STS(S) gives an over-approximation of the causal dependencies
between actions, we will construct a graph of the actual dependencies of the underlying
actions of a path. We compute the underlying actions of a path via the function:

nodes(e1 · · · ek) def= e1�sid(e1) ·e1�rid(e1) · · · ek�sid(ek) ·ek�rid(ek) (k ≥ 0)

Remarkably, given a path ϕ and two actions `i and `j in nodes(ϕ), i < j does not imply that
there is a causal dependency between `i and `j . For instance, in

nodes(ϕ) = sr!a(x < 10, ∅) · sr?a(10 ≤ y, ∅) · sp!a(x < 10, ∅) · sp?a(10 ≤ z, ∅)

the two receive actions sr?a(10 ≤ y, ∅) and sp?a(10 ≤ z, ∅) may not always be executed in
that order, since they are executed by two different participants.

The graph of dependencies of an action `k in a sequence of actions `1 · · · `k (Def. 10 below)
gives an abstraction of all actions on which `k depends. This is done by taking into account
two kinds of dependencies: output/input dependencies between matching send and receive
actions, and local dependencies within a single machine.

I Definition 10 (Graph of Dependencies). Let dep(ε; `) def= ∅ and

dep(ρ · `1; `2)def=


{(`1, `2)} ∪ dep(ρ; `i)i=1,2 if `1 = sr!a(g1, λ1), `2 = sr?a(g2, λ2)
{(`1, `2)} ∪ dep(ρ; `1) if subj(`1) = subj(`2)
dep(ρ; `2) otherwise

The graph of dependencies of ρ = `1 · · · `k (k> 0), written DG(ρ), is the graph (D,A) s.t.
A=dep(`1 · · · `k−1; `k) \ {(`i, `k)

∣∣1 ≤ i< k} and D={`r/=̀ k

∣∣ ∃(`i, `j) ∈ A ∧ r ∈ {i, j}}.1 J

1 For the sake of presentation, we write `i for the node (i, `i) in D where `i is an action in ρ and i is its
position in ρ. This guarantees that each element in ρ is assigned a unique node in D.
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(1) UW!task(x < 1, {x}) (2) UW?task(y = 1, {y, y′}) (3) WA!data(y < 1 ∧ y′ < 10, {y})

(5) WA!data(y < 1 ∧ y′ < 10, {y})

(4) WA?data(z = 1, {z})

(6) WA?data(z = 1, {z})

ρst = UW!task(...)·UW?task(...)·WA!data(...)·WA?data(...)·WA!data(...)·WA?data(...)

Figure 3 Graph of dependencies DG(ρst), in solid black, cf. Scheduled Task Protocol (Fig. 1).

idx(ρ) def= {i
∣∣ `i ∈ D} W i

x (ρ) def=
{
vi−vj if 0 ≤ j=max

{
j < i

∣∣ `j ∈D ∧ x ∈ reset(`j)
}

vi otherwise
allpast(ρ) def=

∧
i∈idx(ρ)

absoluteρ(`i)

elapse(ρ) def=
∧

(`i,`j)∈A

vi ≤ vj absoluteρ(`i)
def= guard(`i)

{
x 7→W i

x (ρ)
}
x∈X

Figure 4 Functions on graphs of dependencies, where DG(ρ) = (D,A).

DG(`1 · · · `k) is a graph whose nodes form a subset of {`1, . . . , `k−1} and whose edges
model causal dependencies between actions (computed backwards starting from `k). In Fig. 3
(in solid black), we give the graph of dependencies of WA?data(z = 1, {z}) in the sequence
ρst, corresponding to an execution of the Scheduled Task Protocol.

Given a graph of dependencies DG(ρ), we define several functions that allow us to
construct predicates modelling the past. The definitions of these functions are given in Fig. 4,
where we fix DG(ρ) = (D,A). Below, we illustrate how they behave using DG(ρst) in Fig. 3.
First, we transform the guard of an action `i such that its solutions are the possible absolute
times (i.e., from the initial configuration of the system) in which one may execute `i (taking
into account the last reset of each clock in ρ). In our example, we have:

absoluteρst
(`5) = v5− v3 < 1∧ v5− v2 < 10 with `5 = WA!data(y < 1 ∧ y′ < 10, {y})

Observe that clock y (resp. y′) is replaced by the difference between variable v5 and variable
v3 (resp. v2) corresponding to the latest step where y (resp. y′) was reset. Unifying, e.g., y
and y′ into v5 models the fact that time elapses at the same pace for all clocks. Next, we
aggregate the information in DG(ρ), by (i) recording the indices of all the actions on which `k
depends (idx(ρ)); (ii) taking the conjunction of all constraints in absolute time (allpast(ρ));
and (iii) recording the fact that time never decreases between two causally dependent actions
(elapse(ρ)). Taking the dependencies for ρst in Fig. 3, we have:

allpast(ρst) = v1<1 ∧ v2 =1 ∧ (v3−v2 < 1 ∧ v3−v2 < 10) ∧ v4 = 1 ∧ (v5−v3 < 1 ∧ v5−v2 < 10)
elapse(ρst) = v1 ≤ v2 ∧ v2 ≤ v3 ∧ v3 ≤ v4 ∧ v3 ≤ v5 idx(ρst) = {1, 2, 3, 4, 5}

Predicting the future. We now give the main definition of this section, allowing to check
whether the past implies that there exists a satisfiable future. We use the functions defined
above to check whether a given event in STS(S) can indeed meet its time constraints.

I Definition 11 (Progress enabling (PE)). A pair (n, e) is progress enabling (PE) for p ∈ id(e)
if for all paths ϕ such that n0

ϕ
↪−→ n, letting:
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ρ =
{

nodes(ϕ · e) if p = rid(e)
nodes(ϕ) · e�sid(e) otherwise

and k = |ρ|, `k = e�p, ~v = {vi
∣∣ i ∈ idx(ρ)}; the following holds

∀~v ∃vk : allpast(ρ) ∧ elapse(ρ) =⇒ absoluteρ(`k) ∧
∧
vi∈~v vi ≤ vk

A pair (n, ϕ) is recursively progress enabling (RPE) for P ⊆P if ϕ = ε and P = ∅; or if (n, e)
is PE for sid(e) and for rid(e) and (n′, ϕ′) is RPE for P \ id(e) with ϕ = e · ϕ′ and n e

↪−→ n′.

Given a node n and an event e in STS(S), and a participant p, the above definition
ensures that for all possible past clock valuations, there exists a future time where participant
p has the possibility to execute action e �p. For instance, the pair ((U1, W1, A0), (W→ A :
data; y < 1 ∧ y′ < 10, {y}; z = 1, {z})) is PE for A, notably because the following holds:

∀v1 . . . v5 ∃v6 : allpast(ρst) ∧ elapse(ρst) =⇒ (v6 − v4) = 1 ∧ v1 ≤ v6 . . . v5 ≤ v6

Below, Def. 11 is used in STS(S) to ensure progress of the overall system.

I Definition 12 (Interaction enabling (IE)). A node n ∈ N is interaction enabling (IE) if
either (i) it is final or (ii) the following conditions hold:
1. There is e ∈ E and ϕ such that n

e·ϕ
↪−→ and (n, e · ϕ) is RPE for ids(n);

2. For all e ∈ E such that n e
↪−→ n′, (n, e) is PE for rid(e), and n′ is IE.

A system S is interaction enabling (IE) if n0 is IE.

Def. 12 recursively checks the nodes of STS(S) (starting from n0) and for each ensures
that: (1) there is at least one path, involving all the participants still active at node n, that
is RPE, i.e., where each guard along that path is satisfied for any past; (2) each receive
action is PE and its successor is IE (note that a send action is always a dependency of its
receive action). Condition (1) ensures that no sender will be left in a configuration where it
cannot send any message, due to time constraints being unsatisfiable; condition (2) ensures
that a receive action is always feasible given that its corresponding send action was executed.

Examples. (1) The first example shows how resets affect the satisfiability of guards.

s : sr!a(x = 3)
sr!b(x = 5)

sr!c(x = 7)
r : sr?a(y ≤ 3, y := 0)

sr?b(y ≤ 2, y := 0)
sr?c(y ≤ 2)

The system above is IE, notably, because the following holds:

∀v1v2v3v4v5 ∃v6 : v1 = 3 ∧ v2 ≤ 3 ∧ v3 = 5 ∧ v4 − v2 ≤ 2 ∧ v5 = 7 ∧
v1 ≤ . . . ≤ v5 =⇒ v6 − v4 ≤ 2 ∧ v1 ≤ v6 . . . v5 ≤ v6

Notice that the resets of clock y (recorded by subtracting v2 and v4 in the formula above)
allow r to receive message c before absolute time 7. If we modified the example by removing
the second reset of y in machine r, then the system would not be IE because message c
would be expected before absolute time 5, while c can only be sent at time 7. In fact, the
RHS of the implication above would become: v6 − v2 ≤ 2 ∧ v1 ≤ v6 . . . v5 ≤ v6.

(2) The second example shows a system of three machines, which violates IE (Def. 12).

sr!a

sr!b
x < 2 ps?c

sr?a

sr?b
ps!c

s r p

n0 n1 n2

(s→r : a; true, ∅; true, ∅)

(s→r : b; x < 2, ∅; true, ∅)

(p→s : c; true, ∅; true, ∅)
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If participant s does not send b before time 2, then message c (sent by p), will never be
received. This system is not IE because there is no path from n0 that is RPE for {s, r, p}.
The only transition that is PE from n0 is the loop on n0 (which does not involve p).

(3) The third example shows that IE captures a “global” notion of progress (i.e., all
participants must able to proceed). Consider the system of four machines below:

s1r1!a
x > 2

s1r1!b
x < 2 s 1

r 1
?a

s 1
r 1

?b

s 2
r 2

!c

s 2
r 2

!d

s 2
r 2

?c

s 2
r 2

?d

s1 r1 s2 r2

n0 n1

n3 n2

(s1→r1 : a; x > 2, ∅; true, ∅)

(s1→r1 : b; x < 2, ∅; true, ∅)

(s1→r1 : a; x > 2, ∅; true, ∅)

(s1→r1 : b; x < 2, ∅; true, ∅)

(s
2
→

r 2
:c

;
tr

ue
,
∅;

tr
ue
,
∅)

(s2→r2 : d; true, ∅; true, ∅)

(s
2
→

r 2
:c

;
tr

ue
,
∅;

tr
ue
,
∅)

(s2→r2 : d; true, ∅; true, ∅)

this system is not IE. Indeed, although there is one RPE path outgoing node n1 (machines
s2 and r2 can continue interacting), there is no path that is RPE for all participants
{s1, r1, s2, r2}. Observe that s1 is stuck in n1, as the transition with label s1r1!b(x < 2, {x})
can never be fired by s1, i.e., ∀v0∃v1 : v0 > 2 =⇒ v0 ≤ v1 < 2 does not hold.

I Theorem 13 (Progress). Suppose S is multiparty compatible (Def. 4) and interaction
enabling (Def. 12). (1) Then S satisfies the progress property. (2) For all s = (~q; ~w; ν) ∈
RS(S), if there is p ∈P such that qp is not final, then there is s′ such that s−→s′.

I Theorem 14 (Decidability). Interaction enabling (Def. 12) is decidable.

The decidability of Def. 12 relies on the fact that the logic used in Def. 11 forms a subset of
the Presburger arithmetic, which is decidable; and that it is enough to check finite paths in
STS(S). The complexity of the decision procedure is mostly affected by the enumeration
of paths in STS(S) (which can be reduced via partial order reduction techniques) and the
satisfiability of Presburger formulae (which can be relegated to an SMT solver).

5 Non-Zenoness and Eventual Reception in CTAs

In the presence of time constraints, one needs to make sure that some participant’s only
possible way forward is not by firing actions at increasingly short intervals of time, i.e., by
zeno behaviours. This is a common requirement in real-time systems [2], and it is justified by
the assumption that “any physical process, no matter how fast, cannot be infinitely fast” [21].

In order to identify zeno behaviours in our systems, we assume without loss of generality
that there is a special clock x̂ ∈ X which is never reset, i.e., for all p ∈P and all (q, `, q′) ∈
δp : x̂ /∈ reset(`). Hence, x̂ keeps the absolute time since the beginning of the interactions.
Let s = (~q; ~w; ν) be a configuration of a system S, s is a zeno configuration if there exists
t ∈ R≥0 such that for all s′ = (~q′; ~w′; ν′), s −→∗ s′ implies ν′(x̂) < t and s′−→s′′, for some s′′.

I Definition 15 (Non-zeno system). S is non-zeno (NZ) if ∀s ∈ RS(S), s is not a zeno
configuration.

The following example shows that a zeno configuration may still occur in systems that
are multiparty compatible and interaction enabling.

s :
sr!a(x < 3)

sr!b(x ≥ 3)
r :

sr?a(y ≥ 3)

sr?b(y ≥ 4)

The system above (ignoring the dashed transitions) satisfies MC and IE, e.g., ∀v0 ∃v1 : v0 <
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3 =⇒ v1 ≥ 3 ∧ v0 ≤ v1, but is not NZ. Because of the upper bound x < 3 and the fact that
x is not reset in the loop, machine s has to produce an infinite number of (send) actions in
a finite amount of time (3 time units). A dramatic consequence of this zeno behaviour is
that machine r will never be able to consume any message a due to the fact that constraint
y ≥ 3 will never be satisfied (cf. Def. 9). This system violates eventual reception, a property
which guarantees that every message that is sent is eventually received. Formally, a system
S satisfies eventual reception (ER) if for all s = (~q; ~w; ν) ∈ RS(S), if wsr ∈ aA∗, then
s−→∗ sr?a(g, λ)−−−−−−→.

The system above (considering the dashed transitions) is NZ and satisfies ER: the dashed
transitions offer an ‘escape’ from zeno-only behaviours where time can elapse and thus allow
machine r to consume any messages that were sent. Observe that in general NZ alone is not
sufficient to guarantee ER. However, ER is guaranteed for systems which validate all the
condition presented in this paper, see Theorem 19 below.

The example also shows a fundamental difference between CTAs and models with
synchronous communications, such as Networks of Timed Automata (NTAs) [2]. The work
in [7] shows that it is sufficient that one machine in each loop of an NTA satisfies non-zenoness
for the whole system to be non-zeno. This is not generally true for CTAs. In the example
above (ignoring the dashed transitions), time cannot diverge despite the machine on the right
being non-zeno.

Checking non-zenoness. Now we give a condition on STS(S) that, together with MC,
guarantees non-zenoness. A walk in STS(S) is an alternating sequence n1 · e1 ·n2 · · · ek−1 ·nk
such that ni

ei
↪−→ ni+1 for all 1 ≤ i < k. We let ω range over walks in STS(S). A walk is

elementary if (ni · ei)/=(nj · ej) for all 1 ≤ i /=j < k. A (elementary) cycle in STS(S) is a
(elementary) walk n1 · e1 · n2 · · · ek−1 · nk such that n1 = nk.

Given guard g and clock x, we say that g is an upper bound for x, written g is UB for x,
if there is a sub-term x ≤ c in g (not under a negation) or a sub-term c ≤ x under a negation.
We say that g is strictly positive, written g is SP, if for all clocks x ∈ fc(g) and for all
sub-terms in g of the form x ≤ c (not under negation) or c ≤ x (under negation), c ∈ Q>0.

I Definition 16 (Cycle enabling (CE)). System S is cycle enabling (CE) if for each elementary
cycle ω in STS(S), and for each clock x such that there is (s→r : a; gs, λs; gr, λr) in ω and
gs is UB for x, the following holds, either
1. there are (i) (p → q : b; gp, λp; gq, λq) in ω s.t. x ∈ λp ∪ λq, and (ii) (p′ → q′ :

b′; gp′ , λp′ ; gq′ , λq′) in ω s.t. gp′ is SP; or
2. for each (ni · e · ni+1) in ω, there is n′ /=ni ∈ N and e′ /=e ∈ E such that id(e) = id(e′),

ni
e′

↪−→ n′, and (ni, e′) is PE for sid(e′) J

Condition (1) adapts structural non-zenoness from [22] to CTAs by requiring that: (i)
each x is reset in ω, and (ii) it is possible to let some time elapse at each iteration. Condition
(2) requires that the “escape” event e′, leading to a different node n′, can always be taken.
Our running example satisfies CE (Def. 16); STS(Sst) has one (elementary) cycle in which
two clocks have an upper bound: clock y satisfies (1) since it is reset and the guards have
upper bounds strictly greater than 0 in the cycle; clock y′ satisfies (2) since there is an escape
event, e′ = (W→A : end; y < 1, ∅; z = 1, {z}), which is PE for W.

I Theorem 17 (Non-zenoness). If S is MC and CE, then S is non-zeno.

I Theorem 18 (Decidability). Cycle enabling (Def. 16) is decidable.

I Theorem 19 (Eventual reception). If S is MC, IE, and CE, then S satisfies ER.
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U (x < 1 |x := 0)

task

W (y = 1 | y := 0, y′ := 0)

W (y < 1 ∧ y′ < 10 | y := 0)

data

A (z = 1 | z := 0)

W (y < 1)
stop

A (z = 1 | z := 0)

A (z ≤ 5)

result

U (x ≤ 15)

〈Sender〉 (〈sender guard〉 | 〈sender reset(s)〉)

〈label〉

〈Receiver〉 (〈receiver guard〉 | 〈receiver reset(s)〉)

Figure 5 Timed choreography for the Scheduled Task Protocol (Sst).

6 Applications and Implementation

Constructing global specifications. Our theory can be easily applied and integrated with
other works, to construct sound (i.e., satisfying safety, progress, and non-zenoness) timed
global specifications, such as (syntactic) multiparty session types [16, 6], or graphical cho-
reographies [19, 13, 8]. Thanks to Theorem 7, we can build on the algorithm in [14] to
construct (syntactic) timed global types from CTAs. In Appendix [3], we give the formal
definitions of the adaptation of the algorithm in [14]. Given an MC system S our algorithm
generates a timed global type [6] equivalent to the original system S (i.e., its projections are
timed bisimilar to those of S). This implies that if S is IE (resp. CE) then the constructed
timed global type will also enjoy progress (resp. non-zenoness). Similarly, building on the
algorithm in [19], we obtain a graphical representation reminiscent of BPMN Choreographies,
see [8, 19]. When applied to the Scheduled Task Protocol, the algorithm adapted from [19]
produces the choreography in Fig. 5; giving a much clearer specification for Sst.

Implementation. To assess the applicability and cost of our theory, we have integrated our
theory into the tool first introduced in [19], which builds graphical choreographies from CFSMs.
Our tool [3] (implemented in Haskell and using Z3) takes as input a textual representation of
CTAs on which each condition (MC, IE, and CE) is checked for, and produces an equivalent
choreography (such as the one in Fig. 5). The results of our experiments (executed on a Intel
i7 computer, with 16GB of RAM) are below; where |P| is the number of machines, and |N |
(resp. |↪−→|) is the number of nodes (resp. transitions) in STS(S).

S |P| |N | | ↪−→| MC IE CE s |P| |N | | ↪−→| MC IE CE s
Running Example 3 4 4 X X X 0.41 ×4 12 256 1024 X X X 28.49
Bargain 3 5 5 X X X 0.44 ×2 6 25 50 X X X 12.30
Temp. calculation [6] 3 6 6 X X X 0.45 ×2 6 36 72 X X X 9.24
Word Count [20] 3 6 6 X X X 0.41 ×2 6 36 72 X X X 8.63
ATM (Template) [11] 3 9 8 X X X 0.36 ×3 9 729 1944 X X X 94.01
ATM (Instance) [11] 3 9 8 X X X 0.53 ×3 9 729 1944 X X X 96.09
Consumer-Producer [11] 2 1 1 X X X 0.16 ×5 10 1 5 X X X 43.19
Fischers Mutual Excl. [5] 2 4 3 X X X 0.21 ×4 8 256 768 X X X 3.19

Most of the protocols are taken from the literature and all are checked within a minute on
average. For the sake of space, we have used small examples throughout the paper, however
our benchmarks include bigger protocols (up-to 12 machines), which have comparable size
with those we encountered through our collaboration with Cognizant [23, 19]. Since the size
of the STS is the most critical parameter for scalability, we have tested systems consisting of
the parallel composition of several instances of a protocol. For instance, Running Example
×4 is the parallel composition of four instances of Sst, cf. Fig. 1.
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7 Conclusions and Related Work

Our results are summarised in the table below. Multiparty compatibility (MC) gives (i) an
equivalence between an MC system and a system consisting of the projections of its STS ;
and (ii) a sufficient condition for safety. MC and interaction enabling (IE) form a sufficient
condition for progress; while MC and cycle enabling (CE) form a sufficient condition for
non-zenoness (NZ). Together, MC, IE, and CE ensure safety, progress, NZ, and eventual
reception (ER).

Property S ∼ (STS(S)�p)p∈P Safety Progress Non-Zeno ER
MC (Def. 4) X X 7 7 7
MC+IE (Def. 12) X X X 7 7
MC+CE (Def. 16) X X 7 X 7
MC+IE+CE X X X X X

Multiparty session types. The work in [6] studies a typing system for a timed π-calculus
using timed global types. A class of CTAs which are safe and have progress is given in [6] via
projection of (well-formed) timed global types onto timed local types (which correspond to
deterministic, non-mixed, and directed CTAs). Well-formedness yields conditions on CTAs
that are more restrictive than the ones given in this paper. For instance, the system in Fig. 1,
which is safe and enjoys progress, is ruled out by the conditions in [6]. In addition, this paper
gives sufficient conditions for CTAs to belong to the class of safe CTAs with progress, which
was left as an open problem in [6]. The construction of timed global types from either local
types or CTAs is not addressed in [6]. Recently, [4] introduced a compliance and sub-typing
relation for binary timed session types without queues (synchronous communication semantics).
The existing works for constructing global specifications from local specifications [18, 14, 19]
only apply to untimed models. Our conditions (IE and CE) are given independently of the
definition of MC. The use of a more general notion of MC, as the one given in [19], would
allow us to lift the assumptions that the machines are directed and have no mixed states (cf.
§ 2). Hence, we could capture more general timed choreographies.

Reachability and decidability. When extending NTAs [2] with unbounded channels, reach-
ability is no longer decidable in general [17]. Existing work tackles undecidability by restricting
the network topologies [12, 17] or the channel size [1]. We give general (w.r.t. topology and
channel size) decidable conditions ensuring that a configuration violating safety, progress, or
NZ will not be reached. Observe that the scenario in Fig. 1 would be ruled out in [17] (its
topology is not a polyforest) and in [1] (wWA is unbounded). Our conditions are based, instead,
on the conversation structures, which also enable the construction of global specifications.

Non-zeno conditions. In § 5 we set the conditions for time divergence, by ruling out
specifications in which the only way forward is a zeno behaviour. This condition is called
time progress in [2] and it is built-in in the definition of runs of a TA. Several conditions
have been proposed to ensure absence of non-zeno behaviours in TAs: some, e.g., [21], do
not allow any zeno execution, and some, e.g., [7], and this work (cf. Def. 15), ensure that
there is always a non-zeno way forward. The condition in [7] can be checked with a simple
form of reachability analysis which introduced the notion of ‘escape’ from a zeno loop, which
we also use. [21, 7] consider Networks of TAs (NTAs), which do not feature asynchrony nor
unbounded channels.
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Abstract
Quantitative games are two-player zero-sum games played on directed weighted graphs. Total-
payoff games – that can be seen as a refinement of the well-studied mean-payoff games – are
the variant where the payoff of a play is computed as the sum of the weights. Our aim is to
describe the first pseudo-polynomial time algorithm for total-payoff games in the presence of
arbitrary weights. It consists of a non-trivial application of the value iteration paradigm. Indeed,
it requires to study, as a milestone, a refinement of these games, called min-cost reachability
games, where we add a reachability objective to one of the players. For these games, we give an
efficient value iteration algorithm to compute the values and optimal strategies (when they exist),
that runs in pseudo-polynomial time. We also propose heuristics to speed up the computations.
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1 Introduction

Games played on graphs are nowadays a well-studied and well-established model for the
computer-aided design of computer systems, as they enable automatic synthesis of systems
that are correct-by-construction. Of particular interest are quantitative games, that allow
one to model precisely quantitative parameters of the system, such as energy consumption.
In this setting, the game is played by two players on a directed weighted graph, where the
edge weights model, for instance, a cost or a reward associated to the moves of the players.
Each vertex of the graph belongs to one of the two players who compete by moving a token
along the graph edges, thereby forming an infinite path called a play. With each play is
associated a real-valued payoff computed from the sequence of edge weights along the play.
The traditional payoffs that have been considered in the literature include total-payoff [10],
mean-payoff [7] and discounted-payoff [17]. In this quantitative setting, one player aims at
maximising the payoff while the other tries to minimise it. So one wants to compute, for each
player, the best payoff that he can guarantee from each vertex, and the associated optimal
strategies (i.e., that guarantee the optimal payoff no matter how the adversary is playing).

Such quantitative games have been extensively studied in the literature. Their associated
decision problems (is the value of a given vertex above a given threshold?) are known to be
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in NP ∩ co-NP. Mean-payoff games have arguably been best studied from the algorithmic
point of view. A landmark is Zwick and Paterson’s pseudo-polynomial time (i.e., polynomial
in the weighted graph when weights are encoded in unary) algorithm [17], using the value
iteration paradigm that consists in computing a sequence of vectors of values that converges
towards the optimal values of the vertices. After a fixed, pseudo-polynomial, number of steps,
the computed values are precise enough to deduce the actual values of all vertices. Better
pseudo-polynomial time algorithms have later been proposed, e.g., in [1, 4, 6], also achieving
sub-exponential expected running time by means of randomisation.

In this paper, we focus on total-payoff games. Given an infinite play π, we denote
by π[k] the prefix of π of length k, and by TP(π[k]) the (finite) sum of all edge weights
along this prefix. The total-payoff of π, TP(π), is the inferior limit of all those sums, i.e.,
TP(π) = lim infk→∞TP(π[k]). Compared to mean-payoff (and discounted-payoff) games,
the literature on total-payoff games is less extensive. Gimbert and Zielonka have shown [10]
that optimal memoryless strategies always exist for both players and the best algorithm
to compute the values runs in exponential time [9], and consists in iteratively improving
strategies. Other related works include energy games where one player tries to optimise its
energy consumption (computed again as a sum), keeping the energy level always above 0
(which makes difficult to apply techniques solving those games in the case of total-payoff);
and a probabilistic variant of total-payoff games, where the weights are restricted to be
non-negative [5]. Yet, we argue that the total-payoff objective is interesting as a refinement
of the mean-payoff. Indeed, recall first that the total-payoff is finite if and only if the
mean-payoff is null. Then, the computation of the total-payoff enables a finer, two-stage
analysis of a game G: (i) compute the mean payoff MP(G); (ii) subtract MP(G) from all
edge weights, and scale the resulting weights if necessary to obtain integers. At that point,
one has obtained a new game G′ with null mean-payoff; (iii) compute TP(G′) to quantify
the amount of fluctuation around the mean-payoff of the original game. Unfortunately, so
far, no efficient (i.e., pseudo-polynomial time) algorithms for total-payoff games have been
proposed, and straightforward adaptations of Zwick and Paterson’s value iteration algorithm
for mean-payoff do not work, as we demonstrate at the end of Section 2. In the present
article, we fill in this gap by introducing the first pseudo-polynomial time algorithm for
computing the values in total-payoff games.

Our solution is a non-trivial value iteration algorithm that proceeds through nested fixed
points (see Algorithm 2). A play of a total-payoff game is infinite by essence. We transform
the game so that one of the players (the minimiser) must ensure a reachability objective: we
assume that the game ends once this reachability objective has been met. The intuition
behind this transformation, that stems from the use of an inferior limit in the definition of the
total-payoff, is as follows: in any play π whose total-payoff is finite, there is a position ` in the
play after which all the partial sums TP(π[i]) (with i > `) will be larger than or equal to the
total-payoff TP(π) of π, and infinitely often both will be equal. For example, consider the
game depicted in Figure 1(a), where the maximiser player (henceforth called Max) plays with
the round vertices and the minimiser (Min) with the square vertices. For both players, the
optimal value when playing from v1 is 2, and the play π = v1v2v3 v4v5 v4v3 (v4v5)ω reaches
this value (i.e., TP(π) = 2). Moreover, for all k > 7: TP(π[k]) > TP(π), and infinitely
many prefixes (π[8], π[10], π[12], . . .) have a total-payoff of 2, as shown in Figure 1(b).

Based on this observation, we transform a total-payoff game G, into a new game that has
the same value as the original total-payoff game but incorporates a reachability objective
for Min. Intuitively, in this new game, we allow a new action for Min: after each play prefix
π[k], he can ask to stop the game, in which case the payoff of the play is the payoff TP(π[k])
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Figure 1 (a) A total-payoff game, and (b) the evolution of the partial sums in π.

of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payoff game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after π[2], which is strictly smaller
that the actual total-payoff (2) of the whole play π. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is sufficient: trying to obtain a better
payoff than the optimal, Min could request to stop after π[0], π[2] and π[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payoff of all prefixes π[k] with k > 6 are larger than or equal to TP(π) = 2. Our
key technical contribution is to show that for all total-payoff games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +∞ and −∞ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we effectively reduce the
computation of the values in the total-payoff game G to the computation of the values in the
total-payoff game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payoff games – where Min must reach a designated
target vertex – will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payoff of all plays that do not reach the target is +∞,
irrespective of the weights along the play. Otherwise, the payoff of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP∩ co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payoff games. However,
because of this peculiar context of mean-payoff games, their definition of the length of a
path differs from our definition of the payoff and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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potential theoretical and practical applications1. Those games are discussed in Section 3.
In addition to the pseudo-polynomial time algorithm to compute the values, we show how
to compute optimal strategies for both players and characterise them: there is always a
memoryless strategy for the maximiser player, but we exhibit an example (see Figure 2(a))
where the minimiser player needs (finite) memory. Those results on min-cost reachability
games are exploited in Section 4 where we introduce and prove correct our efficient algorithm
for total-payoff games.

Finally, we briefly present our implementation in Section 5, using as a core the numerical
model-checker PRISM. This allows us to describe some heuristics able to improve the practical
performances of our algorithms for total-payoff games and min-cost reachability games on
certain subclasses of graphs. More technical explanations and full proofs may be found in an
extended version of this article [2].

2 Quantitative games with arbitrary weights

We denote by Z the set of integers, and Z∞ = Z ∪ {−∞,+∞}. The set of vectors indexed
by V with values in S is denoted by SV . We let 4 be the pointwise order over ZV∞, where
x 4 y if and only if x(v) 6 y(v) for all v ∈ V .

We consider two-player turn-based games on weighted graphs and denote the two players
by Max and Min. A weighted graph is a tuple 〈V,E, ω〉 where V = VMax]VMin is a finite set of
vertices partitioned into the sets VMax and VMin of Max and Min respectively, E ⊆ V × V is a
set of directed edges, ω : E → Z is the weight function, associating an integer weight with each
edge. In our drawings, Max vertices are depicted by circles; Min vertices by boxes. For every
vertex v ∈ V , the set of successors of v by E is denoted by E(v) = {v′ ∈ V | (v, v′) ∈ E}.
Without loss of generality, we assume that every graph is deadlock-free, i.e., for all vertices v,
E(v) 6= ∅. Finally, throughout this article, we let W = max(v,v′)∈E |ω(v, v′)| be the greatest
edge weight (in absolute value) in the game graph. A finite play is a finite sequence of vertices
π = v0v1 · · · vk such that for all 0 6 i < k, (vi, vi+1) ∈ E. A play is an infinite sequence of
vertices π = v0v1 · · · such that every finite prefix v0 · · · vk, denoted by π[k], is a finite play.

The total-payoff of a finite play π = v0v1 · · · vk is obtained by summing up the weights
along π, i.e., TP(π) =

∑k−1
i=0 ω(vi, vi+1). In the following, we sometimes rely on the mean-

payoff to obtain information about total-payoff objectives. The mean-payoff computes the
average weight of π, i.e., if k > 1, MP(π) = 1

k

∑k−1
i=0 ω(vi, vi+1), and MP(π) = 0 when

k = 0. These definitions are lifted to infinite plays as follows. The total-payoff of a play π is
given by TP(π) = lim infk→∞TP(π[k]).2 Similarly, the mean-payoff of a play π is given by
MP(π) = lim infk→∞MP(π[k]). A weighted graph equipped with these payoffs is called a
total-payoff game or a mean-payoff game, respectively.

A strategy for Max (respectively, Min) in a game G = 〈V,E, ω,P〉 (with P one of the
previous payoffs), is a mapping σ : V ∗VMax → V (respectively, σ : V ∗VMin → V ) such that for
all sequences π = v0 · · · vk with vk ∈ VMax (respectively, vk ∈ VMin), (vk, σ(π)) ∈ E. A play
or finite play π = v0v1 · · · conforms to a strategy σ of Max (respectively, Min) if for all k
such that vk ∈ VMax (respectively, vk ∈ VMin), vk+1 = σ(π[k]). A strategy σ is memoryless

1 An example of practical application would be to perform controller synthesis taking into account energy
consumption. On the other hand, the problem of computing the values in certain classes of priced timed
games has recently been reduced to computing the values in min-cost reachability games [3].

2 Our results can easily be extended by substituting a lim sup for the lim inf. The lim inf is more natural
since we adopt the point of view of the maximiser Max, hence the lim inf is the worst partial sum seen
infinitely often.
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if for all finite plays π, π′, we have σ(πv) = σ(π′v) for all v. A strategy σ is said to be
finite-memory if it can be encoded in a deterministic Moore machine, 〈M,m0, up, dec〉, where
M is a finite set representing the memory of the strategy, with an initial memory content
m0 ∈M , up : M × V →M is a memory-update function, and dec : M × V → V a decision
function such that for every finite play π and vertex v, σ(πv) = dec(mem(πv), v) where
mem(π) is defined by induction on the length of the finite play π as follows: mem(v0) = m0,
and mem(πv) = up(mem(π), v). We say that |M | is the size of the strategy.

For all strategies σMax and σMin, for all vertices v, we let Play(v, σMax, σMin) be the
outcome of σMax and σMin, defined as the unique play conforming to σMax and σMin and
starting in v. Naturally, the objective of Max is to maximise its payoff. In this model
of zero-sum game, Min then wants to minimise the payoff of Max. Formally, we let
ValG(v, σMax) and ValG(v, σMin) be the respective values of the strategies, defined as (recall that
P is either TP or MP): ValG(v, σMax) = infσMin P(Play(v, σMax, σMin)) and ValG(v, σMin) =
supσMax

P(Play(v, σMax, σMin)). Finally, for all vertices v, we let ValG(v) = supσMax
ValG(v, σMax)

and ValG(v) = infσMin ValG(v, σMin) be the lower and upper values of v respectively. We may
easily show that ValG 4 ValG . We say that strategies σ∗Max of Max and σ∗Min of Min are optimal
if, for all vertices v: ValG(v, σ∗Max) = ValG(v) and ValG(v, σ∗Min) = ValG(v) respectively. We
say that a game G is determined if for all vertices v, its lower and upper values are equal. In
that case, we write ValG(v) = ValG(v) = ValG(v), and refer to it as the value of v. If the game
is clear from the context, we may drop the index G of all previous values. Mean-payoff and
total-payoff games are known to be determined, with the existence of optimal memoryless
strategies [17, 10].

Total-payoff games have been mainly considered as a refinement of mean-payoff games [10].
Indeed, if the mean-payoff value of a game is positive (respectively, negative), its total-payoff
value is necessarily +∞ (respectively, −∞). When the mean-payoff value is 0 however,
the total-payoff is necessarily different from +∞ and −∞, hence total-payoff games are
particularly useful in this case. Deciding whether the total-payoff value of a vertex is positive
can be achieved in NP ∩ co-NP. In [9], the complexity is refined to UP ∩ co-UP, and values
are shown to be effectively computable solving nested fixed point equations with a strategy
iteration algorithm working in exponential time in the worst case.

Our aim is to give a pseudo-polynomial algorithm solving total-payoff games. In many
cases, (e.g., mean-payoff games), a successful way to obtain such an efficient algorithm
is the value iteration paradigm. Intuitively, value iteration algorithms compute successive
approximations x0, x1, . . . , xi, . . . of the game value by restricting the number of turns that
the players are allowed to play: xi is the vector of optimal values achievable when the players
play at most i turns. The sequence of values is computed by means of an operator F , letting
vi+1 = F(vi) for all i. Good properties (Scott-continuity and monotonicity) of F ensure
convergence towards its smallest or greatest fixed point (depending on the value of x0), which,
in some cases, happens to be the value of the game. Let us briefly explain why such a simple
approach fails with total-payoff games. In our case, the operator F is such that F(x)(v) =
maxv′∈E(v) ω(v, v′) + x(v′) for all v ∈ VMax and F(x)(v) = minv′∈E(v) ω(v, v′) + x(v′) for all
v ∈ VMin. This definition matches the intuition that xi are optimal values after i turns.

Then, consider the example of Figure 1(a), limited to vertices {v3, v4, v5} for simplicity.
Observe that there are two simple cycles with weight 0, hence the total-payoff value of
this game is finite. Max has the choice between cycling into one of these two cycles. It
is easy to check that Max’s optimal choice is to enforce the cycle between v4 and v5,
securing a payoff of −1 from v4 (because of the lim inf definition of TP). Hence, the values
of x3, x4 and x5 are respectively 1, −1 and 0. In this game, we have F(x3, x4, x5) =
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Figure 2 Two weighted graphs.

(
2 +x4,max(−2 +x3,−1 +x5), 1 +x4

)
, and the vector (1,−1, 0) is indeed a fixed point of F .

However, it is neither the greatest nor the smallest fixed point of F , since if x is a fixed
point of F , then x+ (a, a, a) is also a fixed point, for all constant a ∈ Z. If we try to initialise
the value iteration algorithm with value (0, 0, 0), which could seem a reasonable choice, the
sequence of computed vectors is: (0, 0, 0), (2,−1, 1), (1, 0, 0), (2,−1, 1), (1, 0, 0), . . . that is
not stationary, and does not even contain (1,−1, 0). Thus, it seems difficult to compute the
actual game values with an iterative algorithm relying on the F operator, as in the case
of mean-payoff games.3 Notice that, in the previous example, the Zwick and Paterson’s
algorithm [17] to solve mean-payoff games would easily conclude from the sequence above,
since the vectors of interest are then the one divided by the length of the current sequence,
i.e., (0, 0, 0), (1,−0.5, 0.5), (0.33, 0, 0), (0.5,−0.25, 0.25), (0.2, 0, 0), . . . indeed converging
towards (0, 0, 0), the mean-payoff values of this game.

Instead, as explained in the introduction, we propose a different approach that consists
in reducing total-payoff games to min-cost reachability games where Min must enforce a
reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payoff games to them in Section 4.

3 Min-cost reachability games

In this section, we consider min-cost reachability games (MCR games for short), a variant of
total-payoff games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payoff games easier to
explain. Hence, when the target is not reached along a path, its payoff shall be the worst
possible for Min, i.e., +∞. Formally, an MCR game is played on a weighted graph 〈V,E, ω〉
equipped with a target set of vertices T ⊆ V . The payoff T -MCR(π) of a play π = v0v1 . . .

is given by T -MCR(π) = +∞ if the play avoids T , i.e., if for all k > 0, vk /∈ T , and
T -MCR(π) = TP(π[k]) if k is the least position in π such that vk ∈ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target.

We claim that the values of vertices v1 and v2 are both −W . Indeed, consider the
following strategy for Min: during each of the first W visits to v2 (if any), go to v1; else, go to
v3. Clearly, this strategy ensures that the target will eventually be reached, and that either
(i) edge (v1, v3) (with weight −W ) will eventually be traversed; or (ii) edge (v1, v2) (with
weight −1) will be traversed at least W times. Hence, in all plays following this strategy, the

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.
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payoff will be at most −W . This strategy allows Min to secure −W , but he cannot ensure a
lower payoff, since Max always has the opportunity to take the edge (v1, v3) (with weight
−W ) instead of cycling between v1 and v2. Hence, Max’s optimal choice is to follow the edge
(v1, v3) as soon as v1 is reached, securing a payoff of −W . The Min strategy we have just
given is optimal, and there is no optimal memoryless strategy for Min. Indeed, always playing
(v2, v3) does not ensure a payoff 6 −W ; and, always playing (v2, v1) does not guarantee to
reach the target, and this strategy has thus value +∞.

Let us note that Björklund and Vorobyov introduce in [1] the longest shortest path problem
(LSP for short) and propose a pseudo-polynomial time algorithm to solve it. However, their
definition has several subtle but important differences to ours, such as definition of the payoff
of a play (equivalently, the length of a path). As an example, in the game of Figure 2(a), the
play π = (v1v2)ω (that never reaches the target) has length −∞ in their setting, while, in our
setting, {v3}-MCR(π) = +∞. Moreover, even if a pre-treatment would hypothetically allow
one to use the LSP algorithm to solve MCR games, our solution is simpler to implement
with the same worst-case complexity and heuristics only applicable to our value iteration
solution. We now present our contributions for MCR games:

I Theorem 1. Let G = 〈V,E, ω, T -MCR〉 be an MCR game.
1. For v ∈ V , deciding whether Val(v) = +∞ can be done in polynomial time.
2. For v ∈ V , deciding whether Val(v) = −∞ is as hard as mean-payoff, in NP∩ co-NP and

can be achieved in pseudo-polynomial time.
3. If Val(v) 6= −∞ for all vertices v ∈ V , then both players have optimal strategies. Moreover,

Max always has a memoryless optimal strategy, while Min may require finite (pseudo-
polynomial) memory in his optimal strategy.

4. Computing all values Val(v) (for v ∈ V ), as well as optimal strategies (if they exist) for
both players, can be done in (pseudo-polynomial) time O(|V |2|E|W ).

To prove the first item it suffices to notice that vertices with value +∞ are exactly those
from which Min cannot reach the target. Therefore the problem reduces to deciding the
winner in a classical reachability game, that can be solved in polynomial time [16], using the
classical attractor construction: in vertices of value +∞, Min may play indifferently, while
Max has an optimal memoryless strategy consisting in avoiding the attractor.

To prove the second item, it suffices first to notice that vertices with value −∞ are exactly
those with a value < 0 in the mean-payoff game played on the same graph. On the other
hand, we can show that any mean-payoff game can be transformed (in polynomial time)
into an MCR game such that a vertex has value < 0 in the mean-payoff game if and only
if the value of its corresponding vertex in the MCR game is −∞. The rest of this section
focuses on the proof of the third and fourth items. We start by explaining how to compute
the values in pseudo-polynomial, and we discuss optimal strategies afterward.

Computing the values. From now on, we assume, without loss of generality, that there is
exactly one target vertex denoted by t, and the only outgoing edge from t is a self loop
with weight 0: this is reflected by denoting MCR the payoff mapping {t}-MCR. Our value
iteration algorithm for MCR games is given in Algorithm 1. To establish its correctness, we
rely mainly on the operator F , which denotes the function ZV∞ → ZV∞ mapping every vector
x ∈ ZV∞ to F(x) defined by F(x)(t) = 0 and

F(x)(v) =


max
v′∈E(v)

(
ω(v, v′) + x(v′)

)
if v ∈ VMax \ {t}

min
v′∈E(v)

(
ω(v, v′) + x(v′)

)
if v ∈ VMin \ {t}
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Algorithm 1: Value iteration for min-cost reachability games
Input: MCR game 〈V,E, ω,MCR〉, W largest weight in absolute value

1 X(t) := 0
2 foreach v ∈ V \ {t} do X(v) := +∞
3 repeat
4 Xpre := X
5 foreach v ∈ VMax \ {t} do X(v) := maxv′∈E(v)

(
ω(v, v′) + Xpre(v′)

)
6 foreach v ∈ VMin \ {t} do X(v) := minv′∈E(v)

(
ω(v, v′) + Xpre(v′)

)
7 foreach v ∈ V \ {t} such that X(v) < −(|V | − 1)W do X(v) := −∞
8 until X = Xpre
9 return X

More precisely, we are interested in the sequence of iterates xi = F(xi−1) of F from the initial
vector x0 defined by x0(v) = +∞ for all v 6= t, and x0(t) = 0. The intuition behind the
sequence (xi)i>0 is that xi is the value of the game if we impose that Min must reach the target
within i steps (and get a payoff of +∞ if he fails to do so). Formally, for a play π = v0v1 · · ·
vi · · · , we let MCR6i(π) = MCR(π) if vk = t for some k 6 i, and MCR6i(π) = +∞
otherwise. We further let Val6i(v) = infσMin supσMax

MCR6i(Play(v, σMax, σMin)) (where σMax
and σMin are respectively strategies of Max and Min). We can show that the operator F
allows one to compute the sequence (Val6i)i>0, i.e., for all i > 0: xi = Val6i.

Let us first show that the algorithm is correct when the values of all nodes are finite.
Thanks to this characterisation, and by definition of Val6i, it is easy to see that, for all
i > 0: xi = Val6i < Val = Val. Moreover, F is a monotonic operator over the complete
lattice ZV∞. By Knaster-Tarski’s theorem, the fixed points of F form a complete lattice and
F admits a greatest fixed point. By Kleene’s fixed point theorem, using the Scott-continuity
of F , this greatest fixed point can be obtained as the limit of the non-increasing sequence of
iterates (F i(x))i>0 starting in the maximal vector x defined by x(v) = +∞ for all v ∈ V .
As x0 = F(x), the sequence (xi)i>0 is also non-increasing (i.e., xi < xi+1, for all i > 0)
and converges towards the greatest fixed point of F . We can further show that the value
of the game Val is actually the greatest fixed point of F . Moreover, we can bound the
number of steps needed to reach that fixed point (when all values are finite – this is the
point where this hypothesis is crucial), by carefully observing the possible vectors that can
be computed by the algorithm: the sequence (xi)i>0 is non-increasing, and stabilises after at
most (2|V | − 1)W |V |+ |V | steps on Val.

Thus, computing the sequence (xi)i>0 up to stabilisation yields the values of all vertices
in an MCR game if all values are finite. Were it not for line 7, Algorithm 1 would compute
exactly this sequence. We claim that Algorithm 1 is correct even when vertices have values
in {−∞,+∞}. Line 7 allows to cope with vertices whose value is −∞: when the algorithm
detects that Min can secure a value small enough from a vertex v, it sets v’s value to −∞.
Intuitively, this is correct because if Min can guarantee a payoff smaller than −(|V | − 1)×W ,
he can force a negative cycle from which he can reach t with an arbitrarily small value.
Hence, one can ensure that, after i iterations of the loop, xi−1 < X < Val, and the sequence
still converges to Val, the greatest fixed point of F . Finally, if some vertex v has value +∞,
one can check that X(v) = +∞ is an invariant of the loop. From that point, one can prove
the correctness of the algorithm. Thus, the algorithm executes O(|V |2W ) iterations. Since
each iteration can be performed in O(|E|), the algorithm has a complexity of O(|V |2|E|W ),
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as announced in Theorem 1. As an example, consider the min-cost reachability game of
Figure 2(a). The successive values for vertices (v1, v2) (value of the target v3 is always 0)
computed by the value iteration algorithm are the following: (+∞,+∞), (+∞, 0), (−1, 0),
(−1,−1), (−2,−1), (−2,−2), . . . , (−W,−W + 1), (−W,−W ). This requires 2W steps to
converge (hence a pseudo-polynomial time).

Computing optimal strategies for both players. We now turn to the proof of the third
item of Theorem 1, supposing that every vertex v of the game has a finite value Val(v) ∈ Z
(the case where Val(v) = +∞ is delt with the attractor construction).

Observe first that, Min may need memory to play optimally, as already shown by the
example in Figure 2(a), where the target is v3. Nevertheless, let us briefly explain why
optimal strategies for Min always exist, with a memory of pseudo-polynomial size. We extract
from the sequence (xi)i>0 defined above (or equivalently, from the sequence of vectors X of
Algorithm 1) the optimal strategy σ∗Min as follows. Let k be the first index such that xk+1 = xk.
Then, for every play π ending in vertex v ∈ VMin, we let σ∗Min(π) = argminv′∈E(v)

(
ω(v, v′) +

xk−|π|−1(v′)
)
, if |π| < k, and σ∗Min(π) = argminv′∈E(v)

(
ω(v, v′) + x0(v′)

)
otherwise (those

argmin may not be unique, but we can indifferently pick any of them). Since σMin only requires
to know the last vertex and the length of the prefix up to k, and since k 6 (2|V |−1)W |V |+|V |
as explained above, σ∗Min needs a memory of pseudo-polynomial size only. Moreover, it can
be computed with the sequence of vectors X in Algorithm 1. It is not difficult to verify by
induction that this strategy is optimal for Min. While optimal, this strategy might not be
practical, for instance, in the framework of controller synthesis. Implementing it would require
to store the full sequence (xi)i>0 up to convergence step k (possibly pseudo-polynomial) in a
table, and to query this large table each time the strategy is called. Instead, an alternative
optimal strategy σ′Min can be construct, that consists in playing successively two memoryless
strategies σ1

Min and σ2
Min (σ2

Min being given by the attractor construction). To determine when
to switch from σ1

Min to σ2
Min, σ′Min maintains a counter that is stored in a polynomial number

of bits, thus the memory footprints of σ′Min and σ∗Min are comparable. However, σ′Min is easier
to implement, because σ1

Min and σ2
Min can be described by a pair of tables of linear size, and,

apart from querying those tables, σ′Min consists only in incrementing and testing the counter
to determine when to switch. Moreover, this succession of two memoryless strategies allows
us to also get some interesting strategy in case of vertices with values −∞: indeed, we can
still compute this pair of strategies, and simply modify the switching policy to run for a
sufficiently long time to guarantee a value less than a given threshold. In the following, we
call such a strategy a switching strategy.

Finally, we can show that, contrary to Min, Max always has a memoryless optimal strategy
σ∗Max defined by σ∗Max(π) = argmaxv′∈E(v) (ω(v, v′) + Val(v′)) for all finite plays π ending in
v ∈ VMax. For example, in the game of Figure 2(a), σ∗Max(πv2) = v3 for all π, since Val(v3) = 0
and Val(v1) = −W . Moreover, the previously described optimal strategies can be computed
along the execution of Algorithm 1. Finally, we can show that, for all vertices v, the pair of
optimal strategies we have just defined yields a play Play(v, σ∗Max, σ

∗
Min) which is non-looping,

i.e., never visits the same vertex twice before reaching the target. For instance, still in the
game of Figure 2(a), Play(v1, σ

∗
Max, σ

∗
Min) = v1v2v

ω
3 .

4 An efficient algorithm to solve total-payoff games

We now turn our attention back to total-payoff games (without reachability objective), and
discuss our main contribution. Building on the results of the previous section, we introduce
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Figure 3 MCR game G3 associated with the total-payoff game of Figure 2(a).

the first (as far as we know) pseudo-polynomial time algorithm for solving those games in
the presence of arbitrary weights, thanks to a reduction from total-payoff games to min-cost
reachability games. The MCR game produced by the reduction has size pseudo-polynomial
in the size of the original total-payoff game. Then, we show how to compute the values of
the total-payoff game without building the entire MCR game, and explain how to deduce
memoryless optimal strategies from the computation of our algorithm.

Reduction to min-cost reachability games. We provide a transformation from a total-
payoff game G = 〈V,E, ω,TP〉 to a min-cost reachability game GK such that the values of G
can be extracted from the values in GK (as formalised below). Intuitively, GK simulates the
game where players play in G; Min may propose to stop playing and reach a fresh vertex t
acting as the target; Max can then accept, in which case we reach the target, or refuse at most
K times, in which case the game continues. Structurally, GK consists of a sequence of copies
of G along with some new states that we now describe formally. We let t be a fresh vertex,
and, for all n > 1, we define the min-cost reachability game Gn = 〈V n, En, ωn, {t}-MCR〉
where V nMax (respectively, V nMin) consists of n copies (v, j), with 1 6 j 6 n, of each vertex
v ∈ VMax (respectively, v ∈ VMin) and some exterior vertices (ex, v, j) for all v ∈ V and
1 6 j 6 n (respectively, interior vertices (in, v, j) for all v ∈ V and 1 6 j 6 n). Moreover,
V nMax contains the fresh target vertex t. Edges are given by

En = {(t, t)} ]
{(

(v, j), (in, v′, j)
)
| (v, v′) ∈ E, 1 6 j 6 n

}
]
{(

(in, v, j), (v, j)
)
| v ∈ V, 1 6 j 6 n

}
]
{(

(ex, v, j), t
)
| v ∈ V, 1 6 j 6 n

}
]
{(

(in, v, j), (ex, v, j)
)
| v ∈ V, 1 6 j 6 n

}
]
{(

(ex, v, j), (v, j − 1)
)
| v ∈ V, 1 < j 6 n

}
.

All edge weights are zero, except edges
(
(v, j), (in, v′, j)

)
that have weight ω(v, v′).

For example, considering the weighted graph of Figure 2(a), the corresponding reachability
total-payoff game G3 is depicted in Figure 3 (where weights 0 have been removed). The next
proposition formalises the relationship between the two games.

I Proposition 2. Let K = |V |(2(|V | − 1)W + 1). For all v ∈ V and k > K,
ValG(v) 6= +∞ if and only if ValG(v) = ValGk ((v, k));
ValG(v) = +∞ if and only if ValGk ((v, k)) > (|V | − 1)W + 1.

The bound K is found by using the fact (informally described in the previous section) that
if not infinite, the value of a min-cost reachability game belongs in [−(|V |−1)×W+1, |V |×W ],
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Figure 4 MCR game GY associated with the total-payoff game of Figure 2(a).

and that after enough visits of the same vertex, an adequate loop ensures that Gk verifies
the above properties.

Value iteration algorithm for total-payoff games. By Proposition 2, an immediate way to
obtain a value iteration algorithm for total-payoff games is to build game GK , run Algorithm 1
on it, and map the computed values back to G. We take advantage of the structure of GK
to provide a better algorithm that avoids building GK . We first compute the values of the
vertices in the last copy of the game (vertices of the form (v, 1), (in, v, 1) and (ex, v, 1)), then
of those in the penultimate (vertices of the form (v, 2), (in, v, 2) and (ex, v, 2)), and so on.

We formalise this idea as follows. Let Zj be a vector mapping each vertex v of G to the
value Zj(v) of vertex (v, j) in GK . Then, let us define an operator H such that Zj+1 = H(Zj).
The intuition behind the definition of H(Y ) for some vector Y , is to extract from GK one copy
of the game, and make Y appear in the weights of some edges as illustrated in Figure 4. This
game, GY , simulates a play in G in which Min can opt for ‘leaving the game’ at each round
(by moving to the target), obtaining max(0, Y (v)), if v is the current vertex. Then H(Y )(v)
is defined as the value of v in GY . By construction, it is easy to see that Zj+1 = H(Zj) holds
for all j > 1. Furthermore, we define Z0(v) = −∞ for all v, and have Z1 = H(Z0). One can
prove the following properties of H: (i) H is monotonic, but may not be Scott-continuous;
(ii) the sequence (Zj)j>0 converges towards ValG .

We are now ready to introduce Algorithm 2 to solve total-payoff games. Intuitively, the
outer loop computes, in variable Y, a non-decreasing sequence of vectors whose limit is ValG ,
and that is stationary (this is not necessarily the case for the sequence (Zj)j>0). Line 1
initialises Y to Z0. Each iteration of the outer loop amounts to running Algorithm 1 to
compute H(Ypre) (lines 3 to 10), then detecting if some vertices have value +∞, updating Y
accordingly (line 11, following the second item of Proposition 2). One can show that, for all
j > 0, if we let Y j be the value of Y after the j-th iteration of the main loop, Zj 4 Y j 4 ValG ,
which ensures the correctness of the algorithm.

I Theorem 3. If a total-payoff game G = 〈V,E, ω,TP〉 is given as input, Algorithm 2
outputs the vector ValG of optimal values, after at most K = |V |(2(|V | − 1)W + 1) iterations
of the external loop. The complexity of the algorithm is O(|V |4|E|W 2).

The number of iterations in each internal loop is controlled by Theorem 1. On the example
of Figure 2(a), only 2 external iterations are necessary, but the number of iterations of each
internal loop would be 2W . By contrast, for the total-payoff game depicted in Figure 2(b),
each internal loop requires 2 iterations to converge, but the external loop takes W iterations
to stabilise. A combination of both examples would experience a pseudo-polynomial number
of iterations to converge in both the internal and external loops, matching the W 2 term of
the above complexity.
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Algorithm 2: A value iteration algorithm for total-payoff games.
Input: Total-payoff game G = 〈V,E, ω,TP〉, W largest weight in absolute value

1 foreach v ∈ V do Y(v) := −∞
2 repeat
3 foreach v ∈ V do Ypre(v) := Y(v); Y(v) := max(0,Y(v)); X(v) := +∞
4 repeat
5 Xpre := X
6 foreach v ∈ VMax do X(v) := maxv′∈E(v)

[
ω(v, v′) + min(Xpre(v′),Y(v′))

]
7 foreach v ∈ VMin do X(v) := minv′∈E(v)

[
ω(v, v′) + min(Xpre(v′),Y(v′))

]
8 foreach v ∈ V such that X(v) < −(|V | − 1)W do X(v) := −∞
9 until X = Xpre

10 Y := X
11 foreach v ∈ V such that Y(v) > (|V | − 1)W do Y(v) := +∞
12 until Y = Ypre
13 return Y

Optimal strategies. In Section 3, we have shown, for any min-cost reachability game, the
existence of a pair of memoryless strategies permitting to reconstruct a switching optimal
strategy for Min (if every vertex has value different from −∞, or a strategy ensuring any
possible threshold for vertices with value −∞). If we apply this construction to the game
GValG , we obtain a pair (σ1

Min, σ
2
Min) of strategies (remember that σ2

Min is a strategy obtained by
the attractor construction, hence it will not be useful for us for total-payoff games). Consider
the strategy σMin, obtained by projecting σ1

Min on V as follows: for all finite plays π and
vertex v ∈ VMin, let σMin(πv) = v′ if σ1

Min(v) = (in, v′). We can show that σMin is optimal for
Min in G. Notice that σ1

Min, and hence σMin, can be computed during the last iteration of
the value iteration algorithm, as explained in the case of min-cost reachability. A similar
construction can be done to compute an optimal strategy of Max.

5 Implementation and heuristics

In this section, we report on a prototype implementation of our algorithms.4 For convenience
reasons, we have implemented them as an add-on to PRISM-games [5], although we could
have chosen to extend another model-checker as we do not rely on the probabilistic features
of PRISM models (i.e., we use the PRISM syntax of stochastic multi-player games, allowing
arbitrary rewards, and forbidding probability distributions different of Dirac ones). We then
use rPATL specifications of the form 〈〈C〉〉Rmin /max=?[F∞ϕ] and 〈〈C〉〉Rmin /max=?[Fc⊥] to
model respectively min-cost reachability games and total-payoff games, where C represents
a coalition of players that want to minimise/maximise the payoff, and ϕ is another rPATL
formula describing the target set of vertices (for total-payoff games, such a formula is not
necessary). We have tested our implementation on toy examples. On the parametric one
studied after Theorem 3, obtained by mixing the graphs of Figure 2 and repeating them for
n layers, results obtained by applying our algorithm for total-payoff games are summarised in
Table 1, where for each pair (W,n), we give the time t in seconds, the number ke of iterations
in the external loop, and the total number ki of iterations in the internal loop.

4 Source and binary files, as well as some examples, can be downloaded from http://www.ulb.ac.be/di/
verif/monmege/tool/TP-MCR/.

http://www.ulb.ac.be/di/verif/monmege/tool/TP-MCR/
http://www.ulb.ac.be/di/verif/monmege/tool/TP-MCR/
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Table 1 Results of value iteration on a parametric example.

without heuristics with heuristics
W n t ke ki t ke ki

50 100 0.52s 151 12,603 0.01s 402 1,404
50 500 9.83s 551 53,003 0.42s 2,002 7,004
200 100 2.96s 301 80,103 0.02s 402 1,404
200 500 45.64s 701 240,503 0.47s 2,002 7,004
500 1,000 536s 1,501 1,251,003 2.37s 4,002 14,004

We close this section by sketching two techniques that can be used to speed up the
computation of the fixed point in Algorithms 1 and 2. We fix a weighted graph 〈V,E, ω〉.
Both accelerations rely on a topological order of the strongly connected components (SCC
for short) of the graph, given as a function c : V → N, mapping each vertex to its component,
verifying that (i) c(V ) = {0, . . . , p} for some p > 0, (ii) c−1(q) is a maximal SCC for all q,
(iii) and c(v) > c(v′) for all (v, v′) ∈ E.5 In case of an MRC game with t the unique target,
c−1(0) = {t}. Intuitively, c induces a directed acyclic graph whose vertices are the sets
c−1(q) for all q ∈ c(V ), and with an edge (S1, S2) if and only if there are v1 ∈ S1, v2 ∈ S2
such that (v1, v2) ∈ E.

The first acceleration heuristic is a divide-and-conquer technique that consists in applying
Algorithm 1 (or the inner loop of Algorithm 2) iteratively on each c−1(q) for q = 0, 1, 2, . . . , p,
using at each step the information computed during steps j < q (since the value of a
vertex v depends only on the values of the vertices v′ such that c(v′) 6 c(v)). The second
acceleration heuristic consists in studying more precisely each component c−1(q). Having
already computed the optimal values Val(v) of vertices v ∈ c−1({0, . . . , q − 1}), we ask
an oracle to precompute a finite set Sv ⊆ Z∞ of possible optimal values for each vertex
v ∈ c−1(q). For MCR games and the inner iteration of the algorithm for total-payoff games,
one way to construct such a set Sv is to consider that possible optimal values are the one of
non-looping paths inside the component exiting it, since, in MCR games, there exist optimal
strategies for both players whose outcome is a non-looping path (see Section 3).

We can identify classes of weighted graphs for which there exists an oracle that runs in
polynomial time and returns, for all vertices v, a set Sv of polynomial size. On such classes,
Algorithms 1 and 2, enhanced with our two acceleration techniques, run in polynomial time.
For instance, for all fixed positive integers L, the class of weighted graphs where every
component c−1(q) uses at most L distinct weights (that can be arbitrarily large in absolute
value) satisfies this criterion. Table 1 contains the results obtained with the heuristics on the
parametric example presented before. Observe that the acceleration technique permits here
to decrease drastically the execution time, the number of iterations in both loops depending
not even anymore on W . Even though the number of iterations in the external loop increases
with heuristics, due to the decomposition, less computation is required in each internal loop
since we only apply the computation for the active component.
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On the Value Problem in Weighted Timed Games∗
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Abstract
A weighted timed game is a timed game with extra quantitative information representing e.g.
energy consumption. Optimizing the weight for reaching a target is a natural question, which
has already been investigated for ten years. Existence of optimal strategies is known to be
undecidable in general, and only very restricted classes of games have been identified for which
optimal weight and almost-optimal strategies can be computed. In this paper, we show that
the value problem is undecidable in weighted timed games. We then introduce a large subclass
of weighted timed games (for which the undecidability proof above applies), and provide an
algorithm to compute arbitrary approximations of the value in such games. To the best of our
knowledge, this is the first approximation scheme for an undecidable class of weighted timed
games.
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1 Introduction

Timed automata [3] have been introduced in the early 1990’s as a powerful model to reason
about (the correctness of) real-time computerized systems. Timed automata extend finite-
state automata with several clocks, which can be used to enforce timing constraints between
various events in the system. They provide a convenient formalism and enjoy reasonably-
efficient algorithms (e.g. reachability can be decided using polynomial space), which explains
the enormous interest that they provoked in the community of formal methods. Timed
games [5] extend timed automata with a way of modeling systems interacting with external,
uncontrollable components: some transitions of the automaton cannot be forced or prevented
to happen. The reachability problem then asks whether there is a strategy to reach a
given state, whatever the uncontrollable components do. This problem is also decidable, in
exponential time.

Hybrid automata [2] are another extension of timed automata, involving hybrid variables:
those variables can be used to measure other quantities than time (e.g. temperature, energy
consumption, ...). Their evolution may follow differential equations, depending on the state
of the system. Those variables unfortunately make the reachability problem undecidable [18],
even in the restricted case of stopwatches, which are clocks that can be stopped and restarted.
Weighted (or priced) timed automata [4, 6] and games [19, 1, 11] have been proposed in
the early 2000’s as an intermediary model for modelling resource consumption or allocation
problems in real-time systems (e.g. optimal scheduling [7]). As opposed to (linear) hybrid
systems, an execution in a weighted timed model is simply one in the underlying timed
model: the extra quantitative information is just an observer of the system, and it does not

∗ This work has been partially supported by the EU under ERC project EQualIS (FP7-308087) and FET
project Cassting (FP7-601148).

© Patricia Bouyer, Samy Jaziri, and Nicolas Markey;
licensed under Creative Commons License CC-BY

26th International Conference on Concurrency Theory (CONCUR 2015).
Editors: Luca Aceto and David de Frutos Escrig; pp. 311–324

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.311
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


312 On the Value Problem in Weighted Timed Games
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Figure 1 A two-clock weighted timed game.

1 0
x>1

x:=0

Figure 2 A weighted timed game with
value 1 where Player 1 has no optimal strategy.

1 1 0
0<x<1

x:=0

x>0

Figure 3 A weighted timed game with
value 1 where Player 1 has a strategy to se-
cure weight strictly less than 1.

modify the possible behaviors of the system. Figure 1 displays an example of a weighted
timed game: each location carries an integer, which is the rate by which the weight increases
when time elapses in that location. Some edges also carry a weight, which indicates how
much the weight increases when crossing this edge. Dashed edges are uncontrollable, and
cannot be forced or prevented to occur. Notice that the constraints on edges never depend
on the value of the weight, but only on the values of the clocks.

While optimal weight and almost-optimal schedules can be computed in weighted timed
automata [4, 6, 8], the situation is less appealing in the context of weighted timed games:
indeed, it is in general undecidable whether a player has a strategy to reach a target with
total weight no more than a given value [14], even for timed games with only three clocks [9].
Optimal weight and almost-optimal winning strategies can be computed in restricted classes of
weighted timed games, such as games with strong divergence properties on the weight [1, 11],
or one-clock turn-based games [13, 22, 17, 15].

We point out a discrepancy in the set of results mentioned above: decidability results
concern the value problem (is the infimum, over all strategies of Player 1, of the accumulated
weight, less than or equal to some constant?), whereas undecidability results deal with the
existence problem (is there a strategy for Player 1 under which the accumulated weight is less
than or equal to some constant?). Both problems are obviously related, but the undecidability
of the existence problem does not entail the undecidability of the value problem: indeed,
there are obvious examples (see Fig. 2) – and more complex ones (see [12]) – where Player 1
has no optimal strategy for securing the exact value of the game. More surprisingly, there
also exist games where Player 1 has super-optimal strategies, which when combined with any
strategy of Player 2, achieves final weight strictly better than the value of the game. The
value of the game of Fig. 3 is 1, but if Player 1 plays a delay ε/2 when Player 2 (controlling
the dashed edge) played a delay of 1− ε in the first location, she gets final weight strictly
less than 1 against any Player-2 strategy.

Our contributions in this paper are the following:
We show that the value problem is undecidable: given a game and a rational c, no algorithm
can decide whether the value of the game is less than or equal to c. The proof of this
result shares similarities with the undecidability proof for the existence problem, but
requires a more careful analysis of the strategies of the players.
We exhibit a subclass of timed games for which arbitrary precise approximations of
the value of a game can be computed. This subclass is large enough to include the
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games that are used in the undecidability proof mentioned above. We believe that this
approximability result is an important result, since getting the exact value is rarely needed
in practice, and optimal strategies need not exist anyway. We notice that in all cases we
know of where the optimal weight can be computed (namely [4, 6, 8, 1, 11, 13, 22, 17, 15]),
only almost-optimal strategies are actually synthesized; hence it is not really meaningful
to know the precise value, and an approximation thereof is sufficient. As a side-result,
we get that the optimal weight is co-recursively enumerable in this subclass.

For lack of space, detailed proofs are deferred to the research report [12].

2 Definitions

2.1 Weighted timed games
Let X be a finite set of variables (called clocks in our context). A clock valuation for X is
a mapping X → R≥0. Given such a clock valuation v, d ∈ R≥0 and Y ⊆ X, we define the
valuations v + d and v[Y ← 0] respectively by (v + d)(x) = v(x) + d for every x ∈ X, and by
(v[Y ← 0])(x) = 0 if x ∈ Y and (v[Y ← 0])(x) = v(x) otherwise.

A clock constraint over a finite set of clocks X is a conjunction of atomic constraints of
the form x ./ c, where ./ ∈ {<,≤,=,≥, >} and c ∈ N. We say that a valuation v : X 7→ R≥0
satisfies a constraint x ./ c whenever v(x) ./ c; the semantics of conjunction is natural.
We also allow > and ⊥ as trivial clock constraints (which always evaluate to true and false,
respectively).

I Definition 1. A weighted timed game is a tuple G = 〈L, `0, Lf, X,E,E1, E2,wt〉 where L is
a finite set of locations; `0 ∈ L is the initial location; Lf ⊆ L is the subset of target locations;
X is a finite set of clocks; E ⊆ L×C(X)× 2X ×L is a finite set of edges, partitioned into the
edges E1 of Player 1, and the edges E2 of Player 2; and wt : L ∪E → Q≥0 assigns a value to
every location and to every edge. We assume that for any ` ∈ L and any v ∈ RX≥0, there is a
transition (`, g, r, `′) ∈ E such that v |= g.

The game is turn-based whenever L can be partitioned into L1 and L2 such that all the
edges in E1 (resp. E2) have their sources in L1 (resp. L2).

The semantics of such a weighted timed game is defined as a game on an infinite
graph: a configuration of G is a pair (`, v) consisting of a location and a clock valuation
of X. The configuration (`0,0), where valuation 0 assigns 0 to every clock, is the initial
configuration. A target configuration is a configuration (`, v) where ` ∈ Lf and v is any
clock valuation. For any e = (`, g, Y, `′) ∈ E and d ≥ 0, there is a transition (`, v) d,e−−→(`′, v′)
whenever v + d |= g and v′ = v[Y ← 0]. In that case, we say that action (d, e) is enabled
at (`, v). The weight of such a transition is wtG

(
(`, v) d,e−−→(`′, v′)

)
= d · wt(`) + wt(e).

A run (or path) in G is a finite or infinite sequence of consecutive transitions. A run is
initial whenever it starts in (`0,0). If ρ is finite, we write last(ρ) for its last configuration.
We write FPathG(`, v) for the set of finite runs in G starting in configuration (`, v). We write
FPathG for the set of all finite runs in G. Given a run ρ, we write ρ|f for the prefix of ρ ending
in the first target configuration it reaches (or ρ|f = ρ if no target location is visited along ρ).
If ρ is a finite run, its weight, written wtG(ρ), is defined as the sum of the weights of all its
intermediary transitions. If ρ is an infinite run, its weight is +∞ if it does not visit a target
configuration, and it is wt(ρ|f) otherwise.

We now explain how the game is played between Player 1 and Player 2. Let p ∈ {1, 2}.
A strategy for Player p is a mapping σp : FPathG → (R+ ×Ep)∪ {⊥} such that for every run
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ρ ∈ FPathG , the action σp(ρ) is enabled at last(ρ). The special value ⊥ is used in case no
action is enabled for Player p (and only in this case). We write StratGp for the set of strategies of
Player p in G. The (unique) outcome of a pair of strategies (σ1, σ2) ∈ StratG1×StratG2 from some
configuration s, denoted OutG((σ1, σ2), s), is the unique infinite run ρ = s0

d1,e1−−−→s1
d2,e2−−−→ . . .

such that s0 = s and for every n ∈ N, writing ρ≤n for s0
d1,e1−−−→s1

d2,e2−−−→ . . . sn, it holds:
if for some p ∈ {1, 2}, σp(ρ≤n) = ⊥ , then necessarily σ3−p(ρ≤n) = (d, e) (it cannot be ⊥,
according to our definitions), and (dn+1, en+1) = (d, e);
if σ1(ρ≤n) = (d1, e1) and σ2(ρ≤n) = (d2, e2), then dn+1 = min(d1, d2). Then the action
of the player with the smallest delay is selected: if dp < d3−p with p ∈ {1, 2}, then
en+1 = ep, whereas if d1 = d2 then en+1 = e2. This last condition expresses a priority
given to Player 2 (this choice is arbitrary; other variants, e.g. with non-determinism [16],
could be handled similarly).

Given two strategies (σ1, σ2) ∈ StratG1 × StratG2 , their joint weight from configuration s is
defined as the weight of their outcome from s. We write wtG((σ1, σ2), s) = wt(OutG((σ1, σ2), s).
If σ1 (resp. σ2) is a Player-1 (resp. Player-2) strategy, we define its weight from s as:

wtG(σ1, s) = sup
σ′

2∈StratG
2

wtG((σ1, σ
′
2), s) wtG(σ2, s) = inf

σ′
1∈StratG

1

wtG((σ′1, σ2), s)

We then define the optimal weight for Player 1 (resp. Player 2) in s as follows:

optwt1
G(s) = inf

σ1∈StratG
1

wtG(σ1, s) optwt2
G(s) = sup

σ2∈StratG
2

wtG(σ2, s)

One easily notices that optwt1
G(s) ≥ optwt2

G(s) for any s. The converse does not hold in
general, but it holds for the class of turn-based games, thanks to Martin’s theorem [20].
In the sequel, we call optwt1

G(s) the value of the game from s (even in the case where
optwt1

G(s) 6= optwt2
G(s)), and write it valG(s). In the sequel, for all the notations introduced

in this paragraph, we may omit to mention the configuration s in case we mean the initial
configuration (`0,0). A strategy σ1 of Player 1 is said optimal whenever wtG(σ1) = valG .
Given ε > 0, σ1 is said ε-optimal whenever wtG(σ1) ≤ valG + ε. Optimal strategies need not
exist, first due to strict clock constraints, or due to more complex convergence phenomena
that may happen.

I Example 2. Consider the weighted timed automaton Gex of Fig. 1, and initial configuration
s0 = (`0,0). Locations of Player 1 (resp. Player 2) are depicted with circles (resp. squares),
and target location is marked with a double circle. Weight information labels the locations
and the transitions (if the weight is 0, then it is omitted on the picture). In this game,
Player 1 always reaches the target state. For minimizing the weight, the only choice she
has is the time at which she takes the transition leaving `0. Then Player 2 decides either to
switch to location `2 or to location `3. We can write the following equation:

optwt1
Gex

= inf
0≤t≤2

max(5t+ 10(2− t) + 1, 5t+ (2− t) + 7) = 14 + 1
3 .

The optimal strategy for Player 1 is to fire the first transition when x = 4
3 .

2.2 Decision problems
In the following, a threshold is a pair (./, c) (which we more often write ./ c) with ./ ∈
{<,≤,=,≥, >} and c ∈ Q.
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I Definition 3 (existence problem). Given a weighted timed game G and a threshold ./ c, the
existence problem asks whether there is a strategy σ1 for Player 1 s.t. for every strategy σ2
for Player 2, it holds wtG(σ1, σ2) ./ c.

I Definition 4 (value problem). Given a weighted timed game G and a threshold ./ c, the
value problem asks whether optwt1

G ./ c.

The existence problem has been shown undecidable (for threshold ≤ c) 10 years ago [14, 9].
In the present paper, we extend this undecidability result to the value problem. We then
introduce a large subclass of weighted timed games (imposing a technical condition on the
accumulated weight along cycles), and propose an algorithm for computing an approximation
(up to any ε > 0) of any game in this subclass, together with almost-optimal strategies.
Based on this approximation algorithm, we prove that the value problem for threshold ≤ c is
co-recursively enumerable on our subclass.

3 Undecidability of the value problem

In this section we show that the value problem in weighted timed games is undecidable. More
precisely, we reduce the non-halting problem for a two-counter machine to the value problem
of weighted timed games with threshold ≤ c. Our reduction adapts an earlier reduction
of the halting problem for a two-counter machine to the existence problem for weighted
timed games [9]. The correctness proof makes use of more refined arguments developed in
Section 3.2.

3.1 Reduction
We assume the reader is familiar with the model of counter machines, whose (non-)halting
problem is known to be undecidable [21]. We fix a deterministic two-counter machineM, and
we define a three-counter machineM?, which is obtained by adding toM a third counter,
and by inserting an incrementing instruction for this counter after each transition of the
original machineM. In particular,M halts if and only ifM? halts.

Our reduction consists in mimicking the behaviour of the deterministic three-counter
machine M? using a (turn-based) weighted timed game GM? : the role of Player 1 is to
simulate the execution ofM?, resetting the clocks at well-chosen times so that the counter
values ci are encoded as clock values 1/2ci when entering selected locations. The role of
Player 2 is to check that Player 1 simulates the run of the two-counter machine correctly,
and in particular that she accurately updates the values of the clocks. At any time, Player 2
can decide to stop simulating the counter machine and leave the game, resulting in a final
weight 3 + ε, where ε is positive if Player 1 did not simulate the run ofM? correctly. Player 1
in turn can decide to stop the simulation and to leave the game at any time, securing a final
weight 3 + αN , where αN > 0 tends to zero when the length N of the execution simulated so
far tends to +∞.

If the machine does not halt, Player 1 can accurately simulate the machine for a large
number of steps, before leaving the game when αN < ε. Hence for any ε > 0, Player 1 can
secure final weight at most 3 + ε, and the value of the game is 3. Conversely, if the machine
does halt, its unique computation has finite length N ; our construction enforces that Player 1
will not be able to secure final accumulated weight better than 3 + βN for some βN > 0
(which only depends on N), yielding value 3 for the game.

We now explain this construction in more details. The construction is based on a few
simple modules that we then plug together. Those modules explicitly use some clocks,
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0 1

Y=1,Y :=0 Y=1,Y :=0

x=1,x:=0t:=0 t=1

module Add+(x)

1 0

Y=1,Y :=0 Y=1,Y :=0

x=1,x:=0t:=0 t=1

module Add−(x)

0 1 1 0
Add+(z) Add+(z) Add−(x)

Add−(z) Add−(z) Add+(x)

t:=0
t=1t=1

t:=0

module Test(x = 2z)

t:=0

Figure 4 Modules Add+ and Add−: the weight is increased by x0, resp. 1−x0 (x0: initial value of
x when entering the module). Module Test(x = 2z): Player 2 can increase the cost by 3 + |x0− 2z0|.

0
q, α

t:=0

Y=1,Y :=0

0

Y=1,Y :=0

0

Y=1,Y :=0

0 0
q′, α′

x=1,x:=0 z:=0 t=1 t=1
t:=0

Test(x = 2z)
t=1

module instr(q, α)

Figure 5 Module instr(q, α) encoding an incrementing transition (q, i, q′).

while some other clocks are only useful for the global reduction; the values of the latter are
then preserved by each module, thanks to self-loops on all locations (we symbolically write
Y = 1, Y := 0 to indicate that each other clock is reset when it reaches value 1) and to an
(implicit) global invariant requiring that no clock may exceed 1.

3.1.1 Comparing clock values
As sketched above, Player 2 is in charge of checking that Player 1 updates the clocks so as
to preserve the encoding x = 1/2c (c is a counter value). When incrementing this counter,
this amounts to checking that clock z (after the increment) equals x/2. Following the ideas
of [9], we build a module Test(x = 2z) in which Player 2 can achieve final accumulated
weight 3 + |x− 2z|. In other words, the final weight is 3 if x = 2z when entering this module,
and it is strictly more otherwise. Technically, as shown on Fig. 4, this is achieved by offering
two branches to Player 2: one in which the final weight is 3 + x − 2z and one where it is
3 + 2z− x. Hence Player 2 can enforce cost 2 + |x− 2z|. Accumulating these weights is easily
achieved by elapsing delays x, z, 1− z and 1− x in locations with local weights 0 and 1.

3.1.2 Incrementing and decrementing counters
Incrementing counter c is achieved by asking Player 1 to reset some clock z at a well-chosen
time, in such a way that z = x/2 when Player 2 is given the opportunity to enter the Test
module. The new value of the counter is then encoded by clock z.

Figure 5 displays the module used for encoding increments: clock t serves as a tick (t = 0
when entering the module, and t = 1 at the end); clock x encodes the value of the counter
initially (that is, x = 1/2c when entering the module), while clock z is used to encode the
value of the same counter after the increment (hence z = x/2 at the end of the module).
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q′, α′

Add+(α′(3)) 1 0t=0 t:=0 t=3

module Term(q′, α′)

t:=0

Figure 6 Module Term(q′, α′): α′(3) is the clock encoding the third counter, which counts the
number of steps simulated so far.

Finally, notice that the module depends on a function α, which is used to keep track of which
clock encodes which counter.

Decrementing counter c follows the same idea, but it first performs a zero-test at entrance.
Counter c = 0 if, and only if, the corresponding clock x = 1 when entering the module
(i.e., when clock t = 0).

3.1.3 Leaving the game
In the game built so far, Player 1 does not have a way to leave for sure to a final location
(e.g. when the counter machine does not halt). We give her the opportunity to do so right
after incrementing the third counter (which is done every two instructions), by plugging a
copy of module Term of Fig. 6 in the corresponding locations.

Notice that this transition is the only possible transition in the locations corresponding
to qhalt.

3.2 Analysis of the construction
Our construction does not check that the values of the clocks are of the form 1/2c. Hence
we don’t have a correspondence between configurations of GM? and configurations ofM?.
We define pseudo-configurations ofM? to tackle this problem: a pseudo-configuration ofM?

is a pair γ = (q, v), where q is a discrete state of M? and v : {1, 2, 3} → R≥0 assigns a
non-negative real number to every counter. A pseudo-run inM? is a sequence of pseudo-
configurations. Let ρ? = γ?0 → γ?1 → . . . be the unique maximal (finite or infinite) execution
ofM?. Consider a (finite or infinite) pseudo-run ρ = γ0 → γ1 → . . . . If there is some k ≥ 0
such that the discrete states of γk and γ?k do not coincide, we say that ρ is strongly-invalid,
which means that compared to the valid run ρ?, some discrete transition has not been
taken appropriately. Writing k0 for the first position where this occurs, the consecution
γk0−1 → γk0 is said to be strongly-invalid. If all discrete states coincide, but ρ is not a prefix
of ρ?, we say that ρ (and its erroneous consecutions) are weakly-invalid (in that case, some
counter values may not be correctly encoded, but this has no impact on the sequence of
visited states, hence on the nature – halting, non-halting – of the path).

Let σ⊥2 be the strategy of Player 2 that consists in never switching to a Test module
(i.e., it remains in the main part of the game). With any strategy σ1 ∈ Strat1(GM?),
we associate the unique maximal outcome in OutGM? (σ1, σ

⊥
2 ) (it can either end at a target

location of a terminating module, or be infinite). When entering the modules of the
instructions, it is clear from the syntax which clock encodes which counter, hence we can
extract from that path the sequence of configurations (qk, αk, νk) when entering (or leaving)
an instruction module, where qk is the discrete state, αk is the encoding mapping, and
νk is the clock valuation. The corresponding counter values can be recovered by defining
vk(i) = − log2(νk(αk(i))), and we thus have that γk = (qk, vk) is a pseudo-configuration
ofM?. We then write ρσ1 for the pseudo-run γ0 → γ1 → . . . associated with σ1.
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The following lemma is the crux of our proof: it states that the earlier an occurrence of a
strongly-invalid transition, the larger the penalty that can be inflicted to Player 1.

I Lemma 5. Let σ1 ∈ StratGM?

1 be a strategy such that ρσ1 is a strongly-invalid pseudo-run
of M?. Let γk −→ γk+1 be the first strongly-invalid consecution of ρσ1 . Then k > 0, and
there is a strategy σ2 ∈ StratGM?

2 such that wtGM? (σ1, σ2) ≥ 3 + 1
4k·2k .

Using this lemma, we can prove:

I Proposition 1. The counter machine M? does not halt if, and only if, the value of
game GM? is (at most) 3.

Sketch of proof. Assume M? halts, and let N be the length of the halting computation.
We argue that the value of the game is lower-bounded by 3 + εN , where εN is a positive
number that depends only on N . Then, either Player 1 decides to leave the game at some
point before having simulated the N steps of the counter machine, or Player 1 cheats so that
the simulation goes for longer than N steps. In the former case, the weight will be given by
gadget Term; it will be 3+αN , where αN is the value of the clock encoding third counter; it is
lower-bounded, since the third counter is upper-bounded by N . In the latter case, there must
be a strongly-invalid consecution before N steps have been simulated; applying Lemma 5
with k ≤ N , we again get a lower-bound of the form 3 + βN for some positive βN . In both
cases, the weight of the strategy is lower-bounded by a constant that only depends on N .

IfM? does not halt, then Player 1 can correctly mimic the counter machine, and leave
the game after an arbitrary long simulation, yielding a weight arbitrary close to 3. Hence
the value of the game is 3. J

This reduction proves undecidability of the value problem for thresholds = c and ≤ c.
By swapping the roles of Players 1 and 2 and slightly modifying the construction, we can
prove that the value problem is also undecidable for threshold ≥ c.

4 Computing an approximation of the value

In this section, we introduce a subclass of weighted timed games, and explain how to
approximate the values of games in this class. Our subclass is the set of games G for which
there exists κ > 0 such that for any finite run in the game that follows a region cycle of the
region automaton1 of G, either the weight is 0, or it is larger than or equal to κ;2 We call such
games almost strongly non-Zeno weighted timed games. It is decidable whether a weighted
timed game is almost strongly non-Zeno or not (by enumerating all simple cycles of the
region abstraction of G). Notice that the undecidability proof for the existence problem [9],
as well as our undecidability proof for the value problem in Section 3, is valid for this subclass
of weighted timed games. Finally note that if we strengthen the first condition above by
assuming that all cyclic runs have weight at least κ (forbidding zero cycles), then we get
the class of strongly non-Zeno weighted timed games, for which the value can be computed
exactly [1, 11].

In the sequel, we prove the approximability of the optimal weight:

I Theorem 6. Given an almost strongly non-Zeno weighted timed game G and a positive
real ε, we can compute a rational v, and a strategy σ1 for Player 1, such that |v − valG | ≤ ε
and |wtG(σ1)− v| ≤ ε.

1 We assume familiarity with region equivalence, and refer to [3] for details.
2 Applying results for weighted timed automata [10], we may assume κ = 1.
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4.1 A basic characterization of the value.
The following fixpoint characterization was given in [11]:

I Proposition 2 ([11]). Optimal weight for Player 1 is the largest fixpoint of the following
equation. For every state s of G:

valG(s) = inf
d≥0,e∈E1

s
d,e−−→s′

max


(1) d · wt(`) + wt(e) + valG(s′),
(2) sup

d′≤d,e′∈E2

s
d′,e′
−−−→s′′

(
d′ · wt(`) + wt(e′)+valG(s′′)

) 
However there is no obvious good property of this functional (that we know of) that could be
useful for designing an approximation algorithm. Instead, we will partially unfold the game
in a careful way in order to preserve the optimal weight, and prove that we can approximate
the value of the resulting game.

4.2 The semi-unfolded game
In order to approximate the value of the game, we first build a tree-shaped weighted timed
game G̃, with the same value as G. Then we explain how to approximate the value of G̃.

Let W be an upper bound on the optimal weight from every winning state of G; such a
bound is easy to compute, e.g. by picking a memoryless and region-uniform winning strategy
for Player 1 (in the underlying timed game) [5], and computing a bound on its weight from
all configurations.

We write R(G) for the timed game obtained from G by splitting its state space into
regions (that is, we apply the standard region-automaton construction [3] and interpret
it as a timed game). The weighted timed game R(G) is called the region game of G.
In R(G), we additionally assume – for technical reasons – that for every state (`, r) with
wt(`) > 0, for every v ∈ r, there is no transition (`, v) 0,e−−→. This can be achieved by a simple
transformation (at the expense of an extra clock to isolate the case where no time is elapsed
in (`, r)), hence it causes no loss of generality.

The values valG and valR(G) obviously coincide, as there is a tight correspondence between
the runs in both games. Now, in game R(G), we mark in green all locations with weight 0,
as well as all edges with discrete weight 0. All other locations and edges are marked in red.
Fully green cycles in R(G) (involving only green locations and edges) then characterize cycles
with weight 0. We define the kernel K of G as the restriction of R(G) to fully-green strongly
connected components. Edges that leave K are called the output edges of K. Notice that any
segment of a run from an output edge back to the kernel must visit a red state or a red edge.

The idea is to partially unfold the game R(G), to obtain a finite tree-like structure (see
the left part of Fig. 7). Before formally describing the construction, we begin by informally
explaining how it is obtained: we first unfold the game R(G), and along a branch, as soon
as we enter the kernel, we put a copy of K (removing all states that are not reachable,
but without unfolding K); we restart unfolding again from the output edges of that copy
of K. We stop this process when along any branch, a red state or edge of R(G) is visited at
least W + 2 times.

We now formalize this construction. We first build a tree T , which carries labels both
on its nodes and on the edges between nodes. The root n0 of T is labelled with the initial
location (`0, r0) of R(G). The tree is then built inductively, starting from the root:

If a node n is labelled with (`, r), then, for every transition (`, r) g,Y−−→ (`′, r′) in R(G),
we consider two cases:
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K

K

K

K

Exact computation
Lemma 8

Approximation
Lemma 7

Figure 7 Approximation scheme: in the tree-shaped parts of the semi-unfolding, an exact
computation can be performed; in the kernels, we apply under- and over-approximation algorithms.

if (`′, r′) belongs to the kernel K, then node n has a son n′ labelled with K(`′,r′);
Otherwise, n has a son n′ labelled with (`′, r′).

In both cases, the edge between n and n′ is labelled with (g, Y ).
If n is labelled with K(`,r), then, for every output edge e = (`′′, r′′) g,Y−−→ (`′, r′) of K that
is reachable from (`, r), we add a son ne labelled with (`′, r′). We label the corresponding
edge with (g, Y ).

We stop this construction as soon as all the branches of this tree contain either W + 2
occurrences of the same pair (`, r), or W + 2 occurrences of a red transition. We require all
the branches to end with some non-kernel node. One quickly realizes that tree T is finite.

From this tree T , we define a weighted timed game G̃, by replacing the kernel nodes with
copies of the kernel. More formally, pick a node n labelled with K(`,r), and write n1 to nk for
its sons. These sons originate from output edges e1 to ek of the kernel, which leave some
locations s1 to sk of the kernel. We then replace node n with a set of locations (n, s), one
for each location s ∈ K(`,r). The edge entering n is now directed to (n, (`, r)). Each edge
(s, g, Y, s′) in the kernel gives rise to an edge ((n, s), g, Y, (n, s′)). And finally, each son ni of
the former node n has an incoming edge from location (n, si), labelled in the same way as
the former edge ei.

After adding self loops on the leaves with weight 0, and importing the weights on locations
and edges and the partition of edges between both players, we end up with a weighted timed
game G̃, which we can prove satisfies the following:

I Proposition 3. The values of games G and G̃ coincide.

I Remark. It is worth noticing that the tree built from a game used in the undecidability
reduction (Section 3) is one single kernel with finite trees from the output edges (corresponding
to the (acyclic) test or leaving modules). Any outcome visits only once the kernel.

4.3 Approximation algorithm
The approximation algorithm is made of two distinct sub-algorithms (see Fig. 7):

the tree-shaped part analysis: an exact computation of the optimal weight can be
achieved in each tree-shaped part [19, 1];
the kernel analysis: this is the difficult part of the algorithm. The idea is to under- and
over-approximate the optimal weight computed so far from the output edges by piecewise-
constant functions, that are constant over subregions with a known small granularity.
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After this transformation, the game played within a kernel is a (non-weighted) timed game
with an extended reachability condition over output edges, which can be solved with basic
techniques. Each kernel analysis induces a bounded imprecision in the computation.

The algorithm then proceeds upwards from the leaves to the root of the built tree, alternatively
applying the analysis of the tree-shaped parts and of the kernel.

In order to describe the approximation algorithm, we consider an extension of the model
of weighted timed games with outside weight functions associated to target locations [13].
A generalized weighted timed game is now a tuple 〈L, `0, Lf, X,E,E1, E2,wt, outwt〉, where
the first eight components form a weighted timed game as of Def. 1, and outwt : Lf →
(RX+ → (R+ ∪ {+∞})) assigns a weight function with every target location. Compared to
classical weighted timed games, the weight of a run ρ reaching a target state is augmented by
outwt(`)(v), assuming last(ρ) = (`, v) with ` ∈ Lf. All notations are extended to this model
in a straightforward way. From a given configuration (`init, v), the aim of Player 1 now is to
reach the target states while minimizing this modified weight. Following [13], we use this
natural extension of the original model to iteratively compute the value in G̃.

The main idea of our algorithm is to approximate the value of outside weight functions by
piecewise-constant functions. For this, we split regions into smaller sets that we call regions
of granularity 1/2N , or simply 1/2N -regions, hereafter. Formally, a set R is a 1/2N -region
for a maximal constant M if, and only if, the set 2N ·R (obtained by scaling R by 2N in all
dimensions) is a region for maximal constant 2N ·M . In order to be able approximate outside
weight functions with piecewise-constant functions, we have to restrict them: an outside
weight function outwt is said smooth whenever there exists an integer M and a granularity
1/2N such that for every ` ∈ Lf, the function outwt(`) is uniformly continuous (or constantly
equal to +∞) over 1/2N -regions for maximal constantM . We additionally require that within
any 1/2N -region, the function outwt(`) does not depend on the exact values of the clocks
whose value is larger than M : for any two clock valuations v and v′ in the same 1/2N -region
such that v(x) = v′(x) whenever v(x) ≤M or v′(x) ≤M , it holds outwt(`)(v) = outwt(`)(v′).
Notice that contrary to [13], we impose no other conditions (affineness, monotonicity) on
outside weight functions.

Computing the value in the kernel. We now explain how we compute an approximation
of the value in the kernel, assuming that we have smooth outside weight functions in the
locations reached by output edges.

I Lemma 7. Consider a maximal strongly connected component K of the kernel K of some
region game R(G), and pick a state (`, r) of K. Let SO = {(`e, re) | e output edge of K} be
the set of target locations in R(G) of the output edges of K. Define a game H = 〈K∪SO, (`, r),
SO, X,E|K∪S0 , E1∩E|K∪S0 , E2∩E|K∪S0 ,wt|H, outwt〉, where outwt is a smooth outside weight
function with maximal partial derivative P .

Then, for every ε > 0, we can compute ε-over-approximations and ε-under-approximations
of the value of the game H at any configuration (`, v) with v ∈ r, and (2ε)-optimal strategies
from all those configurations. Additionally, the computed approximations are constant on
each 1/2N -subregion of r, as soon as 1/2N ≤ ε/P . Finally, the computation can be achieved
in time O(|R(G)| · (P/ε)|X|).

The key idea behind that lemma is to under- and over-approximate smooth outside
weight functions by constant functions over refined (1/2N -grained) regions, which then
reduces the game to some extended reachability timed game: each output edge is assigned
a single value by the computed constant outside weight function (the constant under- or
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over-approximation), and this value is the weight for leaving via this edge (there is no weight
involved elsewhere in the kernel); hence this defines a preference order over output edges,
and the aim of Player 1 now is to enforce the ‘less expensive’ edge; this game is timed, but
with a (qualitative) extended-reachability condition over output edges; it can be solved using
standard attractor techniques over timed games.

Computing the value in a finite tree. The computation of the optimal weight in tree-
shaped parts of the weighted timed games G̃ is known to be computable [19, 1] using an
iterative backward algorithm (which can also compute almost-optimal strategies) based on
equations given in Prop. 2. In our setting, the techniques developed in [1] entail the following
lemma:

I Lemma 8. Let S be a finite unfolding of a region game R(G) from some region (`0, r0).
We equip S with an outside weight function outwt associating with every leaf (`, r) of S a
function from r to R≥0. We require that there exists an integer N such that for any terminal
node (`, r), outwt(`, r) is constant over 1/2N -subregions of r.

Then we can compute the function v ∈ r0 7→ valS(`0, v) in time 2O(N ·|X|2+|S|2). Moreover,
those functions are piecewise-affine, with partial derivatives in {0} ∪ {wt(`) | ` ∈ L}.

Global algorithm. Our general algorithm consists in iteratively applying the two lemmas
above, hence computing approximation functions from the leaves to the root of the tree T .
More precisely, fix ε > 0, and pick a node n of T . This node is labelled either with (`, r), or
with K(`,r). Our algorithm computes two functions f+

ε (n) : r → R and f−ε (n) : r → R that
are smooth and respectively ε-over-approximate and ε-under-approximate the value of the
game G̃ from all configurations in the region (`, r) corresponding to node n.

Write ε′ = ε/(|R(G)| · (W + 2) + 1). We begin with initializing the computation at the
leaves of T . Let n be a leaf. By construction, it must be labelled with some (`, r). We define
f+
ε′ (n) and f−ε′ (n) as follows:

if ` ∈ Lf, we let f+
ε′ (n)(v) = f−ε′ (n)(v) = 0 for every v ∈ r;

otherwise, we let f+
ε′ (n)(v) = f−ε′ (n)(v) = +∞ for every v ∈ r.

These functions obviously correspond to the exact value. Moreover, they fulfill the hypothesis
of both Lemmas 7 and 8.

Now pick a node n of T , assuming that each son n′ of n has been assigned approximation
functions f+

kε′(n) and f−kε′(n). We consider two cases:
if n is labelled with (`, r) and is the son of a kernel node, then we apply Lemma 8 to
compute f+

kε′(n) and f−kε′(n);
if n is labelled with K(`,r), then we apply Lemma 7 with approximation value ε′ and
smooth outside weight function f+

kε′(n’) (resp. f−kε′(n’)), and get piecewise-constant weight
functions f+

(k+1)ε′(n) (resp. f−(k+1)ε′(n)).

The correctness of the algorithm is stated as follows:

I Lemma 9. Pick a node n of T labelled by (`, r) or K(`,r). Assume node n has been assigned
a value by f+

kε′ and f−kε′ . Then for every v ∈ r,

f−kε′(n)(v) ≤ valG̃(`, v) ≤ f+
kε′(n)(v).

Furthermore, for any node n where f−kε′(n) and f+
kε′(n) are defined, it holds∣∣f+

kε′(n)(v)− f−kε′(n)(v)
∣∣ ≤ k · ε′.

Additionally, we can compute (2kε′)-optimal winning strategies.
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The maximal number of kernels along any branch of T being bounded by (W+2)·|R(G)|+1,
there exists k ≤ (W + 2) · |R(G)| + 1 for which f−kε′ and f+

kε′ are defined at the root of T .
Those functions ε-under-approximate and ε-overapproximate the value of G, as required.

Complexity of the algorithm. Our algorithm inductively applies Lemma 7 on each copy
of the kernel, and Lemma 8 on each intermediary tree between kernels. This may result
in |R(G)|(W+2)·|R(G)|+1 applications of both lemmas. As W can be bounded by |R(G)| · P
where P is the maximal rate appearing in the automaton, the time-complexity is bounded
by
( 1
ε

)|X|2 · 2O(|R(G)|4) (hence doubly-exponential in the size of the original timed game).

4.4 The value problem is (co-)recursively enumerable
Using our approximation algorithm, we immediately get the following result:

I Theorem 10. Over the class of almost strongly non-Zeno weighted timed games, the value
problem is co-recursively enumerable for thresholds ≤ c, = c and ≥ c (for c ∈ Q). It is
recursively enumerable for thresholds < c and > c (with c ∈ Q).

Proof. We prove this result using the approximation algorithm above. We consider the case
of threshold ≤ c, but the other cases are similar. Given a game G, we build a Turing machine
that halts if, and only if, the value of G is not less than or equal to c.

The machine runs as follows: it first sets the tolerance ε to 1, and the approximation v
to −∞. Then, as long as c ≥ v − ε, it divides ε by 2, and computes an ε-approximation v of
the value of G using the approximation algorithm above.

One easily sees that if the value of G is indeed larger than c, then eventually ε will be
less than valG − c, and the machine will halt. Conversely, if the value of G is larger than or
equal to c, the machine will run forever. J

5 Conclusion

We proved in this paper that for weighted timed games, no algorithm can compute the
value of the game. On the other hand, we developed an approximation algorithm for a large
subclass of weighted timed games, for which the undecidability proof already applies.

We have two natural ways for continuing this work: the first one is to extend the
algorithm to handle the full class of weighted timed automata; the second one is to improve
the complexity of our approximation algorithm, which currently is doubly-exponential.
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Abstract
Synthesis is the automated construction of systems from their specifications. Modern systems
often consist of interacting components, each having its own objective. The interaction among
the components is modeled by a multi-player game. Strategies of the components induce a trace
in the game, and the objective of each component is to force the game into a trace that satisfies
its specification. This is modeled by augmenting the game with ω-regular winning conditions.
Unlike traditional synthesis games, which are zero-sum, here the objectives of the components do
not necessarily contradict each other. Accordingly, typical questions about these games concern
their stability – whether the players reach an equilibrium, and their social welfare – maximizing
the set of (possibly weighted) specifications that are satisfied.

We introduce and study repair of multi-player games. Given a game, we study the possibility
of modifying the objectives of the players in order to obtain stability or to improve the social
welfare. Specifically, we solve the problem of modifying the winning conditions in a given con-
current multi-player game in a way that guarantees the existence of a Nash equilibrium. Each
modification has a value, reflecting both the cost of strengthening or weakening the underlying
specifications, as well as the benefit of satisfying specifications in the obtained equilibrium. We
seek optimal modifications, and we study the problem for various ω-regular objectives and vari-
ous cost and benefit functions. We analyze the complexity of the problem in the general setting
as well as in one with a fixed number of players. We also study two additional types of repair,
namely redirection of transitions and control of a subset of the players.
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1 Introduction

Synthesis is the automated construction of systems from their specifications [19]. Modern
systems often consist of interacting components, each having its own objective. The interaction
among the components is modeled by a multi-player game. Each player in the game
corresponds to a component in the interaction. In each round of the game, each of the players
chooses an action, and the next vertex of the game depends on the current vertex and the
vector of actions chosen. A strategy for a player is then a mapping from the history of the
game so far to her next action.

The strategies of the players induce a trace in the game, and the goal of each player
is to direct the game into a trace that satisfies her specification. This is modeled by
augmenting the game with ω-regular winning conditions, describing the objectives of the
players. Unlike traditional synthesis games, which are zero-sum, here the objectives of the
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players do not necessarily contradict each other. Accordingly, typical questions about these
games concern their stability – whether the players reach an equilibrium, and their social
welfare – maximizing the set of (possibly weighted) specifications that are satisfied [23].

Different types of games can model different schemes of interaction among the components.
In particular, we distinguish between turn-based and concurrent games. In the first, a single
player chooses an action and determines the successor vertex in each step of the interaction.
In the second, all players choose actions in all steps [1]. Another parameter is the way in
which the winning conditions in the game are specified. Most common are reachability, Büchi,
co-Büchi, and parity winning conditions [17], which are used to specify the set of winning
traces. 1 As for stability and social welfare, here too, several types have been suggested and
studied. The most common criterion for stability is the existence of a Nash equilibrium (NE)
[18]. A profile of strategies, one for each player, is an NE if no (single) player can benefit from
unilaterally changing her strategy. In the general setting of game theory, the outcome of a
game fixes a reward to each of the players, thus “benefiting” stands for increasing the reward.
In our setting here, the objective of a player is to satisfy her specification. Accordingly,
“benefiting” amounts to moving from the set of losers – those players whose specifications are
not satisfied, to the set of winners – those whose specifications are satisfied.

In [7, 22], the authors study the existence of an NE in games with Borel objectives. It
turns out that while a turn-based game always has an NE [7, 22], this is not the case for
concurrent games [2]. The problem of deciding whether a given concurrent game has an NE
can be solved in polynomial time for Büchi games, but is NP-complete for reachability and
co-Büchi games. Interestingly, this is one of the few examples in which reasoning about the
Büchi acceptance condition is easier than reasoning about co-Büchi and reachability. The
above results hold for a model with nondeterministic transition functions and with imperfect
monitoring, where the players can observe the outcome of each transition and the vertex
in which the game is, but cannot observe the actions taken by the other players [21]. In
Remark 2.1 we elaborate on the difference between the two models. As we show in the
paper, the results for reachability, co-Büchi, and Büchi stay valid also for our full-information
model. For the parity condition, however, our model simplifies the setting and the problem of
deciding the existence of an NE is NP-complete, as opposed to PNP

‖ in the nondeterministic
model with imperfect monitoring.

We introduce and study repair of multi-player games. We consider a setting with an
authority (the designer) that aims to stabilize the interaction among the components and
to increase the social welfare. In standard reactive synthesis [19], there are various ways
to cope with situations when a specification is not realizable. Obviously, the specification
has to be weakened, and this can be done either by adding assumptions on the behavior of
the environment, fairness included, or by giving up some of the requirements on the system
[6, 15]. In our setting, where the goal is to obtain stability, and the game is not zero-sum,
a repair may both weaken and strengthen the specifications, which, in our main model, is
modeled by modifications to the winning conditions.

The input to the specification-repair problem (SR problem, for short) is a game along
with a cost function, describing the cost of each repair. For example, in Büchi games the cost
function specifies, for each vertex v and player i, the cost of making v accepting for Player i
and the cost of making v rejecting. The cost may be 0, reflecting the fact that v is accepting
or rejecting in the original specification of Player i, or it may be ∞, reflecting the fact that

1 A game may also involve incomplete information or stochastic transitions or strategies. The setting we
consider here is not stochastic and players have full observability on the other players actions.
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(1, 0)
(0, 1)

Figure 1 File sharing game. Initially, each player chooses to request either from the other user
(action u) or from the repository (action r). In case both players choose u, the XOR game is played.
The objective of Player i is to reach a vertex labeled αi, in which case the other player sends her the
file.

the original classification of v is a feature of the specification that the designer is not allowed
to modify. We consider some useful classes of cost functions, like uniform costs – where all
assignments cost 1, except for one that has cost 0 and stands for the original classification of
the vertex, or don’t-care costs – where several assignments have cost 0, reflecting a don’t-care
original classification, and all other assignments have cost ∞. In reachability, Büchi, and
co-Büchi games, we also refer to one-way costs, where repair may only add or only remove
vertices from the set of accepting vertices.

The goal of the designer is to suggest a repair to the winning conditions with which the
game has an NE. One way to quantify the quality of a repair is its cost, and indeed the
problem also gets as input a bound on the budget that can be used in the repairs. Another
way, which has to do with the social welfare, considers the specifications that are satisfied in
the obtained NE. Specifically, in the rewarded specification-repair problem (RSR problem,
for short), the input also includes a reward function that maps subsets of specifications to
rewards. When the suggested repair leads to an NE with a set W of winners, the designer
gets a reward that corresponds to the specifications of the players in W . The quality of a
solution then refers both to the budget it requires and to its reward. In particular, a reward
function may prioritize the players and give a reward only to one player. Then, the question
of finding an NE is similar to that of rational synthesis, where a winning strategy for the
system can take into an account the objectives of the players that constitute the environment
[9]. Thus, a special case of our contribution is repair of specifications in rational synthesis.

In [4], Brenguier describes several examples in which concurrent games and their stability
model real-life scenarios. This includes peer-to-peer networks, wireless channel with a shared
access, shared file systems, and more. The examples there also demonstrate the practicality
of specification repair in these scenarios. We give an explicit example below.

I Example 1. Consider a file-sharing system serving two users. Each user requests a file from
the other user or from a repository. Accessing the repository takes longer than transmitting
between users, but the connection between the users can be used only in one direction at
a time. If both users request the file from each other, they each choose a bit, and the file
is transmitted to one of them according to the XOR of the bits. We model the interaction
between the players as a reachability game, depicted in Fig. 1.

Observe that the game has no NE. Indeed, if w.l.o.g Player 1 does not reach α1, then
either Player 2 chose u and Player 1 lost in the XOR game, in which case Player 1 can
deviate by choosing a different bit in the XOR, or Player 2 chose r, in which case Player 1
can deviate by playing u.

There are several ways to repair the game such that it has an NE. One is to break the
symmetry between the players and make the vertex reached by playing (u, r) accepting for
both players, and similarly for the vertex reached by playing (r, u). The cost involved in
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this repair corresponds to the cost of communicating with the slower repository, and it is
particularly useful when the reward function gives a priority to one of the players. Another
possibility is to make the vertex reachable by playing (r, r) accepting for both players. Again,
this involves a cost. J

Studying the SR and RSR problems, we distinguish between several classes, characterized
by the type of winning conditions, cost functions, and reward functions. From a complexity
point of view, we also distinguish between the case where the number of players is arbitrary
and the one where it is constant. Recall that the problem of deciding whether an NE exists
with an arbitrary number of players is NP-complete for reachability, co-Büchi, and parity
games and can be solved in polynomial time for Büchi games. It is not too hard to lift
the NP lower bound to the SR and RSR problems. The main challenge is the Büchi case,
where one should find the cases where the polynomial complexity of deciding whether an NE
exists can be lifted to the SR and RSR problems, and the cases where the need to find a
repair shifts the complexity of the problem to NP. We show that the polynomial complexity
can be maintained for don’t-care costs, but the other settings are NP-complete. Our lower
bounds make use of the fact that the unilateral change of a strategy that is examined in an
NE can be linked to a change of the XOR of votes of all players, thus a single player can
control the target of such transitions in a concurrent game.2 We continue to study a setting
with an arbitrary number of players. We check whether fixing the number of players can
reduce the complexity of the SR and RSR problems, either by analyzing the complexity of
the algorithms for an arbitrary number of players, or by introducing new algorithms. We
show that in many cases, we can solve the problem in polynomial time, mainly thanks to the
fact that it is possible to go over all possible subsets of players in search for a subset that
can win in an NE.

In the context of verification, researchers have studied also other types of repairs (c.f.,
[11]). After focusing on the SR and RSR problems, we turn to study two other repair models.
The first is transition-repair, in which a repair amounts to redirecting some of the transitions
in the game. As with the SR problem, each redirection has a cost, and we seek repairs of
minimal cost that would guarantee the existence of an NE. The transition-repair model is
suitable in settings where the actions of the players do not induce a single successor state
and we can choose between several alternatives. The second model we consider is that of
controlled-players, in which we are allowed to dictate a strategy for some players. Also here,
controlling players has a cost, and we want to minimize the cost and still guarantee the
existence of an NE. We study several classes of the two types, and show that they are at
least as difficult as specification repair.

Due to lack of space, most proofs can be found in the full version, in the authors’ home
pages.

2 Preliminaries

2.1 Concurrent games
A concurrent game is a tuple G = 〈Ω, V, A, v0, δ, {αi}i∈Ω〉, where Ω is a set of k players; V
is a set of vertices; A is a set of actions, partitioned into sets Ai of actions for Player i, for

2 We note that while the representation of our games is big, as the transition function specifies all vectors
of actions, our complexity results hold also for games with a succinct representation of the transition
function, in particular games with an arbitrary number of players in which only a constant number
of players proceed in each vertex. The complexity of finding NE in succinctly represented games was
studied in [10]. Succinctly represented games were studied in [16] the context of ATL model checking.
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i ∈ Ω; v0 ∈ V is an initial vertex; δ : V ×A1 ×A2 × · · · ×Ak → V is a transition function,
mapping a vertex and actions taken by the players to a successor vertex; and αi, for i ∈ Ω,
specifies the objective for Player i. We describe several types of objectives in the sequel. For
v, v′ ∈ V and a ∈ A1 ×A2 × · · · ×Ak with δ(v, a) = v′, we sometimes refer to 〈v, a, v′〉 as a
transition in G.

A strategy for Player i is a function πi : (A1 × ... × Ak)∗ → Ai, which directs Player i
which action to take, given the history of the game so far. Note that the history is given by
means of the sequence of actions taken by all players so far.3

A profile is a tuple P = 〈π1, ..., πk〉 of strategies, one for each player. The profile P
induces a sequence a0, a1, . . . ∈ (A1 × ... × Ak)ω as follows: a0 = 〈π1(ε), ..., πk(ε)〉 and for
every i > 0 we have ai = 〈π1(a0, ..., ai−1), ..., πk(a0, ..., ai−1)〉. For a profile P we define
its outcome τ = outcome(P ) ∈ V ω to be the path of vertices in G that is taken when all
the players follow their strategies in P . Formally, τ = v0, v1, ... starts in v0 and proceeds
according to δ, thus vi+1 = δ(vi, ai). The set of winners in P , denoted W (P ) ⊆ Ω, is the set
of players whose objective is satisfied in outcome(P ). The set of losers in P , denote L(P ), is
then Ω \W (P ), namely the set of players whose objective is not satisfied in outcome(P ).

A profile P = 〈π1, ..., πk〉 is a Nash equilibrium (NE, for short) if, intuitively, no (single)
player can benefit from unilaterally changing her strategy. In the general setting, the
outcome of P associates a reward with each of the players, thus “benefiting” stands for
increasing the reward. In our setting here, the objective of Player i is binary – either αi

is satisfied or not. Accordingly, “benefiting” amounts to moving from the set of losers to
the set of winners. Formally, for i ∈ Ω and some strategy π′i for Player i, let P [i ← π′i] =
〈π1, . . . , πi−1, π

′
i, πi+1, ..., πk〉 be the profile in which Player i deviates to the strategy π′i. We

say that P is an NE if for every i ∈ Ω, if i ∈ L(P ), then for every strategy π′i we have
i ∈ L(P [i← π′i]).

We consider the following types of objectives. Let τ ∈ V ω be an infinite path.
In reachability games, αi ⊆ V , and τ satisfies αi if τ reaches αi.
In Büchi games, αi ⊆ V , and τ satisfies αi if τ visits αi infinitely often.
In co-Büchi games, αi ⊆ V , and τ satisfies αi if τ visits V \ αi only finitely often.
In parity games, αi : V → {1, ..., d}, for the index d of the game, and τ satisfies αi if the
maximal rank that is visited by τ infinitely often is even. Formally, let τ = v0, v1, ..., then
τ satisfies αi if max{j ∈ {1, ..., d} : αi(vl) = j for infinitely many l ≥ 0} is even.

Note that Büchi and co-Büchi games are special cases of parity games, with ranks {1, 2}
and {2, 3}, respectively. We sometimes refer to a winning condition αi ⊆ V also as a function
αi : V → {>,⊥}, with αi(v) = > iff v ∈ αi.

I Remark. Our definition of strategy is based on the history of actions played. This is
different from the setting in [4], where strategies are based on the history of visited vertices.
Our setting reflects the fact that players have full knowledge of the actions played by other
players, and not only the outcome of these actions. As we now demonstrate, our setting is
different as it enables the players to make use of this full knowledge to obtain an NE. In
Section 2.4 we elaborate on the algorithmic differences between the settings.

Consider the concurrent three-player Büchi game G = 〈Ω, V, A, v0, δ, {αi}i∈Ω〉, where
Ω = {1, 2, 3}, V = {v0, v1, a, b, c}, Ai = {0, 1} for i ∈ Ω, α1 = {a}, α2 = {b}, α3 = {c}, and
the transition function is as follows. In v0, if 1 and 2 play (0, 0), the game moves to c, and

3 Note that strategies observe the history of actions, rather than the history of vertices. In Remark 2.1
we elaborate on this aspect.

CONCUR’15



330 Repairing Multi-Player Games

otherwise to v1. In v1, Player 3 can choose to go to a or to b. The vertices a, b, and c are
sinks.

There is an NE in G, whose outcome is the path v0, c
ω. That is, players 1 and 2 play

(0, 0). However, in order for this to be an NE profile, Player 3 needs to be able to “punish”
either Player 1 or Player 2 if they deviate to v1. For that, Player 3 needs to know the action
that leads to v1: if Player 1 deviates, then Player 3 chooses to proceed to b, and if Player
2 deviates, then Player 3 chooses to proceed to a. If we consider strategies that refer to
histories of vertices, then there is no NE in the game. J

2.2 Partial games with costs and rewards
Let N∞ = N ∪ {∞}. A partial concurrent parity game G is a concurrent parity game in
which the winning conditions are replaced by a cost function that describes the cost of
augmenting G with different winning conditions. Formally, G = 〈Ω, V, A, v0, δ, cost〉, where
the cost function cost : V × Ω× {1, ..., d} → N∞ states, for each vertex v ∈ V , player i ∈ Ω,
and rank j ∈ {1, ..., d}, what the cost of setting αi(v) to be j. We can think of a concrete
game (one with fully specified winning conditions αi, for i ∈ Ω) as a partial game in which
the cost function is such that cost(v, i, j) = 0 if αi(v) = j and cost(v, i, j) = ∞ otherwise.
Intuitively, leaving αi(v) as specified is free of charge, and changing αi(v) is impossible, as
it costs ∞. Partial games enable us to model settings where a designer can play with the
definition of the winning conditions, subject to some cost function and a given budget.

Consider a partial parity game G. A winning-condition assignment for G is f : V × Ω→
{1, ..., d}. The parity game induced by G and f , denoted Gf , has αi(v) = f(v, i), for all
v ∈ V and i ∈ Ω. The cost of f is cost(f) =

∑
i∈Ω

∑
v∈V cost(v, i, f(v, i)).

In the case of reachability, Büchi, and co-Büchi, the cost function is cost : V ×Ω×{>,⊥} →
N∞, and the winning-condition assignment is of the form f : V × Ω→ {>,⊥}.

Consider a partial game G and a cost function cost. For every player i ∈ Ω and vertex
v ∈ V , we define the set freecost(v, i) ⊆ {1, ..., d} as the set of ranks we can assign to αi(v)
free of charge. Formally, freecost(v, i) = {j : cost(v, i, j) = 0}. We consider the following two
classes of cost functions in parity games.

Uniform costs: For every i ∈ Ω and v ∈ V , we have |freecost(v, i)| = 1 and for every
j /∈ freecost(v, i), we have cost(v, i, j) = 1. Thus, a partial game with a uniform cost
function corresponds to a concrete game in which we can modify the winning condition
with a uniform cost of 1 for each modification.
Don’t cares: For every i ∈ Ω, v ∈ V , and j ∈ {1, ..., d}, we have cost(v, i, j) ∈ {0,∞},
and |freecost(v, i)| ≥ 1. Thus, as in concrete games, we cannot modify the rank of vertices
that are not in freecost(v, i), but unlike concrete games, here freecost(v, i) need not be a
singleton, reflecting a situation with “don’t cares”, where a designer can choose among
several possible ranks free of charge.

For the special case of reachability, Büchi, and co-Büchi games, we also consider the
following classes.

Negative one-way costs: For every i ∈ Ω and v ∈ V , either cost(v, i,>) = 0 and
cost(v, i,⊥) = 1, or cost(v, i,⊥) = 0 and cost(v, i,>) = ∞. Intuitively, we are allowed
only to modify > vertices to ⊥ ones, thus we are only allowed to make satisfaction harder
by removing vertices from αi.
Positive One-way costs: For every i ∈ Ω and v ∈ V , either cost(v, i,>) = 0 and
cost(v, i,⊥) = ∞, or cost(v, i,⊥) = 0 and cost(v, i,>) = 1. Intuitively, we are allowed
only to modify ⊥ vertices to > ones, thus we are only allowed to make satisfaction easier
by adding vertices to αi.
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Reward function. Consider a game G. A reward function for G is ζ : 2Ω → N. Intuitively,
if the players follow a profile P of strategies, then the reward to the designer is ζ(W (P )).
Thus, a designer has an incentive to suggest to the players a stable profile of strategies that
maximizes her reward. We assume that ζ is monotone w.r.t. containment.

2.3 The specification-repair problem
Given a partial game G and a threshold p ∈ N, the specification-repair problem (SR problem,
for short) is to find a winning-condition assignment f such that cost(f) ≤ p and Gf has an
NE. Thus, we are willing to invest at most p in order to be able to suggest to the players a
stable profile of strategies.

In the rewarded specification-repair problem (RSR problem, for short) we are also given a
reward function ζ and a threshold q, and the goal is to find a winning-condition assignment f
such that cost(f) ≤ p and Gf has an NE with a winning set of players W for which ζ(W ) ≥ q.

I Remark. An alternative definition to the RSR problem would have required all NEs in
Gf to have a reward greater than q. This is similar to the cooperative vs. non-cooperative
definitions of rational synthesis [9, 14]. In the cooperative setting, which we follow here, we
assume that the authority can suggest a profile of strategies to the players, and if this profile
is an NE, then they would follow it. In the non-cooperative one, the authority cannot count
on the players to follow its suggested profile even if it is an NE. We find the cooperative
setting more realistic, especially in the context of repairs, which assumes rational cooperative
agents (indeed, they are willing to apply a repair for a cost). Moreover, all existing work in
Algorithmic Game Theory follow the cooperative setting in games that are similar to the
ones we study.

Also, rather than including in the input to the RSR problem two thresholds, one could
require that ζ(W ) ≥ cost(f) or to compare ζ(W ) with cost(f) in some other way. Our results
hold also for such definitions. J

We distinguish between several classes of the SR and RSR problems, characterized by
the type of winning conditions, cost function, and reward function. From a complexity point
of view, we also distinguish between the case where the number of players is arbitrary and
the one where it is constant.

I Remark. Another complexity issue has to do with the size of the representation of the
game. Recall that, specifying G, we need to specify the transition δ(v, a) for every vertex
v ∈ V and action vector a ∈ A|Ω|. Thus, the description of G is exponential in the size of Ω.
While this may make the lower bounds more challenging, it may also makes polynomial upper
bounds easy. In Remark 3.1 we argue that our complexity results hold also in a settings
with a succinct representation of G. For example, when G is c-concurrent for some c ≥ 1,
meaning that in each vertex, only c players control the vertex. That is, in each vertex only c
players choose actions and determine the successor vertex. Then, the size of δ is bounded by
|V ×Ac|, for a constant c. J

2.4 Deciding the existence of an NE
The problem of deciding the existence of an NE, which is strongly related to the SR problem
was studied in [4]. The model there subsumes our model. First, as discussed in Remark 2.1,
our strategies have full knowledge of actions, whereas the strategies in [4] only observe
vertices. Second, the transition function in [4] is nondeterministic, thus a vertex and a vector
of actions are mapped to a set of possible successors. We can efficiently convert a game in
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our model into an “equivalent” game in the model of [4] (in the sense that the existence of
a NE is preserved). Thus, algorithmic upper bounds from [4] apply to our setting as well.
Conversely, however, lower bounds from [4] do not apply to our model, and indeed the lower
bounds we show differ from those of [4].

Specifically, it is shown in [4, 3] that the problem of deciding whether a given game has
an NE is PNP

‖ -complete for parity objectives; that is, it can be solved in polynomial time with
parallel queries to an NP oracle. The problem is NP-complete for reachability and co-Büchi
objectives, and can be solved in polynomial time for Büchi games. We show that in our
model, while the complexity of the problem for reachability, Büchi, and co-Büchi objectives
coincides with that of [4], the complexity for parity objectives is NP-complete. In Section 3.1
we present Theorem 5, which entails an explicit algorithm for deciding the existence of an
NE in Büchi games. Our algorithm is significantly simpler than the one in [4] as it considers
a deterministic model.

Additionally, we emphasize that the main contribution of this work is the introduction
of repairs, and our choice of model is in part for its clarity. Indeed, repair can similarly be
defined in the model of [4], as partial observation is an orthogonal notion.

In the full version we prove the following theorem.

I Theorem 2. The problem of deciding whether a concurrent reachability, co-Büchi, or
parity game has an NE is NP-complete.

In particular, we note that the problem of verifying the existence of an NE can be solved
in polynomial time, using an appropriate witness. See the full version for details.

3 Solving the SR and RSR Problems

3.1 An Arbitrary Number of Players
In this section we consider the SR problem for an arbitrary number of players. Recall that
the problem of deciding whether an NE exists is NP-hard for reachability, co-Büchi, and
parity games and is in P for Büchi games. It is not too hard to lift the NP lower bound to
the SR problem. The main challenge is the Büchi case, where one should find the cases where
the polynomial complexity of deciding whether an NE exists can be lifted to the SR problem,
and the cases where the need to find a repair shifts the complexity of the problem to NP.

I Theorem 3. The SR problem for reachability, co-Büchi, and parity games with uniform,
don’t cares, positive one-way, or negative one-way costs is NP-complete.

Proof. Membership in NP is easy, as given a game G, a cost function cost, and a threshold
p, we can guess a winning-condition assignment f , and then proceed to nondeterministically
check whether there exists an NE in Gf as described in Section 2.4.

For the lower bound, we describe a reduction from the problem of deciding whether an
NE exists in a given co-Büchi or reachability game is NP-complete, proved to be NP-hard in
Theorem 2.

Consider a game G, and let cost be the cost function induced naturally by it. That is,
for every v ∈ V and i ∈ Ω, we have cost(v, i, αi(v)) = 0, and the rest of the cost function is
defined to involve a positive cost and respect the definition of uniform, don’t cares, positive
one-way, or negative one-way cost function. With this cost function, the only assignment
with cost 0 is such that f(v, i) = αi(v) for every i ∈ Ω and v ∈ V . Thus, G has an NE iff
there is a winning-condition assignment f such that cost(f) ≤ 0 and Gf has an NE. J
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Figure 2 Reduction in the uniform costs setting
in Theorem 4. Here, 1 ∈ S2 ∩ S4 ∩ S9, and n ∈
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Figure 3 Reduction of the negative one-
way costs setting in Theorem 4. Here, 1 ∈
S1 ∩ S2, 2 ∈ S3 and n ∈ S2 ∩ S3 ∩ Sm.

We turn to Büchi games, where the goal is to find the cases where the polynomial
complexity of deciding the existence of an NE can be maintained. We start with the negative
cases.

I Theorem 4. The SR problem for Büchi games with uniform, positive one-way, or negative
one-way costs is NP-complete.

Proof. Membership in NP is easy, as given a game G, a cost function cost, and a threshold p,
we can guess a winning-condition assignment f , and then check in polynomial time whether
there exists an NE in Gf [4]. For the lower bounds we describe reductions from SET-COVER,
which is well known to be NP-complete [12]. We bring its definition here for completeness.
Consider a set U = {1, . . . , n} of elements and a set S = {S1, ..., Sm} of subsets of U , thus
Si ⊆ U for every 1 ≤ j ≤ m. A set-cover of size ` is {Sj1 , ..., Sj`

} ⊆ S such that for every
i ∈ U there exists 1 ≤ l ≤ ` such that i ∈ Sjl

. The SET-COVER problem is to decide, given
U, S, and `, whether there exists a set-cover of size `. We assume w.l.o.g that ` < min{n,m}.

Uniform costs. Consider an input 〈U, S, `〉 for SET-COVER. We construct a partial
concurrent game G = 〈Ω, V, A, v0, δ, cost〉 such that there is a set cover of U of size ` iff there
exists a winning-condition assignment f with cost(f) ≤ ` such that Gf has an NE.

The players in G are Ω = U ∪ S. That is, there is one player, referred to as Player i, for
every i ∈ U , and one player, referred to as Player Sj , for every Sj ∈ S. The set of vertices in
G is V = U ∪ {〈Sj , i〉 : i ∈ Sj ∈ S} ∪ {vend}. The initial vertex is 1 ∈ U . We now describe
the transitions and actions (see Fig. 2).

At vertex i ∈ U , Player i alone has control, in the sense that only her action is taken
into an account in deciding the successor. Player i can choose to move to a vertex 〈Sj , i〉
for which i ∈ Sj . At vertex 〈Sj , i〉, all players in U ∪ {Sj} have control on the choice of the
successor vertex and can choose either to stay at 〈Sj , i〉, or to proceed, either to vertex i+ 1,
if i < n, or to vend, if i = n. This choice is made as follows. The actions of the players are
{0, 1}, and the transition depends on the XOR of the actions. If the XOR is 0, then the
game stays in 〈Sj , i〉 and if the XOR is 1, the game proceeds to i+ 1 or to vend. Finally, vend
has a self loop.

We now describe the cost function. Intuitively, we define cost so that the default for
vend is to be accepting for all players i ∈ U and rejecting for all players Sj ∈ S. Thus,
cost(vend, i,>) = 0 for all i ∈ U and cost(vend, Sj ,⊥) = 0 for all Sj ∈ S. Also, for every
Sj ∈ S and i ∈ Sj , we have cost(〈Sj , i〉, Sj ,>) = 0 and cost(〈Sj , i〉, i,⊥) = 0. Thus, 〈Sj , i〉 is
accepting for Player Sj and is rejecting for Player i. All other costs are set to 1, as required
by a uniform cost.

We claim that 〈U, S, `〉 ∈ SET-COVER iff G has a winning-condition assignment f with
cost at most ` such that Gf has an NE. In the full version we formally prove the correctness
of the reduction. Intuitively, every assignment f of cost at most ` must set f(vend, i) = >
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and f(v, i) = ⊥ for v 6= vend, for some i ∈ U . Thus, an NE must end in vend, as otherwise
Player i uses the XOR transitions in order to deviate to a strategy whose outcome reaches
vend. Hence, an assignment must set f(vend, Sj) = > for at most ` players Sj1 , ..., Sj`

, such
that it is possible to get from 1 to vend by going only through vertices 〈Sjk

, i〉 for 1 ≤ k ≤ `.
These ` players induce a set cover. The other direction is easy.
Positive one-way costs. In the correctness proof of the reduction above we show that in
fact, the only assignments that need to be considered are positive one-way. Thus, the same
reduction, in fact with a simpler correctness argument, can be used to show NP-hardness of
the setting with positive one-way costs.
Negative one-way costs. Finally, we consider the setting of negative one-way costs. Again,
we describe a reduction from SET-COVER. Consider an input 〈U, S, `〉 for SET-COVER.
We construct a partial two-player game G = 〈Ω, V, A, v0, δ, cost〉 such that there is a set cover
of U of size ` iff there exists a winning-condition assignment f with cost(f) ≤ ` such that Gf

has an NE. The game G is constructed as follows. The players are Ω = {1, 2}. The vertices
are V = U ∪ S ∪ {s0, s1, s2} ∪ {v1, ..., v`+1}. The game starts in s0, where the actions for the
players are {0, 1}. If the XOR of the actions is 0, the game moves to vertex s1, where Player 1
chooses a vertex from v1, ..., v`+1, all of which have self loops. We set cost(vi, 1,>) = 0 for
1 ≤ i ≤ `+ 1. Intuitively, if the game proceeds to s1, then Player 1 can choose a winning
vertex, and the play gets stuck there. If the XOR in s0 was 1, the game proceeds to vertex s2
from which player 2 chooses a vertex i ∈ U . In vertex i, player 1 chooses a vertex Sj such that
i ∈ Sj . For every 1 ≤ j ≤ m, the vertex Sj has only a self loop. We set cost(Sj , 2,>) = 0 for
1 ≤ j ≤ m. Intuitively, if the game proceeds to s2, then Player 2 “challenges” Player 1 with
a value i ∈ U , and Player 1 has to respond with some set Sj such that i ∈ Sj , and then the
play gets stuck in Sj . See Fig. 3 for an illustration.

The rest of the cost function is set to give ⊥ cost 0, and is completed to be a negative
one-way cost. That is, we set cost(vj , 2,⊥) = 0 for every 1 ≤ j ≤ `+ 1, cost(Sj , 2,⊥) = 0
for every 1 ≤ j ≤ m, and cost(x, 1,⊥) = cost(x, 2,⊥) = 0 for x ∈ U ∪ {s0, s1, s2}. Finally,
cost(v, i,⊥) = 1 if cost(v, i,>) = 0 and cost(v, i,>) = ∞ if cost(v, i,⊥) = 0, for every
i ∈ {1, 2} and v ∈ V , as per the definition of a negative one-way cost.

In the full version we formally prove the correctness of the reduction. Intuitively, every
assignment f of cost at most ` must set f(vi, 1) = > for some 1 ≤ i ≤ `+ 1. Thus, Player 1
is guaranteed to be able to deviate and win in any profile. In order to have an NE, we must
be able to set f(Sj , 2) = ⊥ for at most ` vertices Sj1 , ..., Sj`

, such that for every i ∈ U that
Player 2 chooses, there exists 1 ≤ k ≤ ` such that i ∈ Sjk

, and so there is a set-cover. The
other direction is again, easy. J

We now turn to consider the positive case, where the polynomial complexity of deciding
whether an NE exists can be lifted to the SR problem.

I Theorem 5. The SR problem for Büchi games and don’t-cares can be solved in polynomial
time.

Proof. Consider a partial Büchi game G = 〈Ω, V, A, v0, δ, cost〉 with don’t-cares. For every
i ∈ Ω, the set of vertices V can be partitioned into three sets:
1. The set Fi = {v : cost(v, i,>) = 0 ∧ cost(v, i,⊥) =∞}, of accepting vertices.
2. The set Ri = {v : cost(v, i,⊥) = 0 ∧ cost(v, i,>) =∞}, of rejecting vertices.
3. The set DC i = {v : cost(v, i,⊥) = cost(v, i,>) = 0}, of don’t-care vertices.
The SR problem then amounts to deciding whether there is an assignment f :

⋃
i∈Ω DC i →

{>,⊥} such that Gf has an NE. Note the cost of every such assignment is 0.
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For a set S ⊆ V , let WS ⊆ Ω be the set of potential winners in S: players that either
have an accepting or don’t-care vertex in S. Formally, WS = {i ∈ Ω : (Fi ∪DC i) ∩ S 6= ∅}.
The set of losers in S is then LS = Ω \WS , thus i ∈ LS iff S ⊆ Ri.

We describe the intuition behind our algorithm. An outcome of a profile is an infinite
path in G, which gets stuck in a SCC S. We distinguish between the case S is an ergodic
SCC – one that has no outgoing edges to other SCCs in G, and the case S is not ergodic.
Our algorithm tries to find a witness ergodic SCC S: one for which there is an assignment f
such that Gf has an NE whose outcome gets stuck in S. When an ergodic SCC cannot serve
as a witness, it is removed from G along with transitions that guarantee the soundness of
such a removal, and the search for a witness ergodic SCC in the new game continues. When
all SCCs are removed, the algorithm concludes that no NE exists.

In order to examine whether an ergodic SCC S can serve as a witness, the algorithm
checks whether the players in WS can force the game to reach S. Once the game reaches
S, every outcome would not satisfy the objective of the players in LS . Moreover, consider
the assignment f that sets, for i ∈ WS , every vertex in DC i to >. The profile whose
outcome visits all the vertices in S is an NE in Gf . Checking whether the players WS can
force the game to reach S is not straightforward, as it should take into an account possible
collaboration from players in LS that are doomed to lose anyway and thus have no incentive
to deviate from a strategy in which they collaborate with the players in WS .

Formalizing this intuition involves the following definitions. Consider a player i ∈ Ω. We
define the game against i to be a two-player zero-sum concurrent game, where the players
are Player i and the coalition Ω \ {i}. The game is played on G, where the objective of player
i is αi, and the objective of Ω \ {i} is to prevent i from satisfying αi. The cage for player i
is the set of vertices Ci ⊆ V that consists of all vertices from which the coalition wins the
game against i.

Deciding whether a vertex v is in Ci amounts to solving a two-player zero-sum concurrent
game. These games can be solved in polynomial time for reachability, Büchi, and co-Büchi
objectives [8].

Next, consider a transition t = 〈v, a, v′〉 with v, v′ ∈ Ci, thus δ(v, a) = v′. We say that t
is doomed for Player i if Player i cannot alter her action in a and escape the cage Ci. We
denote by doomed(B) the set of transitions that are doomed for all players in B.

For a game with don’t-cares, whenever we consider the game against i, we refer to the
concrete two-player games obtained from G with the assignment that assigns ⊥ to the vertices
in DC i.

Our algorithm checks whether there is a path τ to S that traverses only transitions in
doomed(LS). If so, it concludes that G can be repaired to have an NE with the assignment f
that is defined as follows. For every v ∈ V , for j ∈ LS , we have f(v, j) = ⊥ and, for j ∈WS ,
we have f(v, j) = >. Indeed, the profile whose outcome is τ followed by a path that visits
all the vertices in S infinitely often, and which punishes a player that deviates from her
expected action in τ is an NE in Gf . J

I Remark. As discussed in Remark 2.3, our results stay valid when the games are c-concurrent
for a constant c ≥ 2. In particular, the running time of the algorithm described in Theorem 5
is polynomial in the representation size of G. As for lower bounds, the second reduction
described in the proof of Theorem 4 generates a game with only two players. In addition,
the first reduction there can be slightly modified to capture 2-concurrent games. For that,
we replace the vertices S × U in G by a cycle of n vertices, where 〈Sj , i〉 is the first vertex in
the cycle 〈Sj , i〉1, ..., 〈Sj , i〉n. The players that control the l-th vertex, for 1 ≤ l ≤ n, are Sj

and l. Both players have two possible actions {0, 1}. If the XOR of their choices is 0, the
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Table 1 Complexity results for the setting with a constant number of players.

Problem � Game Büchi co-Büchi Reachability Parity
NE Existence P [3] P P [2] NP∩coNP

Uniform P NP-C P NP-C
Don’t care P P P NP∩coNP

Negative One-way NP-C –
Positive One-way P P P –

game continues to (l + 1) mod n, the next vertex in the cycle, and if it is 1, then the game
exits the cycle and proceeds to vertex i+ 1. Clearly, each player in U ∪ {Sj} can force the
game to stay in the gadget or exit it assuming the other players fix a strategy.

3.2 A Constant Number of Players
In this section, we consider the SR problem for a constant number of players. The algorithms
presented in Section 3.1 can be clearly applied in this setting. For example, Theorem 5
implies that the SR problem for Büchi games with don’t cares can be solved in polynomial
time, and in particular this holds when the number of players is fixed. For NP-complete
problems, however, the upper bounds in Section 3.1 only imply exponential time algorithms.
In this section, we check whether fixing the number of players can reduce the complexity,
either by analyzing the complexity of the algorithms from Section 3.1, or by introducing new
algorithms.

The results are summarized in Table 1, and the proofs appear in the full version with the
exception of Theorem 6 below.

I Theorem 6. The SR problem for co-Büchi games with positive one-way costs and a
constant number of players can be solved in polynomial time.

Proof. We solve the problem by presenting a polynomial time algorithm for checking, given
a game G, a bound p ∈ N on the budget for the repair, and a set W ⊆ Ω, whether there is a
positive one-way assignment f with cost at most p, for which Gf has an NE profile P with
W ⊆W (P ). We then iterate over all subsets W ⊆ Ω to obtain a polynomial time algorithm.

Under the definitions used in the proof of Theorem 5, let L = Ω \W , and let GW =
G|doomed(L). Consider a vertex v ∈ V that is reachable from v0 in GW . We look for an
assignment f for which there is a cycle that contains v and traverses only vertices in

⋂
i∈W αf

i .
Such a cycle satisfies the objectives of the players in W . In order to do so, we add weights to
GW as follows. The weight of an edge 〈u, u′〉 in GW is the repair budget that is needed in order
to make u′ accepting for all players in W . That is, 〈u, u′〉 gets the weight

∑
i∈W cost(u′, i,>).

Then, we run Dijkstra’s shortest-path algorithm from v to find the minimal-weight cycle that
contains v. If the weight of the cycle is at most p, we return “yes”. If there is no such cycle
for every v ∈ V and W ⊆ Ω, we return “no”. We then repeat this process for every W ⊆ Ω.

In the full version we analyze the runtime and prove the correctness of the algorithm. J

3.3 Solving the RSR problem
Recall that in the RSR problem we are given, in addition to G, cost, and p ∈ N, a reward
function ζ : 2Ω → N and a threshold q, and we need to decide whether we can repair G with
cost at most p in a way that the set of winners W in the obtained NE is such that ζ(W ) ≥ q.
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In the full version we argue that the additional requirement about the reward maintains the
complexity of the problem.

I Theorem 7. The complexity of the SR and RSR problems coincide for all classes of
objectives and cost functions, for both an arbitrary and a constant number of players.

4 Other Types of Repairs

So far, we studied repairs that modify the winning conditions of the players. Other types
of repairs can be considered. In this section, we examine two such types: transition repair,
which modifies the transitions of the game, and controlled-players repair, where we can
control (that is, force a strategy) on a subset of the players. The later is related to the
Stackelberg model, which has been extensively studied in economics and more recently in
Algorithmic Game Theory [13, 20], and in which some of the players are selfish whereas
others are controllable.

4.1 Transition repair
In the transition repair model, we are allowed to redirect the transitions of a game. This
is suitable in cases where a system is composed of several concurrent components, and we
have some control on the flow of the entire composition. For example, consider a system
in which several threads request a lock and granting a lock to a certain thread is modeled
by a transition. Redirecting this transition can correspond to the lock being given to a
different thread. Typically, not all repairs are possible, which is going to be modeled by
an ∞ cost to impossible repairs. Finally, the games we study are sometimes obtained from
LTL specifications of the players. Repairs in the winning conditions then have the flavor of
switching between “until” and “weak-until” in the LTL specification. In this setting, one
may find transition-repair to be more appropriate. First, it enables more elaborate changes
in the specifications. Secondly, changes in the acceptance condition of the nondeterministic
Büchi automata for the specifications induce transition changes in their deterministic parity
automata, which compose the game.

In the full version we formalize this model, and define the transition-repair problem
(TR problem, for short) similarly to the SR problem, with the goal being to find a cheap
transition-repair that guarantees the existence of an NE. We prove the following results.

I Theorem 8. The TR problem is NP-complete for the following cases:
A constant number of players, for all objectives.
Uniform costs with an arbitrary number of players, for all objectives.
Uniform costs with a constant number of players, and co-Büchi and parity objectives.

and can be solved in polynomial time for uniform costs with a constant number of players
and Büchi and reachability objectives. The TR problem with uniform costs can be solved in
polynomial time for Büchi and reachability objectives, and is NP complete

4.2 Controlled-players repair
The underlying assumption in game theory is that players are selfish and rational. In
particular, they would follow a suggested strategy only if it is in their interest. In the
controlled-players repair model, we assume that we can control some of the players and
guarantee they would follow the strategy we assign them. The other players cooperate only
if the profile is an NE. Controlling a player has a cost and our goal is to reach such a profile
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with a minimal cost. This model is a type of Stackelberg model, where there is a leader
player whose goal is to increase the social welfare. She moves first, selects a fraction α of
the players, and assigns strategies to them. The rest of the players are selfish and choose
strategies to maximize their revenue. Previous works in Algorithmic Game Theory study
how the parameter α affects the social welfare in an NE. Clearly, when α is high, the social
welfare increases.

Formally, given a game G = 〈Ω, V, A, v0, δ, {αi}i∈Ω〉 and a control cost function cost :
Ω→ N∞, which maps each agent to the cost of controlling him, the controlled-player repair
problem (the CR problem, for short), is to find a set of players of minimal cost such that
if we are allowed to fully control these players, then the game has an NE. By controlling
we mean that the players are not allowed to deviate from their strategies in the suggested
profile.

Controlled-players repair arises in settings where an unstable system can be stabilized
by restricting the environment, but this involves a cost. For example, controlling players is
possible in settings where players accept an outside payment. As another example, taken
from [20], the players are customers who can either pay a full price for using a system, and
then their choices are unlimited, or they can pay a “bargain” price, and then their choices are
limited, and hence their quality of service is not guaranteed. As a third example, consider a
system that receives messages from the environment. We may want to require that messages
arrive chronologically, otherwise our system is unstable. We can require this, but it involves
a latency cost, and is effectively translated to asking the message dispatching thread to work
in a non-optimal way, which is not the best strategy for the message dispatch server.

In the decision version of the problem, we are given a threshold p, and we need to
determine if there exists a set S ⊆ Ω such that cost(S) =

∑
i∈S cost(i) ≤ p and controlling

the players in S ensures the existence of an NE.
We start by studying the general case. In order to solve the CR problem, we observe

that controlling Player i can be modeled by setting αi to be the most permissive, thus for
reachability, Büchi, and co-Büchi objectives, we set αi = V , and for parity objectives αi(v)
is the maximal even index. Indeed, if there is an NE profile P in G in which we control
Player i, then P is also an NE when we set αi as in the above (without controlling player i).
Clearly, Player i has no incentive to deviate. Conversely, if there is an NE profile P after
setting αi to be the most permissive, then the same profile P is an NE in a game in which
we control Player i and force it to play his strategy in P .

Theorem 9 below summarizes our results, and is proved in the full version.

I Theorem 9. The CR problem is NP-complete for reachability, co-Büchi, and parity
objectives, as well as for c-concurrent Büchi games, and is in P for general Büchi games,
and for all objectives with a constant number of players.

I Remark. In the future, we plan to investigate scheduling repairs, where a repair controls
the set of players that proceed in a vertex, as well as disabling repairs, in which some actions
of some players are disabled in some vertices.
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Abstract
We introduce an automata-theoretic method for the verification of distributed algorithms run-
ning on ring networks. In a distributed algorithm, an arbitrary number of processes cooperate
to achieve a common goal (e.g., elect a leader). Processes have unique identifiers (pids) from
an infinite, totally ordered domain. An algorithm proceeds in synchronous rounds, each round
allowing a process to perform a bounded sequence of actions such as send or receive a pid, store it
in some register, and compare register contents wrt. the associated total order. An algorithm is
supposed to be correct independently of the number of processes. To specify correctness proper-
ties, we introduce a logic that can reason about processes and pids. Referring to leader election,
it may say that, at the end of an execution, each process stores the maximum pid in some
dedicated register. Since the verification of distributed algorithms is undecidable, we propose
an underapproximation technique, which bounds the number of rounds. This is an appealing
approach, as the number of rounds needed by a distributed algorithm to conclude is often ex-
ponentially smaller than the number of processes. We provide an automata-theoretic solution,
reducing model checking to emptiness for alternating two-way automata on words. Overall, we
show that round-bounded verification of distributed algorithms over rings is PSpace-complete.
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1 Introduction

Distributed algorithms are a classic discipline of computer science and continue to be an active
field of research [17]. A distributed algorithm employs several processes, which perform one
and the same program to achieve a common goal. It is required to be correct independently
of the number of processes. Prominent examples are leader-election algorithms, whose task
is to determine a unique leader process and to announce it to all other processes. Those
algorithms are often studied for ring architectures. One practical motivation comes from
local-area networks that are based on a token-ring protocol. Moreover, rings generally allow
one to nicely illustrate the main conceptual ideas of an algorithm.

However, it is well-known that there is no (deterministic) distributed algorithm over
rings that elects a leader under the assumption of anonymous processes. Therefore, classical
algorithms, such as Franklin’s algorithm [12] or the Dolev-Klawe-Rodeh algorithm [7], assume
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that every process is equipped with a unique process identifier (pid) from an infinite, totally
ordered domain. In this paper, we consider such distributed algorithms, which work on ring
architectures and can access unique pids as well as the associated total order.

Distributed algorithms are intrinsically hard to analyze. Correctness proofs are often
intricate and use subtle inductive arguments. Therefore, it is worthwhile to consider automatic
verification methods such as model checking. Besides a formal model of an algorithm, this
requires a generic specification language that is feasible from an algorithmic point of view but
expressive enough to formulate correctness properties. In this paper, we propose a language
that can reason about processes, states, and pids. In particular, it will allow us to formalize
when a leader-election algorithm is correct: At the end of an execution, every process stores,
in register r, the maximum pid among all processes. Our language is inspired by Data-XPath,
which can reason about trees over infinite alphabets [4, 11].

However, formal verification of distributed algorithms cumulates various difficulties that
already arise, separately, in more standard verification: First, the number of processes is
unknown, which amounts to parameterized verification [10]; second, processes manipulate
data from an infinite domain [4, 11]. In each case, even simple verification questions are
undecidable, and so is the combination of both.

A successful approach to retrieving decidability has been a form of bounded model checking.
The idea is to consider correctness up to some parameter, which restricts the set of runs of
the algorithm. This is natural in the context of distributed algorithms, which usually proceed
in rounds. In each round, a process may emit some messages (here: pids) to its neighbors,
and then receive messages from its neighbors. Pids can be stored in registers, and a process
can check the relation between stored pids before it moves to a new state. The number of
rounds is often exponentially smaller than the number of processes. Thus, a small number of
rounds allows us to verify correctness of an algorithm for a large number of processes.

The key idea of our method is to interpret a (round-bounded) execution of a distributed
algorithm symbolically as a word-like structure over a finite alphabet. The finite alphabet is
constituted by the transitions that occur in the algorithm and possibly contain tests of pids
wrt. equality or the associated total order. To determine feasibility of a symbolic execution
(i.e., is there a ring that satisfies all the guards employed?), we use propositional dynamic
logic with loop and converse (LCPDL) over words [13]. Basically, we translate a given
distributed algorithm into a formula that detects cyclic (i.e., contradictory) smaller-than
tests. Its models are precisely the feasible symbolic executions. A specification is translated
into LCPDL as well so that verification amounts to checking satisfiability of a single formula.
The latter can be reduced to an emptiness problem for alternating two-way automata over
words so that we obtain a PSpace procedure for round-bounded model checking.

Related Work: Considerable effort has been devoted to the formal verification of fault-
tolerant algorithms, which have to cope with faults such as lost or corrupted messages (e.g.,
[6, 15]). After all, there have been only very few generic approaches to model checking
distributed algorithms. In [14], several possible reasons for this are identified, among them
the presence of unbounded data types and an unbounded number of processes, which we
have to treat simultaneously in our framework. Parameterized model checking of ring-based
systems where communication is subject to a token policy and the message alphabet is finite
has been studied in [9, 8, 3]. In [8], cutoff results are obtained for LTL\X specifications when
a bound is placed on the number of times a token may change values.

The theory of words and trees over infinite alphabets (aka data words/trees) provides an
elegant formal framework for database-related notions such as XML documents [4], or for
the analysis of programs with data structures such as lists [2]. The difference to our work
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is that we model distributed algorithms and provide a logical specification language which
borrows concepts from [4, 11]. The paper [5] pursued a symbolic model-checking approach
to sequential systems involving data, but pids could only be compared for equality. The
ordering on the data domain has a subtle impact on the choice of the specification language.

Full proofs can be found in the full version of the paper [1].

2 Distributed Algorithms

By N = {0, 1, 2, . . .}, we denote the set of natural numbers. For n ∈ N, we set [n] = {1, . . . , n}
and [n]0 = {0, 1, . . . , n}. The set of finite words over an alphabet A is denoted by A∗, and
the set of nonempty finite words by A+.

Syntax of Distributed Algorithms. We consider distributed algorithms that run on arbitrary
ring architectures. A ring consists of a finite number of processes, each having a unique
process identifier (pid). Every process has a unique left neighbor (referred to by left) and a
unique right neighbor (referred to by right). Formally, a ring is a tuple R = (n : p1, . . . , pn),
given by its size n ≥ 1 and the pids pi ∈ N assigned to processes i ∈ [n]. We require that
pids are unique, i.e., pi 6= pj whenever i 6= j. For a process i < n, process i+ 1 is the right
neighbor of i. Moreover, 1 is the right neighbor of n. Analogously, if i > 1, then i− 1 is the
left neighbor of i. Moreover, n is the left neighbor of 1. Thus, processes 1 and n must not be
considered as the “first” or “last” process. Actually, a distributed algorithm will not be able
to distinguish between, for example, (4 : 4, 1, 5, 2) and (4 : 5, 2, 4, 1).

One given distributed algorithm can be run on any ring. It is given by a single pro-
gram D, and each process runs a copy of D. It is convenient to think of D as a (finite)
automaton. Processes proceed in synchronous rounds. In one round, every process ex-
ecutes one transition of its program. In addition to changing its state, each process may
optionally perform the following phases within a round: (i) send some pids to its neigh-
bors, (ii) receive pids from its neighbors and store them in registers, (iii) compare register
contents with one another, (iv) update its registers. For example, consider the transition
t = 〈s: left!r ; right!r′ ; right?r′ ; r < r′ ; r := r′ ;goto s′〉. A process can execute t if it is in
state s. It then sends the contents of register r to its left neighbor and the contents of r′ to
its right neighbor. If, afterwards, it receives a pid p from its right neighbor, it stores p in r′.
If p is greater than what has been stored in r, it sets r to p and goes to state s′. Otherwise,
the transition is not applicable. The first phase can, alternatively, be filled with a special
command fwd. Then, a process will just forward any pid it receives. Note that a message
can be forwarded, in one and the same round, across several processes executing fwd.

I Definition 1. A distributed algorithm D = (S, s0,Reg,∆) consists of a nonempty finite set S
of (local) states, an initial state s0 ∈ S, a nonempty finite set Reg of registers, and a nonempty
finite set ∆ of transitions. A transition is of the form 〈s: send ; rec ; guard ; update ;goto s′〉
where s, s′ ∈ S and the components send, rec, guard, and update are built as follows:
send ::= skip | fwd | left!r | right!r | left!r ; right!r′
rec ::= skip | left?r | right?r | left?r ; right?r′
guard ::= skip | r < r′ | r = r′ | guard ; guard
update ::= skip | r := r′ | update ; update

with r and r′ ranging over Reg. We require that (1) in a rec statement of the form
left?r ; right?r′, we have r 6= r′ (actually, the order of the two receive actions does not
matter), and (2) in an update statement, every register occurs at most once as a left-hand
side. In the following, occurrences of “skip ;” are omitted. J
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states: active, passive t1 = 〈active: left!id ; right!id ; left?r1 ; right?r2 ; r1 < id ; r2 < id ;goto active〉
found t2 = 〈active: ; id < r1 ;goto passive〉

initial state: active t3 = 〈active: ; id < r2 ;goto passive〉
registers: id, r, r1, r2 t4 = 〈active: ; id = r1 ; r := id ;goto found〉

t5 = 〈passive: fwd ; left?r ;goto passive〉

Figure 1 Franklin’s leader-election algorithm DFranklin.

states: active0, active1 t1 = 〈active0: right!r ; left?r′ ;goto active1〉
passive, found t2 = 〈active1: right!r′ ; left?r′′ ; r′′ < r′ ; r < r′ ; r := r′ ;goto active0〉

initial state: active0 t3 = 〈active1: ; r′ < r ;goto passive〉
registers: id, r, r′, r′′ t4 = 〈active1: ; r′ < r′′ ;goto passive〉

t5 = 〈active1: ; r = r′ ;goto found〉
t6 = 〈passive: fwd ; left?r ;goto passive〉

Figure 2 Dolev-Klawe-Rodeh leader-election algorithm DDKR.

Note that a guard r ≤ r′ can be simulated in terms of guards r < r′ and r = r′, using
several transitions. We separate < and = for convenience. They are actually quite different
in nature, as we will see later in the proof of our main result.

At the beginning of an execution of an algorithm, every register contains the pid of the
respective process. We also assume, wlog., that there is a special register id ∈ Reg that
is never updated, i.e., no transition contains a command of the form left?id, right?id, or
id := r. A process can thus, at any time, access its own pid in terms of id.

In the semantics, we will suppose that all updates of a transition happen simultaneously,
i.e., after executing r := r′ ; r′ := r, the values previously stored in r and r′ will be swapped
(and do not necessarily coincide). As, moreover, the order of two sends and the order of
two receives within a transition do not matter, this will allow us to identify a transition
with the set of states, commands (apart from skip), and guards that it contains. For
example, t = 〈s: left!r ; right!r′ ; right?r′ ; r < r′ ; r := r′ ;goto s′〉 is considered as the set
t = {s , left!r , right!r′ , right?r′ , r < r′ , r := r′ , goto s′}.

Before defining the semantics of a distributed algorithm, we will look at two examples.

I Example 2 (Franklin’s Leader-Election Algorithm). Consider Franklin’s algorithm DFranklin
to determine a leader in a ring [12]. It is given in Figure 1. The goal is to assign leadership
to the process with the highest pid. To do so, every process sends its own pid to both
neighbors, receives the pids of its left and right neighbor, and stores them in registers r1 and
r2, respectively (transitions t1, . . . , t4). If a process is a local maximum, i.e., r1 < id and
r2 < id hold, it is still in the race for leadership and stays in state active. Otherwise, it has
to take t2 or t3 and goes into state passive. In passive, a process will just forward any pid it
receives and store the message coming from the left in r (transition t5). Notice that, within
the same round, a message may be forwarded through (and stored by) several consecutive
passive processes, until it reaches an active one. When an active process receives its own pid
(transition t4), it knows it is the only remaining active process. It copies its own pid into r,
which henceforth refers to the leader. We may say that a run is accepting (or terminating)
when all processes terminate in passive or found. Then, at the end of any accepting run, (i)
there is exactly one process i0 that terminates in found, (ii) all processes store the pid of i0
in register r, and the pid of i0 is the maximum of all pids in the ring. Since, in every round,
at least half of the active processes become passive, the algorithm terminates after at most
blog2 nc+ 1 rounds where n is the number of processes. J
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I Example 3 (Dolev-Klawe-Rodeh Leader-Election Algorithm). The Dolev-Klawe-Rodeh leader-
election algorithm [7] is an adaptation of Franklin’s algorithm to cope with unidirectional
rings, where a process can only, say, send to the right and receive from the left. The algorithm,
denoted DDKR, is given in Figure 2. The idea is that the local maximum among the processes
i− 2, i− 1, i is determined by i (rather than i− 1). Therefore, each process i will execute
two transitions, namely t1 and t2, and store the pids sent by i − 2 and i − 1 in r′′ and r′,
respectively. After two rounds, since r still contains the pid of i itself, i can test if i− 1 is
a local maximum among i− 2, i− 1, i using the guards in transition t2. If both guards are
satisfied, i stores the pid sent by i− 1 in r. It henceforth ”represents” process i− 1, which is
still in the race, and goes to state active0. Otherwise, it enters passive, which has the same
task as in Franklin’s algorithm. The algorithm is correct in the following sense: At the end of
an accepting run (each process ends in passive or found), (i) there is exactly one process that
terminates in found (but not necessarily the one with the highest pid), and (ii) all processes
store the maximal pid in register r. The algorithm terminates after at most 2blog2 nc+ 2
rounds. Note that the correctness of DDKR is less clear than that of DFranklin. J

Semantics of Distributed Algorithms. Now, we give the formal semantics of a distributed
algorithm D = (S, s0,Reg,∆). Recall that D can be run on any ring R = (n : p1, . . . , pn).
An (R-)configuration of D is a tuple (s1, . . . , sn, ρ1, . . . , ρn) where si is the current state of
process i and ρi : Reg → {p1, . . . , pn} maps each register to a pid. The configuration is called
initial if, for all processes i ∈ [n], we have si = s0 and ρi(r) = pi for all r ∈ Reg. Note that
there is a unique initial R-configuration.

In one round, the algorithm moves from one configuration to another one. This is described
by a relation C t C ′ where C = (s1, . . . , sn, ρ1, . . . , ρn) and C ′ = (s′1, . . . , s′n, ρ′1, . . . , ρ′n) are
R-configurations and t = (t1, . . . , tn) ∈ ∆n is a tuple of transitions where ti is executed by
process i. To determine when C

t C ′ holds, we first define two auxiliary relations. For
registers r, r′ ∈ Reg and processes i, j ∈ [n], we write r@i� r′@j if the contents of r is sent
to the right from i to j, where it is stored in r′. Thus, we require that

right!r ∈ ti ∧ left?r′ ∈ tj ∧ fwd ∈ tk for all k ∈ Between(i, j)

where Between(i, j) means {i + 1, . . . , j − 1} if i < j or {1, . . . , j − 1, i + 1, . . . , n} if j ≤ i.
Note that, due to the fwd command, r@i � r′@j may hold for several r′ and j. The
meaning of r′@j � r@i is analogous, we just replace “right direction” by “left direction”:

left!r ∈ ti ∧ right?r′ ∈ tj ∧ fwd ∈ tk for all k ∈ Between(j, i).

The guards in the transitions t1, . . . , tn are checked against “intermediate” register
assignments ρ̂1, . . . , ρ̂n : Reg → {p1, . . . , pn}, which are defined as follows:

ρ̂j(r′) =
{
ρi(r) if r@i� r′@j or r′@j � r@i
ρj(r′) if, for all r, i, neither r@i� r′@j nor r′@j � r@i

Note that this is well-defined, due to condition (1) in Definition 1.
Now, we write C t C ′ if, for all j ∈ [n] and r, r′ ∈ Reg, the following hold:

1. sj ∈ tj and (goto s′j) ∈ tj ,
2. ρ̂j(r) < ρ̂j(r′) if (r < r′) ∈ tj ,
3. ρ̂j(r) = ρ̂j(r′) if (r = r′) ∈ tj ,

4. ρ′j(r) =
{
ρ̂j(r′) if (r := r′) ∈ tj
ρ̂j(r) if tj does not contain an update of the form r := r′′
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Figure 3 Run of Dolev-Klawe-Rodeh algorithm and runs of path automata.

Again, 4. is well-defined thanks to condition (2) in Definition 1.
An (R-)run of D is a sequence χ = C0

t1 C1
t2 · · · t

k

 Ck where k ≥ 1, C0 is the initial
R-configuration, and tj = (tj1, . . . , tjn) ∈ ∆n for all j ∈ [k]. We call k the length of χ. Note
that χ uniquely determines the underlying ring R.
I Remark. A receive command is always non-blocking even if there is no corresponding send.
As an alternative semantics, one could require that it can only be executed if there has been
a matching send, or vice versa. One could even include tags from a finite alphabet that can
be sent along with pids. All this will not change any of the forthcoming results. J

I Example 4. A run of DDKR from Example 3 on the ring R = (7 : 4, 8, 3, 1, 6, 5, 7) is
depicted in Figure 3 (for the moment, we may ignore the blue and violet lines). A colored
row forms a configuration. The three pids in a cell refer to registers r, r′, r′′, respectively (we
ignore id). Moreover, a non-colored row forms, together with the states above and below, a
transition tuple. When looking at the step from C3 to C4, we have, for example, r′@3� r@4
and r′@3 � r′′@6. Moreover, r′@6 � r@7 and r′@6 � r′′@1 (recall that we are in a
ring). Note that the run conforms to the correctness property formulated in Example 3. In
particular, in the final configuration, all processes store the maximum pid in register r. J
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3 The Specification Language

In Examples 2 and 3, we informally stated the correctness criterion for the presented
algorithms (e.g., “at the end, all processes store the maximal pid in register r”). Now, we
introduce a formal language to specify correctness properties. It is defined wrt. a given
distributed algorithm D = (S, s0,Reg,∆), which we fix for the rest of this section.

Typically, one requires that a distributed algorithm is correct no matter what the
underlying ring is. Since we will bound the number of rounds, we moreover study a form of
partial correctness. Accordingly, a property is of the form ∀rings∀runs∀mϕ, which has to be
read as “for all rings, all runs, and all processes m, we have ϕ”. The marking m is used to
avoid to “get lost” in a ring when writing the property ϕ. This is like placing a pebble in
the ring that can be retrieved at any time. Actually, ϕ allows us to “navigate” back and
forth (↑ and ↓) in a run, i.e., from one configuration to the previous or next one (similar
to a temporal logic with past operators). By means of ← and →, we may also navigate
horizontally within a configuration, i.e., from one process to a neighboring one.

Essentially, a sequence of configurations is interpreted as a cylinder (cf. Figure 3) that
can be explored using regular expressions π over {ε,←,→, ↑, ↓} (where ε means “stay”). At
a given position/coordinate of the cylinder, we can check local (or positional) properties like
the state taken by a process, or whether we are on the marked process m. Such a property
can be combined with a regular expression π: The formula [π]ϕ says that ϕ holds at every
position that is reachable through a π-path (a path matching π). Dually, 〈π〉ϕ holds if there
is a π-path to some position where ϕ is satisfied. The most interesting construct in our logic
is 〈π〉r ./ 〈π′〉r′, where ./ ∈ {=, 6=, <,≤}, which has been used for reasoning about XML
documents [4, 11]. It says that, from the current position, there are a π-path and a π′-path
that lead to positions y and y′, respectively, such that the pid stored in register r at y and
the pid stored in r′ at y′ satisfy the relation ./.

We will now introduce our logic in full generality. Later, we will restrict the use of <-
and ≤-guards to obtain positive results.

I Definition 5. The logic DataPDL(D) is given by the following grammar:

Φ ::= ∀rings∀runs∀mϕ

ϕ,ϕ′ ::= m | s | ¬ϕ | ϕ ∧ ϕ′ | ϕ⇒ ϕ′ | [π]ϕ | 〈π〉r ./ 〈π′〉r′

π, π′ ::= {ϕ}? | d | π + π′ | π · π′ | π∗

where s ∈ S, r, r′ ∈ Reg, ./ ∈ {=, 6=, <,≤}, and d ∈ {ε,←,→, ↑, ↓}. J

We call ϕ a local formula, and π a path formula. We use common abbreviations such as
false = m ∧ ¬m, 〈π〉ϕ = ¬[π]¬ϕ, and ϕ ∨ ϕ′ = ¬(¬ϕ ∧ ¬ϕ′), and we may write ππ′ instead
of π · π′. Implication ⇒ is included explicitly in view of the restriction defined below.

Next, we define the semantics. Consider a run χ = C0
t1 C1

t2 · · · t
k

 Ck of D where
Cj = (sj1, . . . , sjn, ρ

j
1, . . . , ρ

j
n), i.e., n is the number of processes in the underlying ring. A local

formula ϕ is interpreted over χ wrt. a marked process m ∈ [n] and a position (i, j) ∈ Pos(χ)
where Pos(χ) = [n] × [k]0. Let us define when χ,m, (i, j) |= ϕ holds. The operators ¬, ∧,
and ⇒ are as usual. Moreover, χ,m, (i, j) |= m if i = m, and χ,m, (i, j) |= s if sji = s.

The other local formulas use path formulas. The semantics of a path formula π is given in
terms of a binary relation [[π]]χ,m ⊆ Pos(χ)× Pos(χ), which we define below. First, we set:

χ,m, (i, j) |= [π]ϕ if ∀(i′, j′) such that ((i, j), (i′, j′)) ∈ [[π]]χ,m, we have χ,m, (i′, j′) |= ϕ

χ,m, (i, j) |= 〈π〉r ./ 〈π′〉r′ (where ./ ∈ {=, 6=, <,≤}) if ∃(i1, j1), (i2, j2) such that
((i, j), (i1, j1)) ∈ [[π]]χ,m and ((i, j), (i2, j2)) ∈ [[π′]]χ,m and ρj1

i1
(r) ./ ρj2

i2
(r′)
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It remains to define [[π]]χ,m for a path formula π. First, a local test and a stay ε

do not “move” at all: [[{ϕ}?]]χ,m = {(x, x) | x ∈ Pos(χ) such that χ,m, x |= ϕ}, and
[[ε]]χ,m = {(x, x) | x ∈ Pos(χ)}. Using →, we move to the right neighbor of a process:
[[→]]χ,m = {((i, j), (i+ 1, j)) | i ∈ [n− 1] and j ∈ [k]0} ∪ {((n, j), (1, j)) | j ∈ [k]0}. We define
[[←]]χ,m accordingly. Moreover, [[↓]]χ,m = {((i, j), (i, j + 1)) | i ∈ [n] and j ∈ [k − 1]0}, and
similarly for [[↑]]χ,m. The regular constructs, +, ·, and ∗ are as expected and refer to the
union, relation composition, and star over binary relations.

Finally, D satisfies the DataPDL formula ∀rings∀runs∀mϕ, written D |= ∀rings∀runs∀mϕ, if,
for all rings R = (n : . . .), all R-runs χ, and all processes m ∈ [n], we have χ,m, (m, 0) |= ϕ.
Thus, ϕ is evaluated at the first configuration, wrt. process m which can be chosen arbitrarily.

Next, we define a restricted logic, DataPDL	(D), for which we later present our main
result. We say that a path formula π is unambiguous if, from a given position, it defines at most
one reference point. Formally, for all rings R = (n : . . .), R-runs χ of D, processes m ∈ [n],
and positions x ∈ Pos(χ), there is at most one x′ ∈ Pos(χ) such that (x, x′) ∈ [[π]]χ,m. For
example, ε, ↓,→, and→∗{m}? are unambiguous, while→∗ and←+→ are not unambiguous.

I Definition 6. A DataPDL(D) formula is contained in DataPDL	(D) if every subformula
ϕ = 〈π〉r ./ 〈π′〉r′ with ./ ∈ {<,≤} is such that π and π′ are unambiguous. Moreover, ϕ
must not occur (i) in the scope of a negation, (ii) on the left-hand side of an implication
⇒ , or (iii) within a test { }?. Note that guards using = and 6= are still unrestricted. J

I Example 7. Let us formalize, in DataPDL	(D), the correctness criteria for DFranklin and
DDKR that we stated informally in Examples 2 and 3. Consider the following local formulas:

ϕlast = [↓]false ϕmax = [→∗]
(
〈ε〉id ≤ 〈πfound〉r

)

ϕacc = [→∗](passive ∨ found) ϕr=id = 〈πfound〉
(
〈ε〉r = 〈ε〉id

)

ϕfound = 〈πfound→({¬found}?→)∗〉m ϕr=r = ¬
(
〈ε〉r 6= 〈→∗〉r

)

where πfound = ({¬found}?→)∗{found}?. Note that πfound is unambiguous: while going to
the right, it always stops at the nearest process that is in state found. Thus, ϕmax is indeed
a local DataPDL	 formula. Consider the DataPDL	 formula

Φ1 = ∀rings∀runs∀m[↓∗]
(
(ϕlast ∧ ϕacc)⇒ (ϕfound ∧ ϕmax ∧ ϕr=r ∧ ϕr=id)

)
.

It says that, at the end (i.e., in the last configuration) of each accepting run, expressed by
[↓∗]
(
(ϕlast ∧ ϕacc)⇒ · · ·

)
, we have that (i) there is exactly one process i0 that ends in state

found (guaranteed by ϕfound), (ii)register r of i0 contains the maximum over all pids (ϕmax),
(iii)register r of i0 contains the pid of i0 itself (ϕr=id), and (iv) all processes store the same
pid in r (ϕr=r). Thus, DFranklin |= Φ1. On the other hand, we have DDKR 6|= Φ1, because in
DDKR the process that ends in found is not necessarily the process with the maximum pid.
However, we still have DDKR |= Φ2 where

Φ2 = ∀rings∀runs∀m[↓∗]
(
(ϕlast ∧ ϕacc)⇒ (ϕfound ∧ ϕmax ∧ ϕr=r)

)
.

The next example formulates the correctness constraint for a distributed sorting algorithm.
We would like to say that, at the end of an accepting run, the pids stored in registers r are
strictly totally ordered. Suppose ϕacc represents an acceptance condition and ϕleast says that
there is exactly one process that terminates in some dedicated state least, similarly to ϕfound
above. Then,

Φ3 = ∀rings∀runs∀m[↓∗]
(
(ϕlast ∧ ϕacc)⇒ (ϕleast ∧ [→∗{¬least}?](〈←〉r < 〈ε〉r))

)
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makes sure that, whenever process j is not terminating in least, its left neighbor i stores a
smaller pid in r than j does.

Note that Φ1, Φ2, and Φ3 are indeed DataPDL	 formulas. J

I Example 8. We give a couple of examples to illustrate how the logic can be used to reason
about temporal properties. Consider the specifications: (a) Every process remains active
until it becomes found or passive forever; (b) The value of the register r on any process is
monotonously non-decreasing. These can be expressed by the DataPDL	 formulas below:

Φa = ∀rings∀runs∀m〈({active}?↓)∗〉(found ∨ [↓∗](passive)) .

Φb = ∀rings∀runs∀m[↓∗]([↓]false ∨ (〈ε〉r ≤ 〈↓〉r)) . J

Unsurprisingly, model checking distributed algorithms against DataPDL	 is undecidable:

I Theorem 9. The following problem is undecidable: Given a distributed algorithm D and
Φ ∈ DataPDL	(D), do we have D |= Φ ? (Actually, this even holds for formulas Φ that
express simple state-reachability properties and do not use any guards on pids.)

4 Round-Bounded Model Checking

In situations where model checking is undecidable, a fruitful approach has been to underap-
proximate the behavior of a system. The idea is to introduce a parameter that measures
a characteristic of a run. One then imposes a bound on this parameter and explores all
behaviors up to that bound. In numerous distributed algorithms (cf. Examples 2 and 3),
the number b of rounds needed to conclude is exponentially smaller than the number of
processes, Recall that, in a single round, a message may be forwarded through an arbitrarily
long sequence of processes. Therefore, b seems to be a promising parameter for bounded
model checking of distributed algorithms.

For a distributed algorithm D, a formula Φ = ∀rings∀runs∀mϕ ∈ DataPDL(D), and b ≥ 1,
we write D |=b Φ if, for all rings R = (n : . . .), all R-runs χ of length k ≤ b, and all processes
m ∈ [n], we have χ,m, (m, 0) |= ϕ. We now present our main result:

I Theorem 10. The following problem is PSpace-complete: Given a distributed algorithm
D, Φ ∈ DataPDL	(D), and a natural number b ≥ 1 (encoded in unary), do we have D |=b Φ ?

The lower-bound can be obtained by a reduction from the intersection-emptiness problem
for a list of finite automata. Before we prove the upper bound, let us discuss the result in
more detail. We will first compare it with “naïve” approaches to solve related questions.
Consider the problem to determine whether a distributed algorithm satisfies its specification
for all rings up to size n and all runs up to length b. This problem is in coNP: We guess a
ring (i.e., essentially, a permutation of pids) and a run, and we check, using [16], whether the
run does not satisfy the formula. Next, suppose only b is given and the question is whether,
for all rings up to size 2b and all runs up to length b, the property holds. Then, the above
procedure gives us a coNExpTime algorithm.

Thus, our result is interesting complexity-wise, but it offers some other advantages. First,
it actually checks correctness (up to round number b) for all rings. This is essential when
verifying distributed protocols against safety properties. Second, it reduces to a satisfiability
check in the well-studied propositional dynamic logic with loop and converse (LCPDL) [13]
on tables of bounded height. In Theorem 11 we show that this satifiability problem can be
solved in PSpace by a reduction to an emptiness check of alternating two-way automata
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(A2As) [21] over words. The “naïve” approaches, on the other hand, do not seem to give
rise to viable algorithms. Finally, our approach is uniform in the following sense: We will
construct, in polynomial time, an LCPDL formula that describes precisely the symbolic
abstractions of runs (over arbitrary rings) that violate (or satisfy) a given formula. Our
construction is independent of the parameter b. The satisfiability check then requires a bound
on the number of rounds (or on the number of processes), which can be adjusted gradually
without changing the automaton.

Proof Outline for Upper Bound of Theorem 10. Let D be the given distributed algorithm
and Φ ∈ DataPDL	(D). We will reduce model checking to the satisfiability problem for
LCPDL [13]. While DataPDL	 is interpreted over runs, containing pids from an infinite
alphabet, the new logic will reason about symbolic abstractions over a finite alphabet. A
symbolic abstraction of a run only keeps the transitions and discards pids. Thus, it can be
seen as a table whose entries are transitions (cf. Figure 3).

First, we translate D into an LCPDL formula. Essentially, it checks that guards are
not used in a contradictory way. To compare D with Φ, the latter is translated into an
LCPDL formula, too. However, there is a subtle point here. For simplicity, let us write
r < r′ instead of 〈ε〉r < 〈ε〉r′. Satisfaction of a formula r < r′ can only be guaranteed in
a symbolic execution if the flow of pids provides evidence that r < r′ really holds. More
concretely, the (hypothetic) formula (r < r′) ∨ (r = r′) ∨ (r′ < r) is a tautology, but it may
not be possible to prove r < r′ or r′ < r on the basis of a symbolic run. This is the reason
why DataPDL	 restricts <- and ≤-tests. It is then indeed enough to reason about symbolic
runs (cf. Lemma 13 below). We leave open whether one can deal with full DataPDL.

Overall, we reduce model checking to satisfiability of the conjunction of two LCPDL
formulas of polynomial size: the formula representing the algorithm, and the negation of
the formula representing the specification. Satisfiability of LCPDL over symbolic runs (of
bounded height) can be checked in PSpace as stated in Theorem 11. Our approach is, thus,
automata theoretic in spirit, though the power of alternation is used differently than in [20],
which translates LTL formulas into automata.

Next, we present the logic LCPDL over symbolic runs. Then, we translate D as well as its
DataPDL	 specification into LCPDL. For the remainder of this section, we fix a distributed
algorithm D = (S, s0,Reg,∆).

PDL with Loop and Converse (LCPDL). As mentioned before, a symbolic abstraction of
a run of D is a table, whose entries are transitions from the finite alphabet ∆. A table is
a triple T = (n, k, λ) where n, k ≥ 1 and λ : Pos(T ) → ∆ labels each position/coordinate
from Pos(T ) = [n]× [k]0 with a transition. Thus, we may consider that T has n columns
and k + 1 rows. In the following, we will write T [i, j] for λ(i, j), and T [i] for the i-th column
of T , i.e., T [i] = T [i, 0] · · ·T [i, k] ∈ ∆+. Let ∆++ denote the set of all tables.

Formulas ψ ∈ LCPDL(D) are interpreted over tables. Their syntax is given as follows:

ψ,ψ′ ::= t | s | goto s | fwd | left!r | right!r | left?r | right?r | r < r′ | r = r′ | r := r′ |
¬ψ | ψ ∧ ψ′ | 〈π〉ψ | loop(π)

π, π′ ::= {ψ}? | d | π + π′ | π · π′ | π∗ | π−1 | A
where t ∈ ∆, s ∈ S, r, r′ ∈ Reg, d ∈ {ε,→, ↓}, and A is a path automaton1: a non-
deterministic finite automaton whose transitions are labeled with path formulas π. Again, ψ

1 We use automata in addition to regular expressions since using states makes it easier to describe a
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is called a local formula. We use common abbreviations for disjunction, implication, true,
and false, and we let π+ = π · π∗, [π]ψ = ¬〈π〉¬ψ, 〈π〉 = 〈π〉true, ← =→−1, and ↑ = ↓−1.

The semantics of LCPDL is very similar to that of DataPDL. A local formula ψ is
interpreted over a table T ∈ ∆++ and a position x ∈ Pos(T ). When it is satisfied, we write
T, x |= ψ. Moreover, a path formula π determines a binary relation [[π]]T ⊆ Pos(T )×Pos(T ),
relating those positions that are connected by a path matching π.

We consider only the most important cases: We have T, (i, j) |= t if T [i, j] = t. For a
state, command, guard, or update γ, let T, (i, j) |= γ if γ ∈ T [i, j]. Loop and converse are
as expected: T, x |= loop(π) if (x, x) ∈ [[π]]T , and [[π−1]]T = {(y, x) | (x, y) ∈ [[π]]T }. The
semantics of→ (and←) is slightly different than in DataPDL, since we are not allowed to go
beyond the last and first column. Thus, [[→]]T = {((i, j), (i+ 1, j)) | i ∈ [n− 1] and j ∈ [k]0}.
However, we can simulate the “roundabout” of a ring and set ↪→ =→+{¬〈→〉}?←∗{¬〈←〉}?
as well as ←↩ = ↪→−1. By symmetry, the first column of a table will play the role of a marked
process in a ring (later, m will be translated to ¬〈←〉).

Finally, the semantics of path automata is given by [[A]]T = {(x, y) | there is π1 · · ·π` ∈
L(A) with (x, y) ∈ [[π1 · · ·π`]]T } where L(A) contains a sequence π1 · · ·π` of path formulas if
A admits a path q0

π1−→ q1
π2−→ · · · π`−→ q` from its initial state q0 to a final state q`.

A formula ψ ∈ LCPDL(D) defines the language L(ψ) = {T ∈ ∆++ | T, (1, 0) |= ψ}. For
b ≥ 1, we denote by Lb(ψ) the set of tables (n, k, λ) ∈ L(ψ) such that k ≤ b. The bounded
height satisfiability problem for LCPDL asks the following: Given a distributed algorithm D,
a formula ψ ∈ LCPDL(D), and b ≥ 1 (encoded in unary), do we have Lb(ψ) = ∅ ? Note that
the input D is only needed to determine the signature of the logic.

I Theorem 11. The bounded height satisfiability problem for LCPDL is PSpace-complete.

Proof sketch. We can restrict to tables of height k = b (rather than k ≤ b), since checking
satisfiability for every height separately does not change the space complexity. We reduce
the problem to words: A table T = (n, k, λ) is considered as the word T [1] · · ·T [n] ∈ ∆+.
Thus, the columns are written horizontally rather than vertically. When translating an
LCPDL formula over tables into an LCPDL formula over words, going to the left or right
involves some modulo counting: ← is translated to ←k+1, and → is translated to →k+1. We
then follow the construction of [13] to obtain, in polynomial time, an alternating two-way
automaton (A2A) of polynomial size corresponding to the LCPDL formula (since formulas
from LCPDL have bounded intersection width). Though [13] uses an exponential sized
alphabet (subsets of propositions), our alphabet is the (linear-sized) set of transitions ∆,
ensuring that the transition relation has only polynomial size. We allow automata as path
expressions, but it is straightforward to integrate them into the construction of the A2A.
Finally, satisfiability checking amounts to emptiness checking of the A2A. Emptiness checking
of A2A over words can be done in PSpace (cf. [18, 19]). J

From Distributed Algorithms to LCPDL. Without loss of generality, we assume that ∆
contains t = 〈s: skip ; skip ; skip ; skip ;goto s0〉 where s 6= s0 does not occur in any other
transition.

Let R = (n : p1, . . . , pn) be a ring and χ = C0
t1 C1

t2 · · · t
k

 Ck be an R-run of
D, where tj = (tj1, . . . , tjn) ∈ ∆n for all j ∈ [k]. From χ, we extract the symbolic run

language. It is also important for the complexity since an automaton may be exponentially smaller
than a regular expression.
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loc0,1
r,r′ =

{
{
∧

r̄∈Reg¬〈(msg0,1
r̄,r)−1〉}? if r = r′

{false}? if r 6= r′
upd1,2

r,r′ =

{
{
∧

r̄ 6=r
¬(r := r̄)}? if r = r′

{r′ := r}? if r 6= r′

msg0,1
r,r′ =

(
{right!r}? · (↪→ ·{fwd}?)∗· ↪→ ·{left?r′}?

+ {left!r}? · (←↩ ·{fwd}?)∗· ←↩ ·{right?r′}?

)
next2,0

r,r′ =

{
↓ if r = r′

{false}? if r 6= r′

Figure 4 Path formulas to trace back transmission of pids.

Tχ = (n, k, λ) ∈ ∆++ given by its columns Tχ[i] = t t1i · · · tki . The purpose of the dummy
transition t at the beginning of a column is to match the number of configurations in a run.

We will construct, in polynomial time, a formula ψD ∈ LCPDL(D) such that L(ψD) =
{Tχ | χ is a run of D}. In particular, ψD will verify that (i) there are no cyclic dependencies
that arise from <-guards, and (ii) registers in equality guards can be traced back to the same
origin. In that case, the symbolic run is consistent and corresponds to a “real” run of D.

The main ingredients of ψD are some path formulas that describe the transmission of
pids in a symbolic run. They are depicted in Figure 4. For θ ∈ {loc,msg, upd,next} and
h ∈ {0, 1, 2}, the meaning of (x, y) ∈ [[θh,h

′

r,r′ ]]T is that the pid stored in r at stage h of
position/transition x has been propagated to register r′ at stage h′ of y. Here, h = 0 means
“after sending”, h = 1 “after receiving”, and h = 2 “after register update”. The interpretation
of “propagated” depends on θ. Formula loc0,1

r,r′ says that the value of register r is not affected
by reception. Similarly, upd1,2

r,r′ takes care of updates. Formula next2,0
r,r′ allows us to switch to

the next transition of a process, preserving the value of r(= r′). The most interesting case
is msg0,1

r,r′ , which describes paths across several processes. It relates the sending of r and
a corresponding receive in r′, which requires that all intermediate transitions are forward
transitions. All path formulas are illustrated in Figure 3.

Since pids can be transmitted along several transitions and messages, the formulas θh,h
′

r,r′

will be composed by path automata. For h ∈ {1, 2} and r ∈ Reg, we define a path automaton
Ah

r that, in Tχ, connects some positions (i, 0) and (i′, j′) iff, in χ, register r stores pi at
stage h of position (i′, j′). Its set of states is ι ∪ ({0, 1, 2} × Reg). For all r ∈ Reg, there is a
transition from the initial state ι to (0, r) with transition label {¬〈↑〉}?. Thus, the automaton
starts at the top row and non-deterministically chooses some register r. From state (h, r), it
can read any transition label θh,h

′

r,r′ and move to (h′, r′). The only final state is (h, r). Figure 3
describes (partial) runs of A1

r′ and A1
r′′ , which allow us to identify the origin of r′ and r′′

when applying the guard r′ < r′′.
Now, consistency of equality guards can indeed be verified by an LCPDL formula. It says

that, whenever an equality check r = r′ occurs in the symbolic run, then the pids stored in
r and r′ have a common origin. This can be conveniently expressed in terms of loop and
converse. Note that guards are checked at stage h = 1 of the corresponding transition:

ψ= = [(→+ ↓)∗]∧r,r′∈Reg

(
r = r′ ⇒ loop((A1

r)−1 · A1
r′)
)
.

The next path formula connects the first coordinate of a process i with the first coordinate
of another process i′ if some guard forces the pid of i to be smaller than that of i′:

π< =
(∑

r,r′∈Reg A1
r · {r < r′}? · (A1

r′)−1
)+

.

Note that, here, we use the (strict) transitive closure. Consistency of <-guards now reduces
to saying that there is no π<-loop: ψ< = ¬〈→∗〉loop(π<).
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m̃ = ¬〈←〉 s̃ = goto s for all s ∈ S
¬̃ϕ = ¬ϕ̃ ϕ̃1 ∧ ϕ2 = ϕ̃1 ∧ ϕ̃2 ˜ϕ1 ⇒ ϕ2 = ϕ̃1 ⇒ ϕ̃2 [̃π]ϕ = [π̃]ϕ̃

˜〈π〉r < 〈π′〉r′ = loop(π̃ · (A2
r)−1 · π< · A2

r′ · (π̃′)−1)
˜〈π〉r ≤ 〈π′〉r′ = loop(π̃ · (A2

r)−1 · (π< + ε) · A2
r′ · (π̃′)−1)

˜〈π〉r = 〈π′〉r′ = loop(π̃ · (A2
r)−1 · A2

r′ · (π̃′)−1)
˜〈π〉r 6= 〈π′〉r′ = loop(π̃ · (A2

r)−1 · (←+ +→+) · A2
r′ · (π̃′)−1)

π̃ is inductively obtained from π by replacing tests {ϕ}? by {ϕ̃}?,
→ by ↪→, and ← by ←↩

Figure 5 From DataPDL	 to LCPDL.

π̃ π̃′
(π̃′)−1

A2
r A2

r′(A2
r)−1

π<

Figure 6 ˜〈π〉r < 〈π′〉r′.

Finally, we can easily write an LCPDL formula ψcol that checks whether every column
T [i] ∈ ∆+ (ignoring t) is a valid transition sequence of D. Finally, let ψD = ψ= ∧ ψ< ∧ ψcol.

I Lemma 12. We have L(ψD) = {Tχ | χ is a run of D}.

From DataPDL	 to LCPDL. Next, we inductively translate every local DataPDL	(D)
formula ϕ into an LCPDL(D) formula ϕ̃. The translation is given in Figure 5. As mentioned
before, the first column in a table plays the role of a marked process so that m̃ = ¬〈←〉. The
standard formulas are translated as expected. Now, consider ˜〈π〉r < 〈π′〉r′ (the remaining
cases are similar). To “prove” 〈π〉r < 〈π′〉r′ at a given position in a symbolic run, we require
that there are a π̃-path and a π̃′-path to coordinates x and x′, respectively, whose registers r
and r′ satisfy r < r′. To guarantee the latter, the pids stored in r and r′ have to go back to
coordinates that are connected by a π<-path. Again, using converse, this can be expressed
as a loop (cf. Figure 6). Note that, hereby, A2

r and A2
r′ refer to stage h = 2, which reflects

the fact that DataPDL speaks about configurations (determined after updates).

I Lemma 13. Let T ∈ {Tχ | χ is a run of D} and ϕ be a local DataPDL	(D) formula. We
have T, (1, 0) |= ϕ̃ ⇐⇒

(
χ, 1, (1, 0) |= ϕ for all runs χ of D such that Tχ = T

)
.

Using Lemmas 12 and 13, we can now prove Lemma 14 below. Together with Theorem 11,
the upper bound of Theorem 10 follows.

I Lemma 14. Let D be a distributed algorithm, Φ = ∀rings∀runs∀mϕ ∈ DataPDL	(D), and
b ≥ 1. We have (a) D |= Φ ⇐⇒ L(ψD ∧ ¬ϕ̃) = ∅, and (b) D |=b Φ ⇐⇒ Lb(ψD ∧ ¬ϕ̃) = ∅.

5 Conclusion

In this paper, we provided a conceptually new approach to the verification of distributed
algorithms that is robust against small changes of the model.

Actually, we made some assumptions that simplify the presentation, but are not crucial
to the approach and results. For example, we assumed that an algorithm is synchronous,
i.e., there is a global clock that, at every clock tick, triggers a round, in which every process
participates. This can be relaxed to handle communication via (bounded) channels. Second,
messages are pids, but they could contain message contents from a finite alphabet as well.
Though the restriction to the class of rings is crucial for the complexity of our algorithm,
the logical framework we developed is largely independent of concrete (ring) architectures.
Essentially, we could choose any class of architectures for which LCPDL is decidable, for
instance trees.
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We leave open whether round-bounded model checking can deal with full DataPDL, or
with properties of the form ∀rings∃run∀mϕ, which are branching-time in spirit.
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Abstract
The bottleneck in the quantitative analysis of Markov chains and Markov decision processes
against specifications given in LTL or as some form of nondeterministic Büchi automata is the
inclusion of a determinisation step of the automaton under consideration. In this paper, we show
that full determinisation can be avoided: subset and breakpoint constructions suffice. We have
implemented our approach – both explicit and symbolic versions – in a prototype tool. Our
experiments show that our prototype can compete with mature tools like PRISM.

1998 ACM Subject Classification G.3 Probability and Statistics, D.2.4 Software/Program Veri-
fication

Keywords and phrases Markov Decision Processes, Model Checking, PLTL, Determinisation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2015.354

1 Introduction

Markov chains (MCs) and Markov decision processes (MDPs) are widely used to study
systems that exhibit both, probabilistic and nondeterministic choices. Properties of these
systems are often specified by temporal logic formulas, such as the branching time logic
PCTL [11], the linear time logic PLTL [3], or their combination PCTL* [3]. While model
checking is tractable for PCTL [3], it is more expensive for PLTL: PSPACE-complete for
Markov chains and 2EXPTIME-complete for MDPs [6].

In classical model checking, one checks whether a modelM satisfies an LTL formula ϕ
by first constructing a nondeterministic Büchi automaton B¬ϕ [20], which recognises the
models of its negation ¬ϕ. The model checking problem then reduces to an emptiness test
for the productM⊗B¬ϕ. The translation to Büchi automata may result in an exponential
blow-up compared to the length of ϕ. However, this translation is mostly very efficient in
practice, and highly optimised off-the-shelf tools like LTL3BA [1] or SPOT [7] are available.

The quantitative analysis of a probabilistic model M against an LTL specification ϕ

is more involved. To compute the maximal probability PM(ϕ) that ϕ is satisfied in M,
the classic automata-based approach includes the determinisation of an intermediate Büchi
automaton Bϕ. If such a deterministic automaton A is constructed for Bϕ, then determining
the probability PM(ϕ) reduces to solving an equation system for Markov chains, and a linear
programming problem for MDPs [3], both in the productM⊗A. Such a determinisation step
usually exploits a variant of Safra’s [17] determinisation construction, such as the techniques
presented in [16, 18].

Kupferman, Piterman, and Vardi point out in [14] that “Safra’s determinization construc-
tion has been notoriously resistant to efficient implementations.” Even though analysing
long LTL formulas would surely be useful as they allow for the description of more complex
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requirements on a system’s behaviour, model checkers that employ determinisation to support
LTL, such as LiQuor [5] or PRISM [15], might fail to verify such properties.

In this paper we argue that applying the Safra determinisation step in full generality is
only required in some cases, while simpler subset and breakpoint constructions often suffice.
Moreover, where full determinisation is required, it can be replaced by a combination of the
simpler constructions, and it suffices to apply it locally on a small share of the places.

A subset construction is known to be sufficient to determinise finite automata, but it
fails for Büchi automata. Our first idea is to construct an under- and an over-approximation
starting from the subset construction. That is, we construct two (deterministic) subset
automata Su and So such that L(Su) ⊆ L(Bϕ) ⊆ L(So) where L(Bϕ) denotes the language
defined by the automaton Bϕ for ϕ. The subset automata Su and So are the same automaton
S except for their accepting conditions. We build a product Markov chain with the subset
automata. We establish the useful property that the probability PM(ϕ) equals the probability
of reaching some accepting bottom strongly connected components (SCCs) in this product:
for each bottom SCC S in the product, we can first use the accepting conditions in Su or So
to determine whether S is accepting or rejecting, respectively. The challenge remains when
the test is inconclusive. In this case, we first refine S using a breakpoint construction. Finally,
if the breakpoint construction fails as well, we have two options: we can either perform a
Rabin-based determinisation for the part of the model where it is required, thus avoiding
to construct the larger complete Rabin product. Alternatively, a refined multi-breakpoint
construction is used. An important consequence is that we no longer need to implement a
Safra-style determinisation procedure: subset and breakpoint constructions are enough. From
a theoretical point of view, this reduces the cost of the automata transformations involved
from nO(k·n) to O(k · 3n) for generalised Büchi automata with n states and k accepting
sets. From a practical point of view, the easy symbolic encoding admitted by subset and
breakpoint constructions is of equal value. We discuss that (and how) the framework can be
adapted to MDPs– with the same complexity – by analysing the end components [6, 3].

We have implemented our approach, both explicit and symbolic versions, in our IscasMC
tool [10], which we applied on various Markov chain and MDP case studies (for space reasons
we report on only two in this paper, cf. [9] for others). Our experimental results confirm
that our new algorithm outperforms the Rabin-based approach in most of the properties
considered. However, there are some cases in which the Rabin determinisation approach
performs better when compared to the multi-breakpoint construction: the construction of a
single Rabin automaton suffices to decide a given connected component, while the breakpoint
construction may require several iterations. Our experiments also show that our prototype
can compete with mature tools like PRISM.

Due to the lack of space, detailed proofs and additional case studies are provided in [9].

2 Preliminaries

2.1 ω-Automata
Nondeterministic Büchi automata are used to represent ω-regular languages L ⊆ Σω = ω → Σ
over a finite alphabet Σ. In this paper, we use automata with trace-based acceptance
mechanisms. We denote by [1..k] the set {1, 2, . . . , k} and by j ⊕k 1 the successor of j in
[1..k]. I.e., j ⊕k 1 = j + 1 if j < k and j ⊕k 1 = 1 if j = k.

I Definition 1. A nondeterministic generalised Büchi automaton (NGBA) is a quintuple
B = (Σ, Q, I,T,Fk), consisting of a finite alphabet Σ of input letters, a finite set Q of states
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with a non-empty subset I ⊆ Q of initial states, a set T ⊆ Q× Σ ×Q of transitions from
states through input letters to successor states, and a family Fk = {Fj ⊆ T | j ∈ [1..k] } of
accepting (final) sets.

Nondeterministic Büchi automata are interpreted over infinite sequences α : ω → Σ of
input letters. An infinite sequence ρ : ω → Q of states of B is called a run of B on an input
word α if ρ(0) ∈ I and, for each i ∈ ω,

(
ρ(i), α(i), ρ(i+ 1)

)
∈ T. We denote by Run(α) the

set of all runs ρ on α. For a run ρ ∈ Run(α), we denote with tr(ρ) : i 7→
(
ρ(i), α(i), ρ(i+ 1)

)
the transitions of ρ. We sometimes denote a run ρ by the associated states, that is,
ρ = q0 · q1 · q2 · . . . where ρ(i) = qi for each i ∈ ω and we call a finite prefix q0 · q1 · q2 · . . . · qn
of ρ a pre-run. A run ρ of a NGBA is accepting if its transitions tr(ρ) contain infinitely
many transitions from all final sets, i.e., for each j ∈ [1..k], Inf(tr(ρ)) ∩ Fj 6= ∅, where
Inf(tr(ρ)) = { t ∈ T | ∀i ∈ ω ∃j > i such that tr(ρ)(j) = t }. A word α : ω → Σ is accepted
by B if B has an accepting run on α, and the set L(B) = {α ∈ Σω | α is accepted by B } of
words accepted by B is called its language.

BE

x

y z
a, 1

c

a

b, 2

Figure 1 A Büchi auto-
maton.

Figure 1 shows an example of Büchi automaton. The number
j after the label as in the transition (x, a, y), when present,
indicates that the transition belongs to the accepting set Fj ,
i.e., (x, a, y) belongs to F1. The language generated by BE is a
subset of (ab|ac)ω and a word α is accepted if each b (and c) is
eventually followed by a c (by a b, respectively).

We call the automaton B a nondeterministic Büchi automaton (NBA) whenever |Fk| = 1
and we denote it by B = (Σ, Q, I,T,F). For technical convenience we also allow for finite
runs q0 · q1 · q2 · . . . · qn with T ∩ {qn} × {α(n)} × Q = ∅. In other words, a run may end
with qn if action α(n) is not enabled from qn. Naturally, no finite run satisfies the accepting
condition, thus it is not accepting and has no influence on the language of an automaton.

To simplify the notation, the transition set T can also be seen as a function T: Q×Σ→ 2Q
assigning to each pair (q, σ) ∈ Q × Σ the set of successors according to T, i.e., T(q, σ) =
{ q′ ∈ Q | (q, σ, q′) ∈ T }. We extend T to sets of states in the usual way, i.e., by defining
T(S, σ) =

⋃
q∈S T(q, σ).

I Definition 2. A (transition-labelled) nondeterministic Rabin automaton (NRA) with k
accepting pairs is a quintuple A = (Σ, Q, I,T, (Ak,Rk)) where Σ, Q, I, and T are as in
Definition 1 and (Ak,Rk) = { (Ai,Ri) | i ∈ [1..k], Ai,Ri ⊆ T } is a finite family of Rabin
pairs. (For convenience, we sometimes use other finite sets of indices rather than [1..k].)

A run ρ of a NRA is accepting if there exists i ∈ [1..k] such that Inf(tr(ρ)) ∩Ai 6= ∅ and
Inf(tr(ρ)) ∩ Ri = ∅.

An automaton A = (Σ, Q, I,T,ACC), where ACC is the acceptance condition (Rabin,
Büchi, or generalised Büchi), is called deterministic if, for each (q, σ) ∈ Q× Σ, |T(q, σ)| ≤ 1,
and I = {q0} for some q0 ∈ Q. For notational convenience, we denote a deterministic
automaton A by the tuple (Σ, Q, q0,T,ACC) and T: Q × Σ → Q is the partial function,
which is defined at (q, σ) if, and only if, σ is enabled at q. For a given deterministic automaton
D, we denote by Dd the otherwise similar automaton with initial state d. Similarly, for a
NGBA B, we denote by BR the NGBA with R as set of initial states.

2.2 Markov Chains and Product
A distribution µ over a set X is a function µ : X → [0, 1] such that

∑
x∈X µ(x) = 1. A Markov

chain (MC) is a tuple M = (M,L, µ0,P), where M is a finite set of states, L : M → Σ is
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a labelling function, µ0 is the initial distribution, and P: M ×M → [0, 1] is a probabilistic
transition matrix satisfying

∑
m′∈M P(m,m′) ∈ {0, 1} for all m ∈ M . A state m is called

absorbing if
∑
m′∈M P(m,m′) = 0. We write (m,m′) ∈ P for P(m,m′) > 0.

ME

a

c b2/3 1/3

1 1

Figure 2 A MC
with L(m) = m for
each m.

A maximal path ofM is an infinite sequence ξ = m0m1 . . . satis-
fying P(mi,mi+1) > 0 for all i ∈ ω, or a finite one if the last state is
absorbing. We denote by PathsM the set of all maximal paths ofM.
An infinite path ξ = m0m1 . . . defines the word α(ξ) = w0w1 . . . ∈ Σω
with wi = L(mi), i ∈ ω.

Given a finite sequence ξ = m0m1 . . .mk, the cylinder of ξ,
denoted by Cyl(ξ), is the set of maximal paths starting with
prefix ξ. We define the probability of the cylinder set by
PM

(
Cyl(m0m1 . . .mk)

) def= µ0(m0) ·
∏k−1
i=0 P(mi,mi+1). For a given MC M, PM can

be uniquely extended to a probability measure over the σ-algebra generated by all cylinder
sets.

In this paper we are interested in ω-regular properties L ⊆ Σω and the probability PM(L)
for some measurable set L. Further, we define PM(B) def= PM({ ξ ∈ PathsM | α(ξ) ∈ L(B) })
for an automaton B. We write PMm to denote the probability function when assuming that
m is the initial state. Moreover, we omit the superscriptM whenever it is clear from the
context. We follow the standard way of computing this probability in the product ofM and
a deterministic automaton for L.

I Definition 3. Given a MC M = (M,L, µ0,P) and a deterministic automaton A =
(Σ, Q, q0,T,ACC), the product Markov chain is defined by M×A def= (M × Q,L′, µ′0,P′)
where L′

(
(m, d)

)
= L(m); µ′0

(
(m, d)

)
= µ0(m) if d = T(q0, L(m)), 0 otherwise; and

P′
(
(m, d), (m′, d′)

)
equals P(m,m′) if d′ = T(d, L(m′)), and is 0 otherwise.

We denote by πA((m, d), (m′, d′)) the projection on A of the given ((m, d), (m′, d′)) ∈ P′,
i.e., πA((m, d), (m′, d′)) = (d, L(m′), d′), and by πA(B) its extension to a set of transitions
B ⊆ T′, i.e., πA(B) = {πA(p, p′) | (p, p′) ∈ B }.

As we have accepting transitions on the edges of the automata, we propose product Markov
chains with accepting conditions on their edges.

I Definition 4. Given a MCM and a deterministic automaton A with accepting set ACC,
the product automaton isM⊗A def= (M×A,ACC′) where

if ACC = Fk, then ACC′ def= F′k where F′i = { (p, p′) ∈ P′ | πA(p, p′) ∈ Fi } ∈ F′k for
each i ∈ [1..k] (Generalised Büchi Markov chain, GMC); and
if ACC = (Ak,Rk), then ACC′ def= (A′k,R′k) where A′i = { (p, p′) ∈ P′ | πA(p, p′) ∈
Ai } ∈ A′k and R′i = { (p, p′) ∈ P′ | πA(p, p′) ∈ Ri } ∈ R′k for each i ∈ [1..k] (Rabin
Markov chain, RMC).

Thus, RMC and GMC are Markov chains extended with the corresponding accepting
conditions. We remark that the labelling of the initial states of the Markov chain is taken
into account in the definition of µ′0.

I Definition 5. A bottom strongly connected component (BSCC) S ⊆ V is an SCC in the
underlying digraph (V,E) of a MCM, where all edges with source in S have only successors
in S (i.e., for each (v, v′) ∈ E, v ∈ S implies v′ ∈ S). We assume that a (bottom) SCC does
not contain any absorbing state. Given an SCC S, we denote by PS the transitions ofM in
S, i.e., PS = { (m,m′) ∈ P | m,m′ ∈ S }.
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3 Lazy Determinisation

We fix an input MC M and a NGBA B = (Σ, Q, I,T,Fk) as a specification. Further, let
A = det(B) be the deterministic Rabin automaton (DRA) constructed for B (cf. [17, 18, 19]),
and letM⊗A = (M ×Q,L, µ0,P,ACC) be the product RMC. We consider the problem
of computing PMm0

(B), i.e., the probability that a run ofM is accepted by B.

3.1 Outline of our Methodology
We first recall the classical approach for computing PM(B), see [2] for details. It is well
known [3] that the computation of PM(B) reduces to the computation of the probabilistic
reachability in the product RMCM⊗A with A = det(B). We first introduce the notion of
accepting SCCs:

I Definition 6. Given a MCM and the DRA A = det(B), let S be a bottom SCC of the
product RMCM⊗A. We say that S is accepting if there exists an index i ∈ [1..k] such that
Ai ∩ πA(PS) 6= ∅ and Ri ∩ πA(PS) = ∅; we call each s ∈ S an accepting state. Moreover, we
call the union of all accepting BSCCs the accepting region.

Essentially, since a BSCC is an ergodic set, once a path enters an accepting BSCC S,
with probability 1 it will take transitions from Ai infinitely often; since Ai is finite, at least
one transition from Ai is taken infinitely often. Now we have the following reduction:

I Theorem 7 ([3]). Given a MC M and a Büchi automaton B, consider A = det(B). Let
U ⊆M ×Q be the accepting region and let ♦U denote the set of paths containing a state of
U . Then, PM(B) = PM⊗A(♦U).

When all bottom SCCs are evaluated, the evaluation of the Rabin MC is simple: we
abstract all accepting bottom SCCs to an absorbing goal state and perform a reachability
analysis, which can be solved in polynomial time [3, 2]. Thus, the outline of the traditional
probabilistic model checking approach for LTL specifications is as follows: (1.) translate the
NGBA B into an equivalent DRA A = det(B); (2.) build (the reachable fragment of) the
product automatonM⊗A; (3.) for each BSCC S, check whether S is accepting. Let U be
the union of these accepting SCCs; (4.) infer the probability PM⊗A(♦U).

The construction of the deterministic Rabin automaton used in the classical approach is
often the bottleneck of the approach, as one exploits some variant of the approach proposed
by Safra [17], which is rather involved. The lazy determinisation technique we suggest in this
paper follows a different approach. We first transform the high-level specification (e.g., given
in the PRISM language [15]) into its MDP or MC semantics. We then employ some tool (e.g.,
LTL3BA [1] or SPOT [7]) to construct a Büchi automaton equivalent to the LTL specification.
This nondeterministic automaton is used to obtain the deterministic Büchi over- and under-
approximation subset automata Su and So, as described in Subsection 3.3. The languages
recognised by these two deterministic Büchi automata are such that L(Su) ⊆ L(B) ⊆ L(So).
We build the product of these subset automata with the model MDP or MC (cf. Lemma 13).
We then compute the maximal end components or bottom strongly connected components.
According to Lemma 14, we try to decide these components of the product by using the
acceptance conditions Foi and Fui of Su and So, respectively.

For each of those components where over- and under-approximation do not agree (and
which we therefore cannot decide), we employ the breakpoint construction (cf. Corollary 16),
involving the deterministic Rabin over- and under-approximation breakpoint automata BPu

and BPo, such that L(BPu) ⊆ L(B) ⊆ L(BPo). For this, we take one state of the component
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under consideration and start the breakpoint construction with this state as initial state.
This way, we obtain a product of a breakpoint automaton with parts of the model. If the
resulting product contains an accepting component (using the under-approximation), then
the original component must be accepting, and if the resulting product contains a rejecting
component (using the over-approximation), then the original component must be rejecting.

The remaining undecided components are decided either by using a Rabin-based con-
struction, restricted to the undecided component, or only by using BPu, where we start from
possibly different states of the subset product component under consideration; this approach
always decides the remaining components, and we call it the multi-breakpoint construction.

For the model states that are part of an accepting component, or from which no accepting
component is reachable, the probability to fulfil the specification is now already known to be
1 or 0, respectively. To obtain the remaining state probabilities, we construct and solve a
linear programming (LP) problem (or a linear equation system when we start with MCs).

Note that, even in case the multi-breakpoint procedure is necessary in some places, our
method is usually still more efficient than direct Rabin determinisation, for instance based on
some variation of [19]. The reason for this is twofold. First, when starting the determinisation
procedure from a component rather than from the initial state of the model, the number of
states in the Rabin product will be smaller, and second, we only need the multi-breakpoint
determinisation to decide MECs or bottom SCCs, such that the computation of transient
probabilities can still be done in the smaller subset product.

In the remainder of this section, we detail the proposed approach: we first introduce the
theoretical background, and then present the incremental evaluation of the bottom SCCs.

3.2 Acceptance Equivalence
In order to be able to apply our lazy approach, we exploit a number of acceptance equivalences
in the RMC. Given the DRA A = det(B) and a state d of A, we denote by rchd(d) the label
of the root node ε of the labelled ordered tree associated to d (cf. [17, 18, 19]).

I Proposition 8. Given a NGBA B, a MC M, and the DRA A = det(B), (1.) a path ρ
in M⊗A that starts from a state (m, d) is accepted if, and only if, the word it defines is
accepted by Brchd(d); and (2.) if rchd(d) = rchd(d′), then the probabilities of acceptance from
a state (m, d) and a state (m, d′) are equal, i.e., PM⊗A(m,d) (B) = PM⊗A(m,d′)(B).

This property allows us to work on quotients and to swap between states with the same
reachability set. If we ignore the accepting conditions, we have a product MC, and we can
consider the quotient of such a product MC as follows.

I Definition 9 (Quotient MC). Given a MCM and a DRA A = det(B), the quotient MC
[M×A] ofM×A is the MC ([M ×Q], [L], [µ0], [P]) where

[M ×Q] = { (m, [d]) | (m, d) ∈M ×Q, [d] = { d′ ∈ Q | rchd(d′) = rchd(d) } },
[L](m, [d]) = L(m, d),
[µ0](m, [d]) = µ0(m, d), and
[P]
(
(m, [d]), (m′, [d′])

)
= P

(
(m, d), (m′, d′)

)
.

By abuse of notation, we define [(m, d)] = (m, [d]) and [C] = { [s] | s ∈ C }. It is easy to see
that, for each d ∈ Q, d ∈ [d] holds and that [P] is well defined: for (m, d1), (m, d2) ∈ [(m, d)],
P
(
(m, d1), (m′, [d′])

)
= P

(
(m, d), (m′, d′)

)
= P

(
(m, d2), (m′, [d′])

)
holds.

I Theorem 10. For a MCM and DRA A = det(B), it holds that
1. if S is a bottom SCC ofM×A then [S] is a bottom SCC of [M×A],
2. if S′ is a bottom SCC of [M×A], then there is a bottom SCC S ofM×A with S′ = [S].
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Together with Definition 6 and Proposition 8, Theorem 10 provides:

I Corollary 11. Let S be a bottom SCC of [M×A]. Then, either all states s ofM⊗A with
[s] ∈ S are accepting, or all states s ofM⊗A with [s] ∈ S are rejecting.

Once all bottom SCCs are evaluated, we only need to perform a standard probabilistic
reachability analysis on the quotient MC.

3.3 Incremental Evaluation of Bottom SCCs
To evaluate each bottom SCC of the RMC, we use three techniques: the first one is based on
evaluating the subset construction directly. We get two deterministic NGBAs that provide
over- and under-approximations. If this fails, we refine the corresponding bottom SCC by a
breakpoint construction. Only if both fail, a precise construction follows.

3.3.1 Subset Construction
For a given NGBA B = (Σ, Q, I,T,Fk), a simple way to over- and under-approximate its
language by a subset construction is as follows. We build two NGBAs So = (Σ, 2Q, {I},T′,Fok)
and Su = (Σ, 2Q, {I},T′,Fuk), differing only for the accepting condition, where

T′ = { (R, σ,C) | ∅ 6= R ⊆ Q,C = T(R, σ) },
Foi = { (R, σ,C) ∈ T′ | ∃(q, q′) ∈ R× C. (q, σ, q′) ∈ Fi } ∈ Fok for each i ∈ [1..k], and
Fui = { (R, σ,C) ∈ T′ | ∀(q, q′) ∈ R× C. (q, σ, q′) ∈ Fi } ∈ Fuk for each i ∈ [1..k].

SE

{x} {y, z}a

b

c

Figure 3 The sub-
set construction for
BE .

Essentially, So and Su are the subset automata that we use to
over- and under-approximate the accepting conditions, respectively.
Figure 3 shows the reachable fragment of the subset construction for
the NGBA BE depicted in Figure 1. The final sets of the two subset
automata are Fo1 = {({x}, a, {yz})} and Fo2 = {({yz}, b, {x})} for So
and Fu1 = Fu2 = ∅ for Su. The following lemma holds:

I Lemma 12. L(Su[d]) ⊆ L(Ad) ⊆ L(So[d]).

The proof is easy as, in each Foi and Fui , the accepting transitions are over- and under-
approximated. With this lemma, we are able to identify some accepting and rejecting bottom
SCCs in the product.

We remark that So and Su differ only in their accepting conditions. Thus, the corres-
ponding GMCsM⊗Su andM⊗So also differ only for their accepting conditions. If we
ignore the accepting conditions, we have the following result:

I Lemma 13. LetM be a MC, B a NGBA, A = det(B), and Su as defined above; let S be
Su without the accepting conditions. Then,M×S and [M×A] are isomorphic.

The proof is rather easy – it is based on the isomorphism identifying a state (m,R) ofM×S
with the state (m, [d]) of [M×A] such that rchd(d) = R.

Considering the accepting conditions, we can classify some bottom SCCs.

I Lemma 14. LetM be a MC and B a NGBA. Let So and Su be as defined above. Let S
be a bottom SCC ofM⊗Su. Then,

S is accepting if Fui ∩ πSu(PS) 6= ∅ holds for all i ∈ [1..k];
S is rejecting if Foi ∩ πSu(PS) = ∅ holds for some i ∈ [1..k].
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ME × SE

a, {y, z}

c, {x} b, {x}2/3 1/3

1 1

Figure 4 The
product of ME and SE .

The above result directly follows by Lemma 12. Figure 4 shows
the product of the MC ME depicted in Figure 2 and the subset
automaton SE in Figure 3. It is easy to check that the only bottom
SCC is neither accepting nor rejecting.

For the bottom SCCs, for which we cannot conclude whether
they are accepting or rejecting, we continue with the breakpoint
construction.

3.3.2 Breakpoint Construction
For a given NGBA B = (Σ, Q, I,T,Fk), we denote with bp(Q, k) = { (R, j, C) | C ( R ⊆
Q, j ∈ [1..k] } the breakpoint set. Intuitively, for a state d of the DRA A = det(B), the
corresponding breakpoint state is 〈d〉 = (R, j, C) where R contains the states labelling the
root ε of labelled ordered tree associated to d, C subsumes the states labelling the lower
levels of the tree, and j is the index of the accepting set Fj considered at the root of the tree.

We build two DRAs BPo = (Σ, bp(Q, k), (I, 1, ∅),T′, {(Aε, ∅), (T′,R0)}) and BPu =
(Σ, bp(Q, k), (I, 1, ∅),T′, {(Aε, ∅)}), called the breakpoint automata, as follows.

From the breakpoint state (R, j, C), let R′ = T(R, σ) and C ′ = T(C, σ)∪ Fj(R, σ). Then
an accepting transition with letter σ reaches (R′, j ⊕k 1, ∅) if C ′ = R′. Formally,

Aε = { ((R, j, C), σ, (R′, j ⊕k 1, ∅)) | (R, j, C) ∈ bp(Q, k), σ ∈ Σ,
∅ 6= R′ = T(R, σ), C ′ = T(C, σ) ∪ Fj(R, σ), C ′ = R′ }.

The remaining transitions, for which C ′ 6= R′, are obtained in a similar way, but now the
transition reaches (R′, j, C ′), where j remains unchanged; formally,

T′′ = { ((R, j, C), σ, (R′, j, C ′)) | (R, j, C) ∈ bp(Q, k), σ ∈ Σ,
∅ 6= R′ = T(R, σ), C ′ = T(C, σ) ∪ Fj(R, σ), C ′ 6= R′ }.

The transition relation T′ is just T′′ ∪Aε. Transitions that satisfy C ′ = ∅ are rejecting:

R0 = { ((R, j, C), σ, d) ∈ T′′ | T(C, σ) = ∅ }.

BPE

{x}, 2, ∅

{y, z}, 1, {y}{x}, 1, ∅

{y, z}, 2, ∅
a

c

b

a

b

c

Figure 5 The breakpoint
construction for BE (fragment
reachable from ({x}, 1, ∅)).

Figure 5 shows the reachable fragment of the breakpoint
construction for the NGBA BE depicted in Figure 1. The
double arrow transitions are in Aε while the remaining trans-
itions are in R0.

I Theorem 15. The following inclusions hold:

L(Su[d]) ⊆ L(BPu〈d〉) ⊆ L(Ad) ⊆ L(BPo〈d〉),L(So[d]).

We remark that the breakpoint construction can be refined further such that it is finer
than L(So[d]). However we leave it as future work to avoid heavy technical preparations.
Exploiting the above theorem, the following becomes clear.

I Corollary 16. Let S be a bottom SCC of the quotient MC. Let (m, d) ∈ S be an arbitrary
state of S. Moreover, let BPo, BPu be the breakpoint automata. Then,

S is accepting if there exists a bottom SCC S′ in M⊗ BPu〈d〉 with S = [S′], which is
accepting (i.e., S′ contains some transition in Aε).
S is rejecting if there exists a bottom SCC S′ inM⊗BPo〈d〉 with S = [S′], which is rejecting
(i.e., S′ contains no transition in Aε, but some transition in R0).
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ME ⊗ BPuE

c, ({x}, 2, ∅)

a, ({y, z}, 1, {y})b, ({x}, 1, ∅)

a, ({y, z}, 2, ∅)
1

2/3

1/3 1

1/3

2/3

Figure 6 The product of ME and
BPu

E .

Note that the productsM⊗BPu〈d〉 andM⊗BPo〈d〉
are the same RMCs except for their accepting con-
ditions. Figure 6 shows the product of the MCME
depicted in Figure 2 and the breakpoint automaton
BPuE in Figure 5. It is easy to see that the only bottom
SCC is accepting.

Together with Corollary 11, Lemma 14 and Co-
rollary 16 immediately provide the following result,
which justifies the incremental evaluations of the bottom SCCs.

I Corollary 17. Given a MC M, a NGBA B, and A = det(B), if [(m, d)] is a state in a
bottom SCC of the quotient MC and [d] = [d′], then

PM⊗Ad

(m,d) (B) = 1 if P
M⊗Su

[d′]
(m,[d]) (B) > 0 or P

M⊗BPu
〈d′〉

(m,〈d〉) (B) > 0, and

PM⊗Ad

(m,d) (B) = 0 if P
M⊗So

[d′]
(m,[d]) (B) < 1 or P

M⊗BPo
〈d′〉

(m,〈d〉) (B) < 1.

In case there are remaining bottom SCCs, for which we cannot conclude whether they
are accepting or rejecting, we continue with a multi-breakpoint construction that is language-
equivalent to the Rabin construction.

3.3.3 Multi-Breakpoint Construction
The multi-breakpoint construction we propose to decide the remaining bottom SCCs makes
use of a combination of the subset and breakpoint constructions we have seen in the
previous steps, but with different accepting conditions: for the subset automaton S =
S(B) = (Σ, Qss, qss,Tss,Fss), we use the accepting condition Fss = ∅, i.e., the automaton
accepts no words; for the breakpoint automaton BP = BP(B) = (Σ, Qbp, qbp,Tbp,Fbp),
we consider Fbp = Aε. Note that the Büchi acceptance condition Fbp = Aε is trivially
equivalent to the Rabin acceptance condition {(Aε, ∅)}, so BP is essentially BPu. We
remark that in general the languages accepted by S and BP are different from L(B):
L(S) = ∅ by construction while L(BP) ⊆ L(B), as shown in Theorem 15. To generate an
automaton accepting the same language of B, we construct a semi-deterministic automaton
SD = SD(B) = (Σ, Qsd , qsd ,Tsd ,Fsd) by merging S and BP as follows: Qsd = Qss ∪
Qbp, qsd = qss, Tsd = Tss ∪ Tt ∪ Tbp, and Fsd = Fbp, where Tt = { (R, σ, (R′, j′, C ′)) |
R ∈ Qss, (R′, j′, C ′) ∈ Qbp, and R′ ⊆ Tss(R, σ) }. B and SD accept the same language:

I Proposition 18. Given a NGBA B, let SD be constructed as above. Then, L(SD) = L(B).

For A = det(B), it is known by Lemma 13 thatM×S andM×A are strictly related,
so we can define the accepting SCC ofM×S by means of the accepting states ofM×A.

I Definition 19. Given a MCM and a NGBA B, for S = S(B) and A = det(B), we say
that a bottom SCC S ofM×S is accepting if, and only if, there exists a state s = (m, d) in
an accepting bottom SCC S′ ofM×A such that (m, rchd(d)) ∈ S.

Note that Proposition 8 ensures that the accepting SCCs ofM×S are well defined.

I Theorem 20. Given a MC M and a NGBA B, for SD = SD(B) and S = S(B), the
following facts are equivalent:
1. S is an accepting bottom SCC ofM×S;
2. there exist (m,R) ∈ S and R′ ⊆ R such that (m, (R′, j, ∅)) belongs to an accepting SCC

ofM⊗SD(m,(R′,j,∅)) for some j ∈ [1..k];
3. there exist (m,R) ∈ S and q ∈ R such that (m, ({q}, 1, ∅)) reaches with probability 1 an

accepting SCC ofM⊗SD(m,({q},1,∅)).
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Theorem 20 provides a practical way to check whether an SCC S ofM×S is accepting:
it is enough to check whether some state (m,R) of S has R ⊇ R′ for some (m, (R′, j, ∅)) in
the accepting region ofM⊗SD, or whether, for a state q ∈ R, (m, ({q}, 1, ∅)) reaches with
probability 1 the accepting region. We remark that, by construction of SD, if we change the
initial state of SD to (R, j, C) – i.e., if we consider SD(R,j,C) – then the run can only visit
breakpoint states; i.e., it is actually a run of BP(R,j,C).

4 Markov Decision Processes

The lazy determinisation approach proposed in this paper extends to Markov decision
processes (MDPs) after minor adaptation; Markov chains have mainly been used for ease
of notation. We give here an outline of the adaptation with a focus on the differences and
particularities that need to be taken into consideration when we are dealing with MDPs.

An MDP is a tupleM = (M,L,Act, µ0,P) where M , L, and µ0 are as for Markov chains,
Act is a finite set of actions, and P: M×Act → Dist(M) is the transition probability function
where Dist(M) is the set of distributions over M . The nondeterministic choices are resolved
by a scheduler υ that chooses the next action to be executed depending on a finite path.
Like for Markov chains, the principal technique to analyse MDPs against a specification ϕ is
to construct a deterministic Rabin automaton A, build the productM⊗A, and analyse it.
This product will be referred to as a Rabin MDP (RMDP). According to [3], for a RMDP,
it suffices to consider memoryless deterministic schedulers of the form υ : M × Q → Act,
where Q is the set of states of A. Given a NGBA specification Bϕ, we are interested in
supυPM,υ(Bϕ). In particular, one can use finite memory schedulers onM. (Schedulers that
controlM can be used to controlM⊗A for all deterministic automata A.) The superscript
M is omitted when it is clear from the context. We remark that the infimum can be treated
accordingly, as infυPυ(Bϕ) = 1− supυPυ(B¬ϕ).

As Proposition 8 operates on words, it immediately extends to MDPs. Under the
corresponding equivalence relation we obtain a quotient MDP. From here, it is clear that
we can use the estimation of the word languages provided in Theorem 15 to estimate
supυPυ(Bϕ).

I Corollary 21. Given an MDP M and a NGBA B, let m be a state of M and d, d′ be
states of A = det(B) with [d] = [d′]. Then supυPυ

(m,[d])(Su[d]) ≤ supυPυ
(m,〈d〉)(BP

u
〈d〉) ≤

supυPυ
(m,d)(Ad) = supυPυ

(m,d′)(Ad′) ≤ supυPυ
(m,〈d〉)(BP

o
〈d〉), supυPυ

(m,[d])(So[d]) holds.

In the standard evaluation of RMDP, the end components of the productM⊗A play
a role comparable to the one played by bottom SCCs in MCs. An end component (EC) is
simply a sub-MDP, which is closed in the sense that there exists a memoryless scheduler υ
such that the induced Markov chain is a bottom SCC. If there is a scheduler that additionally
guarantees that a run that contains all possible transitions infinitely often is accepting, then
the EC is accepting. Thus, one can stay in the EC and traverse all of its transitions (that
the scheduler allows) infinitely often, where acceptance is defined as for BSCCs in MCs.

I Theorem 22. Given an MDP M and a NGBA B, for A = det(B), SD = SD(B), and
S = S(B), if C is an accepting EC ofM⊗A, then (1.) [C] is an EC ofM×S and (2.) C′ = 〈C〉
is an accepting EC ofM⊗SD. C′ contains a state (m, (R, 1, ∅)) with R ⊆ [d] and (m, d) ∈ C.

Note that, since each EC C ofM⊗A is either accepting or rejecting, finding an accepting
EC C′ = 〈C〉 ofM⊗SD allows us to derive that C is accepting as well.

For RMDPs, it suffices to analyse maximal end components (MEC). We define a MEC
as accepting if it contains an accepting EC. MECs are easy to construct and, for each
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Figure 7 Finding accepting ECs in MDPs: MDP M, NGBA B, S = S(B), BP = BP(B).

accepting pair, they are easy to evaluate: it suffices to remove the rejecting transitions,
repeat the construction of MECs on the remainder, and check if there is any that contains an
accepting transition. Once accepting MECs are determined, their states are assigned a winning
probability of 1, and evaluating the complete MDP reduces to a maximal reachability analysis,
which reduces to solving an LP problem. It can therefore be solved in polynomial time.

These two theorems allow us to use a layered approach of lazy determinisation for MDPs,
which is rather similar to the one described for Markov chains. We start with the quotient
MDP, and consider an arbitrary MEC C. By using the accepting conditions of the subset
automata Su and So, we check whether C is accepting or rejecting, respectively. If this test is
inconclusive, we first refine C by a breakpoint construction, and finally by a multi-breakpoint
construction. We remark that, as for Markov chains, the breakpoint and multi-breakpoint
constructions can be considered as oracles: when we have identified the accepting MECs, a
plain reachability analysis is performed on the quotient MDP.

Theorem 22 makes clear what needs to be calculated in order to classify an EC – and
thus a MEC – as accepting, while Corollary 21 allows for applying this observation in the
quantitative analysis of an MDP, and also to smoothly combine this style of reasoning with
the lazy approach. This completes the picture of [6] for the quantitative analysis of MDPs,
which is technically the same as their analysis of concurrent probabilistic programs [6]. It
is worthwhile to point out that, in principle, the qualitative analysis from [6] could replace
Theorem 22 when starting with a Büchi automaton that recognises the complement of the
models of ϕ and minimising instead of maximising. This detour would, however, not allow
us to restrict the analysis to (M)ECs, which would, in turn, lead to a significant overhead.

For MDPs, differently from the subset and breakpoint construction, for the multi-
breakpoint case testing only one (m,R) ∈ C in general is not sufficient; consider the MDP
M and the NGBA B depicted in Figure 7. We first consider the product MDP M× S,
containing one MEC. We first try to decide whether it is accepting by considering the state
(c, {x}). The only nonempty subset of {x} is the set itself, thus we look for accepting MECs
inM⊗BP(c,({x},1,∅)). It is clear that from (c, ({x}, 1, ∅)) no accepting MECs can be reached.
In contrast to the MC setting, we cannot conclude that the original MEC is not accepting.
Instead, we remove (c, {x}) from the set of states to consider, as well as (b, {x}), from which
we cannot avoid reaching (c, {x}). The state left to try is (a, {x, y}), where we have two
transitions available. Indeed, inM⊗BP the singleton MEC {(a, ({y}, 1, ∅))} is accepting.
Thus the MEC ofM×S is accepting, though only one of its states – {(a, {x, y})} – allows
us to conclude this, and we need to select the correct subset, {y}, to start with.
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Table 1 Runtime comparison for the randomised mutual exclusion protocol.
time

property n BP expl. BP BDD RB expl. RB BDD PRISM Rabinizer3 scaled [4]

Pmin=?(GFp1=10 ∧ GFp2=10
∧ GF p3=10 ∧ GFp4=10) (3) 4 3 5 15 28 – 104 23

5 19 21 – 104 – 1478 380

Pmax=?((GFp1=0 ∨ FGp2 6=0)
∧(GFp2=0 ∨ FGp3 6=0)) (4)

3 1 2 2 4 138 2 1
4 3 7 4 15 – 20 18
5 19 32 35 76 – 319 299

Pmax=?((GFp1=0 ∨ FGp1 6=0)
∧(GFp2=0 ∨ FGp2 6=0)) (5)

3 2 2 2 4 41 2 1
4 3 8 4 17 336 19 18
5 19 34 45 68 – 314 289

Pmax=?((GFp1=0 ∨ FGp2 6=0)
∧(GFp2=0 ∨ FGp3 6=0)
∧(GFp3=0 ∨ FGp1 6=0))

(6)
3 1 2 2 6 – 5 4
4 3 9 7 27 – 52 47
5 29 38 99 124 – 871 762

Pmax=?((GFp1=0 ∨ FGp1 6=0)
∧(GFp2=0 ∨ FGp2 6=0)
∧(GFp3=0 ∨ FGp3 6=0))

(7)
3 1 2 2 9 – 5 5
4 3 9 12 41 – 50 49
5 29 38 – 171 – 849 792

Pmin=?((GFp1 6=10 ∨ GFp1=0 ∨ FGp1=1)
∧ GF p1 6=0 ∧ GFp1=1) (8)

3 1 2 1 3 1 1 1
4 3 6 3 10 8 13 6
5 17 25 17 41 123 208 91

Pmax=?((Gp1 6=10 ∨ Gp2 6=10 ∨ Gp3 6=10)
∧(FGp1 6=1 ∨ GFp2=1 ∨ GFp3=1)
∧(FGp2 6=1 ∨ GFp1=1 ∨ GFp3=1))

(9)
3 2 6 2 4 – 982 50
4 9 16 7 14 – 1718 440
5 136 60 91 56 – – –

Pmin=?((FGp1 6=0 ∨ FGp2 6=0 ∨ GFp3=0)
∨(FGp1 6=10 ∧ GFp2=10 ∧ GFp3=10) (10)

3 2 3 2 5 169 3 2
4 79 12 4 18 – 32 21
5 – 48 44 69 – 480 339

5 Implementation and Results

We have implemented our approach in our IscasMC tool [10] in both explicit and BDD-
based symbolic versions. We use LTL formulas to specify properties, and apply SPOT [7] to
translate them to NGBAs. Our experimental results suggest that our technique provides a
practical approach for checking LTL properties for probabilistic systems. A web interface to
IscasMC can be found at http://iscasmc.ios.ac.cn/. For our experiments, we used a
3.6 GHz Intel Core i7-4790 with 16GB 1600 MHz DDR3 RAM.

We consider a set of properties analysed previously in [4]. As there, we aborted tool runs
when they took more than 30 minutes or needed more than 4GB of RAM. The comparison
with the results from [4] cannot be completely accurate: unfortunately, their implementation
is not available on request to the authors, and for their results they did not state the exact
speed of the machine used. By comparing the runtimes stated for PRISM in [4] with the
corresponding runtimes we obtained on our machine, we estimate that our machine is faster
than theirs by about a factor of 1.6. Thus, we have included the values from [4] divided
by 1.6 to take into account the estimated effect of the machine. In Table 1 we provide the
results obtained. Here, “property” and “n” are as in [4] and depict the property and the size
of the model under consideration. We report the total runtime in seconds (“time”) for the
explicit-state (“BP expl.”) and the BDD-based symbolic (“BP BDD”) implementations of the
multi-breakpoint construction, as well as the explicit and symbolic (“RB expl.”, “RB BDD”)
of the Rabin-based implementation. In both BP and RB cases, we first apply the subset and
breakpoint steps. We also include the runtimes of PRISM (“PRISM”) and of the tool used
in [4] (“scaled [4]”) developed for a subclass of LTL formulas and its generalisation to full
LTL [8] implemented in Rabinizer 3 [13] (“Rabinizer 3”). We mark the best (rounded)
runtimes with bold font.

The runtime of our approaches is almost always better than the runtime of the other
methods. In many cases, the multi-breakpoint approach performs better than the Rabin-
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Table 2 Runtime comparison for the workstation cluster protocol.

time
property BP expl. BP BDD RB expl. RB BDD PRISM Rabinizer3

propU10 2 3 2 3 23 121
propU11 3 4 3 4 95 686
propU12 4 5 4 5 – –
propU13 7 8 7 8 – –

propGF∧3 1 1 1 1 48 1
propGF∧4 2 1 1 1 – 2
propGF∧5 1 1 1 2 – 14
propGF∧6 1 1 1 1 – 177

propGF∨3 1 1 2 3 233 1
propGF∨4 1 1 2 3 – 2
propGF∨5 1 2 1 2 – 14
propGF∨6 2 2 2 4 – 180

based approach (restricted to the single undecided end component), but not always. Broadly
speaking, this can happen when the breakpoint construction has to consider many subsets as
starting points for one end component, while the Rabin determinisation does not lead to a
significant overhead compared to the breakpoint construction. Thus, both methods are of
value. Both of them are faster than the specialised algorithm of [4] and Rabinizer 3. We
assume that one reason for this is that this method is not based on the evaluation of end
components in the subset product, and also its implementation might not involve some of
the optimisations we apply. In most cases, the explicit-state implementation is faster than
the BDD-based approach, which is, however, more memory-efficient.

As another case study, we consider a model [12] of two clusters of n=16 workstations
each, so that the two clusters are connected by a backbone. Each of the workstations may
fail with a given rate, as may the backbone. Though this case study is a continuous-time
Markov chain, we focused on time-unbounded properties, such that we could use discrete-
time Markov chains to analyse them. We give the results in Table 2, where the meaning
of the columns is as for the mutual exclusion case in Table 1. The properties propUk =
P=?(left_n=nU (left_n=n−1 U (. . .U (left_n=n−k U right_n 6=n) . . .) are probabilities of
the event of component failures with respect to the order (first k failures on left before
right) while the properties propGF∧k = P=?(GFleft_n=n ∧

∨k
i=0 FGright_n=n−i) and

propGF∨k = P=?(GFleft_n=n ∨
∨k
i=0 FGright_n=n−i) describe the long-run number of

workstations functional. As clearly shown from the results in the table, IscasMC outperforms
PRISM and Rabinizer 3 all cases, in particular for large PLTL formulas. It is worthwhile
to analyse in details the three properties and how they have been checked: for the propUk

case, the subset construction suffices and returns a (rounded) probability value of 0.509642;
for propGF∧k, the breakpoint construction is enough to determine that the property holds
with probability 0. This explains why the BP and RB columns are essentially the same
(we remark that the reported times are the rounded actual runtimes). Property propGF∨k,
instead, requires to use the multi-breakpoint or the Safra-based construction to complete the
model checking analysis and obtain a probability value of 1.
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Abstract
The problem of Büchi determinization is a fundamental problem with important applications in
reactive synthesis, multi-agent systems and probabilistic verification. The first asymptotically op-
timal Büchi determinization (a.k.a. the Safra construction), was published in 1988. While asymp-
totically optimal, the Safra construction is notorious for its technical complexity and opaqueness
in terms of intuition. While some improvements were published since the Safra construction,
notably Kähler and Wilke’s construction, understanding the constructions remains a non-trivial
task.

In this paper we present a modular approach to Büchi determinization, where the difficulties
are addressed one at a time, rather than simultaneously, making the solutions natural and easy
to understand. We build on the notion of the skeleton trees of Kähler and Wilke. We first show
how to construct a deterministic automaton in the case the skeleton’s width is one. Then we
show how to construct a deterministic automaton in the case the skeleton’s width is k (for any
given k). The overall construction is obtained by running in parallel the automata for all widths.

1998 ACM Subject Classification F.1.1 Models of Computation, D.2.4 Formal Methods,
G.2.2 Graph Algorithms

Keywords and phrases Büchi automata, Determinization, Verification, Games, Synthesis

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2015.368

1 Introduction

The relationship between deterministic and non-deterministic models of computation is a
fundamental question in almost every model of computation. Büchi automata are not an
exception. Büchi automata were first introduced, as non-deterministic, in [2], in order to
prove the decidability of S1S (second order logic of one successor). The need to consider
deterministic automata, however, rose almost immediately. A natural extension of S1S
decidability was to prove the decidability of S2S (second order logic of two successors) [27].
(Deciding S2S also allowed solving the fundamental Church problem [3] which is an early
formulation of what we now call synthesis). To decide S2S, however, one needed automata
to run on trees, and while this is natural for deterministic automata, it does not work as
expected for non-deterministic automata (see [10] for a comprehensive discussion). Some
examples of applications requiring Büchi determization constructions can be found in reactive
synthesis [26], multi-agent systems [1] and probabilistic verification [34, 4]. In order to
work with deterministic automata, one has to tackle another difficulty: deterministic Büchi
automata are less expressive than non-deterministic ones [18]. As a result, the determinization
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of Büchi automata is the following problem: Given a non-deterministic Büchi automaton,
find an equivalent deterministic automaton whose acceptance condition may be other than
Büchi. (Modern determinization procedures usually use the Parity condition [25, 11].)

Another problem, which is closely related to Büchi determinization is Büchi comple-
mentation. Deterministic automata on finite words can be complemented by dualizing the
accepting set. Some of the automata on infinite words, namely Muller and Parity, can also
be complemented by dualizing the acceptance condition.1 For this reason determinization
constructions yield almost immediately a complementation procedure [28]. In [15] Kupferman
and Vardi proposed a complementation construction that actively avoids determinization
due to its complexity. Later, in [11], Kähler and Wilke introduced the reduced and skeleton
run trees, and both a complementation and a determinization constructions based on them.

The first asymptotically optimal Büchi determinization construction [28] (a.k.a the Safra
construction), was published in 1988. While asymptotically optimal, the Safra construction
is notorious for its technical complexity and opaqueness in terms of intuition. It took no
less than 18 years(!) before Piterman improved upon the Safra construction by modifying
it to produce a Parity automaton [25]. A large step forward, in terms of lifting the veil of
technical complexity, was made by Kähler and Wilke in [11] who modeled automaton runs
by the clear and elegant reduced and skeleton trees. Their complementation construction is
as elegant and simple as one can hope for. Their determinization construction is a large step
forward, yet it is still non-trivial to understand or implement.

Building on the reduced and skeleton trees of Kähler and Wilke [11], we present in this
work a novel Büchi determinization construction which is considerably simpler than previous
constructions. The real strength of the construction lies in its modularity. For the first time,
the determinization problem is broken down into simpler problems, where the solution of
each simple problem is based on one clear idea. Thus the overall solution can be grasped in
a gradual manner following several easy steps. This is in contrast to previous solutions in
which the correctness reasoning is deferred to the very end, where one needs to reason on a
very complex construction.

Overview. In Section 2, we discuss the notions of the reduced and skeleton trees of [11].
Both trees concisely summarize the runs of a given Büchi automaton A on given word w, in
that these trees have an accepting path iff A accepts w (where an accepting path is a path
with infinitely many accepting nodes). Some of the paths of the reduced tree are infinite and
some are finite. The skeleton tree is the tree obtained from the reduced tree by eliminating
the finite paths (i.e. the nodes with finitely many descendants and the edges leading to
them). Our constructions conceptually build on the skeleton tree but practically work on the
reduced tree. (This is since the skeleton tree, while being easier to reason about, depends on
the infinite suffix of the word, and cannot be computed by a deterministic automaton.)

The width of the skeleton tree, formally defined in Section 2, is a central notion in our
construction. Roughly speaking, the width of a given level of a tree, is the number of nodes
in that level. The width of levels of the skeleton tree are monotonically non-decreasing
and bounded by n, the number of states in the given Büchi automaton A. We refer to the
maximal width of the skeleton-tree levels by skel-width. We use slice to refer to the sequence
of nodes on a level.

1 Some, namely Büchi, cannot. Dualization of a Rabin automaton yields a Streett automaton and vice
versa.
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· · ·

Figure 1 A reduced tree with
skel-width one.

Figure 2 A reduced tree of skel-width 3, marked with
the partitions created by the decide-width construction. The
partitions manage to trap each skeleton path in its own
interval in the following sense: Starting from level 5, where
the skel-width stabilizes, each slice (see e.g. the marked
slice) has three intervals where the i-th interval contains
only nodes of the i-th skeleton path, or the finite paths
attached to it.

In Section 3, we discuss only words on which the skel-width is one, as depicted in Figure 1.2
For such words, we note that the word is accepted by A iff it is accepted by the construction
of Miyano-Hayashi [22] (henceforth MH) applied to the reduced tree. This is since the MH
construction answers if all infinite runs of an automaton are accepting, and in the case there
exists just one infinite run, asking whether all infinite runs is the same as asking if there
exists an infinite run. For the same reason, if we apply it on the reduced tree when the width
is greater than one, we may reject if one path accepts but another does not. So in a sense,
our mission is to separate the paths of the skeleton tree.

In Section 4 we answer the decision problem: Is the skel-width of the reduced tree smaller
than a given k? The solution to this problem creates a partition of a slice of the reduced
tree into intervals, i.e. consecutive sequences of nodes of the slice, such that each skeleton
path (along with the finite paths attached to it) resides in its own interval, as depicted in
Figure 2. We capitalize on this separation in consequent constructions.

In Section 5, we show that given a possible width k, we can construct a deterministic
automaton that accepts a word of width exactly k iff A accepts it. This construction
essentially runs both previous constructions together, by applying the MH construction on
the intervals of the decide width construction.

In Section 6, we show how to run in parallel the constructions for all k (upto the number
of A’s states), and deduce the correct answer for words of any width. Finally, we show that
the complexity of this construction is bounded by nO(n) states, essentially matching the
known lower bound of n! given by Michel [21]. In Appendix A, we give a one page illustrative
description of the constructions using tokens, bells and buzzers, as a recap. All missing
proofs are available in the full version of the paper. We conclude in Section 7.

2 In this figure (and the rest of the figures in the paper) the reduced tree consists of all nodes and edges,
and the skeleton tree of only the solid nodes and edges.
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Related Work. The first construction for Büchi determinization is due to McNaughton [20]
and dates to 1966. The complexity of this construction was 22O(n) , and it took a series of
improvements [31, 24] until in 1988, Safra came up with the first asymptotically optimal
construction [28] of nO(n). There was a series of works closely studying the exact bounds of
Safra, and suggesting improvements obtaining tighter bounds [29, 15, 32, 25, 8, 36, 19].

The works most related to the one presented here were concerned, as we are, in obtaining
a determinzation construction simpler than the Safra construction (and the subsequent work),
while remaining in nO(n). A state in the determinized automaton of the Safra construction
is a labeled tree of sets of states of the given Büchi automaton. The transition between
states, and the acceptance condition relies on the nodes labeling. Piterman [25] simplified the
labeling and provided a determinized automaton based on Parity acceptance condition, which
is simpler and better for many applications [25]. Schewe [30] moved the acceptance condition
from states to edges. In 1995, Muller and Schupp [23] proposed a different exponential
determinization construction. Kähler and Wilke [11] identified from [23] the so called
skeleton tree and proposed a construction unifying the determinization, complementation
and disambiguation problems of Büchi automata. The most recent works in this thread
of research introduce the notion of profile trees where a profile is the history of visits to
accepting states [33, 6, 7].

A related line of research is that of finding a Büchi complementation construction that does
not rely on Büchi determinization [31, 12, 15, 32, 16, 9, 8, 35]. Avoiding determinization, or
the Safra construction, was also pursued in other contexts e.g. games and tree automata [17],
compositional synthesis [14] and translating linear temporal logic to automata [5].

2 Preliminaries

Buchi and Parity Automata. An automaton A is a tuple (Σ, Q, I, δ, α) where Σ is the
alphabet, Q is a set of states, I ⊆ Q is the set of initial state, δ : Q×Σ→ 2Q is the transition
relation, and α is the acceptance condition. A run of the automaton on an infinite word
w = σ1σ2σ3 . . . is a sequence of states q0, q1, q2, . . . such that q0 ∈ I and qi ∈ δ(qi−1, σi) for
every i ≥ 1. For Büchi automata the acceptance condition is a set F ⊆ Q and a run is
accepting if it visits states in F infinitely often. We use F to denote the set of non-accepting
states, i.e. Q \ F . The acceptance condition of a Parity automaton is a coloring (or ranking)
function χ that associates with each state a color (or rank) from a given finite set of colors
{0, 1, 2, . . . ,m}. A run of the automaton is considered accepting iff the minimal color visited
infinitely often is odd. An automaton may have several runs on the same word, and it accepts
a word iff one of its runs on that word accepts it. An automaton is deterministic if |I| = 1
and |δ(q, σ)| = 1 for every q ∈ Q and σ ∈ Σ. A deterministic automaton has a single run on
each word.

We refer to automata by three letter acronyms. The first letter may be d or n signifying
if the automaton is deterministic or non-deterministic, the second letter may be b, p or f
signifying whether it is a Büchi automaton, a Parity automaton or an automaton on finite
words. The third letter signifies the object on which the automaton runs, which is w for
words in all automata in this paper. For example, nbw stands for non-deterministic Büchi
automaton on words, and dfw stands for deterministic finite automaton on words.

Words and Trees. We use the term word for a finite or infinite sequence of letters. We use
w[j] for the j-the letter of w, w[j..] for the suffix of w starting at j, w[i..j] for the infix of w
starting at i and ending in j, and w[..j] for the prefix of w up to z. Note that w[1] is the
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first letter of w, so is w[..1]. We use w[..0] for the empty string. In general, we use [1..n] for
the set {1, 2, . . . , n}.

We use annotated binary trees. The nodes of such trees are strings in {0, 1}∗. The root
node is the empty string ε. The left successor of a node t is t0 and the right successor is
t1. An annotated binary tree is a function from {0, 1}∗ to some domain D. A node mapped
to ∅ is regarded as absent from the tree. The depth of node t, denoted |t|, is its distance
from the root, and it equals the length of the string t. So the depth of the root is 0, and
the depth of its successors are 1. For t1, t2 ∈ {0, 1}∗ we say that t1 <lex t2 if the string t1 is
lexicographically smaller than t2. We say that t1 <lft t2 if |t1| = |t2| and t1 <lex t2. The i-th
level of an annotated tree T consists of all nodes in depth i. If t1 <lex t2 <lex · · · <lex tn are
all nodes the i-th level of T then the i-th slice of T is the sequence 〈T (t1), T (t2), . . . , T (tn)〉.
The width of the i-th level is the number of nodes in that level.

Summarizing Runs Concisely. The main task of a determinization construction is to find
a way to summarize all the information needed on all the runs of a given non-deterministic
automaton in the single run of the constructed deterministic automaton. On finite words, it
sufficed to record the set of reachable states. It is instructive to see why this approach fails
for Büchi automata. The unfamiliar reader is referred to the full version.

Kähler and Wilke [11] introduced the split tree, the reduced tree and the skeleton
tree, all of which concisely summarize the information needed on the runs of the non-
deterministic Büchi automaton. The split- reduced- and skeleton-trees are defined per
a given word w. A key invariant that is maintained is that if there exists an accept-
ing run of the automaton on w then there is an accepting infinite path in all of these
trees. The formal definitions of these trees is given Appendix B of the full version.
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T(ab)ω :

Figure 3 A Büchi automaton W and
its reduced and skeleton trees for aω and
(ab)ω (where a node labeled with multiple
digits stands for the subset containing the
corresponding states (e.g. 012 stands for
{0, 1, 2}).

Roughly speaking, the split tree refines the sub-
set construction by separating accepting and non-
accepting states. From each node of the tree the
left son holds the accepting states and the right
son the non-accepting. Thus an accepting path has
infintely many left turns, and is also referred to as
left recurring. The width of a slice of the split-tree
is generally unbounded. The reduced tree bounds
the number of nodes on a slice of the tree to n, the
number of states of the given Büchi automaton A,
by eliminating from a node of the tree all states
that appeared in a node to its left. The skeleton-
tree is the smallest sub-tree of the reduced-tree that
contains all its infinite paths.

I Example 1. Figure 3 shows a Büchi automaton
W and the reduced and skeleton trees for aω and
(ab)ω both of which have width 2. The word aω

is rejected and indeed none of the two skel-paths
is left recurring. The word (ab)ω is accepted and
indeed one of the two skel-paths is left recurring.

Computing the slices of the reduced tree. The skeleton tree thus concisely captures
whether the original automaton A has an accepting path on the given word w. Unfortunately,
it requires knowing or guessing which states will eventually have no successors, which seems
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a difficult if not impossible task for a deterministic automaton to conduct. Working with the
reduced tree, however, is practical.

A slice of the reduced tree is a sequence of length at most n of nodes of the reduced tree
i.e. an element of (2Q)≤n. The 0-th slice is 〈I〉. Given a slice S = 〈S1, S2, . . . , Sk〉 we can
compute the next slice with respect to a next letter σ as follows [11]. For 1 ≤ i ≤ k, let

S̃i = ∪ {S′
j | j < 2i} S′

2i = δ(Si, σ) ∩ F \ S̃i S′
2i+1 = δ(Si, σ) ∩ F \ S̃i

Let S′ = 〈S′2, S′3, . . . , S′2k+1〉. Let S′′ = 〈S′′1 , S′′2 , . . . , S′′` 〉 be the sequence obtained from S′
by deleting all the empty sets. Then the next slice of S with respect to A and σ, denoted
δRS(S, σ) is S′′. We define δRS also for a given interval I = 〈Si, ..., Sj〉 of the slices’ nodes.
Let I′ = 〈S′2i, S

′
2i+1, . . . , S

′
2j+1〉. Let I′′ be the sequence obtained from I′ by deleting all the

empty sets. Then δRS(S, I, σ) = I′′.

3 Determinizing assuming the width is one

We first tackle the simplest case where the skeleton’s width is one, i.e, there is a single infinite
run in the reduced tree. Our automaton then needs to check whether this path visits the
accepting set infinitely often. The problem is that we can process the reduced tree, not the
skeleton tree, so if we encounter an accepting node we don’t know if it is on the skeleton tree
or not. Demanding that there exists infinitely many slices where all the nodes are accepting
is too strong, as can be seen by considering T Aaω of Fig. 4, which although is accepting all
its slices consists at least one non-accepting node. Demanding that there exists infinitely
many slices where there exists at least one node which is accepting is too weak, as can be
seen by considering T Raω of Fig. 4, which although is rejecting all its slices consists at least
one accepting node.

1 2A :

a

a

a
a

1 2R :

a

a

1, 2

2 1

2 1

2 1

2 1

· · ·

T A
aω :

1, 2

2 1

2 1

2 1

2 1

· · ·

T R
aω :

Figure 4 The
reduced and skel-
eton trees of aω

for A and R.

So we need something a little more sophisticated. The breakpoint
construction of Miyano and Hayashi [22] (henceforth, the MH-construction)
answers whether all infinite runs of a given non-deterministic Büchi auto-
maton are accepting. Since, in the case considered here, we have just one
infinite path, asking whether all infinite paths are accepting, is the same
as asking whether the single infinite path is accepting. Thus, applying the
MH-construction on the slices of the reduced tree achieves what we want,
when the skeleton width is one.

The Miyano-Hayashi Construction. The idea of the MH-construction is,
in addition to tracking the successors of the current level as in the subset
construction, to maintain a bookkeeping about which path has visited the
accepting set recently. Other states are considered to owe a visit to the
accepting set. Each state of a layer thus carries with it a bit informing
whether it owes a visit or not. When a new layer is constructed the sons
of states that owe a visit, are also marked as owing a visit unless they are
accepting (in which case the corresponding path has just paid its debt).
The other states on the layer are not marked as owing since they are
known to have visited the accepting set recently. When none of the states
is marked as owing we have found evidence for all of them to visit the
accepting set recently. We thus start charging them again for a visit to the
accepting set. Such a step is considered a reset step. Visiting an accepting state recently thus
means visiting an accepting state since the last reset occurred. If there are infinitely many
reset steps, we know that between every two adjacent reset points all paths have visited an
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374 A Modular Approach for Büchi Determinization

accepting state at least once, and therefore all paths have visited the accepting set infinitely
often.

Formally, ifA = (Σ, Q,Q0, δ, F ) then the MH-construction results in E = (Σ, QE , Q0
E , δE , FE)

defined as follows. One can think of a state of E as a mapping f : Q → {a, o, v} where a
state of A mapped to a is absent from the layer, a state mapped to o is on the layer and
owes a visit, and a state mapped to v is in the layer and visited the accepting set since the
last reset. Alternatively, we can think of the states of E as pairs of subsets 〈QL, QO〉 where
QL are the states in the layer (those that are mapped to v or o) and QO are the states in the
layer that owe a visit (those that are mapped to o). The transition relation is then defined as
δE(〈QL, QO〉, σ) = 〈Q′L, Q′O〉 where Q′L = δ(QL, σ) and if QO 6= ∅ then Q′O = δ(QO, σ) \ F
and otherwise (when QO = ∅) Q′O = δ(QL, σ) \ F . The accepting states of E are the reset
states, i.e. those of the form 〈QL, ∅〉. The initial state is 〈I, ∅〉.

I Claim 1 ([22]). E accepts w iff all paths of A accept w.

Miyano-Hayashi on the Reduced Tree. The reduced tree already computes the next
successors and separates the states into accepting and non-accepting. The remaining task
is to carry the bookkeeping bit of the MH-construction. This can be achieved by the dbw
D1 = (Σ, Q1, I1, δMHoR, F1) as follows. The states Q1 are annotated slices of the form
〈(S1, b1), (S2, b2), . . . , (Sk, bk)〉. That is, Q1 ⊆ (2Q × {o, v})≤n. The accepting states F1 are
those where all the bi components are v. The initial state I1 is 〈(I, o)〉. The transition
relation builds the next slice of the reduced tree, and annotates the node as dictated by the
MH-construction. (A node of the reduced tree is considered to be accepting if it consists
of accepting states, otherwise it is considered non-accepting. Note that in the reduced tree
there are no nodes with both accepting and rejecting states.) Formally, given an annotated
slice S = 〈(S1, b1), (S2, b2), . . . , (Sk, bk)〉, a next letter σ, for 1 ≤ i ≤ k, let

S̃i = ∪ {S′
j | j < 2i}

S′
2i = δ(Si, σ) ∩ F \ S̃i,
S′

2i+1 = δ(Si, σ) ∩ F \ S̃i

b′
2i = v

b′
2i+1 =

{
o if ∀i. bi = v
bi otherwise

Let S′ = 〈(S′2, b′2), (S′3, b′3), . . . , (S′2k+1, b
′
2k+1)〉. Let S′′ be the sequence obtained from S′ by

deleting all pairs (S′i, b′i) where S′i is the empty set. Then δMHoR(S, σ) = S′′.

I Proposition 1. For any word w for which skel-width(A, w) = 1 the dbw constructed above
accepts w iff A accepts w.

Similar to δRS, for later constructions only, we define δMHoR(S, I, σ) for an interval
I = 〈(Si, bi), . . . , (Sj , bj)〉 of S, for some 1 ≤ i ≤ j ≤ k. Let I′ be the sequence 〈(S′2i, b

′
2i),

(S′2i+1, b
′
2i+1), . . . , (S′2j+1, b

′
2j+1)〉. Let I′′ be the sequence obtained from I′ by removing all

pairs whose first component is the empty set then δMHoR(S, I, σ) = I′′.

4 Deciding the width

Perhaps the simplest question regarding widths is: what is the width of the tree? or put as
a decision problem: is the width of the tree smaller than a given k? Before tackling this
problem, let’s consider a simplified case as a motivating discussion. We know the width of
the skeleton tree is monotonically non-decreasing, and bounded by n. Suppose we could
start at a time point z after the width has already stabilized. Suppose we could track each
of the nodes separately from the others, within its own interval. If we have ` nodes in level z
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we would start with ` intervals. The successor of a node in interval j are kept within the
same interval j.

If the width is k, then exactly k of the nodes we started with at level z have infinitely
many descendants, therefore their interval will always be non-empty. If we started with ` > k

nodes, then `− k of these have only finitely many descendants and therefore eventually their
interval will become empty. If we throw away empty intervals, then we will at some point
remain with exactly k non-empty intervals, forever long. Below we develop this intuition to
tackle the exact problem of deciding the width.

The states of the constructed dbw Bk are sequences of sequences of nodes of the reduced
tree, corresponding to a slice partitioned into several intervals. While a node of a reduced tree
is a subset of A’s states, in this construction a node can be thought of as the smallest element.
If S = 〈I1, I2, . . . , I`〉 we say that S has ` intervals, and denote it |S| = `. If |S| < k we put
all nodes of the next step in different (singleton) intervals, to track each of them separately.
We call such step a shredding step, and such state a shredding state. The accepting set is
the set of all shredding states. The initial state consists of a single interval S0 = 〈I1〉 where
I1 = 〈I〉, i.e. the interval consists of one node – the root of the reduced tree.

We first define the transition relation for a non-shredding state. Let S = 〈I1, I2, . . . , I`〉
be a state of Bk. We use ∪ S to abbreviate ∪1≤i≤` Ii, i.e. the set of nodes in all the intervals
together. For 1 ≤ i ≤ ` let I′i = δRS(∪S, Ii, σ) and let S′ = 〈I′1, I′2, . . . , I′`〉. Let S′′ be the
sequences obtained from S′ by deleting empty intervals. Then if S is non shredding (i.e.
` ≥ k) then δBk

(S, σ) = S′′.
To define the transition relation for a shredding state we introduce an additional notation.

If ∪S = {S1, S2, . . . , Sm} then we use Shred(S) to denote the sequence 〈I′1, I′2, . . . , I′m〉
where I′i = 〈Si〉. That is, in Shred(S) every node of S is put in its own interval. Now let
I′′i = δRS(∪S, I′i, σ) and let S′′ = 〈I′′1 , I′′2 , . . . , I′′` 〉. Let S′′′ be the sequences obtained from S′′
by deleting empty intervals. Then if S is a shredding state (i.e. ` < k) then δBk

(S, σ) = S′′′.

I Proposition 2. The dbw Bk constructed above accepts a word w iff skel-width(A, w) < k.

I Example 2. Consider the nbw W of Figure 3. Both words aω and (ab)ω have width 2 (as
is evident from the respective skeleton trees). The automata B2 and B3 for widths < 2 and
< 3 respectively, are given in Fig. 5. The accepting states are marked with a double edge
(and also colored blue). It can be seen that B2 rejects both aω and (ab)ω as required (since
their width is not smaller than 2), while B3 accepts both words as required (since their width
is smaller than 3).

Tracking the path of either words aω or (ab)ω on B2 or B3 (and comparing to the respective
trees in Figure 3) we can see how a state represents a slice of the reduced tree, separated
into intervals. And that the transition relation maintains the successors within the same
interval, unless shredding occurred in which case they are separated into singleton intervals.

Last, we can see that each skeleton path is eventually trapped within its own interval.
This brings us to our next claim.

I Claim 2 (skel-paths separation). Let w be a word with skel-width k, and let ρ1, ρ2, . . . , ρk be
the skel-paths from left to right. Let S0,S1,S2, . . . be the run of Bk on w. Then there exists
z1 ∈ N such that |Sz| = k for every z > z1. Moreover, assume Sz = 〈Iz

1, Iz
2, . . . , Iz

k〉 then for
every skel-path ρi = Si

0, S
i
1, S

i
2, . . ., for every z > z1, we have Si

z ∈ Iz
i .
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Figure 5 On the left: automata B2 and B3 answering whether the width of a word w.r.t. W
given in Fig. 3 is smaller than 2 and 3, respectively. The accepting states are those with a double
frame (also colored blue). On the right: automata P2 and P3 answering whether a word with width
exactly 2 and 3, resp. (w.r.t. W given in Fig. 3) is accepted by A. The states with a thick frame
have color 0 (red). The states with a double frame have color 1 (green). The states with a thin
frame have color 2 (gray). An underlined node is a node whose MH-bit is set to v.

5 Determinizing for a given width

We now show that we can build a deterministic parity automaton Pk that accepts a word
of width k iff it is accepted by A. The idea is to combine both constructions we have seen
previously. That is, we use the idea of the construction of Bk to keep the skel-paths separated
one from the other in different intervals, and we use the MHoR construction to check on each
of these intervals whether the skel-path is accepting. Essentially, we add the Miyano-Hayashi
bit to the construction of Bk.

As in Bk we work with k intervals, and apply shredding when the number of intervals
is smaller than k. Instead of using δRS as in Bk we use δMHoR as in D1, so the transition
relation computes for each successor of a node its MH-bit, and an MH-reset is preformed
when all bits of that interval are v. The states of Pk are sequences of at most n intervals,
where each interval is a sequence of pairs whose first element is a node of the reduced tree,
and whose second element is a bit in {o, v}. (Again, nodes are subsets of A’s states, but can
be thought of as the smallest elements of this construction.) The initial state is the sequence
S0 where S0 = 〈I1〉 and I1 = 〈(I, o)〉, i.e. the root of the reduced tree, labeled as owing.

Let S = 〈I1, I2, . . . , I`〉 be a state of Pk. First we define a non-shredding transition (i.e.
assume ` ≥ k). In this case, for 1 ≤ i ≤ ` and σ ∈ Σ, let I′i = δMHoR(∪S, Ii, σ) (where
δMHoR is as defined in Section 3). Let S′ = 〈I′1, I′2, . . . , I′k〉 and let S′′ be the sequence
obtained from S′ by deleting all pairs with an empty interval. Then δPk

(S, a) = S′′.
For a shredding transition (i.e. when ` < k), if ∪S = {P1, P2, . . . , Pm} where Pi is a pair

(Si, bi) where Si is a reduced-tree node and bi ∈ {o, v} then we use Shred(S) to denote the
sequence 〈I′1, I′2, . . . , I′m〉 where I′i = 〈Pi〉. That is, in Shred(S) every pair of S is put in its
own interval. Now let I′′i = δMHoR(∪S, I′i, σ) and let S′′ = 〈I′′1 , I′′2 , . . . , I′′` 〉. Let S′′′ be the
sequences obtained from S′′ by deleting the empty intervals. Then δPk

(S, σ) = S′′′.
Let S be a state. The coloring function assigns it 0 if it is a shredding states (i.e. |S| < k);

it assigns it 1 if |S| ≥ k and an MH-reset occurs, (i.e. for some interval i all the MH-bits of
pairs in that interval are v); and it assigns it 2 otherwise.

I Proposition 3. For all words w if skel-width(A, w) = k then Pk accepts w iff A does.
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I Example 3. Consider again the nbw W of Figure 3. Figure 5 provides the automata P2
and P3 for widths 2 and 3, respectively. The red states (also having a thick frame) have color
0, the green states (also having a double frame) have color 1 and the gray states have color
2. An underlined node corresponds to a node whose MH-bit is set to v. (The un-underlined
nodes have their MH-bit set to o.)

It is easy to construct P2 and P3 given B2 and B3. Indeed they just add the MH-bit for
the nodes of B2 and B3, respectively, undergoing an MH-reset, if all nodes of an interval are
underlined (i.e. have visited the accepting set recently). Note that P2 has more states than
B2 since for instance, we need two version of the lower right state, for different settings of
the node’s MH-bits.

Recall that both words aω and (ab)ω have width 2, thus P2 should provide the correct
result for both of them. Indeed P2 accepts (ab)ω and rejects aω exactly as A does.

We note that D1 is a private case of the construction of Pk for k = 1. Indeed, for k = 1
shredding will never occur, and so all states consist of a single interval which is the entire
slice. Thus P1, exactly as D1, simply tracks the MH-bits on the reduced tree.

We next turn to understand what answer Pk provides for words with skel-width different
from k. If the actual skel-width is k∗ and k > k∗ then after the stabilization point, we won’t
be able to maintain for long more than k∗ non-empty intervals, therefore shredding will occur
infinitely often and Pk will reject. If k∗ > k then as we state in Proposition 4 below, if Pk

accepts it does so rightfully.

I Proposition 4. The dpw Pk described above uses three colors {0, 1, 2} and for any word w
if skel-width(A, w) = k then Pk accepts w iff A does,
if skel-width(A, w) < k then Pk rejects w,
if Pk accepts w then w is accepted by A, and
Pk visits 0 infinitely often iff skel-width(A, w) < k.

Self-Correction

We observe that in a sense, the intervals are self-correcting. That is, for every word w and
every suffix w[j..] of w, if we are given the slice of the reduced tree on the respective prefix
w[1..j−1], partition it arbitrarily to intervals, and apply Bk from there on that suffix, we
will still get a correct result (i.e. a correct answer to the question whether the width of w is
smaller than k). Intuitively, because the intervals’ role is to detect a property that depends
only on the future.

In a similar manner, the MH-bits are self correcting. That is, for every word w and
every suffix w[j..] of w, if we are given the slice of the reduced tree on the respective prefix
w[1..j−1], and annotate it arbitrarily with MH-bits, and apply MHoR from there on that
suffix, we will still get a correct result (i.e. an answer whether w is accepted on all skel-paths).
Again, intuitively because the role of the MH-bits is to detect a property that depends only
on the future. Putting these together we get the following claim.

I Claim 3 (Intervals and MH-bits are self-correcting). Let S be a slice of the reduced tree on
prefix w[1..j] partitioned arbitrarily into intervals, and annotated arbitrarily with MH-bits.
Applying the construction of Pk on the suffix w[j+1..] from state S still satisfies all premises
of Proposition 4.
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6 Determinizing for any width

We now build a deterministic parity automaton P that recognizes the same language as
A. Intuitively, we want to run the automata P1,P2, . . . ,Pn from the previous section, in
parallel. We know that if the exact width is k∗ then the answer we look for is given by Pk∗

and apart from this, Pk for all k > k∗ rejects, and for all k < k∗, if Pk accepts it does so
rightfully. Thus, prioritizing results of Pk’s with lower k’s should give us the correct result.

Before we continue, let’s contemplate on the complexity we’ll get by running all Pk’s in
parallel. A state of Pk needs to encode, among other things, the partition into intervals,
which requires at least 2n states. Since we have n such components in a state, we’d need 2n2

which is more that we can allow, if we’d like to stay in the bounds of 2O(n log n).
We overcome this by working with a modification of Pk, termed Rk, which is obtained

using the observation of Claim 3. Specifically, Rk will differ from Pk in two places. One
is that Rk will undergo shredding whenever one of the Rj with j ≤ k decides to undergo
shredding. This entails that the partitions to intervals of Rk+1 will be a refinement of that of
Rk. Or put otherwise, every interval of Rk+1 would be fully contained in an interval of Rk.
The second place is that an interval of Rk will undergo an MH-reset whenever a subsuming
interval of one of the Rj ’s for j ≤ k decides to undergo an MH-reset. As we shall see in the
next subsection, this will enable an encoding of the state space that does not exceed nO(n).

To run these automata in parallel a state of our parity automaton will have n components
one corresponding to each of the automata Rk. The initial state will be the n-tuple consisting
of the initial states of R1,R2 . . . ,Rn and the transition relation will follow that of the Rk’s.
For the acceptance condition, we need to assign colors to these compound states.

A compound state has the following form (S1,S2, . . . ,Sn) where Si is a state of Ri for
1 ≤ i ≤ n. To assign a color to the compound state, it is convenient to let each Ri use its own
set of colors. More precisely, we will assume automaton Rk assigns colors in {2k, 2k+1, 2n+2}
instead of {0, 1, 2}, respectively. That is, the colors 2k and 2k+1 are uniquely used by Rk

whereas the color 2n+2 may be used by all Rk’s. Now for a given state P = (S1,S2, . . . ,Sn),
we can look at the corresponding sequence of colors (c1, c2, . . . , cn), where ci has values in
{2k, 2k+1, 2n+2}, and color the compound state P with the minimal color among the ci’s.

I Theorem 4. Let A be an nbw, with n states. The dpw P described above has 2n + 1
colors and it accepts an infinite word w iff A accepts w.

Complexity. We turn to show that the complexity of the construction of the dpw P in
Theorem 4 is nO(n).

A state Sk ofRk for some 1 ≤ k ≤ n is a slice of the reduced tree, partitioned into intervals,
where each node is annotated with its MH-bit. A state of P is an n-tuple (S1,S2, . . . ,Sk)
of such states. We shall see that we can encode a state of P more succinctly than directly
encoding each state Si of the tuple. In fact, we chose to work with Rk instead of Pk for this
reason exactly. For Rk we can show that the intervals of Rk+1 refine those of Rk. This will
entail also that the MH-bits for all Rk’s can be encoded more compactly.

First, we claim that the intervals of Rk+1 refine those of Rk, for every 1 ≤ k ≤ n.

I Claim 4 (Intervals refinement). Every interval Jm of the state of Rk+1 after reading w[..z],
is fully contained in an interval I` of the state of Rk after reading w[..z], for any z ∈ N.

Next, we show that if b1, b2, . . . , bn are the MH-bit of a given node in R1,R2, . . . ,Rn

resp. then b1b2 . . . bn ∈ v∗o∗.
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I Claim 5 (MH-bits entailment). Let bk(S) and bk+1(S) be the MH-bit encoding of node S in
the state of Rk and Rk+1, resp. after reading w[..z] for some z ∈ N. Then bk(S) = o implies
bk+1(S) = o, and bk+1(S) = v implies bk(S) = v.

We are now ready to fully encode a state P = (S1,S2, . . . ,Sn) of P. A state Si needs to
record (1) the original automaton states that are on the slice, in the order they appear, (2)
the partition to nodes, (3) the partition to intervals and (4) the Miyano-Hayshi bit of each
node. We have that (1) and (2) are shared among all Si’s since they all track the obtained
slice of the reduced tree. We’ll use Claims 4 and 5 to represent (3) and (4) in a combined
manner, rather than separately for each Si.

The states on the slice, can be represented by a permutation on [1..n].3 This requires
n! < nO(n). The partitions of states to nodes, can be encoded using a function h from [1..n]
to {0, 1}, so that h(i) = 1 means that a new node starts after the i-th state of slice (i.e. the
i-th and i+1-th states of the slice are in different nodes). This requires 2n < nO(n). The
partition to intervals for all Rk’s together, by Claim 4, can be encoded by a function F from
[1..n] to [0..n] so that F (i) = j means that a new interval begins between states i and i+1 of
the slice, in all Rk for k > j. This requires nn+1 < nO(n). Finally, let [1..n]h be the set of
indices for which h(i) = 1. That is, [1..n]h represents the nodes of the slice. By Claim 5, the
MH-bits of nodes in all Rk’s together can be represented by a function G from [1..n]h to
[1..n+ 1] so that G(i) = j means that node i is v in all Rk for k < j and it is o, in all Rk for
k ≥ j. This requires nn+1 < nO(n). So all in all, nO(n) suffices to represent all states of P
from Theorem 4.4

I Corollary 5. Let A be an nbw, with n states. The dpw P described above has nO(n) states
and 2n+ 1 colors and it accepts an infinite word w iff A accepts w.

7 Conclusions

Building on the reduced and skeleton trees of Kähler and Wilke [11] we provide a novel
simple construction for Büchi determinization.

A key observation is that conceptually we can partition the reduced tree into intervals so
that each infinite path of the reduced tree (along with the finite paths attached to it) resides
in an interval of its own, as depicted in Figure 2. The word is accepted by A iff in one of
these intervals the infinite path is accepting. The question whether in such an interval the
infinite path is accepting, can be answered by applying the MH-construction on that interval.

We show how we can build an automaton Pk that for words with width k, finds this
conceptual separation and by applying the MH-construction to each of the k intervals, returns
a correct result for all words of width k. Our overall construction runs in parallel (a minor
tweaking of) the automata P1,P2, . . . ,Pn to produce a correct result for words of any width.5

We have thus broken the determinization problem into two simpler problems (1) parti-
tioning the reduced tree into its skeleton-paths, and (2) providing an answer for a single
infinite path (in the presence of finite paths). For the latter we adapted the MH-construction.

3 We assume some arbitrary given order ≺ on the states of A so that states in the same node will be
ordered according to ≺, and we obtain a total order on the states of a slice.

4 In fact, the partition to nodes can be seen as the finest refinement of the partition to intervals, so we
can represent both (2) and (3) together by a function from [1..n] to [0..n+1]. So the overall number of
state is bounded by n! · nn+2 · nn+1 < n3n+3.

5 Appendix A provides an illustrative presentation of the constructions using tokens, bells, and buzzers.

CONCUR’15



380 A Modular Approach for Büchi Determinization

We tackled the former by answering the elemental decision problem of whether the number
of infinite paths in a tree with both finite and infinite paths is smaller than a given k.

Acknowledgements. We would like to thank Nir Piterman for his helpful comments on a
draft of this paper.
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A Recap – The Construction using Tokens, Buzzers and Bells

Below we give a description of our construction, using tokens, bells and buzzers in the
style of the representation of Safra’s construction in [13]. The tokens are a visual means
to describe the states of the automaton. For a parity automaton with 3 colors {0, 1, 2} the
bell corresponds to a state colored 1 and the buzzer to a state colored 0, so that a word is
rejected if the buzzer buzzed infinitely many times, and otherwise, accepted if the bell rang
infinitely many times. For a parity automaton with 2m colors, we use m buzzers and m
bells. Suppose during a run on the word the minimal buzzer to buzz infinitely often is kbuzz

and the minimal bell to ring infinitely often is kbell. Then kbuzz, kbell ∈ [1..m] ∪ {∞} and if
kbell < kbuzz the word is accepted.

For width one. The construction builds the slices of the reduce tree slice by slice and marks
the slices’ nodes with violet and orange tokens (for the MH bits v and o, resp). On the root
of the tree, put violet if it is accepting, and orange otherwise. Given the current slice, put
tokens on the next slice as follows. For a son of a violet token, put a violet token. For a son
of an orange token, put a violet token if it is accepting and an orange token otherwise. If all
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tokens in the slice are violet, ring the bell. Then replace the tokens on all the non-accepting
nodes with orange tokens.

For width k. The construction builds the slices of the reduce tree slice by slice and marks the
slices’ nodes with violet and orange tokens that are numbered 1 to n (where n is the number
of states of the given nbw). That is, tokens = {violet(i) | i ∈ [1..n]} ∪ {orange(i) | i ∈ [1..n]}.
We use token(i) for violet(i) ∨ orange(i).

On the root of the tree, put violet(1) if it is accepting, and orange(1) otherwise. Given
the current slice, put tokens on the next slice as follows. For a son of a violet(i) token, put a
violet(i) token. For a son of an orange(i) token, put a violet(i) token if it is accepting and
an orange(i) token otherwise. If the number of i’s for which token(i) is in the current slice
is less than k, buzz the buzzer. Then put on each node of the slice a new token, with i’s
increasing from left to right, and with orange(i) placed on a non-accepting node and violet(i)
on an accepting node. If for some i, all token(i) are violet, ring the bell. Then replace all
the violet(i) tokens that are on a non-accepting node with orange(i) tokens.

Overall construction.6 Again, the construction builds the slices of the reduce tree slice by
slice and marks the slices’ nodes with tokens. Here we use n sets of violet and orange tokens,
numbered 1 to n. That is, tokens = {J-violet(i) | J, i ∈ [1..n]} ∪ {J-orange(i) | J, i ∈ [1..n]}.
We use J-token(i) for {J-violet(i), J-orange(i)} and J-token() for {J-violet(i) | i ∈ [1..n]} ∪
{J-orange(i) | i ∈ [1..n]}.

On the root of the tree, for every J ∈ [1..n], put J-violet(1) if it is accepting, and
J-orange(1) otherwise. Given the current slice, put tokens on the next slice as follows. For
a son of a J-violet(i) token, put a J-violet(i) token. For a son of a J-orange(i) token, put
J-violet(i) if it is accepting and J-orange(i) otherwise. If for some J the number of used
J-token()’s on the current slice is less than J , buzz the J-buzzer. Then, for all J ′ ≥ J , put
on all nodes of the slice a new J ′-token(), with i’s increasing from left to right, and with
J ′-orange(i) placed on a non-accepting node and J ′-violet(i) on an accepting node. If for
some i and J , all J-token(i) are violet, ring the J-bell. The for every non-accepting node
with J-violet(i) on it, for every J ′ ≥ J , if the current J ′-token() on it is J ′-violet(i′), replace
it with a J ′-orange(i′) token.

6 The construction here incorporates the modification required to get the complexity of nO(n).
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Various classes of pushdown automata such as multi-stack PDSs [9], pushdown networks
[7, 18, 27, 29] and well-structure PDSs [10] have been proposed for modeling concurrent
(thread-creation) programs with recursion. In order to model timed (resp. probabilistic)
behavior, models that combine timed (resp. probabilistic) automata and PDSs are investigated
in the literature, e.g., discrete/dense-timed pushdown systems [1, 2], nested timed automata
[20] (resp. probabilistic PDSs [14, 8]). For dataflow analysis purpose, weighted PDSs [23] and
extended weighted PDSs [19] are proposed, where transitions are associated with values from
semirings. For stack manipulation of PDSs, Esparza et al. introduced PDSs with checkpoint
[15] that can check the full stack content against a regular language (recognized by a finite
state automaton) over the stack alphabet. This model is called conditional PDSs in [21]
and transformable PDSs in [30]. Uezato and Minamide extended PDSs with transductions
(TrPDSs) which associate each transition with a transduction. The associated transductions
can check the stack content and modify the whole stack content. TrPDSs are a generalization
of PDSs with checkpoint and discrete-timed PDSs. In general, TrPDSs are Turing complete.
To achieve decidability result, Uezato and Minamide considered finite TrPDSs which restrict
the closure of transductions appearing in the transitions of a TrPDS to be finite. They
showed that a finite TrPDS can be simulated by a PDS. Therefore, the reachability problem
of finite TrPDSs is decidable. Moreover, the saturation procedure that calculates the set
pre∗(C) of predecessor configurations for a given regular set of configurations C can be
directly extended from PDSs to finite TrPDSs.

In this work, we follow the direction of [30] and make a comprehensive study of the
reachability problem of TrPDSs. The main contributions of this paper can be summarized as
follows:

A novel saturation procedure is proposed that computes the set pre∗(C) of predecessor
configurations for a given regular set of configurations C of TrPDSs (cf. Section 3.1). This
saturation procedure avoids pseudo formal power series semiring that was introduced in
[30] to compute pre∗(C).
A saturation procedure is introduced to compute the set post∗(C) of successor configur-
ations for a given regular set of configurations C of TrPDSs (cf. Section 4.1). TrPDSs
can be simulated by PDSs as shown in [30]. Therefore, post∗(C) could be computed
by applying the saturation procedure of PDSs [13]. Our saturation procedure directly
computes a kind of finite state automaton that exactly recognizes post∗(C). We believe
our direct approach is more convenient for studying optimal algorithm or BDD-based
symbolic techniques.
Efficient implementation algorithms of the saturation procedures for computing pre∗(C)
and post∗(C) are presented (cf. Section 3.2 and Section 4.2). We show that the computa-
tions of both pre∗(C) and post∗(C) are fixed-parameter tractable with the fixed-parameter
of transductions.
We show that TrPDSs are powerful enough to model Boolean programs with call-by-
reference parameter passing. Boolean programs in the literature [3] only consider call-
by-value parameter passing which can be modeled by PDSs. Using our approach, safety
properties of Boolean programs with mixed call-by-reference and call-by-value parameter
passing can be directly verified (cf. Section 5).

Section 2 presents basic definitions. Section 3 (resp. Section 4) introduce the saturation
procedure and its efficient implementation algorithm for computing pre∗(C) (resp. post∗(C)).
In Section 5, we present a potential application of TrPDSs for modeling and verifying
Boolean programs with call-by-reference parameter passing. Section 6 discusses related work.
Section 7 concludes and discusses future work. Due to space limitation, proofs and details of
Examples (9 and 13) are omitted and will appear in the journal version of this paper.
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2 Preliminaries

2.1 Finite-State Transducers and Transduction
I Definition 1. A finite-state transducer (FST) T is a tuple (Q,Γ, δ, I, F ), where Q is a
finite set of states, Γ is a finite alphabet, δ ⊆ Q× Γ∗ × Γ∗ ×Q is a finite set of transition
rules, I ⊆ Q (resp. F ⊆ Q) is a finite set of initial (resp. final) states. The transducer is
letter-to-letter if δ ⊆ Q× Γ× Γ×Q.

We will write q ω1/ω2−−−−−→ q′ if (q, ω1, ω2, q
′) ∈ δ. Let −→∗ be the smallest relation such

that q ε/ε−−−−→∗ q for every q ∈ Q; if q ω1/ω2−−−−−−→∗ q′ and q′ ω3/ω4−−−−−→ q′′, then q ω1ω3/ω2ω4−−−−−−−−−→∗ q′′.
A FST T transduces a string ω1 ∈ Γ∗ into a string ω2 ∈ Γ∗ if there exist states q0 ∈ I and
qf ∈ F such that q0

ω1/ω2−−−−−−→∗ qf . The language L(T) of a FST T is the set of pairs (ω1, ω2)
such that T can transduce ω1 into ω2.

A transduction τ ⊆ Γ∗ × Γ∗ is a relation over Γ∗. A transduction τ is rational (regular)
and length-preserving if there is a letter-to-letter transducer T such that τ = L(T). Let
τid denote the identity transduction, i.e., τid = {(ω, ω) | ∀ω ∈ Γ∗}. In the rest of this
paper, we assume that transductions (resp. transducers) are length-preserving rational (resp.
letter-to-letter) unless stated explicitly, and we do not differentiate the terms transduction
and transducer. Given a transduction τ , let τ(ω) = {ω′ | (ω, ω′) ∈ τ} for ω ∈ Γ∗.

The composition ◦ of two transductions τ1, τ2 is defined as

τ1 ◦ τ2 = {(ω1, ω3) | ∃ω2 ∈ Γ∗, (ω1, ω2) ∈ τ1 and (ω2, ω3) ∈ τ2}.

I Proposition 2. For every transduction τ , τ ◦ τid = τ = τid ◦ τ .

The left quotient d·, ·c−1 over transductions is defined as follows: ∀ω1, ω2 ∈ Γ∗ with
|ω1| = |ω2|, dω1, ω2c−1τ = {(ω, ω′) | (ω1ω, ω2ω

′) ∈ τ}.

I Proposition 3. [30] For every ω1, ω2 ∈ Γn, for every transduction τ1, τ2,

dω1, ω2c−1(τ1 ◦ τ2) =
⋃

ω3∈Γ|ω1|

(
(dω1, ω3c−1τ1) ◦ (dω3, ω2c−1τ2)

)
.

Let T be a set of transductions, the closure 〈T 〉∪ of T over the composition ◦, left quotient
d·, ·c−1 and union ∪ is defined as follows:
T ⊆ 〈T 〉∪, ∅ ∈ 〈T 〉∪ and τid ∈ 〈T 〉∪;
if τ1, τ2 ∈ 〈T 〉∪, then τ1 ◦ τ2 ∈ 〈T 〉∪ and τ1 ∪ τ2 ∈ 〈T 〉∪;
if τ ∈ 〈T 〉∪, then dγ, γ′c−1τ ∈ 〈T 〉∪ for all γ, γ′ ∈ Γ.

Similarly, let 〈T 〉 denote the closure of T over the composition ◦ and left quotient d·, ·c−1.

I Proposition 4. (a) The set 〈T 〉 is finite iff the set 〈T 〉∪ is finite.
(b) The set 〈T 〉∪ is the semigroup generated by (〈T 〉,∪), that is, ∀τ ∈ 〈T 〉∪, ∃τ1, ..., τm ∈

〈T 〉 for m ≥ 1 such that τ =
⋃m
i=1 τi.

2.2 Pushdown Systems with Transductions
Pushdown systems with transductions (TrPDSs) [30] are an extension of pushdown systems
by associating each transition with a transduction which modifies the stack content by
applying the transduction. This extension allows TrPDSs to model sequential programs that
manipulate the stack content rather than only the top of the stack.
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I Definition 5. A pushdown system with transductions (TrPDS) P is a tuple (P,Γ, T ,∆),
where P is a finite set of control states, Γ is a finite alphabet, T is a finite set of transductions
over Γ∗, ∆ ⊆ P × Γ× T × P × Γ∗ is a finite set of transition rules. A TrPDS is a pushdown
system (PDS) if T = {τid}.

We will write 〈p, γ〉 τ
↪→ 〈p′, ω〉 instead, if (p, γ, τ, p′, ω) ∈ ∆. A configuration of a TrPDS P

is a pair 〈p, ω〉 ∈ P × Γ∗ where p is the control state and ω is the stack content. Let CP
denote the set of all the configurations P × Γ∗ of the TrPDS P. The TrPDS P is called
finite if the set 〈T 〉 (i.e.,〈T 〉∪) is finite. If 〈p, γ〉 τ

↪→ 〈p′, ω〉, then for every ω′ ∈ Γ∗, the
configuration 〈p, γω′〉 is an immediate predecessor of the configuration 〈p′, ωu〉 for every
u ∈ τ(ω′), and the configuration 〈p′, ωu〉 for every u ∈ τ(ω′) is an immediate successor of the
configuration 〈p, γω′〉. Let =⇒⊆ CP × CP be the immediate successor relation, i.e., for every
ω′, u ∈ Γ∗, 〈p, γω′〉 =⇒ 〈p′, ωu〉 if 〈p, γ〉 τ

↪→ 〈p′, ω〉 and u ∈ τ(ω′). A run of P is a sequence
of configurations c1c2 · · · such that for every i ≥ 1, ci+1 is an immediate successor of ci.

Let =⇒n⊆ CP × CP be the successor relation over configurations of P defined as follows:
c =⇒0 c for every c ∈ CP ;
c =⇒n c′′ if there exists c′ ∈ CP such that c =⇒ c′ and c′ =⇒n−1 c′′.

Let =⇒∗⊆ CP ×CP denote the reflexive transitive closure of the immediate successor relation
=⇒, i.e., =⇒∗=

⋃
i≥0 =⇒i . Let =⇒+⊆ CP × CP denote the transitive closure of the

immediate successor relation =⇒, i.e., =⇒+=
⋃
i≥1 =⇒i .

The predecessor function pre : 2CP −→ 2CP of P is defined as follows: pre(C) = {c ∈
CP | ∃c′ ∈ C : c =⇒ c′}. The reflexive transitive closure of pre is denoted by pre∗. Formally,
pre∗(C) = {c ∈ CP | ∃c′ ∈ C : c =⇒∗ c′}. Similarly, the successor function post : 2CP −→ 2CP
of P is defined as follows: post(C) = {c ∈ CP | ∃c′ ∈ C : c′ =⇒ c}. The reflexive transitive
closure post∗ of post is defined as post∗(C) = {c ∈ CP | ∃c′ ∈ C : c′ =⇒∗ c}.

2.3 Finite Automata with Transductions
To finitely represent regular sets of configurations of TrPDSs, we use finite automata with
transductions.

I Definition 6 ([30]). Given a TrPDS P = (P,Γ, T ,∆), a finite automaton with transduction
and ε-moves (ε-TrNFA) A is a tuple (S,Γ,Λ, T , S0, Sf ), where S is a finite set of states,
Λ ⊆ S × (Γ ∪ {ε}) × 〈T 〉∪ × S is a finite set of transition rules, S0, Sf ⊆ S are initial and
final states. An ε-TrNFA A is TrNFA if Λ ⊆ S × Γ× 〈T 〉∪ × S.

We write s γ|τ7−→ s′ if (s, γ, τ, s′) ∈ Λ (note that γ ∈ Γ∪ {ε}). Let 7−→n: S ×Γ∗× 〈T 〉∪×S
be a relation over states of A defined as follows:

s
ε|τid7−−−→ 0s, for every s ∈ S;

s
γγ1···γn|

(
dγ1···γn,γ

′
1···γ

′
nc
−1τ
)
◦τ1

7−−−−−−−−−−−−−−−−−−−−−−→ n+1 s2 for all γ1, ..., γn ∈ Γ, if ∃s1 ∈ S such that s γ|τ7−−→ s1

and s1
γ′1···γ

′
n|τ17−−−−−→ ns2.

TrNFA is the standard finite state automata if T = {τid}, a.k.a. P-automata [6] if S
corresponds to the control states of P.

Let 7−→∗=
⋃
i≥0 7−→i. A configuration 〈p, ω〉 ∈ P × Γ∗ of a TrPDS P is recognized

(accepted) by an ε-TrNFA A iff s ω|τ7−→ ∗s′ such that s = p ∈ S0, s′ ∈ Sf and (ε, ε) ∈ τ . A set
C of configurations is rational (regular) if there exists an ε-TrPDS A such that L(A) = C .
From now on, we omit the paths of the form s1

ω|τ7−→ ns2 such that τ = ∅, as these paths do
not allow the ε-TrNFA to accept a configuration.
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I Theorem 7 ([30]). Given a finite TrPDS P = (P,Γ, T ,∆) and a rational set of configura-
tions C of P, both post∗(C) and pre∗(C) are rational and effectively computable.

3 Computing pre∗

In this section, we present a saturation procedure to compute pre∗ which is different from
the way presented in [30] and an efficient implementation for pre∗.

3.1 Saturation Procedure for Computing pre∗

Given a finite TrPDS P = (P,Γ, T ,∆) and a TrNFA A = (S,Γ,Λ, T , S0, Sf ) that recognizes
a rational set of configurations of P, w.l.o.g., we assume P = S0 and there is no transition
rule in A leading to an initial state and A uses only the identity transduction τid (cf. Section
6.4 of [30]), we construct a new TrNFA Apre∗ = (S,Γ,Λpre∗ , T , S0, Sf ) such that Apre∗

recognizes pre∗(L(A)), i.e., L(Apre∗) = pre∗(L(A)). The construction of Apre∗ is based on
a kind of saturation procedure which extends the saturation procedure to compute pre∗ of
PDSs [6]. Initially, Apre∗ = A, then we iteratively apply the following saturation procedure
until no new transition rule can be added into Apre∗ .

If 〈p, γ〉 τ1
↪→ 〈q, ω〉 ∈ ∆ and q ω|τ27−−→ ∗q′ in the current automaton Apre∗ ,

add a transition rule p γ|τ1◦τ27−−−−−→ q′ into Λpre∗ .

Since the set of states of Apre∗ and the set 〈T 〉 of transductions are finite, the set of
transition rules in Apre∗ is finite. Thus, the above saturation will eventually reach a fixpoint.
Intuitively, if there is a transition rule 〈p, γ〉 τ

↪→ 〈q, γ1
1 · · · γ1

n〉 ∈ ∆, then 〈p, γγn+1 · · · γm〉 =⇒
〈q, γ1

1 · · · γ1
nγ

1
n+1 · · · γ1

m〉 for all γ1
n+1 · · · γ1

m ∈ τ(γn+1 · · · γm). If the automaton Apre∗ recog-

nizes the configuration 〈q, γ1
1 · · · γ1

m〉 by a path q γ
1
1 ···γ

1
m|τ
′

7−−−−−−→ m g for some final state g of Apre∗

and (ε, ε) ∈ τ ′, then, we can decompose this path to q γ
1
1 ···γ

1
n|τ
′′

7−−−−−−→ nq′ and q′
γn+1

n+1 ···γ
n+1
m |τ ′′′

7−−−−−−−−−−→ m−ng

such that if τ ′ = (dγ1
2 · · · γ1

m, γ
2
2 · · · γ2

mc−1τ1) ◦ · · · ◦ (dγm−1
m , γmmc−1τm−1) ◦ τm, then

τ ′′ = (dγ1
2 · · · γ1

n, γ
2
2 · · · γ2

nc−1τ1) ◦ · · · ◦ (dγn−1
n , γnnc−1τn−1) ◦ τn,

τ ′′′ = (dγn+1
n+2 · · · γn+1

m , γn+2
n+2 · · · γn+2

m c−1τn+1) ◦ · · · ◦ (dγm−1
m , γmmc−1τm−1) ◦ τm.

Moreover, since (ε, ε) ∈ τ ′, we get that (γ1
n+1 · · · γ1

m, γ
n+1
n+1 · · · γn+1

m ) ∈ τ ′′ and (ε, ε) ∈ τ ′′′.

Applying the saturation procedure, the transition rule p γ|τ◦τ ′′7−−−−→ q′ is added into Apre∗ .
Therefore, Apre∗ recognizes the configuration 〈p, γγn+1 · · · γm〉 by composing p γ|τ◦τ ′′7−−−−→ q′ and

q′
γn+1

n+1 ···γ
n+1
m |τ ′′′

7−−−−−−−−−−→ m−ng into p
γγn+1···γm|

(
dγn+1···γm,γ

n+1
n+1 ···γ

n+1
m c−1(τ◦τ ′′)

)
◦τ ′′′

7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ m−n+1g (note that
(γn+1 · · · γm, γn+1

n+1 · · · γn+1
m ) ∈ τ ◦ τ ′′ implies that (ε, ε) ∈

(
dγn+1 · · · γm, γn+1

n+1 · · · γn+1
m c−1(τ ◦

τ ′′)
)
◦ τ ′′′. Thus, we get the following theorem.

I Theorem 8. Given a finite TrPDS P = (P,Γ, T ,∆) and a rational set of configurations C
of P recognized a TrNFA A = (S,Γ,Λ, T , S0, Sf ), we can construct a TrNFA A′ such that
L(A′) = pre∗(C) in time O(|∆|3 · |S|3 · |Λ| · f(|T |)) and in space O(|∆| · |S| · |〈T 〉|), where f
is some computable function.

We notice that the number |Λpre∗ | of transition rules of Apre∗ is at most O(|Λ|+ |∆| · |S| ·
|〈T 〉|). For each transition rule 〈p, γ〉 τ1

↪→ 〈q, γ1γ2〉 ∈ ∆, paths q γ1γ2|τ27−−−−−→ ∗ g can be computed
in time O(f(|T |) · (|S|+ |P |) · |Λpre∗ |) for some computable function f . Thus, we get that
the saturation procedure executes at most in time O(|∆|3 · |S|3 · |Λ| · f(|T |)). Memory is
needed for storing the new transition rules which is bounded by O(|∆| · |S| · |〈T 〉|).

CONCUR’15
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∆ =





r1 = 〈p1, γ1〉
τ1
↪→ 〈p2, γ2γ1〉,

r2 = 〈p2, γ2〉
τ2
↪→ 〈p3, γ3γ1〉,

r3 = 〈p3, γ3〉
τ3
↪→ 〈p1, γ2〉,

r4 = 〈p1, γ2〉
τ4
↪→ 〈p1, ε〉





, where

τ1 = {(γ2γ3ω, γ1γ2ω) | ω ∈ Γ∗},
τ2 = {(γγ1γ2ω, γγ3γ3ω) | ω ∈ Γ∗, γ ∈ Γ},
τ3 = {(γγ1γ3ω, γγ1γ2ω) | ω ∈ Γ∗, γ ∈ Γ},
τ4 = {(γγ1γ2ω, γγ2γ3ω) | ω ∈ Γ∗, γ ∈ Γ)}.

(a)

p1

p2

p3

(b) (c)

p1

p2

p3

s1 s0
γ2|τ4s1 s0

γ1|τid γ2|τid
γ3|τid

γ3|τ5

τ5 = {(γγ1γ3ω, γγ2γ3ω) | ω ∈ Γ∗, γ ∈ Γ}
τ6 = {(γ1γ1γ2ω, γ2γ3γ3ω) | ω ∈ Γ∗}
τ7 = {(γ2γ3ω, γ3γ3ω) | ω ∈ Γ∗}
τ8 = {(γ1γ1γ2ω, γ3γ3γ3ω) | ω ∈ Γ∗}

γ2|τ6

γ1|τ7

(d)

γ2|τ10

γ1|τid γ2|τid
γ3|τid

Figure 1 (a) The set of transition rules ∆, (b) the TrNFA A, (c) the TrNFA Apre∗ and (d)
consists of related transductions.

I Remark. In [30], the authors introduce TrNFA and present a saturation procedure to
compute pre∗ without its complexity. They define the relation 7−→∗ by introducing a
pseudo formal power series semiring to solve the associativity problem of the composition of
transitions of TrNFAs. Their saturation procedure is proceeded based on this semiring. Our
approach is proceeded based on TrNFAs and we show that this problem is fixed-parameter
tractable (FPT). We believe our direct approach is more convenient for studying optimal
algorithm or BDD-based symbolic techniques.

I Example 9. Consider the TrPDS with control states {p1, p2, p3} and ∆ as shown in
Figure 1(a). Let A be the TrNFA as shown in Figure 1(b). The result of applying the
saturation procedure is shown in Figure 1(c). .

3.2 An Efficient Algorithm for Computing pre∗

In this section, we present an efficient implementation of the saturation procedure given in
Section 3.1. W.l.o.g., we suppose in this section that for every TrPDS P = (P,Γ, T ,∆), |ω| ≤ 2
for every transition rule 〈p, γ〉 τ

↪→ 〈q, ω〉 ∈ ∆. Let ∆i denote {〈p, γ〉
τ
↪→ 〈g, ω〉 ∈ ∆ | |ω| = i},

for every i ∈ {0, 1, 2}.
Algorithm 1 computes the transition rules of Apre∗ by implementing the saturation

procedure from Section 3.1. The basic idea follows from the efficient algorithm for computing
pre∗ of PDSs [13] which avoids unnecessary operations. Intuitively, for the transition rules of
the form 〈p, γ〉 τ

↪→ 〈p′, ε〉 or 〈p, γ1〉
τ ′

↪→ 〈q, γ〉 in ∆, the algorithm proceeds exactly the same as
the saturation procedure given in Section 3.1. Whenever P has a transition rule in the form
of 〈p, γ1〉

τ ′

↪→ 〈q, γγ2〉, we look out for every q′, q′′ ∈ S and γ′2 ∈ Γ, the pairs of transition rules
q

γ|τ7−→ q′ and q′
γ′2|τ27−→ q′′ such that dγ2, γ

′
2c−1τ 6= ∅, so that we can add the transition rule

p
γ1|τ ′◦(dγ2,γ

′
2c
−1τ)◦τ27−−−−−−−−−−−−−→ q′′. However, the order of such transitions added into the automaton

Apre∗ can be arbitrary. Whenever a transition rule like q′ γ
′
2|τ27−→ q′′ is found, we have to check

whether q γ|τ7−→ q′ exists or not. Then, this checking may be negative, and wastes time to no
avail. However, once a transition rule q γ|τ7−→ q′ is seen, we know that all subsequent transitions
like q′ γ

′
2|τ27−→ q′′ must lead to the addition of the transition rule p γ1|τ ′◦(dγ2,γ

′
2c
−1τ)◦τ27−−−−−−−−−−−−−→ q′. That’s

why we introduce a new transition rule 〈p, γ1〉
τ ′◦(dγ2,γ

′
2c
−1τ)

↪−−−−−−−−−−−→〈q′, γ′2〉 into ∆′ which allows
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Input : A finite TrPDS P = (P,Γ, T ,∆) and a TrNFA A = (S,Γ,Λ, T , S0, Sf ) such
that A uses only τid and Λ has no transition rule leading to a state in P

Output : The set of transition rules of Apre∗

1 Λ′ := Λ; trans := Λ; ∆′ := ∅;

2 foreach 〈p, γ〉 τ
↪→ 〈p′, ε〉 ∈ ∆ do Update(p γ|τ7−→ p′);

3 ;
4 while trans 6= ∅ do
5 remove t = q

γ|τ7−→ q′ from trans;

6 foreach 〈p, γ1〉
τ ′

↪→ 〈q, γ〉 ∈ ∆ ∪∆′ do Update(p γ1|τ ′◦τ7−−−→ q′);
7 ;

8 foreach 〈p, γ1〉
τ ′

↪→ 〈q, γγ2〉 ∈ ∆ and γ′2 ∈ Γ do
9 if dγ2, γ

′
2c−1τ 6= ∅ then

10 ∆′ := ∆′ ∪ {〈p, γ1〉
τ ′◦(dγ2,γ

′
2c
−1τ)

↪−−−−−−−−−−−→〈q′, γ′2〉};

11 foreach q′
γ′2|τ27−→ q′′ ∈ Λ′ do

12 Update(p γ1|τ ′◦(dγ2,γ
′
2c
−1τ)◦τ27−−−−−−−−−−−−−→ q′′);

13 return Λ′;

14 Procedure Update(q
γ|τ7−→ q′)

15 if t = q
γ|τ ′7−→ q′ ∈ Λ′ then

16 t′ := q
γ|τ ′∪τ7−−−→ q′;

17 Λ′ := Λ′ ∪ {t′} \ {t} ;
18 if τ ′ 6= τ ′ ∪ τ then trans := trans ∪ {t′} \ {t};
19 ;
20 else if τ 6= ∅ then
21 Λ′ := Λ′ ∪ {q γ|τ7−→ q′};

22 tran := tran ∪ {q γ|τ7−→ q′′};

Algorithm 1. An efficient algorithm for computing pre∗.

us to add the transition rule p γ1|τ ′◦(dγ2,γ
′
2c
−1τ)◦τ27−−−−−−−−−−−−−→ q′′ once q′ γ

′
2|τ27−→ q′′ occurs. Let us explain

Algorithm 1 line by line as follows.
Line 1 initializes the algorithm by assigning Λ to Λ′ and trans, ∅ to ∆′. Line 2 handles

normal transition rules of the form 〈p, γ〉 τ
↪→ 〈p′, ε〉, where new transitions p γ|τ7−→ p′ can be

immediately added. Once a new transition rule is created, we call the procedure Update
which will be explained later. Lines 3-10 iteratively removes a transition t = q

γ|τ7−→ q′ from
trans until it is empty. The loop at Line 5 handles the case when q and γ match the
right-hand side of transition rules in ∆ ∪∆′.

The procedure Update listed at Lines 12-19 is called whenever a new transition rule
q
γ|τ7−→ q′ is created. If Λ′ contains a transition rule of the form t = q

γ|τ ′7−→ q′ for any τ ′, then,
we remove t from Λ′ and add a new transition rule q γ|τ

′∪τ7−−−→ q′ into Λ′ at Line 15. In other
words, we update the transduction τ ′ by τ ′ ∪ τ . Moreover, if τ ′ ∪ τ does not equal to τ ′, we
remove t from trans and add q γ|τ

′∪τ7−−−→ q′ into trans at Line 16 for later processing. Otherwise
if Λ′ has no transition rule like t, we add q γ|τ7−→ q′ into Λ′ and trans.

CONCUR’15
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I Theorem 10. Given a finite TrPDS P = (P,Γ, T ,∆) and a TrNFA A = (S,Γ,Λ, T , S0, Sf ),
we can compute a TrNFA Apre∗ in time O(|S|2 ·f(|T |) · |∆| · |Γ|) for some computable function
f and in space O(|S| · |∆| · |〈T 〉| · |Γ|) such that L(Apre∗) = pre∗(L(A)).

4 Computing post∗

In this section, we present an approach to compute post∗ which is different from the way
presented in [30]. In [30], post∗ is computed by transforming a finite TrPDS into an equivalent
PDS and then computing post∗ of the resulting PDS. We will present a saturation procedure
which directly computes post∗ similar as computing pre∗ given in Section 3. Finally, we give
an efficient algorithm implementing this saturation procedure.

4.1 Saturation Procedure for Computing post∗

Given a finite TrPDS P = (P,Γ, T ,∆) and a TrNFA A = (S,Γ,Λ, T , S0, Sf ) that re-
cognizes a rational set of configurations of P, we can construct an ε-TrNFA Apost∗ =
(Spost∗ ,Λpost∗ , S0, Sf ) such that Apost∗ recognizes post∗(L(A)), i.e., L(Apost∗) = post∗(L(A)).
W.l.o.g., we assume that S0 = P and there is no transition rule in A leading to an initial state
and A uses only the identity transduction τid. The construction of Apost∗ is similar than
the construction of Apre∗ which is an extension of the saturation procedure for computing
post∗ of PDSs [13].

Given a transduction τ , let τ denote the inversion {(ω1, ω2) | (ω2, ω1) ∈ τ} of τ , let T
denote

⋃
τ∈T τ for a given set T of transductions.

I Proposition 11. 〈T 〉 = 〈T 〉 and 〈T 〉∪ = 〈T 〉∪.

Initially, Apost∗ = A, then we iteratively apply the following saturation procedure until
the automaton is saturated (i.e., no new transition rule can be added):

(i) If 〈p, γ〉
τ
↪→ 〈p′, ε〉 ∈ ∆ and p

γ|τ ′

7−→∗ s, add p′
ε| τ◦τ ′7−−−→ s into Λpost

∗
;

(ii) If 〈p, γ〉
τ
↪→ 〈p′, γ1〉 ∈ ∆ and p

γ|τ ′

7−→∗ s, add p′
γ1| τ◦τ ′7−−−−→ s into Λpost

∗
;

(iii) If 〈p, γ〉
τ
↪→ 〈p′, γ1γ2〉 ∈ ∆ and p

γ|τ ′

7−→∗ s, add p′
γ1| τid7−−−−→ qγ1

p′ and qγ1
p′

γ2| τ◦τ ′7−−−−→ s into Λpost
∗

and add a new state qγ1
p′ into Spost

∗
.

Intuitively, if there is a transition rule 〈p, γ〉 τ
↪→ 〈p′, ε〉 ∈ ∆, then 〈p, γω〉 is an immediate

predecessor of the configuration 〈p′, ω1〉 for every ω1 ∈ τ(ω). Thus, if the automaton already

accepts the configuration 〈p, γω〉 by p
γ|τ ′

7−→∗ s and s
ω2|τ2

7−→∗ qf for some final state qf , where
ω2 ∈ τ ′(ω) and (ε, ε) ∈ τ2. Then it also ought to accept 〈p′, ω1〉, for every ω1 ∈ τ(ω). Adding
the transition rule p′ ε| τ◦τ

′

7−−−→ s allows the automaton to accept 〈p′, ω1〉, for every ω1 ∈ τ(ω),
as ω2 ∈ (τ ◦ τ ′)(ω1) for all ω1 ∈ τ(ω).

If there is a transition rule 〈p, γ〉 τ
↪→ 〈p′, γ1〉 ∈ ∆, then 〈p, γω〉 is an immediate predecessor

of the configuration 〈p′, γ1ω1〉 for every ω1 ∈ τ(ω). Thus, if the automaton already accepts

the configuration 〈p, γω〉 by p
γ|τ ′

7−→∗ s and s
ω2|τ2

7−→∗ qf for some final state qf , where ω2 ∈ τ ′(ω)
and (ε, ε) ∈ τ2. Then it also ought to accept 〈p′, γ1ω1〉, for every ω1 ∈ τ(ω). Adding the
transition rule p′ γ1| τ◦τ ′7−−−−→ s allows the automaton to accept 〈p′, γ1ω1〉, for every ω1 ∈ τ(ω), as
ω2 ∈ (τ ◦ τ ′)(ω1) for all ω1 ∈ τ(ω).
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p1

p2

p3

s1 s0
γ1|τid γ2|τid

γ3|τid

τ5 = {(γ1γ2ω, γ2γ3ω) | ω ∈ Γ∗}
τ6 = {(γγ3γ3ω, γγ1γ2ω) | γ ∈ Γ, ω ∈ Γ∗}
τ7 = {(γγ1γ2ω, γγ1γ3ω) | γ ∈ Γ, ω ∈ Γ∗}
τ8 = {((γγ2γ3ω, γγ1γ3ω) | γ ∈ Γ, ω ∈ Γ∗}
τ9 = {(γ1γ2γ3ω, γ1γ1γ2ω) | ω ∈ Γ∗}

qγ2p2
γ2|τid

γ1|τ5

qγ3p3
γ3|τid

γ1|τ6
γ2|τ7

ε|τ8
γ1|τ9

Figure 2 The resulting TrNFA Apost∗ .

If there is a transition rule 〈p, γ〉 τ
↪→ 〈p′, γ1γ2〉 ∈ ∆, then 〈p, γω〉 is an immediate

predecessor of the configuration 〈p′, γ1γ2ω1〉 for every ω1 ∈ τ(ω). Thus, if the automaton

already accepts the configuration 〈p, γω〉 by p
γ|τ ′

7−→∗ s and s
ω2|τ2

7−→∗ qf for some final state
qf , where ω2 ∈ τ ′(ω) and (ε, ε) ∈ τ2. Then it also ought to accept 〈p′, γ1γ2ω1〉, for every
ω1 ∈ τ(ω). Adding the transition rules p′ γ1| τid7−−−−→ qγ1

p′ and qγ1
p′

γ2| τ◦τ ′7−−−−→ s allows the automaton
to accept 〈p′, γ1γ2ω1〉, for every ω1 ∈ τ(ω), as ω2 ∈ (τ ◦ τ ′)(ω1) for all ω1 ∈ τ(ω).

I Theorem 12. Given a finite TrPDS P = (P,Γ, T ,∆) and a rational set of configurations
C of P recognized a TrNFA A = (S,Γ,Λ, T , S0, Sf ), we can construct a TrNFA A′ such that
L(A′) = post∗(C).

I Example 13. Consider the TrPDS shown in Figure 1(a) and the TrNFA A shown in
Figure 1(b). The result of applying the saturation procedure is shown in Figure 2.

4.2 An Efficient Algorithm for Computing post∗

In this section, we present an efficient implementation of the saturation procedure given in
Section 4.1 which avoids unnecessary operations. Given a rational set of configurations of C
represented by a TrNFA A.

Algorithm 2 computes the transition rules of Apost∗ by implementing the saturation
procedure given in Section 4.1. The approach is similar to the solution for efficiently computing
pre∗. We use trans to store the transition rules that we still need to examine. Lines 1-2
initialize the algorithm. Initially, Λ′ is equal to Λ, while trans is equal to Λ∩P × Γ×T × S,
as transition rules starting from states outside of P do not need to be examined. The set
Spost

∗ of states is equal to S ∪ {qγ1
p1
| 〈p, γ〉 τ

↪→ 〈p1, γ1γ2〉 ∈ ∆} as described in Section 4.1.

The algorithm iteratively removes a transition t = p
γ|τ7−→ q from trans until it is empty. The

loops at Line 6, Line 7 and Lines 8-10 handle the case when p and γ match the left-hand
sides of transition rules in ∆. This is done similar as the saturation rules (i), (ii), and (iii),
respectively. The loops at Lines 11-12 and Lines 13-14 handle ε-transition rules. In the

saturation procedure given in Section 4.1, we have to compute paths p
γ|τ ′

7−→∗ s which may
involve several ε-transitions. In Algorithm 2, we solve this problem by combining transition
pairs of the form p

ε|τ17−→ q1 and q1
γ|τ27−→ q into transition rules p γ

′|(dγ′,γc−1τ1)◦τ27−−−−−−−−−−−→ q for γ′ ∈ Γ
whenever such a pair is found.
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Input : A finite TrPDS P = (P,Γ, T ,∆) and a TrNFA A = (S,Γ,Λ, T , S0, Sf ) such
that A uses only τid, Λ has no transition leading to a state in P and no
ε-transition

Output : The TrNFA Apost∗ = (Spost∗ ,Λ′, S0, Sf )
1 Λ′ := Λ; trans := Λ ∩ P × Γ× T × S;
2 Spost

∗ := S ∪ {qγ1
p1
| 〈p, γ〉 τ

↪→ 〈p1, γ1γ2〉 ∈ ∆};
3 while trans 6= ∅ do
4 remove t = p

γ|τ7−→ q from trans;
5 if γ 6= ε then
6 foreach 〈p, γ〉 τ1

↪→ 〈p1, ε〉 ∈ ∆ do Update(p1
ε | τ1◦τ7−−−−−→ q);

7 ;

8 foreach 〈p, γ〉 τ1
↪→ 〈p1, γ1〉 ∈ ∆ do Update(p1

γ1 | τ1◦τ7−−−−−−→ q);
9 ;

10 foreach 〈p, γ〉 τ1
↪→ 〈p1, γ1γ2〉 ∈ ∆ do

11 Update(p1
γ1 | τid7−−−−−→ qγ1

p1
);

12 Update(qγ1
p1

γ2 | τ1◦τ7−−−−−−→ q);

13 foreach p2
ε | τ27−−−−→ qγ1

p1
∈ Λ′, γ′2 ∈ Γ do

14 Update(p2
γ′2 | (dγ′2,γ2c−1τ2)◦τ1◦τ7−−−−−−−−−−−−−−−→ q)

15 else foreach q
γ1 | τ17−−−−−→ q′ ∈ Λ′, γ′1 ∈ Γ do

16 Update(p γ′1 | (dγ′1,γ1c−1τ)◦τ17−−−−−−−−−−−−−→ q′)
17 ;

18 return Apost∗ ;
Algorithm 2. An efficient algorithm for computing post∗.

I Theorem 14. Given a finite TrPDS P = (P,Γ, T ,∆) and a TrNFA A = (S,Γ,Λ, T , S0, Sf ),
we can compute a TrNFA Apost∗ in O(|S|·f(|T |)·|∆|3·|Γ|) time and space for some computable
function f such that L(Apost∗) = post∗(L(A)).

5 Application

In [30], Uezato and Minamide presented two potential applications of TrPDSs: checking
reachability of conditional PDSs [22, 15] and discrete-timed PDSs [1] via pre∗ or post∗
computing of TrPDSs. In this section, we will present another potential application of TrPDSs.
We show how the presence of transductions enables the modeling of Boolean programs with
call-by-reference parameter passing. Boolean programs in which all variables and parameters
(call-by-value) have Boolean type are thought of as an abstract representation of C/C++
programs with recursion [3]. In their definition, Boolean programs contain procedures with
call-by-value parameter passing rather than call-by-reference parameter passing. While
call-by-reference parameter passing is a widely used programming paradigm in C/C++, Java,
etc. Using TrPDSs, we can verify safety properties of Boolean programs with call-by-reference
parameter passing.
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5.1 Boolean Programs with Call-by-Reference Parameter Passing

A Boolean program BP is a tuple (Proc,main,G), where Proc is a finite set of procedures,
main ∈ Proc is the initial procedure, G is a finite set of global Boolean variables. Every
procedure r ∈ Proc is a tuple (Nr, Er, Lr), where Nr is a finite set of control points with
rentry as the unique entry node, Er is a finite set of edges, Lr is the finite set of local Boolean
variables in r. W.l.o.g., we assume that Lr ∩G = ∅ for all r ∈ Proc. L′r = Lr ∪G is a set
of visible variables in r. Let Lrefr be the set of all the call-by-reference formal parameters
of the procedure r, Lrefn (resp. Ln) be the set Lrefr (resp. Lr) such that n ∈ Nr. Given
a procedure call stmt = r(v1, ..., vm) at the control point n whose return address is n′, for
every formal parameter v′ of r, let fRef(n′)(v′) ∈ {v1, ..., vm} be the actual parameter of v′
at the caller site n′.

A valuation ξ ⊆ L′r is a subset of L′r meaning that the Boolean value of x ∈ L′r is 1 if
x ∈ ξ, otherwise 0. Let ξ(x) = 1 if x ∈ ξ, otherwise 0. Let ξ[d/x] be the valuation such
that ξ[d/x](y) = d if x = y, otherwise ξ(y). The edges in Er are of the form (n, ξ, stmt, n′)
meaning that n′ is the next control point of n when the valuation at n is ξ, where stmt is
the statement at n. Let [[stmt]]ξ be the valuation after executing the statement stmt that is
neither a procedure call nor return. The details of the execution model and semantics of
other statements refer to [3].

5.2 Modeling Approach

W.l.o.g., we assume that call-by-reference actual parameters are local variables. Indeed, global
variables are always visible for all procedures and do not need to be passed by parameters.
Different from call-by-value parameter passing which keeps its own copy at callee site, a
parameter passed by call-by-reference will not keep its own copy at callee site. Precisely
speaking, the values of call-by-reference actual parameters at a caller procedure are always
same as the values of the corresponding formal parameters at the callee procedure. We
will use transductions to encode the changing of call-by-reference formal parameters, as
transductions in TrPDSs allow us to manipulate the stack content rather than the top of
stack in PDSs.

The construction of TrPDSs from Boolean programs BP with call-by-reference parameter
passing follows the standard modeling approach of PDSs from Boolean programs [13] except
the assignments with call-by-reference formal parameter as left value for which the side-effect
of assignments should also effect on the value of the corresponding actual parameters at
the corresponding caller site. The valuations of global variables G are put in the control
locations of the TrPDSs, the pairs of the valuations of local variables and control points
(i.e., nodes) of the program are stored in the stack of the TrPDSs. The TrPDS model
will be P = (2G,

⋃
r∈Proc(Nr × 2Lr ), T ,∆). A configuration of the TrPDS model is in the

form of c = 〈ξ, (n0, ξ0) · · · (nk, ξk)〉 meaning that the execution of BP is at the control
point n0 with ξ as the valuation of global variables, ξ0 as the valuation of local variables
of the procedure containing n0. Moreover, (n1, ξ1) · · · (nk, ξk) is the calling history of the
execution such that for every i : 1 ≤ i ≤ k, ni is the return address of the procedure call
that jump into the procedure containing ni−1 and ξi is the stored valuation of local variables
when the procedure call is made. Different from Boolean programs only with call-by-value
parameter passing, a local variable of a procedure may be a call-by-reference parameter
of the procedure. In this case, the value of a local variable and its referenced variable are
identical. Therefore, the potential possible configurations of the TrPDS model should only
have admitted valuations with respect to the local variables and their referenced variables.
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Formally, a word (n0, ξ0) · · · (nk, ξk) or a configuration 〈ξ, (n0, ξ0) · · · (nk, ξk)〉 is admissible if
for every i : 0 ≤ i ≤ k − 1 and every v ∈ Lrefni

, v ∈ ξi iff fRef(ni+1)(v) ∈ ξi+1.
Given two variable sets ξ′0, ξ0 ⊆

⋃
r∈Proc L

ref
r , let

−−−−→
(ξ′0, ξ0) ⊆ Γ∗ × Γ∗ be the transduction

such that for every ((n1, ξ1)...(nk, ξk), (n1, ξ
′
1)...(nk, ξ′k)) ∈ Γ∗×Γ∗, ((n1, ξ1)...(nk, ξk), (n1, ξ

′
1)

...(nk, ξ′k)) ∈
−−−−→
(ξ′0, ξ0) iff (n1, ξ1)...(nk, ξk) is admissible, and for every i : 1 ≤ i ≤ k, ξ′i =

ξi ∪ {fRef(ni)(v) | v ∈ ξ′i−1 \ ξi−1} \ {fRef(ni)(v) | v ∈ ξi−1 \ ξ′i−1}. Intuitively, given
an admissible word (n1, ξ1)...(nk, ξk) and two sets ξ0 and ξ′0 denoting respectively the
valuations of local variables before and after an assignment, (n1, ξ

′
1)...(nk, ξ′k) is the admissible

word obtained from (n1, ξ1)...(nk, ξk) with the updating of all the actual parameters of the
corresponding formal call-by-reference parameters with respect to ξ′0 and ξ0.

The set ∆ of transition rules that mimic the control flow of BP is defined as follows: for
every edge e = (n, ξ, stmt, n′) in a procedure r,
〈ξ ∩ G, (n, ξ ∩ Lr)〉

τid
↪→ 〈ξ ∩ G, (r′enrty, ξ′)(n′, ξ ∩ Lr)〉 ∈ ∆ if stmt is a procedure call

r′(v1, ..., vm), where ξ′ = {v ∈ Lr′ | fRef(n′)(v) ∈ ξ};
〈ξ ∩G, (n, ξ ∩ Lr)〉

τid
↪→ 〈ξ ∩G, ε〉 ∈ ∆ if stmt is a return,

〈ξ ∩ G, (n, ξ ∩ Lr)〉
τe
↪→ 〈[[stmt]]ξ ∩ G, (n′, [[stmt]]ξ ∩ Lr)〉 ∈ ∆ otherwise, where τe =

−−−−−−−−→
([[stmt]]ξ, ξ).

The set T of transductions is {τid, τe | e = (n, ξ, stmt, n′) ∈ Er, r ∈ Proc, stmt is neither
a procedure call nor return}. Intuitively, the TrPDS model mimics the execution of BP . The
intuition behind function calls and returns is similar as translating from Boolean programs
into PDSs. For details refer to [13]. We explain the assignments.

Suppose the execution of BP is at the control point n with the valuation ξ, and the calling
history is (n1, ξ1)...(nk, ξk). If the edge e = (n, ξ, stmt, n′) is in a procedure r such that stmt
is neither a procedure call nor return, then, the execution of BP will move from n to the next
point n′ with the valuation [[stmt]]ξ. Moreover, the local variables at n1 that corresponds to
the formal call-by-reference parameters in r should take the values of the call-by-reference
parameters at n′. Similarly, for every i : 2 ≤ i ≤ k, the local variables at ni that corresponds
to the formal call-by-reference parameters in the procedure containing ni−1 should take
the values of the call-by-reference parameters at ni. Therefore, we add the transition rule
〈ξ ∩ G, (n, ξ ∩ Lr)〉

τe
↪→ 〈[[stmt]]ξ ∩ G, (n′, [[stmt]]ξ ∩ Lr)〉 into ∆ which allows the TrPDS

model to move from the configuration 〈ξ ∩ G, (n, ξ ∩ Lr)(n1, ξ1)...(nk, ξk)〉 to 〈[[stmt]]ξ ∩
G, (n′, [[stmt]]ξ ∩ Lr)(n1, ξ

′
1)...(nk, ξ′k)〉 for every ((n1, ξ1)...(nk, ξk), (n1, ξ

′
1)...(nk, ξ′k)) ∈ τe.

The transduction τe =
−−−−−−−−→
([[stmt]]ξ, ξ) correctly specifies the updating of all the actual parameters

of the corresponding call-by-reference parameters in the calling history.
I Remark. From the definitions of transductions T and admissible, we can see that all
the reachable configurations in the TrPDS model from an admissible configuration are also
admissible.

Given two transductions τ1 =
−−−−→
(ξ′1, ξ1), τ2 =

−−−−→
(ξ′2, ξ2) ∈ T , then

τ1 ◦ τ2 =
{
∅ if ξ′1 6= ξ2,−−−−→
(ξ′2, ξ1) otherwise.

Given two symbols (n1, ξ1), (n′1, ξ′1) ∈ Γ∗ and a transduction τ =
−−−→
(ξ′, ξ) ∈ T , d(n1, ξ1),

(n′1, ξ′1)c−1τ is
−−−−→
(ξ′1, ξ1) if n1 = n′1 ∧ ξ′1 = (ξ1 ∪ {fRef(n1)(v) | v ∈ ξ′ \ ξ}) \ {fRef(n1)(v) |

v ∈ ξ \ ξ′}, ∅ otherwise.
Then, we can get that 〈T 〉 ⊆ {

−−−→
(ξ′, ξ) | ∃r ∈ Proc : ξ, ξ′ ⊆ Lr} which is finite.
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I Theorem 15. The Boolean program BP can reach a control point n of the procedure r
with the valuation ξ and the calling history ω from a control point n′ of r′ with the valuation
ξ′ and the calling history ω′ iff 〈ξ′ ∩G, (n′, ξ′ ∩ Lr′)ω′〉 =⇒∗ 〈ξ ∩G, (n, ξ ∩ Lr)ω〉.

Using Theorem 15, we can verify safety properties of Boolean programs with mixed
call-by-reference and call-by-value parameter passing via solving the reachability problem of
TrPDSs. The efficiency heavily relies upon the number of transductions from the modeling
of the Boolean program and the saturation. From the modeling, the number of transductions
is linear in the size of the edges labeled by assignments which assign values to reference
variables. During the saturation procedure, transductions are computing via left quotient
and composition operators. Therefore, the number of transductions added by the saturation
procedure is exponential in the size of return nodes in the Boolean program and doubly
exponential in the size of reference variables.
I Remark. One may argue that Boolean program with mixed call-by-reference and call-by-
value parameter passing can be translated into a Boolean program with only call-by-value
parameter passing by using global variables which can be verified by existing techniques such
as [3]. However, this will leads to larger state space and may degrade performance.

6 Related Work

Model-checking techniques for PDSs were widely studied and applied to program analysis in
the literature [6, 13, 16, 17, 26]. PDSs with checkpoint were introduced in [15] as an extension
of PDSs. PDSs with checkpoint can inspect the stack content and are applied to analyse
programs with runtime inspection. The reachability problem and LTL model-checking for
PDSs with checkpoint were studied in [15] and were applied to the analysis of the HTML5
parser specification in [22]. CTL model-checking for PDSs with checkpoint was studied in
[25, 28]. A similar extension of PDSs was used to formulate abstract garbage collection in
the control flow analysis of higher-order programs [12].

Weighted PDSs and extended weighted PDSs were introduced in [23, 19] for data-flow
analysis purpose. These two extensions associate transitions with elements from semiring
domains. The reachability problem is decidable for bounded idempotent semiring. (Extended)
weighted PDSs and TrPDSs are quite different two computation models. At least, the elements
from semiring can neither inspect nor modify the stack content except the top most symbol
on the stack.

Recently, well-structured PDSs (WSPDSs) that combine well-structured transition systems
and PDSs was introduced by [10] in which the infinite set of control states and the infinite
stack alphabet are well-quasi-order. WSPDS is a powerful model in which recursive vector
addition system with states [4, 5], multi-set PDSs [24] and dense-timed PDSs are subsumed
[11]. However, the reachability problem is undecidable for WSPDSs. But coverability becomes
decidable when the set of control states is finite. In TrPDSs, the set of control states and
the stack alphabet are both finite, but the transductions can inspect and modify the stack
content.

We should clarify the relation between our work and the work [30]. TrPDSs were first
introduced in [30] and are generalization of PDSs with checkpoint and discrete-timed PDSs.
The authors showed that TrPDSs can be simulated by PDSs and proposed a saturation
procedure to compute pre∗ which different from ours. Indeed, our approach is essential
to get an efficient implementation algorithm. We also proposed a saturation procedure to
compute post∗ and its efficient implementation algorithm. These two efficient implementation
algorithms necessarily improve the complexity due to the fact that the algorithms have
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better complexity than the saturation procedures for pushdown systems. Moveover, we
presented a potential application of TrPDSs to modeling and verifying Boolean programs
with call-by-reference parameter passing.

7 Conclusion and Future Work

We introduced two saturation procedures to compute pre∗ and post∗. We also presented
two efficient implementation algorithms for the saturation procedures and measured their
complexity. We showed that TrPDSs are powerful enough to model Boolean programs with
call-by-reference parameter passing. This allows us to verify safety properties of Boolean
programs with mixed call-by-reference and call-by-value parameter passing.

In future, we plan to implement our techniques in a tool and investigate BDD-based
symbolic algorithms by representing transductions and valuations of global and local variables
in BDDs.

Acknowledgements. We want to thank Lijun Zhang and Zhilin Wu for discussions and
suggestions.
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Abstract
Characterising contextual equivalence is a long-standing issue for higher-order (process) lan-
guages. In the setting of a higher-order π-calculus with sessions, we develop characteristic bisim-
ilarity, a typed bisimilarity which fully characterises contextual equivalence. To our knowledge,
ours is the first characterisation of its kind. Using simple values inhabiting (session) types, our
approach distinguishes from untyped methods for characterising contextual equivalence in higher-
order processes: we show that observing as inputs only a precise finite set of higher-order values
suffices to reason about higher-order session processes. We demonstrate how characteristic bisim-
ilarity can be used to justify optimisations in session protocols with mobile code communication.
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1 Introduction

Context. In higher-order process calculi communicated values may contain processes.
Higher-order concurrency has received significant attention from untyped and typed per-
spectives (see, e.g., [15, 5, 10, 6, 13]). In this work, we consider HOπ, a higher-order process
calculus with session primitives: in addition to functional abstractions/applications (as in
the call-by-value λ-calculus), HOπ contains constructs for synchronisation on shared names,
session communication on linear names, and recursion. Thus, HOπ processes may specify
protocols for higher-order processes that can be type-checked using session types [3]. Al-
though models of session communication with process passing exist [12, 2], their behavioural
equivalences remain little understood. Since types can limit the contexts (environments) in
which processes can interact, typed equivalences usually offer coarser semantics than untyped
semantics. Hence, clarifying the status of these equivalences is key to, e.g., justify non-trivial
optimisations in protocols involving both name- and process-passing.

A well-known behavioural equivalence for higher-order processes is context bisimilarity [16].
This characterisation of barbed congruence offers an adequate distinguishing power at the price
of heavy universal quantifications in output clauses. Obtaining alternative characterisations
of context bisimilarity is thus a recurring, important problem for higher-order calculi—see,
e.g., [15, 16, 5, 6]. In particular, Sangiorgi [15, 16] has given characterisations of context
bisimilarity for higher-order processes; such characterisations, however, do not scale to calculi
with recursive types, which are essential to session-based concurrency. A characterisation
that solves this limitation was developed by Jeffrey and Rathke in [5].
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This Work. Building upon [15, 16, 5], our discovery is that linearity of session types
plays a vital role in solving the open problem of characterising context bisimilarity for
higher-order mobile processes with session communications. Our approach is to exploit the
coarser semantics induced by session types to limit the behaviour of higher-order session
processes. Formally, we enforce this limitation by defining a refined labelled transition system
(LTS) which effectively narrows down the spectrum of allowed process behaviours, exploiting
elementary processes inhabiting session types. We then introduce characteristic bisimilarity:
this new notion of typed bisimilarity is tractable, in that it relies on the refined LTS for
input actions and, more importantly, does not appeal to universal quantifications on output
actions. Our main result is that characteristic bisimilarity coincides with context bisimilarity.
Besides confirming the value of characteristic bisimilarity as an useful reasoning technique
for higher-order processes with sessions, this result is remarkable also from a technical
perspective, for associated completeness proofs do not require operators for name-matching,
in contrast to untyped methods for higher-order processes with recursive types [5].

We explain how we exploit session types to define characteristic bisimilarity. Key notions
are triggered and characteristic processes/values. Below, we write s?(x).P for an input on
endpoint s, and s!〈V 〉.Q for an output of value V on endpoint s (the dual of s). Also,

R
s?〈V 〉−−−−→ R′ denotes an input transition along n and R

(ν m̃)s!〈V 〉−−−−−−−→ R′ denotes an output
transition along s, sending value V , and extruding names m̃. Weak transitions are as usual.
Throughout the paper, we write <,<′, . . . to denote binary relations on (typed) processes.

Issues of Context Bisimilarity. Context bisimilarity (≈, Def. 10) is an overly demanding
relation on higher-order processes. There are two issues, associated to demanding clauses for
output and input actions. A first issue is the universal quantification on the output clause of
context bisimilarity. Suppose P <Q, for some context bisimulation <. We have:

(?) Whenever P (ν m̃1)s!〈V 〉−−−−−−−→ P ′ there exist Q′ and W such that Q (ν m̃2)s!〈W 〉=⇒ Q′ and,
for all R with fv(R) = x, (ν m̃1)(P ′ | R{V/x})< (ν m̃2)(Q′ | R{W/x}).

The second issue is due to inputs: it follows from the fact that we work with an early labelled
transition system (LTS). Thus, an input prefix may observe infinitely many different values.
To alleviate this burden, in characteristic bisimilarity (≈C) we take two (related) steps:
(a) We replace (?) with a clause involving a more tractable process closure; and
(b) We refine inputs to avoid observing infinitely many actions on the same input prefix.

Trigger Processes. To address (a), we exploit session types. We first observe that closure
R{V/x} in (?) is context bisimilar to the process P = (ν s)((λz. z?(x).R) s | s!〈V 〉.0). In fact,
we do have P ≈ R{V/x}, since application and reduction of dual endpoints are deterministic.

Now let us consider process TV below, where t is a fresh name. If TV inputs value
λz. z?(x).R then we can simulate the closure of P :

TV = t?(x).(ν s)(x s | s!〈V 〉.0) and TV
t?〈λz. z?(x).R〉−−−−−−−−−→ P ≈ R{V/x} (1)

Processes such as TV offer a value at a fresh name; this class of trigger processes already
suggests a tractable formulation of bisimilarity without the demanding clause (?). Process
TV in (1) requires a higher-order communication along t. As we explain below, we can give
an alternative trigger process; the key is using elementary inhabitants of session types.

Characteristic Processes and Values. To address (b), we limit the possible input values
(such as λz. z?(x).R above) by exploiting session types. The key concept is that of charac-
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teristic process/value of a type, the simplest term inhabiting that type (Def. 11). This
way, for instance, let S =?(S1→�); !〈S2〉; end be a session type: first input an abstraction,
then output a value of type S2. Then, process u?(x).(u!〈s2〉.0 | x s1) is a characteristic
process for S along u. Given a session type S, we write [(S)]u for its characteristic process
along u (cf. Def. 11). Also, given value type U , then [(U)]c denotes its characteristic value. As
we explain now, we use [(U)]c to limit input transitions.

Refined Input Transitions. To refine input transitions, we need to observe an additional
value, λx. t?(y).(y x), called the trigger value. This is necessary: it turns out that a
characteristic value alone as the observable input is not enough to define a sound bisimulation
(cf. Ex. 13). Intuitively, the trigger value is used to observe/simulate application processes.
Based on the above discussion, we refine the transition rule for input actions (cf. Def. 14).
Roughly, the refined rule is:

P
s?〈V 〉−−−−→ P ′ ∧ (V = m ∨ V ≡ λx. t?(y).(y x) ∨ V ≡ [(U)]c with t fresh) ⇒ P ′

s?〈V 〉7−→ P ′

Note the distinction between standard and refined transitions: s?〈V 〉−−−−→ vs. s?〈V 〉7−→ . Our refined
rule for (higher-order) input admits only names, trigger values, and characteristic values.
Using this rule, we define an alternative, refined LTS on typed processes: we use it to define
characteristic bisimulation (≈C, Def. 15), in which the demanding clause (?) is replaced with
a more tractable output clause based on characteristic trigger processes (cf. (2)).

Characteristic Triggers. Following the same reasoning as (1), we can use an alternative
trigger process, called characteristic trigger process with type U to replace clause (?):

t⇐ V : U def= t?(x).(ν s)([[?(U); end]]s | s!〈V 〉.0) (2)

This is justified because in (1) TV
t?〈[(?(U);end)]c〉7−→ ≈ (ν s)([(?(U); end)]s | s!〈V 〉.0). Thus, unlike

process (1), the characteristic trigger process in (2) does not involve a higher-order commu-
nication on t. In contrast to previous approaches [15, 5] our characteristic trigger processes
do not use recursion or replication. This is key to preserve linearity of session endpoints.

It is also noteworthy that HOπ lacks name matching, which is usually crucial to prove
completeness of bisimilarity—see, e.g., [5]. Instead of matching, we use types: a process
trigger embeds a name into a characteristic process so to observe its session behaviour.

Outline. Next we present the session calculus HOπ. § 3 gives the session type system for HOπ
and states type soundness. § 4 develops characteristic bisimilarity and states our main result:
characteristic and context bisimilarities coincide for well-typed HOπ processes (Thm. 18).
§ 5 concludes with related works.

2 A Higher-Order Session π-Calculus

We introduce the Higher-Order Session π-Calculus (HOπ). HOπ includes both name- and
abstraction-passing, shared and session communication, as well as recursion; it is essentially
the language proposed in [12] (where tractable bisimilarities are not addressed).
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u,w ::= n | x, y, z n ::= a, b | s, s V,W ::= u | λx. P

P,Q ::= u!〈V 〉.P | u?(x).P | u / l.P | u . {li : Pi}i∈I
| X | µX.P | V W | P | Q | (ν n)P | 0

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3 µX.P ≡ P{µX.P/X}
(ν n)0 ≡ 0 P | (ν n)Q ≡ (ν n)(P | Q) (n /∈ fn(P )) P ≡ Q if P ≡α Q

[App] (λx. P )V −→ P{V/x} [Pass] n!〈V 〉.P | n?(x).Q −→ P | Q{V/x}
[Res] P −→ P ′ ⇒ (ν n)P −→ (ν n)P ′ [Sel] n / lj .Q | n . {li : Pi}i∈I −→ Q | Pj (j ∈ I)
[Par] P −→ P ′ ⇒ P | Q −→ P ′ | Q [Cong] P ≡ Q −→ Q′ ≡ P ′ ⇒ P −→ P ′

Figure 1 HOπ: Syntax and Operational Semantics (Structural Congruence and Reduction).

Syntax. The syntax of HOπ is given in Fig. 1 (upper part). We use a, b, c, . . . (resp. s, s, . . . )
to range over shared (resp. session) names. We use m,n, t, . . . for session or shared names.
We define the dual operation over names n as n with s = s and a = a. Intuitively, names s
and s are dual endpoints while shared names represent non-deterministic points. Variables are
denoted with x, y, z, . . . , and recursive variables are denoted with X,Y . . . . An abstraction
λx. P is a process P with name parameter x. Values V,W include identifiers u, v, . . . and
abstractions λx. P (first- and higher-order values, resp.).

Terms include π-calculus constructs for sending/receiving values V . Process u!〈V 〉.P
denotes the output of V over name u, with continuation P ; process u?(x).P denotes the input
prefix on name u of a value that will substitute variable x in continuation P . Recursion µX.P
binds the recursive variable X in process P . Process V W is the application which substitutes
valuesW on the abstraction V . Typing ensures that V is not a name. Processes u.{li : Pi}i∈I
and u / l.P define labelled choice: given a finite index set I, process u . {li : Pi}i∈I offers a
choice among processes with pairwise distinct labels; process u / l.P selects label l on name
u and then behaves as P . Constructs for inaction 0, parallel composition P1 | P2, and name
restriction (ν n)P are standard. Session name restriction (ν s)P binds endpoints s and s in
P . We use fv(P ) and fn(P ) to denote sets of free variables and names; we assume V in
u!〈V 〉.P does not include free recursive variables. If fv(P ) = ∅, we call P closed.

Semantics. Fig. 1 (lower part) defines the operational semantics of HOπ, given as a reduction
relation that relies on a structural congruence ≡. We assume the expected extension of ≡ to
values V . Reduction is denoted −→; some intuitions on the rules in Fig. 1 follow. Rule [App]
is a value application; rule [Pass] defines a shared interaction at n (with n = n) or a session
interaction; rule [Sel] is the standard rule for labelled choice/selection: given an index set I,
a process selects label lj on name n over a set of labels {li}i∈I offered by a branching on the
dual endpoint n; and other rules are standard. We write −→∗ for a multi-step reduction.

I Example 1 (Hotel Booking Scenario). To illustrate HOπ and its expressive power, we
consider a usecase scenario that adapts the example given by Mostrous and Yoshida [12, 13].
The scenario involves a Client process that wants to book a hotel room. Client narrows
the choice down to two hotels, and requires a quote from the two in order to decide. The
round-trip time (RTT) required for taking quotes from the two hotels is not optimal, so the
client sends mobile processes to both hotels to automatically negotiate and book a room.

We now present two HOπ implementations of this scenario. For convenience, we write
if e then (P1 ; P2) to denote a conditional process that executes P1 or P2 depending on

CONCUR’15



402 Characteristic Bisimulations for Higher-Order Session Processes

boolean expression e (encodable using labelled choice). The first implementation is as follows:

Pxy
def= x!〈room〉.x?(quote).y!〈quote〉.y .

{
accept : x / accept.x!〈credit〉.0,
reject : x / reject.0

}
Client1

def= (ν h1, h2)(s1!〈λx. Pxy{h1/y}〉.s2!〈λx. Pxy{h2/y}〉.0 |
h1?(x).h2?(y).if x ≤ y then (h1 / accept.h2 / reject.0 ; h1 / reject.h2 / accept.0))

Process Client1 sends two abstractions with body Pxy, one to each hotel, using sessions s1
and s2. That is, Pxy is the mobile code: while name x is meant to be instantiated by the
hotel as the negotiating endpoint, name y is used to interact with Client1. Intuitively, process
Pxy (i) sends the room requirements to the hotel; (ii) receives a quote from the hotel; (iii)
sends the quote to Client1; (iv) expects a choice from Client1 whether to accept or reject the
offer; (v) if the choice is accept then it informs the hotel and performs the booking; otherwise,
if the choice is reject then it informs the hotel and ends the session. Client1 instantiates two
copies of Pxy as abstractions on session x. It uses two fresh endpoints h1, h2 to substitute
channel y in Pxy. This enables communication with the mobile code(s). In fact, Client1 uses
the dual endpoints h1 and h2 to receive the negotiation result from the two remote instances
of P and then inform the two processes for the final booking decision.

Notice that the above implementation does not affect the time needed for the whole
protocol to execute, since the two remote processes are used to send/receive data to Client1.

We present now a second implementation in which the two mobile processes are meant to
interact with each other (rather than with the client) to reach to an agreement:

Rx
def= if quote1 ≤ quote2 then (x / accept.x!〈credit〉.0 ; x / reject.0)

Q1
def= x!〈room〉.x?(quote1).y!〈quote1〉.y?(quote2).Rx

Q2
def= x!〈room〉.x?(quote1).y?(quote2).y!〈quote1〉.Rx

Client2
def= (ν h)(s1!〈λx.Q1{h/y}〉.s2!〈λx.Q2{h/y}〉.0)

Processes Q1 and Q2 negotiate a quote from the hotel in the same fashion as process Pxy
in Client1. The key difference with respect to Pxy is that y is used for interaction between
process Q1 and Q2. Both processes send their quotes to each other and then internally follow
the same logic to reach to a decision. Process Client2 then uses sessions s1 and s2 to send
the two instances of Q1 and Q2 to the two hotels, using them as abstractions on name x. It
further substitutes the two endpoints of a fresh channel h to channels y respectively, in order
for the two instances to communicate with each other.

The differences between Client1 and Client2 can be seen in the sequence diagrams of Fig. 2.
We will assign session types to these client processes in Example 4. Later on, we will show
that they are behaviourally equivalent using characteristic bisimilarity; see Prop. 19.

3 Types and Typing

We define a session typing system for HOπ and state its main properties. Our system distills
the key features of [12, 13]. We give selected definitions; see [7] for a full description.

Types. The syntax of types of HOπ is given below:

(value) U ::= C | L

(name) C ::= S | 〈S〉 | 〈L〉
(abstr) L ::= U→� | U(�

(session) S ::= !〈U〉;S | ?(U);S | end

| ⊕{li : Si}i∈I | µt.S | t
| &{li : Si}i∈I
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Client1 Hotel1 Hotel2

Code1 Code2

λx. Pxy

λx. Pxy

room
quote

room
quote

quote
quote

⊕

accept

accept

credit
reject

reject

⊕

accept
accept

credit

reject
reject

Client2 Hotel1 Hotel2

Code1 Code2

λx.Q1

λx.Q2

room
quote

room
quote

quote
quote

⊕

accept

credit
reject ⊕

accept

credit
reject

Figure 2 Sequence diagrams for Client1 and Client2 as in Example 1.

Value type U includes the first-order types C and the higher-order types L. Session types
are denoted with S and shared types with 〈S〉 and 〈L〉. Types U→� and U(� denote shared
and linear higher-order types, respectively. As for session types, the output type !〈U〉;S first
sends a value of type U and then follows the type described by S. Dually, ?(U);S denotes
an input type. The branching type &{li : Si}i∈I and the selection type ⊕{li : Si}i∈I define
the labelled choice. We assume the recursive type µt.S is guarded, i.e., µt.t is not allowed.
Type end is the termination type.

Following [1], we write S1 dual S2 if S1 is the dual of S2. Intuitively, duality converts !
into ? and ⊕ into & (and viceversa).

Typing Environments and Judgements. Typing environments are defined below:

Γ ::= ∅ | Γ · x : U→� | Γ · u : 〈S〉 | Γ · u : 〈L〉 | Γ ·X : ∆
Λ ::= ∅ | Λ · x : U(� ∆ ::= ∅ | ∆ · u : S

Γ maps variables and shared names to value types, and recursive variables to session
environments; it admits weakening, contraction, and exchange principles. Λ maps variables
to linear higher-order types, and ∆ maps session names to session types. Both Λ and ∆ are
only subject to exchange. The domains of Γ,Λ and ∆ are assumed pairwise distinct. ∆1 ·∆2
is the disjoint union of ∆1 and ∆2. We define typing judgements for values and processes:

Γ; Λ; ∆ ` V . U Γ; Λ; ∆ ` P . �

First judgement says that under environments Γ; Λ; ∆ value V has type U ; the second
judgement says that under environments Γ; Λ; ∆ process P has the process type �. The type
soundness result for HOπ (Thm. 3) relies on two auxiliary notions on session environments:

I Definition 2 (Session Environments: Balanced/Reduction). Let ∆ be a session environment.
A session environment ∆ is balanced if whenever s : S1, s : S2 ∈ ∆ then S1 dual S2.
We define the reduction relation −→ on session environments as:

∆ · s :!〈U〉;S1 · s :?(U);S2 −→ ∆ · s : S1 · s : S2

∆ · s : ⊕{li : Si}i∈I · s : &{li : S′i}i∈I −→ ∆ · s : Sk · s : S′k (k ∈ I)
We rely on a typing system that is similar to the one developed in [12, 13]. We state the
type soundness result for HOπ processes; see [7] for details of the associated proofs.
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I Theorem 3 (Type Soundness). Suppose Γ; ∅; ∆ ` P . � with ∆ balanced. Then P −→ P ′

implies Γ; ∅; ∆′ ` P ′ . � and ∆ = ∆′ or ∆ −→ ∆′ with ∆′ balanced.

I Example 4 (Hotel Booking Revisited). Assume S =!〈quote〉; &{accept : end, reject : end}
and U =!〈room〉; ?(quote);⊕{accept :!〈credit〉; end, reject : end}. We give types to the client
processes of Ex. 1:

∅; ∅; y : S ` λx. Pxy . U(�
∅; ∅; s1 :!〈U(�〉; end · s2 :!〈U(�〉; end ` Client1 . �

∅; ∅; y :!〈quote〉; ?(quote); end ` λx.Qi . U(� (i = 1, 2)
∅; ∅; s1 :!〈U(�〉; end · s2 :!〈U(�〉; end ` Client2 . �

4 Characteristic Session Bisimulation

We develop a theory for observational equivalence over session typed HOπ processes that
follows the principles laid in our previous works [9, 8]. We introduce characteristic bisimulation
(Def. 15) and prove that it coincides with reduction-closed, barbed congruence (Thm. 18).

We begin by defining an (early) labelled transition system (LTS) on untyped pro-
cesses (§ 4.1). Then, using the environmental transition semantics (§ 4.2), we define a
typed LTS to formalise how a typed process interacts with a typed observer.

4.1 Labelled Transition System for Processes
Interaction is defined on action labels `:

` ::= τ | n?〈V 〉 | (ν m̃)n!〈V 〉 | n⊕ l | n&l

Label τ defines internal actions. Action (ν m̃)n!〈V 〉 denotes the sending of value V over
channel n with a possible empty set of restricted names m̃ (we may write n!〈V 〉 when m̃ is
empty). Dually, the action for value reception is n?〈V 〉. Actions for select and branch on
a label l are denoted n ⊕ l and n&l, resp. We write fn(`) and bn(`) to denote the sets of
free/bound names in `, resp. Given ` 6= τ , we write subj(`) to denote the subject of `.

Dual actions occur on subjects that are dual between them and carry the same object;
thus, output is dual to input and selection is dual to branching. Formally, duality on actions
is the symmetric relation � that satisfies: (i) n⊕ l � n&l and (ii) (ν m̃)n!〈V 〉 � n?〈V 〉.

The LTS over untyped processes is given in Fig. 3. We write P1
`−→ P2 with the usual

meaning. The rules are standard [9, 8]. A process with an output prefix can interact with the
environment with an output action that carries a value V (rule 〈Snd〉). Dually, in rule 〈Rv〉
a receiver process can observe an input of an arbitrary value V . Select and branch processes
observe the select and branch actions in rules 〈Sel〉 and 〈Bra〉, resp. Rule 〈Res〉 closes the
LTS under restriction if the restricted name does not occur free in the observable action. If
a restricted name occurs free in the carried value of an output action, the process performs
scope opening (rule 〈New〉). Rule 〈Rec〉 handles recursion unfolding. Rule 〈Tau〉 states that
two parallel processes which perform dual actions can synchronise by an internal transition.
Rules 〈ParL〉/〈ParR〉 and 〈Alpha〉 close the LTS under parallel composition and α-renaming.

4.2 Environmental Labelled Transition System
Figure 4 defines a labelled transition relation between a triple of environments, denoted
(Γ1,Λ1,∆1) `−→ (Γ2,Λ2,∆2). It extends the LTSs in [9, 8] to higher-order sessions. Notice
that due to weakening we have (Γ′,Λ1,∆1) `7−→ (Γ′,Λ2,∆2) if (Γ,Λ1,∆1) `7−→ (Γ′,Λ2,∆2).
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〈App〉
(λx. P )V τ−→ P{V/x}

〈Snd〉
n!〈V 〉.P n!〈V 〉−−−→ P

〈Rv〉
n?(x).P n?〈V 〉−−−−→ P{V/x}

〈Sel〉
s / l.P

s⊕l−−→ P
〈Bra〉

s . {li : Pi}i∈I
s&lj−−−→ Pj (j ∈ I)

〈Alpha〉

P ≡α Q Q
`−→ P ′

P
`−→ P ′

〈Res〉

P
`−→ P ′ n /∈ fn(`)

(ν n)P `−→ (ν n)P ′

〈New〉

P
(ν m̃)n!〈V 〉−−−−−−−→ P ′ m ∈ fn(V )

(ν m)P (ν m·m̃′)n!〈V 〉−−−−−−−−−→ P ′

〈ParL〉

P
`−→ P ′ bn(`) ∩ fn(Q) = ∅

P | Q `−→ P ′ | Q

〈Tau〉

P
`1−→ P ′ Q

`2−→ Q′ `1 � `2

P | Q τ−→ (ν bn(`1) ∪ bn(`2))(P ′ | Q′)

〈Rec〉

P{µX.P/X} `−→ P ′

µX.P
`−→ P ′

Figure 3 The Untyped LTS for HOπ processes. We omit rule 〈ParR〉.

Input Actions. Input Actions are defined by rules [SRv] and [ShRv]. In rule [SRv] the type
of value V and the type of the object associated to the session type on s should coincide.

The resulting type tuple must contain the environments associated to V . The dual
endpoint s cannot be present in the session environment: if it were present the only pos-
sible communication would be the interaction between the two endpoints (cf. rule [Tau]).
Rule [ShRv] is for shared names and follows similar principles.

Output Actions. Output Actions are defined by rules [SSnd] and [ShSnd]. Rule [SSnd]
states the conditions for observing action (ν m̃)s!〈V 〉 on a type tuple (Γ,Λ,∆ · s : S). The
session environment ∆ with s : S should include the session environment of the sent value
V , excluding the session environments of names mj in m̃ which restrict the scope of value
V . Analogously, the linear variable environment Λ′ of V should be included in Λ. Scope
extrusion of session names in m̃ requires that the dual endpoints of m̃ should appear in the
resulting session environment. Similarly for shared names in m̃ that are extruded. All free
values used for typing V are subtracted from the resulting type tuple. The prefix of session s
is consumed by the action. Rule [ShSnd] is for output actions on shared names: the name
must be typed with 〈U〉; conditions on V are identical to those on rule [SSnd].

Other Actions. Rules [Sel] and [Bra] describe actions for select and branch. Rule [Tau]
defines internal transitions: it keeps the session environment unchanged or reduces it (Def. 2).

I Example 5. Consider environment (Γ; ∅; s :!〈!〈S〉; end(�〉; end · s′ : S) and typed value

Γ; ∅; s′ : S ·m :?(end); end ` V . !〈S〉; end(� with V = λx. x!〈s′〉.m?(z).0

We illustrate rule [SSnd] in Fig. 4. Let ∆′1 = {m :!〈end〉; end} and U =!〈S〉; end(�. Then
we can derive:

(Γ; ∅; s :!〈!〈S〉; end(�〉; end · s′ : S) (ν m)s!〈V 〉−−−−−−−→ (Γ; ∅; s : end)

Our typed LTS combines the LTSs in Fig. 3 and Fig. 4.

I Definition 6 (Typed Transition System). A typed transition relation is a typed relation
Γ; ∆1 ` P1

`−→ ∆2 ` P2 where (1) P1
`−→ P2; (2) (Γ, ∅,∆1) `−→ (Γ, ∅,∆2) with Γ; ∅; ∆i ` Pi . �

(i = 1, 2). We extend to =⇒ and
ˆ̀

=⇒ where we write =⇒ for the reflexive and transitive
closure of −→, `=⇒ for the transitions =⇒ `−→=⇒, and

ˆ̀
=⇒ for `=⇒ if ` 6= τ otherwise =⇒.
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[SRv]
s /∈ dom(∆) Γ; Λ′; ∆′ ` V . U

(Γ; Λ; ∆ · s :?(U);S) s?〈V 〉−−−−→ (Γ; Λ · Λ′; ∆ ·∆′ · s : S)

[ShRv]
Γ; ∅; ∅ ` a . 〈U〉 Γ; Λ′; ∆′ ` V . U

(Γ; Λ; ∆) a?〈V 〉−−−−→ (Γ; Λ · Λ′; ∆ ·∆′)

[SSnd]

Γ · Γ′; Λ′; ∆′ ` V . U Γ′; ∅; ∆j ` mj . Uj s /∈ dom(∆)
∆′\ ∪j ∆j ⊆ (∆ · s : S) Γ′; ∅; ∆′j ` mj . U

′
j Λ′ ⊆ Λ

(Γ; Λ; ∆ · s :!〈U〉;S) (ν m̃)s!〈V 〉−−−−−−−→ (Γ · Γ′; Λ\Λ′; (∆ · s : S · ∪j∆′j)\∆′)

[ShSnd]

Γ · Γ′; Λ′; ∆′ ` V . U Γ′; ∅; ∆j ` mj . Uj Γ; ∅; ∅ ` a . 〈U〉
∆′\ ∪j ∆j ⊆ ∆ Γ′; ∅; ∆′j ` mj . U

′
j Λ′ ⊆ Λ

(Γ; Λ; ∆) (ν m̃)a!〈V 〉−−−−−−−→ (Γ · Γ′; Λ\Λ′; (∆ · ∪j∆′j)\∆′)

[Sel]
s /∈ dom(∆) j ∈ I

(Γ; Λ; ∆ · s : ⊕{li : Si}i∈I)
s⊕lj−−−→ (Γ; Λ; ∆ · s : Sj)

[Bra]
s /∈ dom(∆) j ∈ I

(Γ; Λ; ∆ · s : &{li : Ti}i∈I)
s&lj−−−→ (Γ; Λ; ∆ · s : Sj)

[Tau]
∆1 −→ ∆2 ∨∆1 = ∆2

(Γ; Λ; ∆1) τ−→ (Γ; Λ; ∆2)

Figure 4 Labelled Transition System for Typed Environments.

4.3 Reduction-Closed, Barbed Congruence (∼=)
We now define typed relations and contextual equivalence (i.e., barbed congruence). We first
define confluence over session environments ∆: we denote ∆1 
 ∆2 if there exists ∆ such
that ∆1 −→∗ ∆ and ∆2 −→∗ ∆ (here we write −→∗ for the multi-step reduction in Def. 2).

I Definition 7. We say that Γ; ∅; ∆1 ` P1 . � < Γ; ∅; ∆2 ` P2 . � is a typed relation whenever
P1 and P2 are closed; ∆1 and ∆2 are balanced; and ∆1 
 ∆2. We write Γ; ∆1 ` P1 < ∆2 ` P2
for the typed relation Γ; ∅; ∆1 ` P1 . � < Γ; ∅; ∆2 ` P2 . �.

Typed relations relate only closed terms whose session environments are balanced and
confluent. Next we define barbs [11] with respect to types.

IDefinition 8 (Barbs). Let P be a closed process. We write P ↓n if P ≡ (ν m̃)(n!〈V 〉.P2 | P3),
with n /∈ m̃. Also: P ⇓n if P −→∗↓n. Similarly, we write Γ; ∅; ∆ ` P ↓n if Γ; ∅; ∆ ` P . �
with P ↓n and n /∈ ∆. Also: Γ; ∅; ∆ ` P ⇓n if P −→∗ P ′ and Γ; ∅; ∆′ ` P ′ ↓n.

A barb ↓n is an observable on an output prefix with subject n; a weak barb ⇓n is a barb
after a number of reduction steps. Typed barbs ↓n (resp. ⇓n) occur on typed processes
Γ; ∅; ∆ ` P . �. When n is a session name we require that its dual endpoint n is not in ∆.

To define a congruence relation, we introduce the family C of contexts:

C ::= − | u!〈V 〉.C | u?(x).C | u!〈λx.C〉.P | (ν n)C(λx.C)u | µX.C
| C | P | P | C | u / l.C | u . {l1 : P1, · · · , li : C, · · · , ln : Pn}

Notation C[P ] denotes the result of substituting the hole − in C with process P .
The first behavioural relation we define is reduction-closed, barbed congruence [4].

I Definition 9 (Reduction-Closed, Barbed Congruence). Typed relation Γ; ∆1 ` P1 < ∆2 ` P2
is a reduction-closed, barbed congruence whenever:
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[(?(U);S)]u def= u?(x).([(S)]u | [(U)]x) [(!〈U〉;S)]u def= u!〈[(U)]c〉.[(S)]u

[(⊕{l : S})]u def= u / l.[(S)]u [(&{li : Si}i∈I)]u
def= u . {li : [(Si)]u}i∈I

[(t)]u def= Xt [(µt.S)]u def= µXt.[(S)]u

[(end)]u def= 0 [(〈S〉)]u def= u!〈[(S)]c〉.0
[(〈L〉)]u def= u!〈[(L)]c〉.0 [(U→�)]u def= [(U(�)]u def= u [(U)]c

[(S)]c
def= s (s fresh) [(〈S〉)]c

def= [(〈L〉)]c
def= a (a fresh) [(U→�)]c

def= [(U(�)]c
def= λx. [(U)]x

Figure 5 Characteristic Processes (top) and Values (bottom) as in Def. 11. For [(S)]c, [(〈S〉)]c, and
[(〈L〉)]c freshness is assumed with respect to any names in their contexts.

1. If P1 −→ P ′1 then there exist P ′2,∆′2 such that P2 −→∗ P ′2 and Γ; ∆′1 ` P ′1 < ∆′2 ` P ′2;
2. If Γ; ∆1 ` P1 ↓n then Γ; ∆2 ` P2 ⇓n;
3. For all C, ∆′′1 , ∆′′2 we have: Γ; ∆′′1 ` C[P1] < ∆′′2 ` C[P2];
4. The symmetric cases of 1 and 2.
The largest such relation is denoted with ∼=.

4.4 Context Bisimilarity (≈)
Following Sangiorgi [16], we now define the standard (weak) context bisimilarity.

I Definition 10 (Context Bisimilarity). A typed relation < is a context bisimulation if for all
Γ; ∆1 ` P1 < ∆2 ` Q1,

1. Whenever Γ; ∆1 ` P1
(ν m̃1)n!〈V1〉−−−−−−−−→ ∆′1 ` P2, there exist Q2, V2, ∆′2 such that

Γ; ∆2 ` Q1
(ν m̃2)n!〈V2〉=⇒ ∆′2 ` Q2 and for all R with fv(R) = x:

Γ; ∆′′1 ` (ν m̃1)(P2 | R{V1/x}) < ∆′′2 ` (ν m̃2)(Q2 | R{V2/x});

2. For all Γ; ∆1 ` P1
`−→ ∆′1 ` P2 such that ` is not an output, there exist Q2, ∆′2 such that

Γ; ∆2 ` Q1
ˆ̀

=⇒ ∆′2 ` Q2 and Γ; ∆′1 ` P2 < ∆′2 ` Q2; and
3. The symmetric cases of 1 and 2.
The largest such bisimulation is called context bisimilarity and denoted by ≈.

As hinted at in the Introduction, in the general case, context bisimilarity is hard to compute.
Below we introduce characteristic bisimulations, which are meant to be a tractable proof
technique over session typed processes with higher-order communication.

4.5 Characteristic Bisimilarity (≈C)
We formalise the ideas given in the introduction. We define characteristic processes/values:

I Definition 11 (Characteristic Process and Values). Let u and U be a name and a type,
respectively. Fig. 5 defines the characteristic process [(U)]u and the characteristic value [(U)]c.

I Proposition 12. Let S be a session type. Then Γ; ∅; ∆ · s : S ` [(S)]s . �. Also, let 〈U〉 be a
first-order (channel) type. Then Γ · a : 〈U〉; ∅; ∆ ` [(〈U〉)]a . �.

The following example motivates the refined LTS explained in the introduction.
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I Example 13 (The Need for Refined Typed LTS). We show that observing a characteristic
value input alone is not enough to define a sound bisimulation closure. Consider processes

P1 = s?(x).(x s1 | x s2) P2 = s?(x).(x s1 | s2?(y).0) (3)

where Γ; ∅; ∆ ·s :?((?(C); end)→�); end ` Pi .� (i ∈ {1, 2}). If P1 and P2 input and substitute
over x the characteristic value [((?(C); end)→�)]c =λx. x?(y).0, then they evolve into:

Γ; ∅; ∆ ` s1?(y).0 | s2?(y).0 . �

therefore becoming context bisimilar. However, the processes in (3) are clearly not context
bisimilar: many input actions may be used to distinguish them. For example, if P1 and P2
input λx. (ν s)(a!〈s〉.x?(y).0) with Γ; ∅; ∆ ` s . end, then their derivatives are not bisimilar.

Observing only the characteristic value results in an under-discriminating bisimulation.
However, if a trigger value λx. t?(y).(y x) is received on s, we can distinguish P1, P2 in (3):

P1
`=⇒ t?(x).(x s1) | t?(x).(x s2) and P2

`=⇒ t?(x).(x s1) | s2?(y).0

with ` = s?〈λx. t?(y).(y x)〉. One question is whether the trigger value is enough to distinguish
two processes (hence no need of characteristic values). This is not the case: the trigger value
alone also results in an under-discriminating bisimulation relation. In fact, the trigger value
can be observed on any input prefix of any type. For example, consider processes

(ν s)(n?(x).(x s) | s!〈λx.R1〉.0) and (ν s)(n?(x).(x s) | s!〈λx.R2〉.0) (4)

If these processes input the trigger value, we obtain:

(ν s)(t?(x).(x s) | s!〈λx.R1〉.0) and (ν s)(t?(x).(x s) | s!〈λx.R2〉.0)

thus we can easily derive a bisimulation closure if we assume a bisimulation definition
that allows only trigger value input. But if processes in (4) input the characteristic value
λz. z?(x).(xm), then they would become, under appropriate Γ and ∆:

Γ; ∅; ∆ ` (ν s)(s?(x).(xm) | s!〈λx.Ri〉.0) ≈ ∆ ` Ri{m/x} (i = 1, 2)

which are not bisimilar if R1{m/x} 6≈ R2{m/x}.

As explained in the introduction, we define the refined typed LTS by considering a transition
rule for input in which admitted values are trigger or characteristic values or names:

I Definition 14 (Refined Typed Labelled Transition Relation). We define the environment
transition rule for input actions using the input rules in Fig. 4:

[RRcv] (Γ1; Λ1; ∆1) n?〈V 〉−−−−→(Γ2; Λ2; ∆2) V = m ∨ V ≡ [(U)]c ∨ V ≡ λx. t?(y).(y x) t fresh

(Γ1; Λ1; ∆1) n?〈V 〉7−→ (Γ2; Λ2; ∆2)

Rule [RRcv] is defined on top of rules [SRv] and [ShRv] in Fig. 4. We use the non-receiving
rules in Fig. 4 together with rule [RRcv] to define Γ; ∆1 ` P1

`7−→ ∆2 ` P2 as in Def. 6.

Notice that Γ; ∆1 ` P1
`7−→ ∆2 ` P2 (refined transition) implies Γ; ∆1 ` P1

`−→ ∆2 ` P2

(ordinary transition). Below we sometimes write (ν m̃)n!〈V :U〉7−→ when the type of V is U .
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Characteristic Bisimulations. We define characteristic bisimulations, a tractable bisimula-
tion for HOπ. As hinted at above, their definition uses trigger processes (cf. (2)):

t⇐ V : U def= t?(x).(ν s)([[?(U); end]]s | s!〈V 〉.0)

I Definition 15 (Characteristic Bisimilarity). A typed relation < is a characteristic bisimula-
tion if for all Γ; ∆1 ` P1 < ∆2 ` Q1,

1. Whenever Γ; ∆1 ` P1
(ν m̃1)n!〈V1:U〉7−→ ∆′1 ` P2 then there exist Q2, V2, ∆′2 such that

Γ; ∆2 ` Q1
(ν m̃2)n!〈V2:U〉

Z=⇒ ∆′2 ` Q2 and, for fresh t,
Γ; ∆′′1 ` (ν m̃1)(P2 | t⇐ V1 : U1)<∆′′2 ` (ν m̃2)(Q2 | t⇐ V2 : U2)

2. For all Γ; ∆1 ` P1
`7−→ ∆′1 ` P2 such that ` is not an output, there exist Q2, ∆′2 such that

Γ; ∆2 ` Q1
ˆ̀

Z=⇒ ∆′2 ` Q2 and Γ; ∆′1 ` P2 < ∆′2 ` Q2; and
3. The symmetric cases of 1 and 2.
The largest such bisimulation is called characteristic bisimilarity and denoted by ≈C.

Internal transitions associated to session interactions or β-reductions are deterministic.

I Definition 16 (Deterministic Transition). Let Γ; ∅; ∆ ` P . � be a balanced HOπ process.
Transition Γ; ∆ ` P τ7−→ ∆′ ` P ′ is called session transition whenever the transition P τ−→ P ′

is derived using rule 〈Tau〉 (where subj(`1) and subj(`2) in the premise are dual endpoints),
possibly followed by uses of 〈Alpha〉, 〈Res〉, 〈Rec〉, or 〈ParL〉/〈ParR〉.

Transition Γ; ∆ ` P τ7−→ ∆′ ` P ′ is called β-transition whenever the transition P τ−→ P ′ is
derived using rule 〈App〉, possibly followed by uses of 〈Alpha〉, 〈Res〉, 〈Rec〉, or 〈ParL〉/〈ParR〉.
Γ; ∆ ` P τd7−→ ∆′ ` P ′ denotes either a session transition or a β-transition.

I Proposition 17 (τ -inertness). Let Γ; ∅; ∆ ` P . � be a balanced HOπ process. Then
Γ; ∆ ` P τd7−→ ∆′ ` P ′ implies Γ; ∆ ` P ≈C ∆′ ` P ′.

See [7] for associated proofs. Our main theorem follows: it allows us to use ≈C as a tractable
reasoning technique for higher-order processes with sessions.

I Theorem 18 (Coincidence). ∼=, ≈, and ≈C coincide in HOπ.

Proof (Sketch). We use higher-order bisimilarity (≈H), an auxiliary equivalence that is
defined as ≈C but by using trigger processes with higher-order communication (cf. (1)). We
first show that ≈C and ≈H coincide by using Prop. 17; then, we show that ≈H coincides with
≈ and ∼=. A key result is a substitution lemma which simplifies reasoning for ≈H by exploiting
characteristic processes/values. See [7] for full details. J

Now we prove that processes Client1 and Client2 in Example 1 are behaviourally equivalent.

I Proposition 19. Let S =!〈room〉; ?(quote);⊕{accept :!〈credit〉; end, reject : end} and ∆ =
s1 :!〈S(�〉; end · s2 :!〈S(�〉; end. Then ∅; ∆ ` Client1 ≈C ∆ ` Client2.

Proof (Sketch). We show a bisimulation closure by following transitions on each Client.
See [7] for details. First, the characteristic process is given as: [(?(S(�); end)]s = s?(x).(x k).
We show that the clients can simulate each other on the first two output transitions, that
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also generate the trigger processes:

∅; ∅; ∆ ` Client1
s1!〈λx. Pxy{h1/y}〉−−−−−−−−−−−−→ s2!〈λx. Pxy{h2/y}〉−−−−−−−−−−−−→

∅; ∅; k1 : S · k2 : S ` (ν h1, h2)(h1?(x).h2?(y).
if x ≤ y then (h1 / accept.h2 / reject.0;h1 / reject.h2 / accept.0)
| t1 ⇐ λx. Pxy{h1/y} : S(� | t2 ⇐ λx. Pxy{h2/y} : S(�)

∅; ∅; ∆ ` Client2
s1!〈λx.Q1{h/y}〉−−−−−−−−−−−→ s2!〈λx.Q2{h/y}〉−−−−−−−−−−−→

∅; ∅; k1 : S · k2 : S ` (ν h)(t1 ⇐ λx.Q1{h/y} : S(� | t2 ⇐ λx.Q2{h/y} : S(�)

After these transitions, we can analyse that the resulting processes are behaviourally equivalent
since they have the same visible transitions; the rest is internal deterministic transitions. J

5 Related Work

As in this work, the bisimulations in [9, 8] (binary and multiparty sessions, respectively)
are defined and characterised on an LTS which combines an untyped LTS for processes
and an LTS on session type environments. The work [14] studies typed equivalences for a
theory of binary sessions based on linear logic, without shared names. None of [9, 8, 14]
consider session processes with higher-order communication, as we do here. Our results have
important consequences in the relative expressivity of higher-order sessions; see [7] for details.

Our approach to typed equivalences builds upon techniques developed by Sangiorgi [15, 16]
and Jeffrey and Rathke [5]. As we have discussed, although contextual bisimilarity has a
satisfactory discriminative power, its use is hindered by the universal quantification on output.
To deal with this, Sangiorgi proposes normal bisimilarity, a tractable equivalence without
universal quantification. To prove that context and normal bisimilarities coincide, [15] uses
triggered processes. Triggered bisimulation is also defined on first-order labels where the
context bisimulation is restricted to arbitrary trigger substitution. This characterisation of
context bisimilarity was refined in [5] for calculi with recursive types, not addressed in [16, 15]
and quite relevant in session-based concurrency. The bisimulation in [5] is based on an
LTS extended with trigger meta-notation. As in [16, 15], the LTS in [5] observes first-order
triggered values instead of higher-order values, offering a more direct characterisation of
contextual equivalence and lifting the restriction to finite types. We briefly contrast the
approach in [5] and ours based on characteristic bisimilarity (≈C):

The LTS in [5] is enriched with extra labels for triggers; an output action transition
emits a trigger and introduces a parallel replicated trigger. Our approach retains usual
labels/transitions; in case of output, ≈C introduces a parallel non-replicated trigger.
Higher-order input in [5] involves the input of a trigger which reduces after substitution.
Rather than a trigger name, ≈C decrees the input of a trigger value λz. t?(x).(x z).
Unlike [5], ≈C treats first- and higher-order values uniformly. As the typed LTS distin-
guishes linear and shared values, replicated closures are used only for shared values.
In [5] name matching is crucial to prove completeness of bisimilarity. In our case, HOπ
lacks name matching and we use session types: a characteristic value inhabiting a type
enables the simplest form of interactions with the environment.

We have compared our approach to that in [5] using a representative example. We con-
sidered the transitions and resulting processes involved in checking bisimilarity of process
n!〈λx. x (λy. y!〈m〉.0)〉.0 with itself. This comparison, detailed in [7], reveals that our ap-
proach requires less visible transitions and replicated processes. Therefore, linearity informa-
tion does simplify analyses, as it enables simpler witnesses in coinductive proofs.
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Environmental bisimulations [17] use a higher-order LTS to define a bisimulation that
stores the observer’s knowledge; hence, observed actions are based on this knowledge at any
given time. This approach is enhanced in [6] with a mapping from constants to higher-order
values. This allows to observe first-order values instead of higher-order values. It differs
from [16, 5] in that the mapping between higher- and first-order values is no longer implicit.
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Abstract
We propose a Curry-Howard correspondence between a language for programming multiparty
sessions and a generalisation of Classical Linear Logic (CLL). In this framework, propositions
correspond to the local behaviour of a participant in a multiparty session type, proofs to processes,
and proof normalisation to executing communications. Our key contribution is generalising
duality, from CLL, to a new notion of n-ary compatibility, called coherence. Building on coherence
as a principle of compositionality, we generalise the cut rule of CLL to a new rule for composing
many processes communicating in a multiparty session. We prove the soundness of our model by
showing the admissibility of our new rule, which entails deadlock-freedom via our correspondence.
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1 Introduction

Session types are protocols for communications in concurrent systems [13, 22]. A recent
line of work investigates Curry-Howard correspondences between the type theory of session
types and linear logic, where proofs correspond to processes, propositions to types, and proof
normalisation to communications [4, 23]. An important consequence of such correspondences
is that several notions that usually require complex additional definitions and proofs, e.g.,
dependency relations for deadlock-freedom [9, 19], follow for free from the theory of linear
logic, yielding a succinct formulation of the formal foundations of sessions.

The aforementioned correspondences cover only session types with exactly two participants,
called binary session types. In practice, however, protocols often describe the behaviour of
multiple participants [21]. Multiparty Session Types (MPSTs) have been proposed to capture
such protocols, by matching the communications enacted by many participants with a global
scenario [14]. Unfortunately, MPSTs are more involved than binary session types, since they
include complex analyses on the structure of protocols and a mapping from global types,
which describe multiparty protocols, to local types, which describe the local behaviour of
each single participant. So far, it has been unclear whether a succinct logical formulation of
MPSTs can be developed, as done for binary session types. Therefore, we ask:

Can we design a proof theory for reasoning about multiparty sessions?

A positive answer to our question would lead to a clearer understanding of the principles that
underpin multiparty session programming. The main challenge lies in the foundational notion
of duality found in linear logic, which, in a Curry-Howard interpretation of propositions as
types, checks whether the session types of two respective participants are compatible. It is an
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open question how to generalise the notion of type duality to that of “multiparty compatibility”
found in MPSTs, which allows to compose an arbitrary number of participants [14, 11, 16].
Therefore, differently from previous work, we are in a situation where the existing logic does
not provide us with natural tools for dealing with the types we desire to capture.

The main contribution of this work is the development of Multiparty Classical Processes
(MCP), a proof theory for reasoning on multiparty communications. The key aspect of MCP
is that it generalises Classical Linear Logic (CLL) [12], by building on a new notion of type
compatibility, called coherence, that replaces duality. Using MCP, we can provide a concise
reconstruction of the foundations of MPSTs. In the following, we outline our investigation:

Coherence. We start by formalising a language for local types and global types (§ 3, Types).
As in MPSTs, a local type denotes the I/O actions of a single participant in a session,
whereas a global type denotes the desired interactions among all participants in a session.
We then present coherence, a proof system for determining whether a set of local types
follow the scenario denoted by a global type (§ 3, Coherence). We prove the adequacy
of coherence by showing that global types are proof terms for coherence proofs (§ 3,
Figure 2); equivalences between coherence proofs correspond to the equivalences between
global types originally formulated with an auxiliary definition in [6] (§ 3, Proposition 2);
and, the coherence proof system yields projection and extraction procedures from global
types to local types and vice versa (§ 3, Proposition 3 and Proposition 4). Finally, we
show that coherence generalises the notion of duality in CLL (§ 3, Proposition 7). Our
extraction procedure is the first not requiring auxiliary conditions (e.g., dependency
relations as in [15]) and capturing nested protocols [10].
Multiparty Classical Processes. We present Multiparty Classical Processes (MCP), a proof
theory that is in a Curry-Howard correspondence with a language for multiparty sessions
(§ 4). The key aspect of MCP is using coherence as a new principle for compositionality
in order to generalise the standard cut rule of linear logic, by allowing an arbitrary
number of proofs to be composed (§ 4, Figure 6). Such a generalisation allows for the
first time to specify cyclic inter-connected networks using (a generalisation of) linear logic
whilst preserving its normalisation properties (§ 7). From the proof theory of MCP, we
derive logically-founded notions of structural equivalences and reductions for multiparty
processes (§ 4, Figure 7 and Figure 8). Driven by the correspondence between processes
and proofs, we show that: communications among processes always follow their session
types (§ 5, Theorem 10); communications never get stuck (§ 5, Corollary 12), improving
on previous techniques for analysing progress with multiparty session types (§ 7); and
that protocols used to type processes are always eventually executed (§ 5, Theorem 13).

2 Preview

We give an informal introduction to MCP with the 2-buyer protocol [14], where two buyers
buy a book together from a seller. This can be described by the following global type:

1. B1 -> S : 〈str〉; S -> B1 : 〈int〉; S -> B2 : 〈int〉; B1 -> B2 : 〈int〉;
2. B2 -> S : N( B2 -> S : 〈addr〉; end, end) (1)

Above, B1 (the first buyer), B2 (the second buyer) and S (the seller) are roles. In Line 1, B1
sends the book title to S, then S sends a quote to B1 and B2. At this point, B1 sends to B2
the fraction of the price it wishes to pay. In Line 2, B2 communicates to S whether (N) to
proceed with the purchase and, if so, also an address for the delivery.

In multiparty session types, each role in a global type is implemented by a different
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process. For example, the following three programs implement the roles in (1):

Buyer1 def= x B1 S(title); xB1 S(quote); x B1 B2(contr)

Buyer2 def= xB2 S(quote); xB2 B1 (contr);
(

xB2 S.inl; x B2 S(addr) + xB2 S.inr
)

Seller def= xS B1(title); x S B1(quote); x S B2(quote); xS B2N.case
(

xS B2(addr), 0
)

The three processes above are defined in the π-calculus with multiparty sessions [9], and
communicate using the session (or channel) x. In term Buyer1, xB1 S(title) means “as role B1,
send the book title over channel x to the process implementing role S”; x B1 S(quote) means
“as role B1, receive a quote over channel x from the process implementing role S”; finally,
xB1 B2(contr) means “as role B1, send to the process implementing role B2, over channel x,
the amount the first buyer is willing to contribute with”. Note that Buyer2 makes a choice
after receiving the contribution from Buyer1, i.e., it either accepts or rejects the purchase by
respectively selecting the left or right branch of the case construct in the code of Seller.

Following the approach in [23], we can type channel x using CLL propositions (differently
from [23], we use O to type outputs and ⊗ to type inputs, see § 7):

usage of x in Buyer1: str O int⊗ int O end
usage of x in Buyer2: int⊗ int⊗

(
(addr O end)⊕ end

)
usage of x in Seller: str⊗ int O int O

(
(addr⊗ end) N end

) (2)

Above, each proposition states how x is used by each process. For instance, Buyer1 outputs
(O) a string, receives (⊗) an integer, sends another integer and finally terminates (end).

CLL cannot compose our three processes using the above specifications, since its compos-
ition rule Cut can only compose two processes, which communicate over a same channel x
with compatible binary session types A and A⊥:

P ` ∆, x :A Q ` ∆′, x :A⊥

(νx :A) (P | Q) ` ∆, ∆′
Cut

Using the same channel among our three processes is essential for tracking the dependencies
expressed by the global type in (1): for example, we need to ensure that Seller sends a quote
to Buyer2 only after it has received a request for a book from Buyer1. Such constraints
cannot be tracked by binary session types [14]. To overcome this issue, we annotate each
connective in propositions with roles. For example, the type of x for Buyer1 would become:

annotated usage of x in Buyer1: str OS int⊗S int OB2 end
annotated usage of x in Buyer2: int⊗S int⊗B1 ((addr OS end)⊕S end

)
annotated usage of x in Seller: str⊗B1 int OB1 int OB2 ((addr⊗B2 end) NB2 end

) (3)

Annotations identify the dual role for each action, e.g., the usage for Buyer1 now reads:
send a string to S (OS); receive an integer from S (⊗S); send an integer to B2 (OB2); and,
terminate (end). We can then reformulate rule Cut as:

Pi ` Γi, xpi :Ai G � {pi :Ai}i

(νx :G)
(∏

i
Pi

)
` {Γi}i

MCut

In our new multiparty cut rule MCut, if some processes Pi use session x as role pi (denoted
xpi), each according to some respective types Ai, and such types coherently follow a global
type specification G (formalised by the judgement G � {pi :Ai}i), then we can compose them
in parallel within the scope of session x, written (νx :G) (P1 | . . . | Pn). In our example,



M. Carbone, F. Montesi, C. Schürmann, and N. Yoshida 415

A, B, . . . ::= 1 (unit for ⊗) | ⊥ (unit for O)
| AOp̃B (send A to p̃, then B) | A⊗p B (receive A from p, then B)
| A⊕p̃ B (select A or B in p̃) | ANpB (offer A or B to p)
| !A (client request) | ?A (server accept)

G ::= p -> q̃ : 〈G′〉; G | p -> q̃ : N(G1, G2) | ?p -> !q̃ : 〈G〉 | endpq̃

Figure 1 Local Types (A, B, . . .) and Global Types (G).

for i ranging from 1 to 3, {pi :Ai}i would correspond to the types in (3), where p1, p2 and
p3 would be, respectively, Buyer1, Buyer2 and Seller. In § 6, we will show that such types
coherently follow the global type given in (1).

MCP goes beyond the original multiparty session types [14], capturing also multicasting
and nested protocols [9, 10]. For example, we can enhance the 2-buyer protocol as:

1. B1 -> S : 〈str〉; S -> B1, B2 : 〈int〉; B1 -> B2 : 〈int〉;

2. B2->B1, S : N
(

B2->S : 〈addr〉; end, B1->S : 〈Gsub〉; B1->S : 〈str〉; B2->S : 〈str〉; end
) (4)

Above, S multicasts the price to both B1 and B2; and B2 multicasts its decision to B1 and S.
We have also updated the right branch of the choice using a nested protocol Gsub, which is
private to B1 and S, where B1 tells S whether it wants to purchase the product alone:

Gsub = B1->S : N
(

B1->S : 〈addr〉; end, B1->S : 〈str〉; end
)

In MCP, nested protocols can proceed in parallel to their originating protocols. For example,
the last two communications, where B1 and B2 inform S of their respective reasons for not
completing the purchase, can be executed in parallel to Gsub. We will formalise this in § 5.

3 Coherence

We give a proof-theoretical reconstruction of coherence, from [14]. Our theory generalises
duality, from CLL, to checking the compatibility of multiple types. We define coherence as a
proof system for deriving sets of (compatible) local types, which describe the local behaviours
of participants in a multiparty session. Global types are proof terms for coherence proofs,
yielding a correspondence between sets of compatible local types and their global descriptions.

Types. The syntax of local and global types is given in Figure 1, where p, q range over a
set of roles. Global types are highlighted, to distinguish them as proof terms. Highlighting is
also used in our syntax of local types, to show the difference with CLL. We will adopt the
same convention in § 4 when we present more terms.

A local type A describes the local behaviour of a role in a session. Types 1 and ⊥ denote
session termination, respectively representing the request and the acceptance for closing a
session (which were informally abstracted by end in our previous examples). A type AOp̃B

denotes a multicast output of a session with type A to roles p̃, with a continuation B. A type
A⊗pB represents an input of a session with type A from role p, with continuation B. Types
A⊕p̃ B and ANpB denote, respectively, the output of a choice between the continuations A
and B to roles p̃ and the input of a choice from role p. The replicated type !A offers behaviour
A as many times as requested. Finally, type ?A requests the execution of a replicated type
and proceeds as A.
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G � Θ, p :B, {qi :Di}i G′ � p :A, {qi :Ci}i

p -> q̃ : 〈G′〉; G � Θ, p :AOq̃B, {qi :Ci ⊗p Di}i

⊗O
endpq̃ � p :⊥, q1 :1, . . . , qn :1

1⊥

G1 � Θ, p :A, {qi :Ci}i G2 � Θ, p :B, {qi :Di}i

p -> q̃ : N(G1, G2) � Θ, p :A⊕q̃ B, {qi :CiNpDi}i

⊕N
G � p :A, {qi :Bi}i

?p -> !q̃ : 〈G〉 � p :?A, {qi :!Bi}i
!?

Figure 2 Coherence.

A global type G describes the behaviour of many participants. In p -> q̃ : 〈G′〉;G, role p
sends to roles q̃ a message to create a new session of type G′, and then the protocol proceeds
as G. In p -> q̃ : N(G1, G2), role p communicates to roles q̃ its choice of either branch G1
or G2. A type ?p -> !q̃ : 〈G〉 denotes that role p may ask roles q̃ to execute G many times.
Finally, in endpq̃, role p asks roles q̃ to terminate the session (for brevity, we often write end).

Judgements. A role typing p :A states that role p behaves as specified by type A. Our
judgements for coherence have the form G � p1 :A1, . . . , pn :An which reads as “the types
A1, . . . , An of the respective roles p1, . . . , pn are compatible and follow the global type G”.
We use Θ to range over sets of role typings, and make the standard assumption that we can
write Θ, p :A only if a role typing for p does not appear in Θ. Given some roles p̃, we use the
notation {pi :Ai}i to denote the set of role typings p1 :A1, . . . , pn :An, assuming p̃ = p1, . . . , pn
and i ranging from 1 to n. Given G, we say that G is valid if there exists Θ such that G � Θ.
Conversely, given Θ, we say that Θ is coherent if there exists G such that G � Θ.

We report the rules for deriving coherence judgements in Figure 2.
Rule ⊗O matches the output type from role p to roles q̃ with the input types of roles

q̃, whenever (i) the types for the newly created session are coherent and (ii) the types of
all continuations are also coherent. Rule ⊕N checks that both possibilities in a choice are
coherent, where all roles participating in the communication are allowed to have different
behaviour and the other roles are not (a multicast generalisation of [14]). In rule !?, we
check that a client requests the creation of a coherent session only from replicated services.
Finally, rule 1⊥ checks that all participants agree on the termination of a protocol. As in
CLL, we interpret type 1 as a terminated process and ⊥ as a process that has terminated
its behaviour in a session and proceeds with other sessions. Therefore, we read rule 1⊥ as
“a protocol terminates when one participant waits (type ⊥) for the termination of all the
others (type 1), which execute in parallel”. This design choice simplifies our development; we
discuss a generalisation in § 7.

I Example 1 (2-Buyer Protocol). We can revisit the local types for the 2-buyer protocol in
§ 2 (1), where now data types are abstracted by 1’s and ⊥’s.

A
def= ⊥OS1⊗S⊥OB2⊥ B

def= 1⊗S1⊗B1((⊥OS1)⊕S 1
)

C
def= 1⊗B1⊥OB1⊥OB2

(
(1⊗B2 1) NB2 1

)
Let G be the global type in (1) with end instead of data types; then, G � B1 :A,B2 :B, S :C.

3.1 Properties of Coherence
Swapping. Immediately from our correspondence between global types and coherence
proofs, we can reconstruct the standard notion of swapping 'g for global types from [6].
Intuitively, two communications involving different roles can always be swapped, capturing
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{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : 〈G〉; r -> s̃ : 〈G′〉;G′′ 'g r -> s̃ : 〈G′〉; p -> q̃ : 〈G〉;G′′

(→→)

{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : N(r -> s̃ : 〈G〉;G1, r -> s̃ : 〈G〉;G2) 'g r -> s̃ : 〈G〉; p -> q̃ : N(G1, G2)

(→⊕)

{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : N(r -> s̃ : N(G1, G2), r -> s̃ : N(G3, G4)) 'g r -> s̃ : N(p -> q̃ : N(G1, G3), p -> q̃ : N(G2, G4))

(⊕⊕)

Figure 3 Swapping relation 'g for global types.

the fact that separate roles execute concurrently. For example, the following coherence proof
(for p, q, r, s different):

G � Θ, p :A′, q :B′, r :C′, s :D′ G′′ � Θ̃, r :C, s :D
r -> s : 〈G′′〉;G � Θ, p :A′, q :B′, r :COsC′, s :D ⊗r D′

⊗O
G′ � p :A, q :B

p -> q : 〈G′〉; r -> s : 〈G′′〉;G � Θ, p :AOqA′, q :B ⊗p B′, r :COsC′, s :DOrD′,
⊗O

is equivalent to ('g)

G � Θ, p :A′, q :B′, r :C′, s :D′ G′ � Θ̃, p :A, q :B
p -> q : 〈G′〉;G � Θ, p :AOqA′, q :B ⊗p B′, r :C′, s :D′

⊗O
G′′ � r :C, s :D

r -> s : 〈G′′〉; p -> q : 〈G′〉;G � Θ, p :AOqA′, q :B ⊗p B′, r :COsC′, s :DOrD′
⊗O

proving that p -> q : 〈G′〉; r -> s : 〈G′′〉;G is equivalent to r -> s : 〈G′′〉; p -> q : 〈G′〉;G. Fig-
ure 3 reports all cases for ≡, derived from the proof system in Figure 2.

In general, two global types are proof terms for the same set of local typings if and only
if they are equivalent.

I Proposition 2 (Swapping). Let G � Θ. Then, G 'g G′ if and only if G′ � Θ.

Projection and Extraction. The hallmark of the theory of multiparty session types is
projection: developers can write protocols as global types, and then automatically project a
global type onto a set of local types that can be used to modularly verify the behaviour of
each participant. As there is only one possible rule application for each production in the
syntax of global types, we can construct an algorithm that traverses the structure of G:

I Proposition 3 (Projection). For G valid, Θ such that G � Θ is computable in linear time.

We can also use coherence for the inverse procedure, i.e., the extraction of a global type
from a set of local typings Θ. If Θ is coherent, we can just apply the first applicable coherence
rule, noting that the sizes of the local types in the premises always get smaller:

I Proposition 4 (Extraction). For Θ coherent, G such that G � Θ is computable.

I Example 5. In the 2-buyer protocol, G � B1 :A,B2 :B, S :C implies: (i) we can infer A, B
and C from G (proposition 3) and (ii) we can extract G from B1 :A,B2 :B, S :C (proposition 4).

Global reductions. We define reductions for global types, denoted G̃ G̃′, where G̃ is a
set {G1, . . . , Gn}. Global type reductions are just a convention (recalling [6]), which we use
in § 5 to concisely formalise how processes follow their protocols. Formally,  is the smallest
relation satisfying the rules in Figure 4.

Rule g⊗O models a communication that creates a new session of type G′, which will
then proceed in parallel to the continuation G. Rule g1⊥ models session termination. Rules
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(g⊗O) { p -> q̃ : 〈G′〉; G }  { G, G′ } (g!C) { ?p -> !q̃ : 〈G〉 } { G, ?p -> !q̃ : 〈G〉 }
(g⊕N1) { p -> q̃ : N(G1, G2) } { G1 } (g⊕N2) { p -> q̃ : N(G1, G2) } { G2 }

(g!?) { ?p -> !q̃ : 〈G〉 }  { G } (g!W ) { ?p -> !q̃ : 〈G〉 } ∅ (g1⊥) { endpq̃ } ∅
(gctx) G̃1  G̃2 ⇒ G̃ ∪ G̃1  G̃ ∪ G̃2 (geq) G̃0 'g G̃1, G̃1  G̃2, G̃2 'g G̃3 ⇒ G̃0  G̃3

Figure 4 Global Types, reduction semantics.

g⊕N1 and g⊕N2 model the execution of a choice. In rules g!?, g!C and g!W , a replicated
protocol can be respectively executed exactly once, multiple, or zero times. Rule gctx lifts the
behaviour of a protocol to a set of protocols executing concurrently. Finally, rule gswap allows
for swappings in a global type, where G̃ 'g G̃′ is the point-wise extension of the swapping
relation 'g to sets. Our semantics preserves validity:

I Theorem 6 (Coherence Preservation). If G̃ is valid and G̃ G̃′, then G̃′ is valid.

I Remark. Rule g!? can be derived from rules g!C and g!W . Including it simplifies our
presentation, since each global type reduction corresponds to a communication in MCP (§ 5).

Coherence as generalised duality. Coherence is a generalisation of duality (from CLL [12]):
in the degenerate case of a session with two participants, the two notions coincide. We recall
the definition of duality X⊥, defined inductively on the syntax of linear logic propositions:

(X ⊗ Y )⊥ = X⊥OY ⊥ (XOY )⊥ = X⊥ ⊗ Y ⊥ 1⊥ = ⊥ ⊥⊥ = 1
(X ⊕ Y )⊥ = X⊥NY ⊥ (XNY )⊥ = X⊥ ⊕ Y ⊥ (!X)⊥ = ?X⊥ (?X)⊥ = !X⊥

We define a partial encoding [[·]] from local types into linear logic propositions:

[[1]] = 1 [[⊥]] = ⊥ [[!A]] =![[A]] [[?A]] =?[[A]] [[A⊗B]] = [[A]]⊗ [[B]]
[[AOqB]] = [[A]]O[[B]] [[A⊕p B]] = [[A]]⊕ [[B]] [[ANpB]] = [[A]]N[[B]]

The encoding [[·]] is defined only when O and ⊕ are annotated with a single role. We get:

I Proposition 7 (Coherence as Duality). Let A,B be propositions where all subterms of the
form COp̃D or C ⊕p̃ D are such that p̃ = q for some q. Then, G � p :A, q :B iff [[A]] = [[B]]⊥.

4 Multiparty Classical Processes

In this section, we present Multiparty Classical Processes (MCP). MCP captures dependencies
among actions performed by different participants in a multiparty session, whereas, in previous
work, actions among different pairs of participants must be independent [4, 23].

Environments. Let Γ,∆ range over typing environments: Γ,∆ ::= · | Γ, xp :A .
Intuitively, xp :A means that role p in session x follows behaviour A. We write ?∆ whenever
∆ contains only types of the form ?A, and write ∆, xp :A only when xp does not appear in ∆.

Processes. We report the syntax of processes in Figure 5.
In MCP, both input and output names are bound, as in [23]. Term (send) creates a new

session y and sends it, as role p, to the processes respectively playing roles q̃ in session x;
then, the process proceeds as P . The dual operation (recv) receives, as role p in session x,
a fresh session y from the process playing role q; the process then proceeds as the parallel
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P,Q,R ::= xpq̃(y);P (send) | xpq(y); (P | Q) (recv)
| xpq.inl;P (left sel) | xpq.inr;P (right sel)
| xpq.case(P,Q) (case) | (νx :G)

(∏
i Pi
)

(res)
| closexp (close) | waitxp;P (wait)
| !xp(y);P (service) | ?xp(y);P (client)
| P +Q (choice)

Figure 5 MCP, syntax of processes.

P ` Γ, yp :A Q ` ∆, xp :B
xpq(y); (P | Q) ` Γ, ∆, xp :A⊗q B

⊗
P ` Γ, yp :A, xp :B

xpq̃(y); P ` Γ, xp :AOq̃B
O

Pi ` Γi, xpi :Ai G � {pi :Ai}i

(νx :G)
(∏

i
Pi

)
` {Γi}i

MCut P ` Γ, xp :A Q ` Γ, xp :B
xpq.case(P, Q) ` Γ, xp :ANqB

N

P ` Γ Q ` Γ
P + Q ` Γ +

P ` Γ, xp :A
xpq̃.inl; P ` Γ, xp :A⊕q̃ B

⊕1
P ` Γ, xp :B

xpq̃.inr; P ` Γ, xp :A⊕q̃ B
⊕2

close xp ` xp :1 1 P ` Γ
wait xp; P ` Γ, xp :⊥ ⊥

P ` Γ
P ` Γ, xp : ?A

Weaken

P ` ?Γ, yp :A
!xp(y); P ` ?Γ, xp : !A !

P ` Γ, yp :A
?xp(y); P ` Γ, xp : ?A

?
P ` Γ, yp : ?A, zp : ?A

P [x/y][x/z] ` Γ, xp : ?A
Contract

Figure 6 MCP, typing rules.

composition of P (dedicated to session y) and Q (dedicated to continuing session x). Similarly,
terms (left sel) and (right sel) multicast a selection of a left or right branch respectively to
the processes playing roles q̃ in session x, as role p. A selection is received by term (case),
which offers the two selectable branches. Terms (close) and (wait) terminate a session. Term
(choice) is the standard non-deterministic choice. In a restriction (res), x is bound in the
processes Pi; we use the standard type annotation (as in [23]) to show the relation between
the semantics of processes and global types in § 5. In term xp q(y); (P | Q), y is bound in
P but not in Q. In terms x p q̃(y)P , !xp(y);P , and ?xp(y);P , y is bound in P .

Judgements. Judgements in MCP have the form P ` xp1
1 :A1, . . . , x

pn
n :An, meaning that

process P implements roles pi in the respective session xi with behaviour Ai.

Rules. We report the rules of MCP in Figure 6. Intuitively, a process is typed with local
types; then, we use coherence to check that the local types of composed processes (rule MCut)
coherently implement a global type. All rules are defined up to context exchange.

Rule MCut is central: it extends the Cut of CLL to composing in parallel an arbitrary
number of Pi that communicate using session x. The rule checks that the composition of
the respective local behaviours of the composed processes is coherent (G � {pi :Ai}i). In the
conclusion, {Γi}i is the disjoint union of all Γi in the premise.

Rule ⊗ types an input xpq(y); (P | Q), where the subprocess P plays role p with
behaviour A in the received multiparty session y; session x then proceeds by following
behaviour B for role p in Q. Observe that the ⊗ is annotated with the role q that p wishes
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to receive from. The multicast output xpq̃(y);P in rule O creates a new session y and sends
it, as role p in session x, to roles q̃. The new session y is used by P as role p with type A,
assuming that the other processes receiving it implement the other roles (this assumption
is checked by coherence in MCut, when processes are composed). We discuss in § 7 how to
relax the constraint that the role p played in session y is the same.

Rules ⊕1 and ⊕2 type, respectively, the multicast of a left and right selection, by checking
that the process continuation follows the expected local type. Similarly, rule N types a
branching by checking that the continuations implement the respective expected local types.

Rule + types the nondeterministic process P +Q, by checking that both P and Q

implement the same local behaviours. Observe that P and Q may still be substantially
different, since they may (i) perform different selections on some sessions (as rules ⊕1 and
⊕2 can yield the same typing), and (ii) have different inner compositions of processes whose
types have been hidden by rule MCut.

Rules 1 and ⊥ type, respectively, the request and the acceptance for closing a multiparty
session. Rules ! and ? type, respectively, the replicated offering of a service and its repeated
usage (a client). Since a service typed by ! may be used multiple times, we require that
its continuation does not use any linear behaviour (?∆). Rules Weaken and Contract type,
respectively, the absence of clients or the presence of multiple clients. In rule Contract,
sessions y and z are contracted into a single session x with a standard name substitution,
provided that they have the same type ?A.
I Remark. Removing proof terms from MCP yields a pure logic that differs from CLL only for
rule MCut. Since we will prove in § 5 that MCut is admissible, just like Cut in CLL, the two
systems subsume the same set of valid judgements. Nevertheless, as shown in next section,
MCP yields a different operational meaning: reductions of MCut correspond to multiparty
communications, whereas reductions of Cut in CLL correspond to binary communications.

5 Semantics

In this section, we demonstrate the consistency of MCP, by establishing a cut-elimination
result that yields an operational semantics and important properties, e.g., deadlock-freedom.

5.1 Structural Equivalences as Commuting Conversions
MCP supports commuting conversions, permutations of applications of MCut that maintain
the validity of judgements. As an example, consider the following proof equivalence (≡):

P ` ∆, yp :A, xp :B, zr :C
xpq̃(y);P ` ∆, xp :AOq̃B, zr :C

O

Qi ` Γi, z
si :Di G � r :C, {si :Di}i

(νz :G)
(
xpq̃(y);P |

∏
i
Qi

)
`{Γi}i,∆, xp :AOq̃B

MCut

≡

P ` ∆, yp :A, xp :B, zr :C

Qi ` Γi, z
si :Di G � r :C, {si :Di}i

(νz :G)
(
P |

∏
i
Qi

)
`{Γi}i,∆, yp :A, xp :B

MCut

xpq̃(y); (νz :G)
(
P |

∏
i
Qi

)
`{Γi}i,∆, xp :AOq̃B

O

Above, an output is moved out of a restriction of a different session (or in it, reading in the
other direction), as in [23]. In this example, the output process is the first in the parallel
under the restriction; in general, this is not always the case since the process may be any of
those in the parallel composition. In order to represent equivalences independently of the
position of processes in a parallel, we use process contexts [20]. A context, denoted by C, is
a parallel composition with a hole: C[·] ::= · | C[·] | P | P | C[·]. All equivalences are
reported in Figure 7.
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(κpar) (νz :G)
(∏

i∈k̃
Pi

)
≡ (νz :G)

(∏
j∈k̃′

Pj

)
(k̃ is a permutation of k̃′)

(κcut) (νx :G)
(
C
[
(νy :G′) C′[P ]

])
≡ (νy :G′)

(
C′
[
(νx :G) C[P ]

])
(if x, y ∈ fn(P ))

(κO) (νz :G)
(
C
[
xpq̃(y);P

])
≡ xpq̃(y); (νz :G) C[P ]

(κ⊗) (νz :G)
(
C
[
xpq(y); (P | Q)

])
≡ xpq(y); (P | (νz :G) (C[Q])) (if z 6∈ fn(P ))

(κ⊕1) (νz :G) C[xpq.inl;P ] ≡ xpq.inl; (νz :G) C[P ] (κ⊕2) (νz :G) C[xpq.inr;P ] ≡ xpq.inr; (νz :G) C[P ]
(κN) (νz :G) C[xpq.case(P,Q)] ≡ xpq.case((νz :G) C[P ], (νz :G) C[Q])
(κ!) (νz :G) C[!xp(y);P ] ≡ !xp(y); (νz :G) C[P ] (κ?) (νz :G) C[?xp(y);P ] ≡ ?xp(y); (νz :G) C[P ]
(κ⊥) (νz :G) C[wait xp;P ] ≡ wait xp; (νz :G) C[P ]

Figure 7 MCP, Structural Equivalences.

(β⊗O) (νx :p-> q̃ : 〈G′〉;G)
( ∏

i
xqi p(y); (Pi | Qi) | xpq̃(y);R |

∏
j
Pj

)
→ (νy :G′)

(∏
i
Pi | (νx :G) (

∏
i
Qi | R |

∏
j
Pj)
)

(β⊕N1) (νx:p-> q̃ : N(G1, G2))
(
xpq̃.inl;P |

∏
i
xqip.case(Qi, Ri) |

∏
j
Pj

)
→ (νx :G1)

(
P |

∏
i
Qi |

∏
j
Pj

)
(β⊕N2) (νx:p-> q̃ : N(G1, G2))

(
xpq̃.inr;P |

∏
i
xqip.case(Qi, Ri) |

∏
j
Pj

)
→ (νx :G2)

(
P |

∏
i
Ri |

∏
j
Pj

)
(β!?) (νx :?p -> !q̃ : 〈G〉)

(
?xp(y);P |

∏
i
!xqi (y);Qi

)
→ (νy :G)

(
P |

∏
i
Qi

)
(β!W ) (νx :?p -> !q̃ : 〈G〉)

(∏
i
!xqi (y);Qi | P

)
→ P if x 6∈ fn(P )

(β!C) (νx :?p -> !q̃ : 〈G〉)
(∏

i
!xqi (w);Qi | P [x/y][x/z]

)
→ (νy :?p -> !q̃ : 〈G〉)

(∏
i
!yqi (w);Qi | (νz :?p -> !q̃ : 〈G〉)

(∏
i
!zqi (w);Qi | P

))
(β1⊥) (νx :endpq̃)

(
wait xp;P |

∏
i

close xqi
)
→ P

(β+) (νx :G)
(

(P1 + P2) |
∏

i
Qi

)
→ (νx :G)

(
Pj |

∏
i
Qi

)
j ∈ {1, 2}

Figure 8 MCP, Cut Reductions.

The equivalence κpar permutes processes in a parallel, since the premises of rule MCut
can be in any order. In κcut, we can swap two restrictions, which corresponds to swapping
two applications of rule MCut. The equivalence κO shows that a restriction can always
be swapped with an output on a different session. Similarly, the equivalence κ⊗ swaps a
restriction with an input, requiring that the restricted name (z in this case) occurs free in
P . In the case of ⊕, we have two equivalences, corresponding to the right and left selection
respectively. For κ&, we can move a restriction to each branch of a case construct, also
duplicating the context C. Equivalences κ! and κ? allow to swap a restriction with a service
and a client respectively. Finally, κ⊥ is the case for waitxp. There is no equivalence for the
process closexp since it is only typable with the axiom 1.

5.2 Process Reductions as MCut Reductions

As for equivalences, we use our proof theory to derive reductions for processes, given in
Figure 8.

In the reduction β⊗O, the output from role p to roles q̃ on session x is matched with the
inputs at such roles, creating a new session y, following the global type of x. Reductions
β⊕N1 and β⊕N2 capture the left and right multicast selection of a branching, respectively. In
β!?, a set of services with a single client is reduced to the composition of the bodies of such
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services with that of the client; the type ?p -> !q̃ : 〈G〉 of x is correspondingly reduced to G.
Reduction β!W garbage collects a set of unused services. In β!C , instead, a set of services is
replicated to handle multiple clients. Finally, reduction β1⊥ terminates a session x.

5.3 Properties
In the remainder, we abuse the notation P → P ′ to refer to process reductions closed up to
our structural equivalence ≡, as in standard process calculi.

Processes and Types. Since both equivalences and reductions are derived from judgement-
preserving proof transformations, we immediately obtain the following two properties:

I Theorem 8 (Subject Congruence). P ` ∆ and P ≡ Q imply that Q ` ∆.

I Theorem 9 (Subject Reduction). P ` ∆ and P → Q imply that Q ` ∆.

In Figure 8, global type annotations should not be mistaken for a requirement of our
reductions; they are rather a guarantee given by our proof theory: if a process is reducible,
then its sessions are surely typed with the respective global types reported in the rule. We use
this property to reconstruct the result of session fidelity from multiparty session types [14].
In the following, gt(P ) denotes the set of global types used in the restrictions inside P .

I Theorem 10 (Session Fidelity). P ` ∆ and P → P ′ imply that either gt(P ) gt(P ′) or
gt(P ) 'g gt(P ′).

Deadlock Freedom. Processes in MCP are guaranteed to be deadlock-free. We use the
standard methodology from [4, 23]. First, we prove that the MCut rule in MCP is admissible:

I Theorem 11 (MCut Admissibility). Pi ` Γi, xpi :Ai, for i ∈ [1, n], and G � {pi :Ai}i imply
that there exists Q such that Q ` {Γi}i.

The admissibility of MCut gives us a methodology for removing cuts from a proof,
corresponding to executing communications in a process until all restrictions are eliminated:

I Corollary 12 (Deadlock-Freedom). P `∆ and P has a restriction imply P→Q for some Q.

Protocol Progress. Our correspondence between process and global type reductions goes
both ways, a novel result for Multiparty Session Types. Below, →+ denotes one or more
applications of →:

I Theorem 13 (Protocol Progress). P ` ∆ and gt(P ) G̃ imply P →+ P ′ and G̃ = gt(P ′).

6 The 2-Buyer Protocol Example

We now formalise the 2-buyer protocol from § 2 and expand it further.

Processes and Types. Roles B1, B2 and S are implemented as the processes:

xB1 S(title); wait titleB1; xB1 S(quote);
(

close quoteB1 | xB1 B2(contrib); wait contribB1; wait xB1; close zZ
)

xB2 S(quote);
(

close quoteB2 | xB2 B1(contrib);
(
close contribB2 | PB2

))
xS B1(title);

(
close titleS | x S B1(quote); wait quoteS; x S B2(quote); wait quoteS; PS)

)
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The first process is the first buyer Buyer1. In the second process, the second buyer Buyer2,
subterm PB2 implements the choice of whether to accept or reject the purchase:(

xB2 S.inl; x B2 S(addr); wait addrS; closexB2) +
(
xB2 S.inr; closexB2

)
Finally, in the third process, the implementation of the seller, PS is the process:

xS B2.case
(

xS B2(addr);
(
close addrS | close xS), close xS )

At the level of types, the local types in Example 1 from § 3 can be used to type the three
processes above: Buyer1 ` xB1 :A, zZ :1, Buyer2 ` xB2 :B and Seller ` xS :C. If we apply our
new cut rule, we obtain (νx : G)

(
Buyer1 | Buyer2 | Seller

)
` zZ :1 where the global

type G, corresponding to equation (1) in § 2, is such that G � B1 :A, B2 :B, S :C.

Nested Multiparty Sessions. We can extend the example above by implementing the global
type (4) in § 2, where the first buyer creates a sub-session with the seller if the second buyer
decides not to contribute to the purchase. Below, we give an excerpt of the new seller:

...xS B1,B2(quote); wait quoteS; xS B2.case
(

..., xS B1(y);
(

Psub | xS B1(why);
(
closewhyS | xS B2(why); ...

)))
where Psub = yS B1.case

(
yS B1(addr); (close addrS | close yS), yS B1(why); (closewhyS | close yS)

)
.

Hence, the type of channel x, from the seller’s viewpoint, becomes:

1⊗B1 ⊥ OB1,B2
(

(1⊗B2 1) NB2
((

(1⊗B1 1) NB1 (1⊗B1 1)
)
⊗B1 1⊗B1 1⊗B2 1

))
We can then use coherence to infer the global type (4) in § 2.

Services. We extend the example to support multiple clients on a replicated session a:

(νa :?B1 -> !B2, S : 〈G〉) ( Buyers | !aB2(x); Buyer2 | !aS(x); Seller )

where Buyers consists of two buyers: (νz :end) ( ?aB1(x);Buyer1 | ?aB1(x);Buyer1′). Process
Buyer1′ initially behaves as Buyer1, but we replace close zZ with wait zZ; closewW. By
applying β!C once, β!? twice, and commuting conversions, the process above can be reduced
to the parallel composition of two sessions that follow the 2-buyer protocol:

(νx :G)
(

Buyer2 | Seller | (νz : end)
(
Buyer1 | (νx :G) (Buyer2 | Seller | Buyer1’)

))
7 Related Work and Discussion

Curry-Howard correspondences for session types. The works closest to ours are the Curry-
Howard correspondences between binary session types and linear logic [4, 23]. We extended
this line of work considerably by introducing multiparty sessions, which required general-
ising the notion of type compatibility in linear logic to address multiple types (coherence).
Coherence reconstructs the standard relationship between the global and local views found
in multiparty session types. We then used coherence to develop a new proof theory that
conservatively extends linear logic to capture multiparty interactions (all derivable judge-
ments in linear logic are derivable also in our framework, and vice versa). Furthermore, our
work provides, for the first time, a notion of session fidelity in the context of a Curry-Howard
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correspondence between linear logic and session types (§ 5, Theorem 10). In this work we
have not treated polymorphism and existential/universal quantification, which we believe
can be naturally added to MCP following the lines presented in [23, 3] for binary sessions.

Our work inverts the interpretation of ⊗ as output and O as input given in [2]. This makes
our process terms in line with previous developments of multiparty session types, where
communications go from one sender to many receivers [9]. Using the standard interpretation
would yield a join mechanism where multiple senders synchronise with a single receiver; note
that there would be no need to re-prove our results, since the proof theory would not change.

The standard cut rule in CLL forces the graph of connections among processes to be
a tree [1], a known sufficient condition for deadlock-freedom in session types [5]. A multi-
cut rule is proposed in [1] to allow two processes to share multiple channels. This enables
reasoning on networks with cyclic inter-connections, but breaks the deadlock-freedom property
guaranteed by linear logic, since duality is no longer a sufficient condition when multiple
resources are involved (also noted in [23]). For the first time, MCP processes can have cyclic
inter-connections (e.g., our example in § 2), but they are still guaranteed to be deadlock-free.
The key twist is to use coherence as a principle to check that the inter-connections are
safely resolved by communications. This suggests that coherence may be useful also in other
settings related to linear logic, for reasoning about the sharing of resources among multiple
entities (in our case, sessions). We leave this investigation as interesting future work.

Multiparty Session Types (MPSTs). Our work concisely unifies many of the ideas found
in separate developments of multiparty session types. Our global types with multicasting
are inspired from [9], to which we added nested and replicated types; both additions arise
naturally from our proof theory. Our nesting of global types can be seen as a logical
reconstruction of (a simplification of) those originally presented in [10], while repetitions in
global types reconstruct the concept presented in [8].

Our proof system for coherence is inspired by the notion of well-formedness found in
MPSTs [14, 9]. Since coherence is a proof system, projection and extraction are derived from
proof equivalences, rather than being defined separately as in [14, 15]. A benefit is that our
projection and extraction are guaranteed to be correct by construction, whereas in previous
works they have to be proven correct separately wrt the auxiliary notion of well-formedness.

In [9], MPSTs are combined with an ordering on session names to guarantee deadlock-
freedom. Our deadlock-freedom result, instead, is based on the structure of our proofs. In
some cases, our technique is more precise; for example, consider the deadlock-free system:

?ap(xa); ?br(xb); xa
pq(w1); xb

rs(w2); ( xa
pt(w3); P1 | P2 )

!aq(xa); xa
qp(w1); (P3 | P4) !at(xa); xa

tp(w3); (P5 | P6) !bs(xb); xb
sr(w2); P7

If we compose these processes in parallel, restricting sessions a and b accordingly, we obtain
a typable MCP process. Instead, the system in [9] rejects it, since the actions performed by
the first process create a cycle between the names xa and xb. In [19], the approach in [9] is
refined to type processes such as the one above by ordering the I/O actions of each session.

We conjecture that MCP can be used to naturally extend the work in [7], where linear
logic is used to type choreography programs, obtaining a Curry-Howard correspondence for
the calculus of compositional choreographies typed with multiparty session types [18].

Coherence. Coherence can be generalised, e.g., in Figure 2: (i) rule !? could allow for more
than one client; (ii) similarly, rule 1⊥ could be relaxed to allow for more than one ⊥ type; (iii)
rule ⊗O could allow the involved participants to play different roles in the nested session they
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create, as in [10] (adding such roles as an extra annotation to each type respectively). We
leave these extensions as interesting future work. Point (ii) influences greatly the complexity
of the cut admissibility proof for MCP (Theorem 11), because it would imply that the cut
reduction of a terminated session could lead to having more than one process in the reductum
(all the processes typed with ⊥), whereas now we have only one. This means that we would
have to type a parallel composition of processes without restriction, requiring to extend our
framework in the fashion of the logic presented in [7]. While extending the proof theory
of MCP would be easy, (extending coherence to allow for missing participants to be added
later, as in [18]), it would also cause an explosion in the number of cases to consider in the
proof [7]. As future work, we will investigate how our rule MCut and the notion of coherence
can affect the mapping from the functional language GV [23, 17].
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Abstract
In the ubiquitous presence of linear resources in quantum computation, program equivalence
in linear contexts, where programs are used or executed once, is more important than in the
classical setting. We introduce a linear contextual equivalence and two notions of bisimilarity,
a state-based and a distribution-based, as proof techniques for reasoning about higher-order
quantum programs. Both notions of bisimilarity are sound with respect to the linear contextual
equivalence, but only the distribution-based one turns out to be complete. The completeness
proof relies on a characterisation of the bisimilarity as a testing equivalence.
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1 Introduction

Since two decades ago, the theory of quantum computing has attracted considerable research
efforts. Benefiting from the superposition of quantum states, quantum computing may
provide remarkable speedup over its classical analogue [32, 16, 17]. As a consequence, a
wealth of models and programming languages for describing quantum computation have
been introduced.

For many reasons, the functional paradigm fits very well in the picture. One successful
attempt in this direction is QUIPPER [15], an expressive functional higher-order language
that can be used to program a diverse set of non-trivial quantum algorithms and can generate
quantum gate representations using trillions of gates. The group led by Svore introduced
LIQUi|〉 as a modular software architecture designed to control quantum hardware [34]: it
enables easy programming, compilation, and simulation of quantum algorithms and circuits.
In spite of the success of language design, the semantic foundation of quantum programming
languages is not well established. In a series of papers, Selinger and co-authors try to find
a denotational semantics for higher-order quantum computation [28, 29, 30, 31]. In the
most recent one [24], they propose a denotational model that is adequate with respect to
an operational semantics. However, full abstraction for a higher-order language with both
classical and quantum resources still remains an open problem.

In quantum mechanics, a fundamental principle is the no-cloning theorem of quantum
resources. From a type-theoretic point of view, quantum resources are linear and can be
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described by linear types in quantum programming languages. How to define appropriate
program equivalences for this kind of languages is an interesting problem. Some preliminary
results towards this direction have been obtained by omitting quantum effects and only
considering nondeterminism and linearity in a functional language [8]. For that restricted
setting, a notion of linear contextual equivalence is introduced and shown to be nicely related
to trace equivalence. Linear contextual equivalence is a special form of contextual equivalence
[23] in which the observable behaviour of programs is tested by executing them (at most)
once.

In the current work we investigate the operational semantics of the typed quantum
λ-calculus proposed in [24]. We aim to develop coinductive proof techniques for linear
contextual equivalence (written ') of quantum programs. We first define a labelled transition
system for the quantum λ-calculus. It is in fact a probabilistic labelled transition system
(pLTS) because probability distributions arise naturally when quantum systems are measured.
In the underlying pLTS, we consider two notions of probabilistic bisimilarity: one (written
∼s) is state-based because it is directly defined over states and then lifted to distributions;
the other (∼d) is distribution-based as it is a relation between distributions. The relation
∼s is essentially the probabilistic bisimilarity originally defined by Larsen and Skou [22],
representing a branching time semantics. In contrast, the relation ∼d is strictly coarser. It is
in the style of [13, 18], representing a linear time semantics. Both ∼s and ∼d are sound proof
techniques for ', which requires to prove that they are congruence relations. We show the
congruence property by adapting Howe’s method to the quantum setting. We also find that
∼d provides a complete proof technique for '. In order to prove full-abstraction, we first
characterise ∼d as a testing equivalence =T given by a simple testing language. Since all the
tests in the testing language can be simulated by linear contexts, we obtain that '⊆=T ,
which implies that '⊆∼d. To some extent this is a generalisation of the aforementioned
coincidence result obtained in [8] because the distribution-based probabilistic bisimilarity ∼d
captures a notion of trace equivalence in the probabilistic setting very intuitively.

1.1 Other Related Work
Reasoning about program equality in higher-order languages is challenging. Most of the time
equivalence between two programs requires them to exhibit the same observable behaviour
under any context. To alleviate the burden of dealing with all the contexts, a useful way out
is to develop operational methods for proving program equivalence. For example, Abramsky’s
applicative bisimulation [1] has attracted a lot of attention, not only in the classical setting
[14, 19, 25, 26], but also in the probabilistic setting [4, 2]. In [4] a notion of probabilistic
applicative bisimulation is shown to be a sound technique for proving contextual equivalence.
However, completeness fails and can only be recovered when pure, deterministic λ-terms are
considered and a coupled logical bisimulation is used in place of applicative bisimulation.
In [2] a probabilistic call-by-value λ-calculus is considered, where a probabilistic applicative
bisimilarity is shown to be a sound and complete proof technique for contextual equivalence.
Recently, the third author and Rioli have studied applicative bisimulation in a purely linear
quantum λ-calculus, obtaining a soundness result [3]. Following this line of research, our
work is carried out in a quantum setting and uses a distribution-based bisimilarity to
characterise linear contextual equivalence. We also examine a state-based bisimilarity. It
corresponds to the probabilistic applicative bisimilarity discussed above. The characterisation
of state-based probabilistic bisimilarity by a set of tests, shown with an involved proof in
[33] and with a tradition dated back to [22], is essential for the completeness proof of [2].
For distribution-based bisimilarity, however, a much simpler characterisation exists.
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Variants of probabilistic bisimulation have already been used to compare the behaviour
of quantum processes [21, 11, 5, 12, 10]. However, as far as we know, the current work is the
first to explore operational techniques based on probabilistic bisimulation to reason about
contextual equivalence of fully-featured higher-order quantum programs.

1.2 Structure of the Paper
In Section 2, we introduce the syntax, the reduction semantics, and the labelled transition
semantics of a quantum λ-calculus. A linear contextual equivalence and two bisimilarities are
defined. In Section 3 we show that the two notions of bisimilarity are congruence relations
included in linear contextual equivalence. The distribution-based bisimilarity is shown to
coincide with a testing equivalence in Section 4. By exploiting this result, we show that
the distribution-based bisimilarity is complete with respect to linear contextual equivalence.
Finally, we conclude in Section 5.

2 A Quantum λ-Calculus

Following [24] we introduce the syntax and operational semantics of a quantum λ-calculus.

2.1 Syntax
In this typed language, types are given by the following grammar:

A,B,C ::= qubit | A( B | !(A( B) | 1 | A⊗B | A⊕B | Al.

Here A( B is the usual linear function type and ( !A( B) is a non-linear function type.
For any arbitrary type A, the type !A can be simulated by !(1( A). The qubit type is used
to classify terms that represent qubit information. Tensor and sum types are standard. We
use the notation A⊗n for A tensored n times. The type Al denotes finite lists of type A.

Terms are built up from constants and variables, using the following constructs:

M,N,P ::= x Variables
| λxA .M | M N Abstractions and applications
| skip | M ;N Skip and sequential compositions
| M ⊗N | let xA ⊗ yB = M in N Tensor products and projections
| inlM | inrM Sums
| match P with (xA : M | yB : N) Matches
| splitA Split
| letrec fA(Bx = M in N Recursions
| new | meas | U Quantum operators

Most of the language constructs are standard. The tensor product and tensor projection
are related to linearity. The quantum operators are used to prepare quantum systems. The
constant U ranges over a set of elementary unitary transformations on quantum bits. Two
typical examples are the Hadamard gate H and the controlled-not gate Nc.

Variables appearing in the λ-binder, the let-binder, the match-binder, and the letrec-
binder are bound variables. We write fv(M) for the set of free variables in term M . We will
not distinguish α-equivalent terms, which are terms syntactically identical up to renaming of
bound variables. If M and N are terms and x is a variable, then M{N/x} denotes the term
resulting from substituting N for all free occurrences of x in M . More generally, given a list
N1, . . . , Nn of terms and a list x1, . . . , xn of distinct variables, we writeM{N1/x1, . . . , Nn/xn}

CONCUR’15



430 On Coinduction and Quantum Lambda Calculi

or simply M{Ñ/x̃} for the result of simultaneously substituting each Ni for free occurrences
in M of the corresponding variable xi.

Values are special terms in the following form

V,W ::= x | c | λxA.M | V ⊗W | inl V | inrW,

where c ranges over the set of constants {skip, splitA, meas, new, U}. As syntactic sugar we
write bit = 1⊕ 1, tt = inr skip, and ff = inl skip.

A typing assertion takes the form ∆ `M : A, where ∆ is a finite partial function from
variables to types, M is a term, and A is a type. We write dom(∆) for the domain of
∆. We call ∆ exponential (resp. linear) whenever ∆(x) is (resp. is not) a !-type for each
x ∈ dom(∆). We write !∆ for a context that is exponential. The type assignment relation
consists of all typing assertions that can be derived from the axioms and rules in Figure 1,
where the contexts ∆′ and ∆′′ are assumed to be linear. The notation ∆, x : A denotes
the partial function which properly extends ∆ by mapping x to A, so it is assumed that
x 6∈ dom(∆). Similarly, in the notation ∆,∆′ the domains of ∆ and ∆′ are assmued to be
disjoint. We write Prog(A) = {M | ∅ `M : A} for the set of all closed programs of type A.

For any typing assertion ∆ ` M : A, it is not difficult to see that fv(M) ⊆ dom(∆).
Let fqv(M) be the set of free variables of qubit type in term M and fcv(M) collects all
other types of free variables. Thus we have fv(M) = fcv(M) ∪ fqv(M) for any term M . We
often separate the free quantum variables in M from the type environment ∆ and write
∆′ BM : A where ∆′, x1 : qubit, . . . , xn : qubit = ∆ with {x1, . . . , xn} = fqv(M). Let a
proved expression be a triple (∆,M,A) such that ∆BM : A. If ∆ = x1 : A1, . . . , xn : An, a
∆-closure is a substitution {M̃/x̃} where each Mi ∈ Prog(Ai). If R is a relation on terms M
with fcv(M) = ∅, its open extension, R◦, is the least relation between proved expressions
such that

(∆,M,A) R◦ (∆, N,A) iff M{P̃ /x̃} R N{P̃ /x̃} for any ∆-closure {P̃ /x̃} .

We will write ∆ BM R N : A to mean that (∆,M,A) R◦ (∆, N,A). Sometimes we omit
the type information if it is not important and simply write ∆BM R N .

2.2 The Reduction Semantics
The reduction semantics is defined in terms of an abstract machine simulating the behaviour
of the QRAM model [20].

I Definition 1. A quantum closure is a triple [q, l,M ] where
q is a normalized vector of C2n , for some integer n ≥ 0. It is called the quantum state;
M is a term, not necessarily closed;
l is a linking function that is an injective map from fqv(M) to the set {1, . . . , n}.

We write dom(l) for the domain of l. The notation l ]m stands for the union of two linking
functions l and m (viewed as two sets of pairs) if their domains are disjoint, otherwise it
is undefined. A closure [q, l,M ] is total if l is surjective, thus a bijection. In that case we
write l as 〈x1, . . . , xn〉 if dom(l) = {x1, . . . , xn} and l(xi) = i for all i ∈ {1 . . . n}. A quantum
closure C = [q, l,M ] is well typed and has type A in ∆ whenever dom(l) = {x1, . . . , xm}
and ∆, x1 : qubit, . . . , xm : qubit ` M : A. In this case we write ∆ B C : A. The notion of
α-equivalence extends naturally to quantum closures. So, e.g., the two states [q, 〈y〉, λxA.y]
and [q, 〈z〉, λxA.z] are deemed equivalent. With a slight abuse of language, we call a closure
[q, l, V ] a value when the term V is a value. Most often we will work with closed quantum
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A linear

!∆, x : A ` x : A !∆, x : !(A( B) ` x : A( B

!∆ ` V : A( B V value

!∆ ` V : !(A( B)

∆, x : A `M : B

∆ ` λxA.M : A( B

!∆,∆′ `M : A( B !∆,∆′′ ` N : A

!∆,∆′,∆′′ `MN : B

!∆ ` skip : 1
!∆,∆′ `M : 1 !∆,∆′′ ` N : A

!∆,∆′,∆′′ `M ;N : A

!∆,∆′ `M : A !∆,∆′′ ` N : B

!∆,∆′,∆′′ `M ⊗N : A⊗B

!∆,∆′ `M : A⊗B !∆,∆′′, x : A, y : B ` N : C

!∆,∆′,∆′′ ` let xA ⊗ yB = M in N : C

!∆,∆′ `M : A

!∆,∆′ ` inl M : A⊕B

!∆,∆′ `M : B

!∆,∆′ ` inr M : A⊕B

!∆,∆′ ` P : A⊕B !∆,∆′′, x : A `M : C !∆,∆′′, y : B ` N : C

!∆,∆′,∆′′ ` match P with (xA : M | yB : N) : C

!∆ ` splitA : Al ( 1⊕ (A⊗Al)
!∆,∆′ `M : 1⊕ (A⊗Al)

!∆,∆′ `M : Al

!∆, f : !(A( B), x : A `M : B !∆,∆′, f : !(A( B) ` N : C

!∆,∆′ ` letrec fA(Bx = M in N : C

!∆ ` new : bit( qubit !∆ ` meas : qubit( bit
U of arity n

!∆ ` U : qubit⊗n ( qubit⊗n

Figure 1 Typing Rules.

closures, i.e. with those closures C such that ∅ B C : A. We let Cl be the set of closed
quantum closures. For the sake of simplicity, we often assume that the quantum closures we
work with are typable without stating it explicitly.

We now introduce the notion C p
 D to mean that closed quantum closure C reduces

to D immediately with probability p ∈ [0, 1]. Formally, the one-step reduction p
 between

quantum closures is the smallest relation including the axioms from Figure 2 together with
the structural rule

[q, l, M ] p
 [r, i, N ]

[q, j ] l, E [M ]] p
 [r, j ] i, E [N ]]

where E is any evaluation context generated by the grammar

E ::=[ ] | EM | V E | E ;M | E ⊗M | V ⊗ E | inl E | inr E

| let xA ⊗ yB = E in M | match E with (xA : M | yB : N).

In the two reduction rules for new, the quantum state q has size n, and x is a fresh variable.
In the rule for unitary transformations, the quantum state r is obtained by applying the
k-ary unitary gate U to the qubits l(x1), . . . , l(xk). In other words, r = (σ ◦ (U⊗ id) ◦σ−1)(q),
where σ is the action on C2n of any permutation over {1, . . . , n} such that σ(i) = l(xi)
whenever i ≤ k. In the rules for measurements, we assume that if q0 and q1 are normalized
quantum states of the form

∑
j αj |ϕj〉⊗ |0〉⊗ |φj〉,

∑
j βj |ϕj〉⊗ |1〉⊗ |φj〉, then r0 and r1 are
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[q, l, (λxA.M)V ] 1
 [q, l, M{V/x}]

[q, l, let xA ⊗ yB = V ⊗W in N ] 1
 [q, l, N{V/x,W/y}]

[q, l, skip;N ] 1
 [q, l, N ]

[q, l, splitA V ] 1
 [q, l, V ]

[q, l, match inl V with (xA : M | yB : N)] 1
 [q, l, M{V/x}]

[q, l, match inr V with (xA : M | yB : N)] 1
 [q, l, N{V/y}]

[q, l, letrec fA(Bx = M in N ] 1
 [q, l, N{(λxA.letrec fA(Bx = M in M)/f}]

[q, ∅, new ff] 1
 [q ⊗ |0〉, {x 7→ n+ 1}, x]

[q, ∅, new tt] 1
 [q ⊗ |1〉, {x 7→ n+ 1}, x]

[αq0 + βq1, {x 7→ i}, measx] |α|
2

 [r0, ∅, ff]

[αq0 + βq1, {x 7→ i}, measx] |β|
2

 [r1, ∅, tt]
[q, l, U(x1 ⊗ · · · ⊗ xk)] 1

 [r, l, (x1 ⊗ · · · ⊗ xk)]

Figure 2 Small-Step Axioms.

respectively
∑
j αj |ϕj〉 ⊗ |φj〉,

∑
j βj |ϕj〉 ⊗ |φj〉, where the vectors ϕj has dimension l(x)− 1.

The reduction semantics defined above employs a call-by-value evaluation strategy.

I Lemma 2 (Totality). Let C and D be two quantum closures and C p
 D. If C is total

then so is D. J

I Lemma 3 (Type safety). Let C = [q, l,M ] be a closed quantum closure. Then either M is
a value or the total probability of all one-step reductions from C is 1. J

By Lemma 3 we see that the reduction semantics induces a Markov chain (Cl,→), where Cl
is the set of all closed quantum closures and → ⊆ Cl ×D(Cl) is the transition relation with
C → µ satisfying µ(D) = p iff C p

 D for some p > 0. Here D(Cl) stands for all probability
subdistributions over Cl and µ is a full distribution over all successor quantum closures of C.

For any µ =
∑
i pi · [qi, li,Mi], let env(µ) =

∑
i pi · trfqv(M)qiq

†
i be the reduced quantum

state of the qubits not referred to by M . In particular, if each [qi, li,Mi] in the support of µ
is a total quantum closure, we then have env(µ) = |µ|.

In order to investigate the long-term behaviour of a Markov chain, we introduce the
notion of extreme derivative from [7]. We first need to lift the relation → to be a transition
relation between subdistributions: µ→ ν if ν =

∑
C∈dµe µ(C) · µC and C → µC for each C

in dµe, the support of the subdistribution µ.

I Definition 4 (Extreme derivative). Suppose we have subdistributions µ, µ→n , µ×n for n ≥ 0
with the following properties:

µ = µ→0 + µ×0 ; ∀k ≥ 0. µ→k → µ→k+1 + µ×k+1;

and each µ×k is stable in the sense that C 6 , for all C ∈ dµ×k e. Then we call ρ :=
∑∞
k=0 µ

×
k

an extreme derivative of µ, and write µ⇒ ρ.

Let C be a quantum closure in the Markov chain (Cl,→). The extreme derivative of the
point distribution on C that assigns probability 1 to C, written C, is unique, and we use it
for the denotation of C, indicated as [[C]]. So we always have C ⇒ [[C]]. Note that in the
presence of divergence [[C]] may be a proper subdistribution.
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C ⇓ ε [q, l, V ] ⇓ [q, l, V ]

[q, l,M ] ⇓
∑
k∈K

pk · [rk, ik, Lk] {[rk, ik, N ] ⇓ µk}k∈K

[q, l,M ;N ] ⇓
∑
k∈K

pkµk

[q, l,M ] ⇓
∑
k∈K

pk · [rk, ik, Vk] {[rk, ik, N ] ⇓ µk}k∈K

[q, l,M ⊗N ] ⇓
∑
k∈K

pk(Vk ⊗ µk)

[q, l,M ] ⇓
∑
k∈K

pk · [rk, ik, Vk]

[q, l, inl M ] ⇓
∑
k∈K

pk(inl µk)

[q, l,M ] ⇓
∑
k∈K

pk · [rk, ik, Vk ⊗Wk] {[rk, ik, (N{Vk/x,Wk/y})] ⇓ µk}k∈K

[q, l, let xA ⊗ yB = M in N ] ⇓
∑
k∈K

pkµk

[q, l,M ] ⇓
∑

k∈K
pk · [rk, ik, Vk]

{[rk, ik, (N{Wk/x}] ⇓ ρk}Vk=inl Wk
{[rk, ik, (L{Wk/x}] ⇓ ξk}Vk=inr Wk

[q, l, match M with (xA : N | yB : L)] ⇓
∑

Vk=inl Wk

pkρk +
∑

Vk=inr Wk

pkξk

Figure 3 Big-Step Semantics Rules – Selection.

Extreme derivatives can also be defined by a big-step semantics given by using a binary
relation ⇓ between quantum closures and value distributions. Some of the rules of it can be
found in Figure 3 (the others are similar). In the rules, ε stands for the empty subdistribution,
and the notation |µ| stands for the size of the subdistribution µ, i.e.

∑
C∈dµe µ(C). Finally,

term constructors are, with abuse of notation, applied to quantum closures and subdistribu-
tions in the natural way, e.g., inl (

∑
k∈K pk · [q, l,M ]) stands for

∑
k∈K pk · [q, l, inlM ].

I Lemma 5. [[C]] = sup{µ | C ⇓ µ}, where the supremum of subdistributions are computed
component-wisely. J

Following [8] we would like to give an alternative characterisation of linear contextual
equivalence. Intuitively, as usual, a context is a term with a unique hole, and a linear context
is a context where programs under examination will be evaluated and used exactly once. We
are interested in closing contexts.

I Definition 6. A linear context (or simply a context) is a term with a hole, written C(∆;A),
such that C[M ] is a closed program whenever the hole is filled in by a term M , where
∆BM : A, and the hole lies in linear position.

Following [2], we require that the observable behaviour of a quantum closure C is its
probability of convergence |[[C]]|.

I Definition 7. The linear contextual preorder is the typed relation v defined as follows:
∆BM v N : A if for every linear context C, quantum state q and linking function l such
that ∅B C(∆;A) : B, and both [q, l, C[M ]] and [q, l, C[N ]] are total quantum closures, it holds
that |[[[q, l, C[M ]]]]| ≤ |[[[q, l, C[N ]]]]|. Linear contextual equivalence is the typed relation ' by
letting ∆BM ' N : A just when ∆BM v N : A and ∆BN vM : A.
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[q, l, x1 ⊗ · · · ⊗ xn] i U−−→ [q, l, U(x1 ⊗ · · · ⊗ xn)] [q, l, x] i meas−−−−→ [q, l, measx]

[q, ∅, skip] skip−−−→ [q, ∅,ΩΩΩ]

∅B V : A( B ∅BW : A

[q, l, V ] @[r,W ]−−−−−→ [q, l ] r, V W ]

∅B inl V : A⊕B x : ABM : C

[q, l, inl V ] l [r,M ]−−−−−→ [q, l ] r,M{V/x}]

∅B inr V : A⊕B y : B BM : C

[q, l, inr V ] r [r,M ]−−−−−→ [q, l ] r,M{V/y}]

∅B V ⊗W : A⊗B x : A, y : B BM : C

[q, l, V ⊗W ] ⊗[r,M ]−−−−−→ [l ] r,M{V/x,W/y}] C
eval−−−→ [[C]]

Figure 4 Labelled Transition Rules for Quantum Closures.

2.3 A Probabilistic Labelled Transition System
In [14], Gordon defines explicitly a labelled transition system in order to illustrate the
bisimulation technique in PCF. We follow this idea to define a probabilistic labelled transition
system for the quantum λ-calculus, upon which we can define probabilistic bisimulations.

Transition rules are listed in Figure 4: we make the typing of terms explicit in the rules as
the type system plays an important role in defining the operational semantics of typed terms.
A transition takes the form C

a−→ µ, where C is a quantum closure, µ is a subdistribution
over quantum closures, and a is an action. If µ is a point distribution D, we simply write the
transition as C a−→ D. Note that non-total quantum closures are needed here to specify the
operational semantics: we cannot work only with total quantum closures due to entanglement.
For example, we should allow for a non-total quantum closure like [ |00〉+|11〉√

2 , {x 7→ 1}, x],
where the quantum variable x refers to the first qubit of an entangled quantum state.

The last rule in Figure 4 says that term reductions are considered as internal transitions
that are abstracted away; external transitions are labelled by actions. Intuitively, external
transitions represent the way terms interact with environments (or contexts). For instance,
a λ-abstraction can “consume” (application of itself to) a term, which is supplied by the
environment as an argument, and forms a β-reduction. The rule for skip says that what
it can provide to the environment is the value of itself, and after that it cannot provide
any information, hence no external transitions can occur any more. We represent this by
a transition, labelled by the value of the constant, into a non-terminating program ΩΩΩ of
appropriate type.

The set of quantum closures Cl together with the transition rules in Figure 4 yields a
probabilistic labelled transition system (pLTS). It is in fact a reactive system in the sense
that if C a−→ µ1 and C a−→ µ2 then µ1 = µ2 for all C ∈ Cl, that is no two outgoing transitions
leaving a quantum closure are labelled by the same action. Below we recall Larsen and
Skou’s probabilistic bisimulation [22]. We first review a way of lifting a binary relation R
over a set S to be a relation R† over the set of subdistributions on S given in [9]1.

I Definition 8. Let S, T be two countable sets and R ⊆ S × T be a binary relation. The
lifted relation R†⊆ D(S) × D(T ) is defined by letting µ R† ν iff µ(X) ≤ ν(R(X)) for all

1 There are several different but equivalent formulations of the lifting operation; see e.g. [27, 6].
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X ⊆ S. Here we write R(X) for the set {t ∈ T | ∃s ∈ X. s R t} and µ(X) is the accumulation
probability

∑
s∈X µ(s).

The definition by Larsen and Skou, when instantiated on the pLTS of closed quantum closures,
looks as follows:

I Definition 9. A probabilistic simulation is a preorder R on closed quantum closures such
that whenever (C,D) ∈R we have that:

env(C) = env(D);
[[C]] R† [[D]];
if C,D are values then C a−→ µ implies D a−→ ν with µ R† ν.

A probabilistic bisimulation is a relation R such that both R and R−1 are probabilistic
simulations. Let � and ∼s be the largest probabilistic simulation and bisimulation, called
similarity and bisimilarity, respectively. Bisimilarity and similarity are relations on closed
quantum closures, but can be generalized to open closures as follows:

Suppose ∆BM,N : A. We write ∅BM � N : A if [q, l,M ] � [q, l, N ], and ∆BM ∼s N : A
if [q, l,M ] ∼s [q, l, N ], for any q and l such that [q, l,M ] and [q, l, N ] are both typable quantum
closures.

For reactive pLTSs, the kernel of probabilistic similarity is probabilistic bisimilarity. That
is, ∼s = � ∩ �−1. This of course also applies to the specific pLTS we are working with.
The probabilistic bisimilarity defined above is a binary relation between states, and thus
sometimes called state-based bisimilarity. Alternatively, it is possible to directly define a
(sub)distribution-based bisimilarity by comparing actions emitted from subdistributions. In
order to do so, we first define a transition relation between subdistributions.

I Definition 10. We write µ a−→ ρ if ρ =
∑
s∈dµe µ(s) ·µs, where µs is determined as follows:

either s a−→ µs
or there is no ν with s a−→ ν, and in this case we set µs = ε.

Note that this is a weaker notion of transition relation between subdistributions, compared
with that defined on Page 432. If µ a−→ µ′ then some (not necessarily all) states in the
support of µ can perform action a. For example, consider the two states s2 and s3 in Figure 5.
Since s2

c−→ s4 and s3 cannot perform action c, the distribution µ = 1
2s2 + 1

2s3 can make
the transition µ c−→ 1

2s4 to reach the subdistribution 1
2s4. Let µ be a subdistribution over

a reactive pLTS. After performing any action, it can reach a unique subdistribution. That
is, if µ a−→ ν and µ

a−→ ρ then ν = ρ. Given a subdistribution µ, we denote by [[µ]] the
subdistribution

∑
C∈dµe µ(C) · [[C]].

I Definition 11. A distribution-based bisimulation is a binary relation R on subdistributions
such that µ R ν implies

env(µ) = env(ν);
[[µ]] R [[ν]];
if µ and ν are value distributions and µ a−→ ρ, then ν a−→ ξ for some ξ with ρ R ξ, and
vice-versa.

Let ∼d be the largest distribution-based bisimulation. Suppose ∅ BM,N : A. We write
∅BM ∼d N : A if [[[q, l,M ]]] ∼d [[[q, l, N ]]] for any q and l such that [q, l,M ] and [q, l, N ] are
quantum closures.

It is not difficult to see that s ∼s t implies s ∼d t but not the other way around, as witnessed
by the following example.
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s

s1

s2 s3

s4

t

t1 t2

t3 t4

t5

a

b

1
2

1
2

c d

a

1
2

1
2

b b

c d

Figure 5 s 6∼s t.

[∅, ∅, (λxy.meas(H(new ff)))x]

[∅, ∅, λy.meas(H(new ff))]

[∅, ∅, meas(H(new ff))]

[∅, ∅, ff] [∅, ∅, tt]

[∅, ∅,ΩΩΩ]

[ |00〉+|11〉√
2 , 〈x1x2〉, (λxy.measx1)(measx2)]

[|0〉, 〈x1〉, λy.measx1] [|1〉, 〈x1〉, λy.measx1]

[|0〉, 〈x1〉, measx1] [|1〉, 〈x1〉, measx1]

[∅, ∅, ff] [∅, ∅, tt]

[∅, ∅,ΩΩΩ]

eval

@[∅, V ]

eval

1
2

1
2

ff tt

eval

1
2

1
2

@[∅, V ] @[∅, V ]

eval eval

ff tt

Figure 6 Two Quantum Closures not Related by ∼s.

I Example 12. Consider the two states s and t in Figure 5. We can construct the relation

R= {(s, t),
(
s1,

1
2 t1 + 1

2 t2
)
,

(
1
2s2 + 1

2s3,
1
2 t3 + 1

2 t4
)
, (s2, t3), (s3, t4), (s4, t5))}

and check that R is a distribution-based bisimulation. Therefore, we have s ∼d t. Note
that the point distribution at state s1 is related to the distribution 1

2 t1 + 1
2 t2. However,

we have s 6∼s t because after performing action a the state s evolves into the point dis-
tribution s1, and the only candidate transition from t to match this is t a−→ µ where
µ = 1

2 t1 + 1
2 t2. But then the condition s1 ∼s† µ is invalid because there is no way to

split s1 into two different states such that they are bisimilar to t1 and t2 respectively. In
the quantum λ-calculus this distinction between state-based and distribution-based bisim-
ulations also exists. For example, the quantum closures [∅, ∅, (λxy.meas(H(new ff)))x] and
[ |00〉+|11〉√

2 , 〈x1x2〉, (λxy.measx1)(measx2)] exhibit similar behaviour as states s and t, respect-
ively, as depicted in Figure 6. J

3 Congruence

In this section we show that both ∼s and ∼d are congruence relations. The proof for ∼s is
more complicated, so we take it as an example and give the details. The case for ∼d follows
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∆B c c ∈ {x, skip, splitA, new, meas, U}

∆B [q, l, c] R̂ [q, l, c]

∆, x : AB [q, l,M ] R [r, j,N ]

∆B [q, l, (λxA.M)] R̂ [r, j, (λxA.N)]

!∆,∆′ B [q, l,M ] R [r, j,N ] !∆,∆′′ B [q, i, L] R [r,m, P ]

!∆,∆′,∆′′ B [q, l ] i,ML] R̂ [r, j ]m,NP ]

!∆,∆′ B [q, l,M ] R [r, j,N ] !∆,∆′′ B [q, i, L] R [r,m, P ]

!∆,∆′,∆′′ B [q, l ] i,M ⊗ L] R̂ [q, j ]m,N ⊗ P ]

!∆,∆′ B [q, l,M ] R [r, j,N ]

!∆,∆′ B [q, l, inl M ] R̂ [r, j, inl N ]

!∆,∆′ B [q, l,M ] R [r, j,N ]

!∆,∆′ B [q, l, inr M ] R̂ [r, j, inr N ]

Figure 7 Compatible Refinement Rules – Selection.

the same schema. The basic idea is to make use of Howe’s method [19, 26], which requires
to start from an initial relation R, define a precongruence candidate RH , a precongruence
relation by construction, and then to show the coincidence of that relation with the initial
relation.

I Definition 13. Let R be a typed relation on quantum closures. Its compatible refinement
R̂ is defined by some natural rules, a selection of which is in Figure 7. A relation R is a
precongruence iff it contains its own compatible refinement, that is R̂ ⊆ R. Let a congruence
be an equivalence relation that is a precongruence.

Let R be a typed relation on quantum closures. The typed relation RH is defined by
the rules in Figure 8. Note that if R is reflexive then R ⊆ RH , and RH is a precongruence.
Therefore, in order to show that R is a precongruence (or congruence if R is also symmetric),
it suffices to establish RH ⊆ R because we then have the coincidence of R with RH . In
order to show (∼s)H ⊆ ∼s, we need the following two technical lemmas.

I Lemma 14. If ∅B [q, l,M ] �H [r, j,N ] then [[[q, l,M ]]] (�H)† [[[r, j,N ]]]. J

I Lemma 15. If ∅B[q, l, V ] �H [r, j,W ] then we have that [q, l, V ] a−→ µ implies [r, j,W ] a−→ ν

and µ (�H)† ν. J

Consequently, we can establish the coincidence of � with �H , from which it is easy to show
that ∼s is a congruence. Similar arguments apply to ∼d.

I Theorem 16. Both ∼s and ∼d are included in '. J

4 Completeness of Distribution-Based Bisimilarity

In this section we show that distribution-based bisimilarity is complete for linear contextual
equivalence. The basic idea is to first characterise bisimilarity by a very simple testing
framework. Let T be the set of tests of the two forms: ω and a ·t, where ω is used to indicate
success and a ranges over the set of all possible labels in the transition rules in Figure 4. In
other words, the testing language is given by the grammar: t ::= ω | a · t.

Below we define the function Pr that calculates the probability of passing a test for a
distribution of states in a reactive pLTS.

Pr(µ, ω) = |µ|
Pr(µ, a · t) = Pr(ρ, t) where µ a−→ ρ

CONCUR’15
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∆, x : AB [q, l,M ] RH [r, j,N ] ∆B [r, j, λxA.N ] R [p, i, L]

∆B [q, l, λxA.M ] RH [p, i, L]

!∆,∆′ B [q, l,M ] RH [r, j,N ]
!∆,∆′′ B [q, i, L] RH [r,m, P ]

!∆,∆′,∆′′ B [r, j ]m,NP ] R [s, n,Q]

!∆,∆′,∆′′ B [q, l ] i,ML] RH [s, n,Q]

!∆,∆′ B [q, l,M ] RH [r, j,N ]
!∆,∆′′ B [q, i, L] RH [r,m, P ]

!∆,∆′,∆′′ B [r, j ]m,N ⊗ P ] R [s, n,Q]

!∆,∆′,∆′′ B [q, l ] i,M ⊗ L] RH [s, n,Q]

!∆,∆′ B [q, l,M ] RH [r, j,N ] !∆,∆′ B [r, j, inl N ] R [p, i, L]

!∆,∆′ B [q, l, inl M ] RH [p, i, L]

!∆,∆′ B [q, l,M ] RH [r, j,N ] !∆,∆′ B [r, j, inr N ] R [p, i, L]

!∆,∆′ B [q, l, inr M ] RH [p, i, L]

Figure 8 Howe’s Construction Rules – Selection.

If µ is a point distribution s, we will write Pr(s, t) for Pr(µ, t). We define a testing
equivalence =T by letting µ =T ν iff ∀t ∈ T : Pr(µ, t) = Pr(ν, t). It turns out that the
tests in T are sufficient to characterise ∼d as far as reactive pLTSs are concerned.

I Theorem 17. Let µ and ν be two distributions in a reactive pLTS. Then µ ∼d ν if and
only if µ =T ν. J

Following [2], we turn each test into a corresponding context. That is, for a given test
t and a given type A, there exists a linear context CAt such that for all terms M of type
A, the success probability of t applied to any total quantum closure [q, l,M ] is exactly the
convergence probability of [q, l, CAt [M ]].

I Lemma 18. Let A be a type and t a test. There is a context CAt such that ∅BCAt (∅;A) : bit
and for every M with ∅BM : A, we have Pr([q, l,M ], t) = |[[[q, l, CAt [M ]]]]|, where [q, l,M ]
and [q, l, CAt [M ]] are quantum closures for any q and l. J

As a consequence of the previous lemma, we can show that the distribution-based
bisimilarity ∼d is complete with respect to the linear contextual equivalence '.

I Theorem 19 (Full Abstraction). ' coincides with ∼d. J

5 Concluding Remarks

We have presented two notions of bisimilarity for reasoning about equivalence of higher-order
quantum programs in linear contexts, based on an appropriate labelled transition system for
specifying the operational behaviour of programs. Both bisimilarities are sound with respect
to the linear contextual equivalence, but only the distribution-based one turns out to be
complete. Since linear resources are widely used in quantum computation, we believe that
linear contextual equivalence will be a useful notion of behavioural equivalence for quantum
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programs. The coinductive proof techniques developed in the current work can help to reason
about quantum programs.

In the future, it would be interesting to seek a denotational model fully abstract with
respect to the linear contextual equivalence. As recently shown in [35], Fock spaces can be
useful to interpret quantum computation and they are close to the categorical semantics
studied in [24], so it seems promising to start from there.
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Abstract
Several quantum process algebras have been proposed and successfully applied in verification of
quantum cryptographic protocols. All of the bisimulations proposed so far for quantum processes
in these process algebras are state-based, implying that they only compare individual quantum
states, but not a combination of them. This paper remedies this problem by introducing a novel
notion of distribution-based bisimulation for quantum processes. We further propose an approx-
imate version of this bisimulation that enables us to prove more sophisticated security properties
of quantum protocols which cannot be verified using the previous bisimulations. In particular,
we prove that the quantum key distribution protocol BB84 is sound and (asymptotically) secure
against the intercept-resend attacks by showing that the BB84 protocol, when executed with
such an attacker concurrently, is approximately bisimilar to an ideal protocol, whose soundness
and security are obviously guaranteed, with at most an exponentially decreasing gap.
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1 Introduction

Quantum cryptography can provide unconditional security; it allows the realisation of
cryptographic tasks that are proven or conjectured to be impossible in classical cryptography.
The security of quantum cryptographic protocols is mathematically provable, based on the
principles of quantum mechanics, without imposing any restrictions on the computational
capacity of attackers. The proof is, however, often notoriously difficult, which is evidenced
by the 50 pages long security proof of the quantum key distribution protocol BB84 [20].
It is hard to imagine such an analysis being carried out for more sophisticated quantum
protocols. Thus, techniques for (semi-)automated verification of quantum protocols will
be indispensable, given that quantum communication systems are already commercially
available.

Process algebra has been successfully applied in the verification of classical (non-quantum)
cryptographic protocols [21, 25]. One key step for such a process algebraic approach is a
suitable notion of bisimulation which has appropriate distinguishing power and is preserved by
various process constructs. Intuitively, two systems are bisimilar if and only if each observable
action of one of them can be simulated by the other by performing the same observable action
(possibly preceded and/or followed by some unobservable internal actions), and furthermore,
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the resultant systems are again bisimilar. To verify a cryptographic protocol, we first give a
specification which is an ideal protocol with obvious correctness and security, and then show
that the given protocol is bisimilar (or approximately bisimilar with a small perturbation) to
the specification.

In the last 10 years, several quantum process algebras like CQP [13], QPAlg [16] and
qCCS [10] have been introduced, which provide an intuitive but rigorous way to model
and reason about quantum communication systems. In particular, they have been adopted
in verification of several popular quantum communication protocols such as Teleportation,
Superdense Coding, etc. Similar to the classical case, the notion of bisimulation is crucial in the
process algebra-based verification of quantum protocols. Actually, several different versions of
bisimulation have been proposed for quantum processes in the recent literature [19, 27, 11, 5, 6].
A key feature of all of them is that they are state-based in the sense that they only compare
individual configurations but not a combination of them. More explicitly, they are defined to
be relations over configurations which are pairs of a quantum process and a density operator
describing the state of environment quantum systems. However, when distributions of
configurations are considered (which is inevitable for protocols where randomness is employed
or quantum measurement is involved), state-based bisimulations are too discriminative
– they distinguish some distributions which will never be distinguished by any outside
observers, thereby providing the potential attacker of a cryptographic protocol with unrealistic
power. As an extreme example, a state-based bisimulation distinguishes the distribution
p〈nil, ρ〉+ (1− p)〈nil, σ〉 from the single configuration 〈nil, pρ+ (1− p)σ〉 if ρ 6= σ, where
nil is the dead process incapable of performing any action.

In this paper, we propose a novel bisimulation for quantum processes which is defined
directly on distributions of quantum configurations. Compared with existing bisimulations
in the literature, our definition is strictly coarser (in particular, equates the two distributions
presented above) and takes into account the combination of accompanied quantum states.
We further define a pseudo-metric to characterise the extent to which two quantum processes
are bisimilar. Note that we only consider quantum processes written in qCCS, but the main
results can be generalised to other quantum process algebras like CQP and QPAlg easily.

To illustrate the utility of distribution-based bisimulation and the pseudo-metric in
verification of quantum cryptographic protocols, we analyse the soundness and security of
the well-known BB84 quantum key distribution protocol [4]. For the soundness, we show
that when executed alone (without the presence of an attacker), BB84 is bisimilar to an
ideal protocol which always returns a uniformly distributed (conditioning on a given key
size) key. For the security analysis, we prove that when BB84 is executed concurrently with
an intercept-resend attacker, the whole system is approximately bisimilar, with at most an
exponentially decreasing gap, to an ideal protocol which never reports failure or information
leakage. To the best of our knowledge, this is the first time (a weak notion of) security of
BB84 is formally described and verified in the quantum process algebra approach.

Related works. The problem of existing bisimulations, as pointed out in the third
paragraph of this section, was also noted by Kubota et al. [17]. To deal with it, they
adopted two different semantics for quantum measurements. When a measurement induces
a probability distribution in which all configurations have the same observable actions, it
is represented semantically as a super-operator obtained by discarding the measurement
outcome (thus no probabilistic branching is produced, and all post-measurement quantum
states are merged). Otherwise, the measurement has the same semantics as in the original
qCCS. This treatment solves the problem when probabilistic behaviours are only induced by
quantum measurements. However, it does not work when probabilistic choice is included
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in the syntax level, as we do in describing BB84 protocol in this paper. Furthermore, it
brings difficulty in deciding the right semantics of a quantum process where a measurement
is involved, as determining if the observable actions of the post-measurement configurations
are all the same might not be easy; sometimes it even depends on the later input from the
environment. In this paper, we solve this problem by revising the definition of bisimulation,
instead of the definition of semantics.

In the same paper [17], Kubota et al. applied qCCS (with the semantic modification
mentioned above) to show the security of BB84. They proved that BB84 is bisimilar to an
EDP-based protocol, following the proof of Shor and Preskill [26]. However, this should
not be regarded as a complete security proof, as it relies on the security of the EDP-based
protocol. In contrast, our approach shows the security of BB84 directly. Note that for this
purpose, a notion of approximate bisimulation, which was not presented in [17], is necessary,
as BB84 is secure only in the sense that the eavesdropper’s information about the secure key
obtained by the legitimate parties is arbitrarily small (but still can be strictly positive) when
the number of qubits transmitted (called the security parameter) goes to infinity.

Software tools based on the quantum process algebra CQP have been developed in [2]
and [3] to check the equivalence between quantum sequential programs as well as concurrent
protocols. These tools were applied to verify the correctness of protocols like Teleportation,
Bit Flip Error Correction Code, and Quantum Secret Sharing. However, verification of
security properties in cryptographic protocols such as BB84 has not been reported yet.

Besides the process algebra approach, model-checking is another promising approach
for verification of quantum cryptographic protocols. For example, by observing the fact
that the quantum states appearing in BB84, when only intercept-resend eavesdroppers are
considered, are all the so-called stabiliser states which can be efficiently encoded in a classical
way, Nagarajan et al. [22] analysed the security of BB84 by using the probabilistic model
checker PRISM [18].

2 Preliminaries

In this section we review the model of probabilistic labelled transition systems (pLTSs) and
the notion of lifted relations. Later on we will interpret the behaviour of quantum processes
in terms of pLTSs.

2.1 Probabilistic labelled transition systems

A (finite-support) probability distribution over a set S is a function µ : S → [0, 1] with
µ(s) > 0 for finitely many s ∈ S and

∑
s∈S µ(s) = 1; the support of such a µ is the set

dµe = { s ∈ S | µ(s) > 0 }. The point distribution s assigns probability 1 to s and 0 to
all other elements of S, so that dse = {s}. We use D(S) to denote the set of probability
distributions over S, ranged over by µ, ν etc. If

∑
i∈I pi = 1 for some collection of pi ≥ 0,

and µi ∈ D(S), then
∑
i∈I pi · µi ∈ D(S) is a combined probability distribution with

(
∑
i∈I pi · µi)(s) =

∑
i∈I pi · µi(s). We always assume the index set I to be finite.

I Definition 1. A probabilistic labelled transition system (pLTS) is a triple 〈S,Act,−→〉,
where S is a set of states, Act is a set of transition labels with a special element τ included,
and the transition relation −→ is a subset of S × Act×D(S).

CONCUR’15
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2.2 Lifting relations
In a pLTS actions are only performed by states, in that they are given by relations from
states to distributions. But in general we allow distributions over states to perform an action.
For this purpose, we lift these relations to distributions [7, 6].

I Definition 2 (Lifting). Let R ⊆ S ×D(S) be a relation. The lifted relation, denoted by R
again for simplicity, is the smallest relation R ⊆ D(S)×D(S) that satisfies
1. sRν implies sRν, and
2. (Linearity) µiRνi for i ∈ I implies (

∑
i∈I pi · µi)R(

∑
i∈I pi · νi) for any pi ∈ [0, 1] with∑

i∈I pi = 1.

We apply this operation to the relations α−→ in a pLTS for α ∈ Act. Thus as source of a
relation α−→ we also allow distributions. But s α−→ µ is more general than s α−→ µ, because
if s α−→ µ then there is a collection of distributions µi and probabilities pi such that s α−→ µi
for each i ∈ I and µ =

∑
i∈I pi · µi with

∑
i∈I pi = 1; that is, we allow different transitions

to be combined together, provided that they have the same source s and the same label α.
Sometimes we also need to lift a relation on states, say a state-based bisimulation, to

distributions. This can be done by the following two steps. Let R ⊆ S × S be such
a relation. First, it induces a relation R̂ ⊆ S × D(S) between states and distributions:
R̂ := {(s, t) | sRt}. Then we can use Definition 2 to lift R̂ to distributions. Note that when
R is an equivalence relation over S, the lifted relation over D(S) coincides with the lifting
defined in [15].

In Definition 2, linearity tells us how to compare two linear combinations of distributions.
Sometimes we need a dual notion of decomposition. Intuitively, if a relation R is left-
decomposable and µRν, then for any decomposition of µ there exists some corresponding
decomposition of ν.

I Definition 3 (Left-decomposable). A binary relation over distributions, R ⊆ D(S)×D(S),
is called left-decomposable if (

∑
i∈I pi · µi)Rν implies that ν can be written as (

∑
i∈I pi · νi)

such that µiRνi for every i ∈ I.

The next lemma shows that any lifted relation is left-decomposable.

I Lemma 4 ([6]). For any R ⊆ S ×D(S) or S × S, the lifted relation over distributions is
left-decomposable.

With the help of lifted relations, we are now able to define various (weak) transitions
between distributions for a pLTS.

I Definition 5. Given a pLTS 〈S,Act,−→〉, we define the following transitions over distri-
butions:
1. τ̂−→. Let s τ̂−→ µ if either s τ−→ µ or µ = s, and lift it to distributions;
2. α̂−→ for α 6= τ . Let s α̂−→ µ if s α−→ µ, and lift it to distributions;
3. τ̂=⇒. Let τ̂=⇒ = ( τ̂−→)∗ be the reflexive and transitive closure of τ̂−→;
4. α̂=⇒ for α 6= τ . Let α̂=⇒ = τ̂=⇒ α̂−→ τ̂=⇒. For point distributions, we often write s α̂=⇒ ν

instead of s
α̂=⇒ ν.

Note that here α̂=⇒ is not a lifted transition. However, the next lemma shows that it is
still both linear and left-decomposable.

I Lemma 6 ([6]). The transition relations α̂=⇒ are both linear and left-decomposable.
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3 qCCS: Syntax and Semantics

In this section, we review the syntax and semantics of qCCS, a quantum extension of
value-passing CCS introduced in [10, 27], and a notion of state-based bisimulation for qCCS
processes presented in [6]. We assume the readers are familiar with the basic notions in
quantum information theory; for those who are not, please refer to [23].

3.1 Syntax
We assume three types of data in qCCS: Bool for booleans, real numbers Real for classical
data, and qubits Qbt for quantum data. Let cVar , ranged over by x, y, . . . , be the set of
classical variables, and qVar , ranged over by q, r, . . . , the set of quantum variables. It is
assumed that cVar and qVar are both countably infinite. We assume a set Exp, which
includes cVar as a subset and is ranged over by e, e′, . . . , of classical expressions over Real,
and a set of boolean-valued expressions BExp, ranged over by b, b′, . . . , with the usual set of
boolean operators tt, ff, ¬, ∧, ∨, and →. In particular, we let e ./ e′ be a boolean expression
for any e, e′ ∈ Exp and ./ ∈ {>,<,≥,≤,=}. We further assume that only classical variables
can occur free in data expressions and boolean expressions. Let cChan be the set of classical
channel names, ranged over by c, d, . . . , and qChan the set of quantum channel names, ranged
over by c, d, . . . . Let Chan = cChan∪qChan. A relabeling function f is a one-to-one function
from Chan to Chan such that f(cChan) ⊆ cChan and f(qChan) ⊆ qChan.

We often abbreviate the indexed set {q1, . . . , qn} to q̃ when q1, . . . , qn are distinct quantum
variables and the dimension n is understood. Sometimes we also use q̃ to denote the string
q1 . . . qn. We assume a set of process constant schemes, ranged over by A,B, . . . . Assigned to
each process constant scheme A there are two non-negative integers arc(A) and arq(A). If x̃
is a tuple of classical variables with |x̃| = arc(A), and q̃ a tuple of distinct quantum variables
with |q̃| = arq(A), then A(x̃, q̃) is called a process constant. When arc(A) = arq(A) = 0, we
also denote by A the (unique) process constant produced by A.

The syntax of qCCS terms can be given by the Backus-Naur form as

t ::= nil | A(ẽ, q̃) | α.t | t+ t | t‖t | t\L | t[f ] | if b then t

α ::= τ | c?x | c!e | c?q | c!q | E [q̃] | M [q̃;x]

where c ∈ cChan, x ∈ cVar , c ∈ qChan, q ∈ qVar , q̃ ⊆ qVar , e ∈ Exp, ẽ ⊆ Exp, τ is the
silent action, A is a process constant scheme, f is a relabeling function, L ⊆ Chan, b ∈ BExp,
E and M are respectively a super-operator and a quantum measurement applying on the
Hilbert space associated with the systems q̃.

To exclude quantum processes which are not physically implementable, we also require
q 6∈ qv(t) in c!q.t and qv(t) ∩ qv(u) = ∅ in t‖u, where for a process term t, qv(t) is the
set of its free quantum variables which are not bound by quantum input c?q. The notion
of free classical variables in quantum processes can be defined in the usual way with the
only modification that the quantum measurement prefix M [q̃;x] has binding power on x. A
quantum process term t is closed if it contains no free classical variables, i.e., fv(t) = ∅. We
let T , ranged over by t, u, · · · , be the set of all qCCS terms, and P , ranged over by P,Q, · · · ,
the set of closed terms. To complete the definition of qCCS syntax, we assume that for
each process constant A(x̃, q̃), there is a defining equation A(x̃, q̃) := t where fv(t) ⊆ x̃ and
qv(t) ⊆ q̃. Throughout the paper we implicitly assume the convention that process terms are
identified up to α-conversion.

The process constructs we give here are quite similar to those in classical CCS, and
they also have similar intuitive meanings: nil stands for a process which does not perform
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any action; c?x and c!e are respectively classical input and classical output, while c?q and
c!q are their quantum counterparts. E [q̃] denotes the action of performing the quantum
operation E on the qubits q̃ while M [q̃;x] measures the qubits q̃ according to M and stores
the measurement outcome into the classical variable x. + models nondeterministic choice:
t + u behaves like either t or u depending on the choice of the environment. ‖ denotes
the usual parallel composition. The operators \L and [f ] model restriction and relabeling,
respectively: t\L behaves like t but any action through the channels in L is forbidden, and
t[f ] behaves like t where each channel name is replaced by its image under the relabeling
function f . Finally, if b then t is the standard conditional choice where t can be executed
only if b evaluates to tt.

An evaluation ψ is a function from cVar to Real; it can be extended in an obvious way
to functions from Exp to Real and from BExp to {tt,ff}, and finally, from T to P. For
simplicity, we still use ψ to denote these extensions. Let ψ{v/x} be the evaluation which
differs from ψ only in that it maps x to v.

3.2 Transitional semantics
For each quantum variable q ∈ qVar , we assume a 2-dimensional Hilbert space Hq to be the
state space of the q-system. For any V ⊆ qVar , we denote HV =

⊗
q∈V Hq. In particular,

H = HqVar is the state space of the whole environment consisting of all the quantum variables.
Note that H is a countably-infinite dimensional Hilbert space. For any V ⊆ qVar we denote
by V the complement set of V in qVar .

Suppose P is a closed quantum process. A pair of the form 〈P, ρ〉 is called a configuration,
where ρ ∈ D(H) is a density operator on H.1 The set of configurations is denoted by Con,
and ranged over by C,D, . . . . Let

Act = {τ} ∪ {c?v, c!v | c ∈ cChan, v ∈ Real} ∪ {c?r, c!r | c ∈ qChan, r ∈ qVar}.

For each α ∈ Act, we define the bound quantum variables qbv(α) of α as qbv(c?r) = {r} and
qbv(α) = ∅ if α is not a quantum input. The channel names used in action α is denoted by
cn(α); that is, cn(c?v) = cn(c!v) = {c}, cn(c?r) = cn(c!r) = {c}, and cn(τ) = ∅. We also
extend the relabelling function to Act in an obvious way. Then the transitional semantics
of qCCS can be given by a pLTS 〈Con,Act,−→〉, where −→ ⊆ Con × Act×D(Con) is the
smallest relation satisfying the inference rules depicted in Fig. 1. The symmetric forms for
rules Par, ComC , ComQ, and Sum are omitted. We abuse the notation slightly by writing
C α−→ D if C α−→ D. We also use the obvious extension of the function ‖ on configurations
to distributions. To be precise, if µ =

∑
i∈I pi〈Pi, ρi〉 then µ‖Q denotes the distribution∑

i∈I pi〈Pi‖Q, ρi〉. Similar extension applies to µ[f ] and µ\L.

3.3 State-based bisimulation
In this subsection, we recall the basic definitions and properties of the state-based bisimulation
introduced in [6]. Let C = 〈P, ρ〉 be a configuration and E a super-operator. We denote
qv(C) = qv(P ), env(C) = trqv(P )(ρ) being the quantum environment of process P in C, and
E(C) = 〈P, E(ρ)〉. Furthermore, for distribution µ =

∑
i piCi with pi > 0 for each i, we write

qv(µ) =
⋃
i qv(Ci), env(µ) =

∑
i pi · env(Ci), and E(µ) =

∑
i piE(Ci). For any V ⊆ qVar ,

denote by SO(HV ) the set of super-operators on HV .

1 As H is infinite dimensional, ρ should be understood as a density operator on some finite dimensional
subspace of H which contains Hqv(P ).
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Tau
〈τ.P, ρ〉 τ−→ 〈P, ρ〉

InpC
v ∈ Real

〈c?x.t, ρ〉 c?v−→ 〈t{v/x}, ρ〉

OutC
v = [[e]]

〈c!e.P, ρ〉 c!v−→ 〈P, ρ〉
InpQ

r 6∈ qv(c?q.P )

〈c?q.P, ρ〉 c?r−→ 〈P{r/q}, ρ〉

OutQ
〈c!q.P, ρ〉 c!q−→ 〈P, ρ〉

Oper
〈E[r̃].P, ρ〉 τ−→ 〈P, Er̃(ρ)〉

Meas
M =

∑
i∈I

λiE
i, pi = tr(Eir̃ρ) > 0

〈M [r̃; x].P, ρ〉 τ−→
∑

i∈I
pi〈P{λi/x}, Eir̃ρEir̃/pi〉

Par
〈P1, ρ〉

α−→ µ, qbv(α) ∩ qv(P2) = ∅

〈P1‖P2, ρ〉
α−→ µ‖P2

ComC
〈P1, ρ〉

c?v−→ 〈P ′
1, ρ〉, 〈P2, ρ〉

c!v−→ 〈P ′
2, ρ〉

〈P1‖P2, ρ〉
τ−→ 〈P ′

1‖P ′
2, ρ〉

ComQ
〈P1, ρ〉

c?r−→ 〈P ′
1, ρ〉, 〈P2, ρ〉

c!r−→ 〈P ′
2, ρ〉

〈P1‖P2, ρ〉
τ−→ 〈P ′

1‖P ′
2, ρ〉

Sum
〈P, ρ〉 α−→ µ

〈P + Q, ρ〉 α−→ µ
Rel

〈P, ρ〉 α−→ µ

〈P [f ], ρ〉
f(α)
−→ µ[f ]

Cho
〈P, ρ〉 α−→ µ, [[b]] = tt

〈if b then P, ρ〉 α−→ µ
Res

〈P, ρ〉 α−→ µ, cn(α) ∩ L = ∅

〈P\L, ρ〉 α−→ µ\L

Def
〈t{ṽ/x̃, r̃/q̃}, ρ〉 α−→ µ, A(x̃, q̃) := t, ṽ = [[ẽ]]

〈A(ẽ, r̃), ρ〉 α−→ µ

Figure 1 Transitional semantics of qCCS.

I Definition 7. A relation R ⊆ Con × Con is closed under super-operator application if
CRD implies E(C)RE(D) for all E ∈ SO(H

qv(C)∪qv(D)). More generally, a relation R ⊆
D(Con)×D(Con) is closed under super-operator application if µRν implies E(µ)RE(ν) for
all E ∈ SO(H

qv(µ)∪qv(ν)).

I Definition 8.

1. A symmetric relation R ⊆ Con × Con is called a state-based ground bisimulation if CRD
implies that
(i) qv(C) = qv(D), and env(C) = env(D),
(ii) whenever C α−→ µ, there exists ν such that D α̂=⇒ ν and µRν.

2. A relation R is a state-based bisimulation if it is a state-based ground bisimulation, and
is closed under super-operator application.

3. Two quantum configurations C and D are state-based bisimilar, denoted by C ≈s D, if
there exists a state-based bisimulation R such that CRD;

4. Two quantum process terms t and u are state-based bisimilar, denoted by t ≈s u, if for
any quantum state ρ ∈ D(H) and any evaluation ψ, 〈tψ, ρ〉 ≈s 〈uψ, ρ〉.

Note that in Clause 1.(ii) of the above definition, µRν means µ and ν are related by the
relation lifted from R. The following theorem is taken from [6].

I Theorem 9.
1. The bisimilarity relation ≈s is the largest state-based bisimulation on Con, and it is an

equivalence relation.
2. As a lifted relation on D(Con), ≈s is both linear and left-decomposable.
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4 Distribution-based bisimulation

Note that in [8], it has already been shown by examples that state-based bisimulation is
sometimes too discriminative for probabilistic automata. These examples certainly work for
quantum processes as well. Furthermore, as the following example indicates, the problem
becomes more serious in the quantum setting, as the accompanied quantum states can and
should be combined when simulating each other.

I Example 10. Let M = λ0|0〉〈0| + λ1|1〉〈1| be a two-outcome measurement according
to the computational basis, and E a super-operator with the Kraus operators being |0〉〈0|
and |1〉〈1|. Let ρ be a density operator on H{q}, and C := 〈M [q;x].nil, |+〉q〈+| ⊗ ρ〉 and
D := 〈E [q].nil, |+〉q〈+| ⊗ ρ〉 be two configurations where |+〉 = (|0〉+ |1〉)/

√
2. Note that in

the process M [q;x].nil, the measurement outcome is never used (as x 6∈ fv(nil)), while the
effect of E [q] is exactly measuring the system q according toM , but ignoring the measurement
outcome. Thus we definitely would like to regard C and D as being bisimilar2.

However, we can show that C 6≈s D. Let C0 = 〈nil, |0〉q〈0| ⊗ ρ〉, C1 = 〈nil, |1〉q〈1| ⊗ ρ〉,
CI = 〈nil, Iq/2 ⊗ ρ〉, and µ = 1

2C0 + 1
2C1. Then obviously µ 6≈s CI , as otherwise by the

left-decompositivity of ≈s we must have both C0 ≈s CI and C1 ≈s CI , which is impossible.

Actually, the argument in Example 10 applies to any bisimulation which is state-based:
by Lemma 4, any bisimilation between distributions which is lifted from configurations is
left-decomposable, hence discriminating C and D. Therefore, to make these two obviously
indistinguishable configurations bisimilar, we have to define bisimulation relation directly on
distributions, rather than on configurations and then lift it to distributions.

For this purpose, we extend the distribution-based bisimulation introduced in [9] to our
quantum setting. A distribution µ is said to be transition consistent, if for any C ∈ dµe
and α 6= τ , C α̂=⇒ νC for some νC implies µ α̂=⇒ ν for some ν, i.e., all configurations in its
support have the same set of enabled visible actions (possibly after some invisible transitions).
Furthermore, a decomposition µ =

∑
i∈I pi · µi, pi > 0 for each i ∈ I, is a tc-decomposition

of µ if for each i ∈ I, µi is transition consistent.

I Definition 11.
1. A symmetric relation R ⊆ D(Con) × D(Con) is called a (distribution-based) ground

bisimulation if for any µ, ν ∈ D(Con), µRν implies that
(i) qv(µ) = qv(ν), and env(µ) = env(ν),
(ii) whenever µ α̂−→ µ′, there exists ν′ such that ν α̂=⇒ ν′ and µ′Rν′,
(iii) if µ is not transition consistent, and µ =

∑
i∈I pi · µi is a tc-decomposition, then

ν
τ̂=⇒
∑
i∈I pi · νi such that for each i, µiRνi.

2. A relation R is a (distribution-based) bisimulation if it is a ground bisimulation, and is
closed under super-operator application.

In contrast with Definition 8.1, the above definition has an additional requirement Clause
1.(iii). This clause is crucial for distribution-based bisimulation, as the transition µ α̂−→ µ′ in
Clause 1.(ii) is possible only when µ is transition consistent for α. That is, all configurations
in the support of µ can perform weak α-transition. For those actions for which µ is not

2 Note that C and D would be regarded as ‘semantically identical’ in [17], instead of ‘(distribution-based)
bisimilar’ as we do in this paper, since the semantics of M [q;x] in this case is represented as E [q] by
definition.
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transition consistent, we must first split µ into transition consistent components, and then
compare them with the corresponding components of ν individually.

The bisimilarity ≈ for quantum configurations and for quantum process terms are defined
similarly as in the state-based case. The next theorem collects some useful properties of the
distribution-based bisimilarity.

I Theorem 12.
1. The bisimilarity relation ≈ is the largest bisimulation on D(Con), and it is an equivalence

relation.
2. ≈ is linear, but not left-decomposable.

A direct consequence of Theorem 12 is a deciding algorithm for the bisimilarity between
recursion-free quantum configurations, which is sufficient for most practical quantum crypto-
graphic protocols. First, as pointed out in [12], any recursion-free quantum processes can be
modified to be free of quantum input, so that the bisimilarity between them can be verified
by only examining the ground bisimulation. Second, it has been proved in [14, Lemma 1]
that every linear bisimulation R corresponds to a matrix E, so that two distributions µ and
ν are related by R if and only if (µ− ν)E = 0, where distributions are seen as vectors. As
our ground bisimulation for quantum processes is indeed linear, the algorithm presented
in [14], with slight changes, can be used to decide it. For the sake of space limit, we omit the
details here, and refer interested readers to [14].

To conclude this section, we would like to show that our distribution-based bisimulation
is weaker than its state-based counterpart presented in Definition 8.

I Theorem 13. Let µ, ν ∈ D(Con). Then µ ≈s ν implies µ ≈ ν, but µ ≈ ν does not
necessarily imply µ ≈s ν. In particular, we have in Example 10 that µ ≈ CI and C ≈ D.

5 Bisimulation metric

In the previous section, only exact bisimulation is presented where two quantum processes
are either bisimilar or non-bisimilar. Obviously, such a bisimulation cannot capture the
idea that a quantum process approximately implements its specification. To measure the
behavioural distance between processes, the notion of approximate bisimulation and the
bisimulation distance for qCCS processes were introduced in [27]. This section is devoted to
extending this approximate bisimulation to distribution-based case. Note that approximate
bisimulation has been investigated in probabilistic process algebra and probabilistic labelled
transition systems in the context of security analysis [24, 1].

Recall that the trace distance of ρ, σ ∈ D(H) is defined to be d(ρ, σ) = 1
2‖ρ− σ‖tr where

‖ · ‖tr denotes the trace norm. We have the following definition.

I Definition 14. Given λ ∈ [0, 1], a symmetric relation R over D(Con) which is closed under
super-operator application is a λ-bisimulation if for any µRν, we have
1. qv(µ) = qv(ν), and d(env(µ), env(ν)) ≤ λ,
2. whenever µ α̂−→ µ′, there exists ν′ such that ν α̂=⇒ ν′ and µ′Rν′,
3. if µ is not transition consistent, and µ =

∑
i∈I pi · µi is a tc-decomposition, then

ν
τ̂=⇒
∑
i∈I pi · νi such that

∑
i:µiRνi pi ≥ 1− λ.

By induction, we can show easily that µ α̂−→ µ′ can be replaced by µ α̂=⇒ µ′ in Clause (2).
The approximate bisimilarity λ

≈ for quantum configurations and for quantum process terms
are defined similarly as in the exact bisimulation case. Furthermore, we define the bisimulation
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distance between distributions as db(µ, ν) = inf{λ ≥ 0 | µ λ
≈ ν} and the bisimulation distance

between process terms as db(t, u) = inf{λ ≥ 0 | ∀ψ and ρ ∈ D(H), 〈tψ, ρ〉 λ≈ 〈uψ, ρ〉}. Here
we assume that inf ∅ = 1. The next theorem shows that db is indeed a pseudo-metric with ≈
being its kernel.

I Theorem 15.
1. The bisimulation distance db is a pseudo-metric on D(Con).
2. For any µ, ν ∈ D(Con), µ ≈ ν if and only if db(µ, ν) = 0.

6 An illustrative example

For the ease of notations, we extend the syntax of qCCS a little bit by allowing probabilistic
choice in the syntax level3; that is, we assume

∑
i∈I piti ∈ T whenever ti ∈ T and pi ≥ 0

for each i ∈ I with
∑
i∈I pi = 1. We further extend the transitional semantics in Fig. 1 by

adding the following transition rule:

Dist
〈
∑
i∈I piti, ρ〉

τ−→
∑
i∈I pi〈ti, ρ〉

.

We also introduce the syntax sugar if b then t else u to be the abbreviation of if b then t +
if ¬b then u.

BB84, the first quantum key distribution protocol developed by Bennett and Brassard in
1984 [4], provides a provably secure way to create a private key between two parties, say,
Alice and Bob, with the help of a classical authenticated channel and a quantum insecure
channel between them. Its security relies on the basic property of quantum mechanics that
information gain about a quantum state is only possible at the expense of changing the
state, if all the possible states are not orthogonal. The basic BB84 protocol with security
parameter n goes as follows:
(1) Alice randomly generates two strings B̃a and K̃a of bits, each with size n.
(2) Alice prepares a string of qubits q̃, with size n, such that the ith qubit of q̃ is |xy〉

where x and y are the ith bits of B̃a and K̃a, respectively, and |00〉 = |0〉, |01〉 = |1〉,
|10〉 = |+〉, and |11〉 = |−〉. Here |+〉 := (|0〉+ |1〉)/

√
2 and |−〉 := (|0〉 − |1〉)/

√
2.

(3) Alice sends the qubit string q̃ to Bob.
(4) Bob randomly generates a string of bits B̃b with size n.
(5) Bob measures each qubit received from Alice according to a basis determined by the

bits he generated: if the ith bit of B̃b is k then he measures with {|k0〉, |k1〉}, k = 0, 1.
Let the measurement results be K̃b, again a string of bits with size n.

(6) Bob sends his measurement bases B̃b back to Alice, and upon receiving the information,
Alice sends her bases B̃a to Bob.

(7) Alice and Bob determine at which positions the bit strings B̃a and B̃b are equal. They
discard the bits in K̃a and K̃b where the corresponding bits of B̃a and B̃b do not match.

After the execution of the basic BB84 protocol above, the remaining bits of K̃a and K̃b,
denoted by K̃ ′a and K̃ ′b respectively, should be the same, provided that the channels used are
perfect, and no eavesdropper exists.

To detect a potential eavesdropper Eve, Alice and Bob proceed as follows:

3 Note that this extension will not change the expressive power of qCCS and all the results obtained in
this paper, as probabilistic choices can be simulated by quantum measurements preceded by appropriate
quantum state preparation.
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(8) Alice randomly chooses d|K̃ ′a|/2e bits of K̃ ′a, denoted by K̃ ′′a , and sends to Bob K̃ ′′a and
its indexes in K̃ ′a.

(9) Upon receiving the information from Alice, Bob sends back to Alice his substring K̃ ′′b
of K̃ ′b at the indexes received from Alice.

(10) Alice and Bob check if the strings K̃ ′′a and K̃ ′′b are equal. If yes, then the remaining
substring K̃f

a (resp. K̃f
b ) of K̃ ′a (resp. K̃ ′b) by deleting K̃ ′′a (resp. K̃ ′′b ) is the secure key

shared by Alice (reps. Bob). Otherwise, an eavesdropper (or too much noise in the
channels) is detected, and the protocol halts without generating any secure keys.

For simplicity, we omit the processes of information reconciliation and privacy amplifica-
tion. Now we describe the basic BB84 protocol [Steps (1)–(7)] in qCCS as follows.

Alice(n) :=
∑

B̃a,K̃a∈{0,1}n

1
22nSetK̃a [q̃].HB̃a

[q̃].A2B!q̃.WaitA(B̃a, K̃a)

WaitA(B̃a, K̃a) := b2a?B̃b.a2b!B̃a.keya!cmp(K̃a, B̃a, B̃b).nil

Bob(n) := A2B?q̃.
∑

B̃b∈{0,1}n

1
2nMB̃b

[q̃; K̃b].Set0̃[q̃].b2a!B̃b.WaitB(B̃b, K̃b)

WaitB(B̃b, K̃b) := a2b?B̃a.keyb!cmp(K̃b, B̃a, B̃b).nil
BB84 (n) := Alice(n)‖Bob(n)

where SetK̃a [q̃] sets the ith qubit of q̃ to the state |K̃a(i)〉, HB̃a
[q̃] applies H or does nothing

on the ith qubit of q̃ depending on whether the ith bit of B̃a is 1 or 0, and MB̃b
[q̃; K̃b] is the

quantum measurement on q̃ according to the bases determined by B̃b, i.e., for each 1 ≤ i ≤ n,
it measures qi with respect to the basis {|0〉, |1〉} (resp. {|+〉, |−〉}) if B̃b(i) = 0 (resp. 1),
and stores the result into K̃b(i). The function cmp takes a triple of bit-strings x̃, ỹ, z̃ with
the same size as inputs, and returns the substring of x̃ where the corresponding bits of ỹ
and z̃ match. When ỹ and z̃ match nowhere, we let cmp(x̃, ỹ, z̃) = ε, the empty string. We
add the operation Set0̃[q̃] in Bob(n) for technical reasons: it makes the ideal specifications
defined below simple.

To show the correctness of basic BB84 protocol, we first put BB84 (n) in a test environment
defined as follows

Test := keya?ka.keyb?kb.if ka = kb then key!ka.nil else fail!0.nil
BB84test(n) := (BB84 (n)‖Test)\{a2b, b2a,A2B, keya, keyb}

For the ideal specification of BB84test(n), we would like it to satisfy the following three
conditions: (1) it is correct, in the sense that it will never perform fail!0; (2) the generated
key x̃ with |x̃| = i is uniformly distributed for each i ≤ n. That is, for any x̃ with |x̃| = i,
Pr(x̃ is the key obtained | key-length = i) = 1/2i; (3) The length of the obtained key follows
the unbiased binomial distribution. That is, for each i ≤ n, Pr(key-length = i) =

(
n
i

)
/2n.

Thus we can let

BB84spec(n) :=
n∑
i=0

∑
x̃∈{0,1}i

(
n
i

)
2n+iSet0̃[q̃].key!x̃.nil.

It is tedious but routine to check that BB84test(n) ≈ BB84 spec(n) for any n.
Now we proceed to describe the protocol that detects potential eavesdroppers [Steps
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(1)–(10)]. Let

Alice′(n) := (Alice(n)‖keya?K̃ ′a.
|x̃|=k∑

x̃⊆{1,...,m}

1(
m
k

)a2b!x̃.a2b!SubStr(K̃ ′a, x̃).b2a?K̃ ′′b .

(if SubStr(K̃ ′a, x̃) = K̃ ′′b then key′a!RemStr(K̃ ′a, x̃).nil))\{keya}
Bob′(n) := (Bob(n)‖keyb?K̃ ′b.a2b?x̃.a2b?K̃ ′′a .b2a!SubStr(K̃ ′b, x̃).

(if SubStr(K̃ ′b, x̃) = K̃ ′′a then key′b!RemStr(K̃ ′b, x̃).nil))\{keyb}
BB84 ′(n) := Alice′(n)‖Bob′(n)

where m = |K̃ ′a| and k = dm/2e, the function SubStr(K̃ ′a, x̃) returns the substring of K̃ ′a at
the indexes specified by x̃, and RemStr(K̃ ′a, x̃) returns the remaining substring of K̃ ′a by
deleting SubStr(K̃ ′a, x̃).

To get a taste of the security of BB84 protocol, we consider a special case where Eve’s
strategy is to simply measure the qubits sent by Alice, according to randomly guessed bases,
to get the keys and resend these qubits to Bob. That is, we define

Eve(n) := A2E?q̃.
∑

B̃e∈{0,1}n

1
2nMB̃e

[q̃; K̃e].key′e!K̃e.E2B!q̃.nil

Again, we put BB84 ′(n) in a test environment, but now the environment includes the
presence of Eve:

Test′ := key′a?x̃.key′b?ỹ.key′e?z̃.(if x̃ 6= ỹ then fail!0.nil
else (if x̃ = z̃ then hacked!0.nil))

BB84 ′test(n) := (Alice′(n)[fa]‖Bob′(n)[fb]‖Eve(n)‖Test′)\L

where L = {a2b, b2a,A2E,E2B, key′a, key′b, key′e}, fa(A2B) = A2E, and fb(A2B) = E2B.
Now, to show the security of BB84,4 it suffices to prove the following property:

BB84 ′test(n) c
n

≈ Set0̃[q̃].nil (1)

where c = 1/2 +
√

3/4 < 1. Thus db(BB84 ′test(n), Set0̃[q̃].nil) ≤ cn. That is, the testing
system is just like a protocol which only sets the quantum qubits q̃ to |0̃〉〈0̃|. As the process
Set0̃[q̃].nil never performs fail!0 or hacked!0, this indicates that the insecurity degree of BB84
is at most cn, which decreases exponentially to 0 when n tends to infinity.

To show Eq.(1), take arbitrarily ρ ∈ D(H), and let C = 〈BB84 ′test(n), ρ〉 and D =
〈Set0̃[q̃].nil, ρ〉. Basically, we only need to compute the total probability of C eventually
performing fail!0 or hacked!0. The reason is, they are the only visible actions of C (D does
not perform any visible action at all), and also the only actions which contribute to possible
transition inconsistency of distributions obtained from C. If the total probability of their
appearance is upper bounded by cn, then C and D are cn-bisimilar.

For each qubit sent by Alice, Eve chooses the wrong basis with probability 1/2, and in
this case if Bob measures this qubit according to the correct basis he will get an incorrect
result with probability 1/2. Thus for each qubit that Bob guesses the correct basis, the

4 Here we adopt a weak notion of security: by secure we mean the eavesdropper ends up with a false key
string. A stronger and more practical notion of security should take into account the mutual information
between the keys held by the legitimate parties and the eavesdropper. We leave the analysis of BB84
with respect to this notion of security for future work.
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probability that Alice and Bob get different key bits is 1/4. Furthermore, for each i-length
raw key generated by the basic BB84, Alice and Bob will compare i/2 key bits during the
eavesdropper-detection phase. The probability that they fail to detect the eavesdropper is
then (3/4)i/2. Note that only when the eavesdropper is not detected, the protocol proceeds.
Hence the probability of observing fail!0 or hacked!0 is upper bounded by

n∑
i=0

∑
x̃∈{0,1}i

(
n
i

)
2n+i (3/4)i/2 = 1

2n
n∑
i=0

(
n

i

)
(3/4)i/2 = cn.

7 Conclusion and Future work

In this paper, we have proposed a novel notion of distribution-based bisimulation for quantum
processes in qCCS. In contrast with previous bisimulations introduced in the literature, our
definition is reasonably weaker in that it equates some intuitively bisimilar processes which
are not bisimilar according to the previous definitions, thus is more useful in applications.
We further defined a bisimulation distance to characterise the extent to which two processes
are bisimilar. As an application, we applied the notions of distribution-based bisimulation
and bisimulation distance to show that the quantum key distribution protocol BB84 is sound
and secure against the intercept-resend attacker. To the best of our knowledge, this is the
first time in the literature that the (asymptotic) security of BB84 has been analysed in the
framework of a quantum process algebra.

There are still many questions remaining for further study. Firstly, as pointed out in
Section 6, the notion of security we adopted for the analysis of BB84 is a rather weak one. In
quantum information field, people normally use the mutual information between the states
held by legitimate parties and the eavesdropper to quantify the leakage of secure information.
To perform a security analysis of BB84 in terms of this stronger notion of security and against
more complex model of attack beyond the intercept-resend one studied in the current paper
is one of the future directions we are pursuing.

Secondly, bisimilarity checking is usually a very tedious and routine task which can barely
be done by hand. This issue becomes more serious when the number of parties involved and
the round of communications increase. To deal with this problem, making the process algebra
approach more applicable for the analysis of general quantum cryptographic protocols, we
are going to develop a software tool for automated bisimilarity checking. In the theoretical
aspect, we will explore the possibility of extending symbolic bisimulation proposed in [12] to
distribution-based case, to decrease the computational complexity of determining bisimilarity.

Finally, as shown in [9], distribution-based bisimulation is not a congruence in general,
unless restricted to distributed schedulers. However, as argued by the authors of [9], non-
distributed schedulers, which are responsible for the incongruence, are actually very unrealistic
and do not appear in real-world applications. To show that our distribution-based bisimulation
is a congruence for qCCS processes under distributed schedulers and to study the implication
of distributed schedulers for quantum cryptographic protocols are also topics worthy of
further consideration.
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Abstract
Partial order reduction (POR) and net unfoldings are two alternative methods to tackle state-
space explosion caused by concurrency. In this paper, we propose the combination of both
approaches in an effort to combine their strengths. We first define, for an abstract execution
model, unfolding semantics parameterized over an arbitrary independence relation. Based on it,
our main contribution is a novel stateless POR algorithm that explores at most one execution
per Mazurkiewicz trace, and in general, can explore exponentially fewer, thus achieving a form of
super-optimality. Furthermore, our unfolding-based POR copes with non-terminating executions
and incorporates state caching. On benchmarks with busy-waits, among others, our experiments
show a dramatic reduction in the number of executions when compared to a state-of-the-art
DPOR.
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1 Introduction

Efficient exploration of the state space of a concurrent system is a fundamental problem in
automated verification. Concurrent actions often interleave in intractably many ways, quickly
populating the state space with many equivalent but unequal states. Existing approaches to
address this problem can essentially be classified as either partial-order reduction techniques
(PORs) or unfolding methods.

Conceptually, POR methods [19, 7, 6, 8, 21, 20, 2, 1] exploit the fact that executing
certain transitions can be postponed because their result is independent of the execution
sequence taken in their stead. They execute a provably-sufficient subset of transitions enabled
at every state, computed either statically [19, 7] or dynamically [6, 2]. The latter methods,
referred as dynamic PORs (DPORs), are often stateless (i.e., they only store one execution
in memory). By contrast, unfolding approaches [14, 5, 3, 10] model execution by partial
orders, bound together by a conflict relation. They construct finite, complete prefixes by a
saturation procedure, and cope with non-terminating executions using cutoff events [5, 3].

POR can employ highly sophisticated decision procedures to determine a sufficient subset
of the transitions to fire, and in most cases [7, 6, 8, 21, 20, 2, 1] the commutativity of
transitions is the enabling mechanism underlying the chosen method. Commutativity, or
independence, is thus a mechanism and not necessarily an irreplaceable component of a
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POR [19, 9].1 Conceptually, PORs that exploit commutativity establish an equivalence
relation on the sequential executions of the system and explore at least one representative of
each class, thus discarding equivalent executions. In this work we restrict our attention to
exclusively PORs that exploit commutativity.

Despite impressive advances in the field, both unfoldings and PORs have shortcomings.
We now give six of them. Current unfolding algorithms (1) need to solve an NP-complete
problem when adding events to the unfolding [14], which seriously limits the performance
of existing unfolders as the structure grows. They are also (2) inherently stateful, i.e., they
cannot selectively discard visited events from memory, quickly running out of it. PORs, on
the other hand, explore Mazurkiewicz traces [13], which (3) often outnumber the events in
the corresponding unfolding by an exponential factor (e.g., Fig. 2 (d) gives an unfolding
with 2n events and O(2n) traces). Furthermore, DPORs often (4) explore the same states
repeatedly [20], and combining them with stateful search, although achieved for non-optimal
DPOR [20, 21], is difficult due to the dynamic nature of DPOR [21]. More on this in
Example 1. The same holds when extending DPORs to (5) cope with non-terminating
executions (note that a solution to (4) does not necessarily solve (5)). Lastly, (6) existing
stateless PORs do not make full use of the available memory.

Either readily available solutions or promising directions to address these six problems
can be found in, respectively, the opposite approach. PORs inexpensively add events to the
current execution, contrary to unfoldings (1). They easily discard events from memory when
backtracking, which addresses (2). On the other hand, while PORs explore Mazurkiewicz
traces (maximal configurations), unfoldings explore events (local configurations), thus ad-
dressing (3). Explorations of repeated states and pruning of non-terminating executions is
elegantly achieved in unfoldings by means of cutoff events. This solves (4) and (5).

Some of these solutions indeed seem, at present, incompatible with each other. We do
not claim that the combination of POR and unfoldings immediately addresses the problems
above. However, since both unfoldings and PORs share many fundamental similarities,
tackling these problems in a unified framework is likely to shed light on them.

This paper lays out a DPOR algorithm on top of an unfolding structure. Our main result
is a novel stateless, optimal DPOR that explores every Mazurkiewicz trace at most once,
and often many fewer, owing to cutoff events. It also copes with non-terminating systems
and exploits all available RAM with a cache memory of events, speeding up revisiting events.
This provides a solution to (4), (5), (6), and a partial solution to (3). Our algorithm can
alternatively be viewed as a stateless unfolding exploration, partially addressing (1) and (2).

Our result reveals DPORs as algorithms exploring an object that has richer structure
than a plain directed graph. Specifically, unfoldings provide a solid notion of event across
multiple executions, and a clear notion of conflict. Our algorithm indirectly maps important
POR notions to concepts in unfolding theory.

I Example 1. We illustrate problems (3), (4), and (5), and explain how our DPOR deals with
them. The following code is the skeleton of a producer-consumer program. Two concurrent
producers write, resp., to buf1 and buf2. The consumer accesses the buffers in sequence.

while (1):
lock(m1)
if (buf1 < MAX): buf1++
unlock(m1)

while (1):
lock(m2)
if (buf2 < MAX): buf2++
unlock(m2)

1 For instance, all PORs based on persistent sets [7] are based on commutativity.
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while (1):
lock(m1)
if (buf1 > MIN): buf1--
unlock(m1)
// same for m2, buf2

Lock and unlock operations on both mutexes m1 and m2 create many Mazurkiewicz traces.
However, most of them have isomorphic suffixes, e.g., producing two items in buf1 and
consuming one reaches the same state as only producing one. After the common state, both
traces explore identical behaviours and only one needs to be explored. We use cutoff events,
inherited from unfolding theory [5, 3], to dynamically stop the first trace and continue only
with the second. This addresses (4) and (5), and partially deals with (3). Observe that
cutoff events are a form of semantic pruning, in contrast to the syntactic pruning introduced
by, e.g., bounding the depth of loops, a common technique for coping with non-terminating
executions in DPOR. With cutoffs, the exploration can build unreachability proofs, while
depth bounding renders DPOR incomplete, i.e., it limits DPOR to finding bugs.

Our first step is to formulate PORs and unfoldings in the same framework. PORs are
often presented for abstract execution models, while unfoldings have mostly been considered
for Petri nets, where the definition is entangled with the syntax of the net. We make a second
contribution here. We define, for a general execution model, event structure semantics [16]
parametric on a given independence relation.

Section 2 sets up basic notions and § 3 presents our parametric event-structure semantics.
In § 4 we introduce our DPOR,§ 5 improves it with cutoff detection and discusses event
caching. Experimental results are in § 6 and related work in § 7. We conclude in § 8. All
lemmas cited along the paper and proofs of all stated results can be found in the extended
version [17].

2 Execution Model and Partial Order Reductions

We set up notation and recall general ideas of POR. We consider an abstract model of
(concurrent) computation. A system is a tuple M ∶= ⟨Σ, T, s̃⟩ formed by a set Σ of global
states, a set T of transitions and some initial global state s̃ ∈ Σ. Each transition t∶Σ→ Σ in T
is a partial function accounting for how the occurrence of t transforms the state of M .

A transition t ∈ T is enabled at a state s if t(s) is defined. Such t can fire at s, producing
a new state s′ ∶= t(s). We let enabl(s) denote the set of transitions enabled at s. The
interleaving semantics of M is the directed, edge-labelled graph SM ∶= ⟨Σ,→, s̃⟩ where Σ are
the global states, s̃ is the initial state and → ⊆ Σ×T ×Σ contains a triple ⟨s, t, s′⟩, denoted by
s
tÐ→ s′, iff t is enabled at s and s′ = t(s). Given two states s, s′ ∈ Σ, and σ ∶= t1.t2 . . . tn ∈ T ∗

(t1 concatenated with t2, . . . until tn), we denote by s σÐ→ s′ the fact that there exist states
s1, . . . , sn−1 ∈ Σ such that s t1Ð→ s1, . . . , sn−1

tnÐ→ s′.
A run (or interleaving, or execution) of M is any sequence σ ∈ T ∗ such that s̃ σÐ→ s for

some s ∈ Σ. We denote by state(σ) the state s that σ reaches, and by runs(M) the set of
runs of M , also referred to as the interleaving space. A state s ∈ Σ is reachable if s = state(σ)
for some σ ∈ runs(M); it is a deadlock if enabl(s) = ∅, and in that case σ is called deadlocking.
We let reach(M) denote the set of reachable states in M . For the rest of the paper, we fix a
system M ∶= ⟨Σ, T, s̃⟩ and assume that reach(M) is finite.

The core idea behind POR2 is that certain transitions can be seen as commutative

2 To be completely correct we should say “POR that exploits the independence of transitions”.
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operators, i.e., changing their order of occurrence does not change the result. Given two
transitions t, t′ ∈ T and one state s ∈ Σ, we say that t, t′ commute at s iff

if t ∈ enabl(s) and s tÐ→ s′, then t′ ∈ enabl(s) iff t′ ∈ enabl(s′); and
if t, t′ ∈ enabl(s), then there is a state s′ such that s t.t′ÐÐ→ s′ and s t′.tÐÐ→ s′.

For instance, the lock operations on m1 and m2 (Example 1), commute on every state, as they
update different variables. Commutativity of transitions at states identifies an equivalence
relation on the set runs(M). Two runs σ and σ′ of the same length are equivalent, written
σ ≡ σ′, if they are the same sequence modulo swapping commutative transitions. Thus
equivalent runs reach the same state. POR methods explore a fragment of SM that contains
at least one run in the equivalence class of each run that reaches each deadlock state. This is
achieved by means of a so-called selective search [7]. Since employing commutativity can be
expensive, PORs often use independence relations, i.e., sound under-approximations of the
commutativity relation. In this work, partially to simplify presentation, we use unconditional
independence.

Formally, an unconditional independence relation on M is any symmetric and irreflexive
relation ◇ ⊆ T × T such that if t◇ t′, then t and t′ commute at every state s ∈ reach(M). If
t, t′ are not independent according to ◇, then they are dependent, denoted by t} t′.

Unconditional independence identifies an equivalence relation ≡◇ on the set runs(M).
Formally, ≡◇ is defined as the transitive closure of the relation ≡1

◇, which in turn is defined
as σ ≡1

◇ σ′ iff there is σ1, σ2 ∈ T ∗ such that σ = σ1.t.t
′.σ2, σ′ = σ1.t

′.t.σ2 and t◇ t′. From the
properties of ◇, one can immediately see that ≡◇ refines ≡, i.e., if σ ≡◇ σ′, then σ ≡ σ′.

Given a run σ ∈ runs(M), the equivalence class of ≡◇ to which σ belongs is called the
Mazurkiewicz trace of σ [13], denoted by T◇,σ. Each trace T◇,σ can equivalently be seen
as a labelled partial order D◇,σ, traditionally called the dependence graph (see [13] for a
formalization), satisfying that a run belongs to the trace iff it is a linearization of D◇,σ.

Sleep sets [7] are another method for state-space reduction. Unlike selective exploration,
they prune successors by looking at the past of the exploration, not the future.

3 Parametric Partial Order Semantics

An unfolding is, conceptually, a tree-like structure of partial orders. In this section, given an
independence relation ◇ (our parameter) and a system M , we define an unfolding semantics
UM,◇ with the following property: each constituent partial order of UM,◇ will correspond to
one dependence graph D◇,σ, for some σ ∈ runs(M). For the rest of this paper, let ◇ be an
arbitrary unconditional independence relation on M . We use prime event structures [16], a
non-sequential, event-based model of concurrency, to define the unfolding UM,◇ of M .

I Definition 2 (LES). Given a set A, an A-labelled event structure (A-LES, or LES in short)
is a tuple E ∶= ⟨E,<,#, h⟩ where E is a set of events, < ⊆ E ×E is a strict partial order on E,
called causality relation, h∶E → A labels every event with an element of A, and # ⊆ E ×E is
the symmetric, irreflexive conflict relation, satisfying

for all e ∈ E, {e′ ∈ E∶ e′ < e} is finite, and (1)
for all e, e′, e′′ ∈ E, if e # e′ and e′ < e′′, then e # e′′. (2)

The causes of an event e ∈ E are the set ⌈e⌉ ∶= {e′ ∈ E∶ e′ < e} of events that need to
happen before e for e to happen. A configuration of E is any finite set C ⊆ E satisfying:

(causally closed) for all e ∈ C we have ⌈e⌉ ⊆ C; (3)
(conflict free) for all e, e′ ∈ C, it holds that ¬e # e′. (4)
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Intuitively, configurations represent partially-ordered executions. In particular, the local
configuration of e is the ⊆-minimal configuration that contains e, i.e. [e] ∶= ⌈e⌉ ∪ {e}.

We denote by conf (E) the set of configurations of E . Two events e, e′ are in immediate
conflict, e #i e′, iff e # e′ and both ⌈e⌉∪[e′] and [e]∪⌈e′⌉ are configurations. Lastly, given two
LESs E ∶= ⟨E,<,#, h⟩ and E ′ ∶= ⟨E′,<′,#′, h′⟩, we say that E is a prefix of E ′, written E ⊴ E ′,
when E ⊆ E′, < and # are the projections of <′ and #′ to E, and E ⊇ {e′ ∈ E′∶ e′ < e ∧ e ∈ E}.

Our semantics will unroll the system M into a LES UM,◇ whose events are labelled by
transitions of M . Each configuration of UM,◇ will correspond to the dependence graph
D◇,σ of some σ ∈ runs(M). For a LES ⟨E,<,#, h⟩, we define the interleavings of C as
inter(C) ∶= {h(e1), . . . , h(en)∶ ei, ej ∈ C ∧ ei < ej Ô⇒ i < j}. Although for arbitrary LES
inter(C) may contain sequences not in runs(M), the definition of UM,◇ will ensure that
inter(C) ⊆ runs(M). Additionally, since all sequences in inter(C) belong to the same trace,
all of them reach the same state. Abusing the notation, we define state(C) ∶= state(σ) if
σ ∈ inter(C). The definition is neither well-given nor unique for arbitrary LES, but will be
so for the unfolding.

We now define UM,◇. Each event will be inductively identified by a canonical name of the
form e ∶= ⟨t,H⟩, where t ∈ T is a transition of M and H a configuration of UM,◇. Intuitively,
e represents the occurrence of t after the history (or the causes) H ∶= ⌈e⌉. The definition will
be inductive. The base case inserts into the unfolding a special bottom event � on which
every event causally depends. The inductive case iteratively extends the unfolding with one
event. We define the set HE,◇,t of candidate histories for a transition t in an LES E as the
set which contains exactly all configurations H of E such that

transition t is enabled at state(H), and
either H = {�} or all <-maximal events e in H satisfy that h(e)} t,

where h is the labelling function in E . Once an event e has been inserted into the unfolding,
its associated transition h(e) may be dependent with h(e′) for some e′ already present and
outside the history of e. Since the order of occurrence of e and e′ matters, we need to
prevent their occurrence within the same configuration, as configurations represent equivalent
executions. We therefore introduce a conflict between e and e′. The set KE,◇,e of events
conflicting with e ∶= ⟨t,H⟩ thus contains any event e′ in E with e′ ∉ [e] and e ∉ [e′] and
t} h(e′).

Following common practice [4], the definition of UM,◇ proceeds in two steps. We first
define (Def. 3) the collection of all prefixes of the unfolding. Then we show that there exists
only one ⊴-maximal element in the collection, and define it to be the unfolding (Def. 4).

I Definition 3 (Finite unfolding prefixes). The set of finite unfolding prefixes of M under the
independence relation ◇ is the smallest set of LESs that satisfies the following conditions:
1. The LES having exactly one event �, empty causality and conflict relations, and h(�) ∶= ε

is an unfolding prefix.
2. Let E be an unfolding prefix containing a history H ∈ HE,◇,t for some transition t ∈ T .

Then, the LES ⟨E,<,#, h⟩ resulting from extending E with a new event e ∶= ⟨t,H⟩ and
satisfying the following constraints is also an unfolding prefix of M :

for all e′ ∈H, we have e′ < e;
for all e′ ∈ KE,◇,e, we have e # e′; and h(e) ∶= t.

Intuitively, each unfolding prefix contains the dependence graph (configuration) of one
or more executions of M (of finite length). The unfolding starts from �, the “root” of the
tree, and then iteratively adds events enabled by some configuration until saturation, i.e.,
when no more events can be added. Observe that the number of unfolding prefixes as per
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Figure 1 Running example. (a) A concurrent program; (b) its unfolding semantics. (c) The
exploration performed by Alg. 1, where each node C| D| A represents one call to the function
Explore(C, D, A). The set X underneath each leaf node is such that the value of variable U in
Alg. 1 at the leaf is U = C ∪D ∪X. At ∅ | ∅ | ∅ , the alternative taken is {4}, and at 4 | 1 | ∅ it
is {7}.

Def. 3 will be finite iff all runs of M terminate. Due to lack of space, we give the definition
of infinite unfolding prefixes in the extended version [17], as the main ideas of this section
are well conveyed using only finite prefixes. In the sequel, by unfolding prefix we mean a
finite or infinite one.

Our first task is checking that each unfolding prefix is indeed a LES [17, Lemma 14]. Next
one shows that the configurations of every unfolding prefix correspond the Mazurkiewicz
traces of the system, i.e., for any configuration C, inter(C) = T◇,σ for some σ ∈ runs(M) [17,
Lemma 16]. This implies that the definition of inter(C) and state(C) is well-given when
C belongs to an unfolding prefix. The second task is defining the unfolding UM,◇ of M .
Here, we prove that the set of unfolding prefixes equipped with relation ⊴ forms a complete
join-semilattice [17, Lemma 17]. This implies the existence of a unique ⊴-maximal element:

I Definition 4 (Unfolding). The unfolding UM,◇ of M under the independence relation ◇ is
the unique ⊴-maximal element in the set of unfolding prefixes of M under ◇.

Finally we verify that the definition is well given and that the unfolding is complete, i.e.,
every run of the system is represented by a unique configuration of the unfolding.

I Theorem 5. The unfolding UM,◇ exists and is unique. Furthermore, for any non-empty
run σ of M , there exists a unique configuration C of UM,◇ such that σ ∈ inter(C).

I Example 6 (Programs). Figure 1 (a) gives a concurrent program, where process w writes
a global variable and processes r and r′ read it. We can associate various semantics to
it. Under an empty independence relation, the unfolding would be the computation tree,
where executions would be totally ordered. Considering (the unique transition of) r and r′
independent, and w dependent on them, we get the unfolding given in Fig. 1 (b).

Events are numbered from 1 to 10, and labelled with a transition. Arrows represent
causality between events and dotted lines immediate conflict. The Mazurkiewicz trace of
each deadlocking execution is represented by a unique ⊆-maximal configuration, e.g., the
run w.r.r′ yields configuration {1,2,3}, where the two possible interleavings reach the same
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Figure 2 (a) A Petri net; (b) its classic unfolding; (c) our parametric semantics.

state. For instance, the canonic name of event 1 is ⟨w,{�}⟩ and of event 2 it is ⟨r,{�,1}⟩.
Let P be the unfolding prefix that contains events {�,1,2}. Definition 3 can extend it with
three possible events: 3, 4, and 7. Consider transition r′. Three configurations of P enable
r′: {�},{�,1} and {�,1,2}. But since ¬(h(2) } r′), only the first two will be in HP,◇,r′ ,
resulting in events 3 ∶= ⟨r′,{�,1}⟩ and 7 ∶= ⟨r′,{�}⟩. Also, KP,◇,7 is {1}, as w } r′. The
four maximal configurations are {1,2,3}, {4,5,6}, {4,7,8} and {7,9,10}, resp. reaching the
states ⟨x, y, z⟩ = ⟨1,1,1⟩, ⟨1,0,1⟩, ⟨1,0,0⟩ and ⟨1,1,0⟩, assuming that variables start at 0.

I Example 7 (Comparison to Petri Net Unfoldings). In contrast to our parametric semantics,
classical unfoldings of Petri nets [5] use a fixed independence relation, specifically the
complement of the following one (valid only for safe nets): given two transitions t and t′,

t}n t
′ iff (t● ∩ ●t′ ≠ ∅) or (t′● ∩ ●t ≠ ∅) or (●t′ ∩ ●t ≠ ∅),

where ●t and t● are respectively the preset and postset of t. Classic Petri net unfoldings (of
safe nets) are therefore a specific instantiation of our semantics. A well known challenge
for classic unfoldings are transitions that “read” places, e.g., t1 and t2 in Fig. 2 (a). Since
t1 }n t2, the classic unfolding, Fig. 2 (b), sequentializes all their occurrences. A solution for
this issue is the so-called place replication (PR) unfolding [15], or alternatively contextual
unfoldings (which anyway internally are asymptotically the same size as the PR-unfolding).

This problem vanishes with our parametric unfolding. It suffices to use a dependency
relation }′

n ⊂ }n that makes transitions that “read” common places independent. The
result is that our unfolding, Fig. 2 (c), can be of the same size as the PR-unfolding, i.e.,
exponentially more compact than the classic unfolding. For instance, when Fig. 2 (a) is
generalized to n reading transitions, the classic unfolding would have O(n!) copies of t3,
while ours would have O(2n). The point here is that our semantics naturally accommodates
a more suitable notion of independence without resorting to specific ad-hoc tricks.

Furthermore, although this work is restricted to unconditional independence, we conjecture
that an adequately restricted conditional dependence would suffice, e.g., the one of [12].
Gains achieved in such setting would be difficult with classic unfoldings.

4 Stateless Unfolding Exploration Algorithm

We present a DPOR algorithm to explore an arbitrary event structure (e.g., the one of § 3)
instead of sequential executions. Our algorithm explores one configuration at a time and
organizes the exploration into a binary tree. Figure 1 (c) gives an example. The algorithm is
optimal [2], in the sense that no configuration is ever visited twice in the tree.
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Algorithm 1: An unfolding-based POR exploration algorithm.
1 Initially, set U ∶= {�}, set G ∶= ∅, and call Explore({�}, ∅, ∅).

2 Procedure Explore(C,D,A)
3 Extend(C)
4 if en(C) = ∅ return
5 if A = ∅
6 Choose e from en(C)
7 else
8 Choose e from A ∩ en(C)
9 Explore(C ∪ {e},D,A ∖ {e})

10 if ∃J ∈ Alt(C,D ∪ {e})
11 Explore(C,D ∪ {e}, J ∖C)
12 Remove(e,C,D)

13 Procedure Extend(C)
14 Add ex(C) to U

15 Procedure Remove(e,C,D)
16 Move {e} ∖QC,D,U from U to G
17 foreach ê ∈ #i

U(e)
18 Move [ê] ∖QC,D,U from U to G

For the rest of the paper, let U◇,M ∶= ⟨E,<,#, h⟩ be the unfolding of M under ◇, which
we abbreviate as U . For this section we assume that U is finite, i.e., that all computations
of M terminate. This is only to ease presentation, and we relax this assumption in § 5.2.

We give some new definitions. Let C be a configuration of U . The extensions of C,
written ex(C), are all those events outside C whose causes are included in C. Formally,
ex(C) ∶= {e ∈ E∶ e ∉ C ∧ ⌈e⌉ ⊆ C}. We let en(C) denote the set of events enabled by C, i.e.,
those corresponding to the transitions enabled at state(C), formally defined as en(C) ∶=
{e ∈ ex(C)∶C ∪ {e} ∈ conf (U)}. All those events in ex(C) that are not in en(C) are the
conflicting extensions, cex(C) ∶= {e ∈ ex(C)∶ ∃e′ ∈ C, e #i e′}. Clearly, sets en(C) and cex(C)
partition the set ex(C). Lastly, we define #i(e) ∶= {e′ ∈ E∶ e #i e′}, and #i

U(e) ∶= #i(e) ∩U .
The difference between both is that #i(e) contains events from anywhere in the unfolding
structure, while #i

U(e) can only see events in U .
The algorithm is given as Alg. 1. The main procedure Explore(C,D,A) is given the

configuration that is to be explored as parameter C. The parameter D (for disabled) is the
set of set of events that have already been explored and prevents that Explore() repeats
work. It can be seen as a sleep set [7]. The set A (for add) is occasionally used to guide the
direction of the exploration.

Additionally, a global set U stores all events presently known to the algorithm. Whenever
some event can safely be discarded from memory, Remove will move it from U to G (for
garbage). Once in G, it can be discarded at any time, or be preserved in G in order to save
work when it is re-inserted in U . Set G is thus our cache memory of events.

The key intuition for Alg. 1 is as follows. A call to Explore(C,D,A) visits all maximal
configurations of U that contain C and do not contain D; and the first one explored will
contain C ∪A. Figure 1 (c) gives one execution; tree nodes are of the form C| D| A .

The algorithm first updates U with all extensions of C (procedure Extend). If C is a
maximal configuration, then there is nothing to do, and it backtracks. If not, it chooses an
event in U enabled at C, using the function en(C) ∶= en(C) ∩U . If A is empty, any enabled
event can be taken. If not, A needs to be explored and e must come from the intersection.
Next it makes a recursive call (left subtree), where it explores all configurations containing
all events in C ∪ {e} and no event from D. Since Explore(C,D,A) had to visit all maximal
configurations containing C, it remains to visit those containing C but not e, but only if
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there exists at least one! Thus, we determine whether U has a maximal configuration that
contains C, does not contain D and does not contain e. Function Alt will return a set of
events that witness the existence of such configuration (iff one exists). If one exists, we make
a second recursive call (right subtree). Formally, we call such witness an alternative:

I Definition 8 (Alternatives). Given a set of events U ⊆ E, a configuration C ⊆ U , and a set
of events D ⊆ U , an alternative to D after C is any configuration J ⊆ U satisfying that

C ∪ J is a configuration (5)
for all events e ∈D, there is some e′ ∈ C ∪ J such that e′ ∈ #i

U(e). (6)

Function Alt(X,Y ) returns all alternatives (in U) to Y after X. Notice that it is called as
Alt(C,D∪{e}) from Alg. 1. Any returned alternative J witnesses the existence of a maximal
configuration C ′ (constructed by arbitrarily extending C ∪ J) where C ′ ∩ (D ∪ {e}) = ∅.

Although Alt reasons about maximal configurations of U , thus potentially about events
that have not yet been seen, it can only look at events in U . Thus, the set U needs to be
large enough to contain enough conflicting events to satisfy (6). Perhaps surprisingly, it
suffices to store only events seen (during the past exploration) in immediate conflict with C
and D. Consequently, when the algorithm calls Remove, to clean from U events that are no
longer necessary (i.e., necessary to find alternatives in the future), it needs to preserve at
least those conflicting events. Specifically, Remove will preserve in U the following events:

QC,D,U ∶= C ∪D ∪ ⋃
e∈C∪D,e′∈#i

U(e)
[e′].

That is, events in C, in D and events in conflict with those. An alternative definition that
makes QC,D,U smaller would mean that Remove discards more events, which could prevent a
future call to Alt from discovering a maximal configuration that needs to be explored.

We focus now on the correctness of Alg. 1. Every call to Explore(C,D,A) explores a
tree, where the recursive calls at lines 9 and 11 respectively explore the left and right subtrees
(proof in [17, Corollary 25]). Tree nodes are tuples ⟨C,D,A⟩ corresponding to the arguments
of calls to Explore, cf. Fig. 1. We refer to this object as the call tree. For every node, both C
and C ∪A are configurations, and D ⊆ ex(C), cf. [17, Lemma 18]. As the algorithm goes
down in the tree it monotonically increases the size of either C or D. Since U is finite, this
implies that the algorithm terminates:

I Theorem 9 (Termination). Regardless of its input, Alg. 1 always stops.

Next we assert that Alg. 1 never visits twice the same configuration, which is why it
is called an optimal POR [2]. We show that for every node in the call tree, the set of
configurations in the left and right subtrees are disjoint [17, Lemma 24]. This implies:

I Theorem 10 (Optimality). Let C̃ be a maximal configuration of U . Then Explore(⋅, ⋅, ⋅)
is called at most once with its first parameter being equal to C̃.

Parameter A of Explore plays a central role in making Alg. 1 optimal. It is necessary to
ensure that, once the algorithm decides to explore some alternative J , such an alternative
is visited first. Not doing so makes it possible to extend C in such a way that no maximal
configuration can ever avoid including events in D. Such a configuration, referred as a
sleep-set blocked execution in [2], has already been explored before.

Finally, we ensure that Alg. 1 visits every maximal configuration of U . This essentially
reduces to showing that it makes the second recursive call, line 11, whenever there exists
some unexplored maximal configuration not containing D ∪ {e}. The difficulty of proving
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this [17, Lemma 27] aises from the fact that Alg. 1 only sees events in U . Owing to space
constraints, we omit an additional result on the memory consumption, see [17, Appendix
B.5.].

I Theorem 11 (Completeness). Let C̃ be a maximal configuration of U . Then Explore(⋅, ⋅, ⋅)
is called at least once with its first parameter being equal to C̃.

5 Improvements

5.1 State Caching
Stateless model checking algorithms explore only one configuration of U at a time, thus
potentially under-using remaining available memory. A desirable property for an algorithm
is the capacity to exploit all available memory without imposing the liability of actually
requiring it. The algorithm in § 4 satisfies this property. The set G, storing events discarded
from U , can be cleaned at discretion, e.g., when the memory is approaching full utilisation.
Events cached in G are exploited in two different ways.

First, whenever an event in G shall be included again in U , we do not need to reconstruct
it in memory (causality, conflicts, etc.). This might happen frequently. Second, using the
result of the next section, cached events help prune the number of maximal configurations
to visit. This means that our POR potentially visits fewer final states than the number of
configurations of U , thus conforming to the requirements of a super-optimal DPOR. The
larger G is, the fewer configurations will be explored.

5.2 Non-Acyclic State Spaces
In this section we remove the assumption that UM,◇ is finite. We employ the notion of cutoff
events [14]. While cutoffs are a standard tool for unfolding pruning, their application to our
framework brings unexpected problems.

The core question here is preventing Alg. 1 from getting stuck in the exploration of
an infinite configuration. We need to create the illusion that maximal configurations are
finite. We achieve this by substituting procedure Extend in Alg. 1 with another procedure
Extend’ that operates as Extend except that it only adds to U an event from e ∈ ex(C) if
the predicate cutoff(e,U,G) evaluates to false. We define cutoff(e,U,G) to hold iff there
exists some event e′ ∈ U ∪G such that

state([e]) = state([e′]) and ∣[e′]∣ < ∣[e]∣. (7)

We refer to e′ as the corresponding event of e, when it exists. This definition declares e cutoff
as function of U and G. This has important consequences. An event e could be declared
cutoff while exploring one maximal configuration and non-cutoff while exploring the next, as
the corresponding event might have disappeared from U ∪G. This is in stark contrast to
the classic unfolding construction, where events are declared cutoffs once and for all. The
main implication is that the standard argument [14, 5, 3] invented by McMillan for proving
completeness fails. We resort to a completely different argument for proving completeness of
our algorithm (see [17, Appendix C.1.]), which we are forced to skip due to lack of space.

We focus now on the correction of Alg. 1 using Extend’ instead of Extend. A causal
cutoff is any event e for which there is some e′ ∈ [e] satisfying (7). It is well known that
causal cutoffs define a finite prefix of U as per the classic saturation definition [3]. Also,
cutoff(e,U,G) always holds for causal cutoffs, regardless of the contents of U and G. This
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means that the modified algorithm can only explore configurations from a finite prefix. It
thus necessarily terminates. As for optimality, it is unaffected by the use of cutoffs, existing
proofs for Alg. 1 still work. Finally, for completeness we prove the following result, stating
that local reachability (e.g., fireability of transitions of M) is preserved:

I Theorem 12 (Completeness). For any reachable state s ∈ reach(M), Alg. 1 updated with
the cutoff mechanism described above explores one configuration C such that for some C ′ ⊆ C
it holds that state(C ′) = s.

Lastly, we note that this cutoff approach imposes no liability on what events shall be
kept in the prefix, set G can be cleaned at discretion. Also, redefining (7) to use adequate
orders [5] is straightforward (see [17], where our proofs actually assume adequate orders).

6 Experiments

As a proof of concept, we implemented our algorithm in a new explicit-state model checker
baptized Poet (Partial Order Exploration Tool).3 Written in Haskell, a lazy functional
language, it analyzes programs from a restricted fragment of the C language and supports
POSIX threads. The analyzer accepts deterministic programs, implements a variant of Alg. 1
where the computation of the alternatives is memoized, and supports cutoffs events with the
criteria defined in § 5.

We ran Poet on a number of multi-threaded C programs. Most of them are adapted
from benchmarks of the Software Verification Competition [18]; others are used in related
works [8, 20, 2]. We investigate the characteristics of average program unfoldings (depth,
width, etc.) as well as the frequency and impact of cutoffs on the exploration. We also
compare Poet with Nidhugg [1], a state-of-the-art stateless model checking for multi-
threaded C programs that implements Source-DPOR [2], an efficient but non-optimal DPOR.
All experiments were run on an Intel Xeon CPU with 2.4GHz and 4GB memory. Tables 1
and 2 give our experimental data for programs with acyclic and non-acyclic state spaces,
respectively.

For programs with acyclic state spaces (Table 1), Poet with and without cutoffs seems to
perform the same exploration when the unfolding has no cutoffs, as expected. Furthermore,
the number of explored executions also coincides with Nidhugg when the latter reports 0
sleep-set blocked executions (cf., § 4), providing experimental evidence of Poet’s optimality.

The unfoldings of most programs in Table 1 do not contain cutoffs. All these programs
are deterministic, and many of them highly sequential (Stf, Spin08, Fib), features known
to make cutoffs unlikely. Ccnf(n) are concurrent programs composed of n − 1 threads
where thread i and i + 1 race on writing one variable, and are independent of all remaining
threads. Their unfoldings resemble Fig. 2 (d), with 2(n−1)/2 traces but only O(n) events.
Saturation-based unfolding methods would win here over both Nidhugg and Poet.

In the ssb benchmarks, Nidhugg encounters sleep-set blocked executions, thus performing
sub-optimal exploration. By contrast, Poet finds many cutoff events and achieves a super-
optimal exploration, exploring fewer traces than both Poet without cutoffs and Nidhugg.
The data shows that this super-optimality results in substantial savings in runtime.

For non-acyclic state spaces (Table 2), unfoldings are infinite. We thus compare Poet
with cutoffs and Nidhugg with a loop bound. Hence, while Nidhugg performs bounded
model checking, Poet does complete verification. The benchmarks include classical mutual

3 Source code and benchmarks available from: http://www.cs.ox.ac.uk/people/marcelo.sousa/poet/.

http://www.cs.ox.ac.uk/people/marcelo.sousa/poet/
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Table 1 Programs with acyclic state space. Columns are: ∣P ∣: nr. of threads; ∣I ∣: nr. of explored
traces; ∣B∣: nr. of sleep-set blocked executions; t(s): running time; ∣E∣: nr. of events in U ; ∣Ecut∣: nr.
of cutoff events; ∣Ω∣: nr. of maximal configurations; ⟨∣UΩ∣⟩: avg. nr. of events in U when exploring a
maximal configuration. A ∗ marks programs containing bugs. <7K reads as “fewer than 7000”.

Benchmark Nidhugg Poet (without cutoffs) Poet (with cutoffs)
Name ∣P ∣ ∣I ∣ ∣B∣ t(s) ∣E∣ ∣Ω∣ ⟨∣UΩ∣⟩ t(s) ∣E∣ ∣Ecut∣ ∣Ω∣ ⟨∣UΩ∣⟩ t(s)

Stf 3 6 0 0.06 121 6 79 0.04 121 0 6 79 0.06
Stf∗ 3 – – 0.05 – – – 0.02 – – – – 0.03
Spin08 3 84 0 0.08 2974 84 1506 2.04 2974 0 84 1506 2.93
Fib 3 8953 0 3.36 <185K 8953 92878 305 <185K 0 8953 92878 704
Fib∗ 3 – – 0.74 – – – 81.0 – – – – 133
Ccnf(9) 9 16 0 0.05 49 16 46 0.07 49 0 16 46 0.06
Ccnf(17) 17 256 0 0.15 97 256 94 5.76 97 0 256 94 6.09
Ccnf(19) 19 512 0 0.28 109 512 106 22.5 109 0 512 106 22.0
Ssb 5 4 2 0.05 48 4 38 0.03 46 1 4 37 0.03
Ssb(1) 5 22 14 0.06 245 23 143 0.11 237 4 23 140 0.11
Ssb(3) 5 169 67 0.12 2798 172 1410 3.51 1179 48 90 618 0.90
Ssb(4) 5 336 103 0.15 <7K 340 3333 20.3 2179 74 142 1139 2.07
Ssb(8) 5 2014 327 0.85 <67K 2022 32782 4118 <12K 240 470 6267 32.1

Table 2 Programs with non-terminating executions. Column b is the loop bound. The value is
chosen based on experiments described in [1].

Benchmark Nidhugg Poet (with cutoffs)
Name ∣P ∣ b ∣I ∣ ∣B∣ t(s) ∣E∣ ∣Ecut∣ ∣Ω∣ ⟨∣UΩ∣⟩ t(s)

Szymanski 3 – 103 0 0.07 1121 313 159 591 0.36
Dekker 3 10 199 0 0.11 217 14 21 116 0.07
Lamport 3 10 32 0 0.06 375 28 30 208 0.12
Peterson 3 10 266 0 0.11 175 15 20 100 0.05
Pgsql 3 10 20 0 0.06 51 8 4 40 0.03
Rwlock 5 10 2174 14 0.83 <7317 531 770 3727 12.29
Rwlock(2)∗ 5 2 – – 7.88 – – – – 0.40
Prodcons 4 5 756756 0 332.62 3111 568 386 1622 5.00
Prodcons(2) 4 5 63504 0 38.49 640 25 15 374 1.61

exclusion protocols (Szymanski,Sekker,Lamport and Peterson), where Nidhugg is
able to leverage an important static optimization that replaces each spin loop by a load
and assume statement [1]. Hence, the number of traces and maximal configurations is not
comparable. Yet Poet, which could also profit from this static optimization, achieves a
significantly better reduction thanks to cutoffs alone. Cutoffs dynamically prune redundant
unfolding branches and arguably constitute a more robust approach than the load and
assume syntactic substitution. The substantial reduction in number of explored traces,
several orders of magnitude in some cases, translates in clear runtime improvements. Finally,
in our experiments, both tools were able to successfully discover assertion violations in stf∗,
fib∗ and rwlock(2)∗.

In our experiments, Poet’s average maximal memory consumption (measured in events)
is roughly half of the size of the unfolding. We also notice that most of these unfoldings are
quite narrow and deep (∣Ecut∣÷ ∣E∣ is low) when compared with standard benchmarks for Petri
nets. This suggests that they could be amenable for saturation-based unfolding verification,
possibly pointing the opportunity of applying these methods in software verification.
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7 Related Work

This work focuses on explicit-state POR, as opposed to symbolic POR techniques exploited
inside SAT solvers, e.g., [11, 8]. Early POR statically computed the necessary transitions to
fire at every state [19, 7]. Flanagan and Godefroid [6] first proposed to compute persistent
sets dynamically (DPOR). However, even when combined with sleep sets [7], DPOR was
still unable to explore exactly one interleaving per Mazurkiewicz trace. Abdulla et al. [2, 1]
recently proposed the first solution to this, using a data structure called wakeup trees. Their
DPOR is thus optimal (ODPOR) in this sense.

Unlike us, ODPOR operates on an interleaved execution model. Wakeup trees store
chains of dependencies that assist the algorithm in reversing races throughly. Technically,
each branch roughly correspond to one of our alternatives. According to [2], constructing
and managing wakeup trees is expensive. This seems to be related with the fact that
wakeup trees store canonical linearizations of configurations, and need to canonize executions
before inserting them into the tree to avoid duplicates. Such checks become simple linear-
time verifications when seen as partial-orders. Our alternatives are computed dynamically
and exploit these partial orders, although we do not have enough experimental data to
compare with wakeup trees. Finally, our algorithm is able to visit up to exponentially fewer
Mazurkiewicz traces (due to cutoff events), copes with non-terminating executions, and
profits from state caching. The work in [2] has none of these features.

Combining DPOR with stateful search is challenging [21]. Given a state s, DPOR relies on
a complete exploration from s to determine the necessary transitions to fire from s, but such
exploration could be pruned if a state is revisited, leading to unsoundness. Combining both
methods requires addressing this difficulty, and two works did it [21, 20], but for non-optimal
DPOR. By contrast, incorporating cutoff events into Alg. 1 was straightforward.

Classic, saturation-based unfolding algorithms are also related [14, 5, 3, 10]. They
are inherently stateful, cannot discard events from memory, but explore events instead of
configurations, thus may do exponentially less work. They can furthermore guarantee that
the number of explored events will be at most the number of reachable states, which at
present seems a difficult goal for PORs. On the other hand, finding the events to extend
the unfolding is computationally harder. In [10], Kähkönen and Heljanko use unfoldings for
concolic testing of concurrent programs. Unlike ours, their unfolding is not a semantics of
the program, but rather a means for discovering all concurrent program paths.

While one goal of this paper is establishing an (optimal) POR exploiting the same
commutativity as some non-sequential semantics, a longer-term goal is building formal
connections between the latter and PORs. Hansen and Wang [9] presented a characterization
of (a class of) stubborn sets [19] in terms of configuration structures, another non-sequential
semantics more general than event structures. We shall clarify that while we restrict ourselves
to commutativity-based PORs, they attempt a characterization of stubborn sets, which do
not necessarily rely on commutativity.

8 Conclusions

In the context of commutativity-exploiting POR, we introduced an optimal DPOR that
leverages on cutoff events to prune the number of explored Mazurkiewicz traces, copes
with non-terminating executions, and uses state caching to speed up revisiting events. The
algorithm provides a new view to DPORs as algorithms exploring an object with richer
structure. In future work, we plan exploit this richer structure to further reduce the number
of explored traces for both PORs and saturation-based unfoldings.
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Abstract
Population protocols (Angluin et al., PODC, 2004) are a formal model of sensor networks con-
sisting of identical mobile devices. Two devices can interact and thereby change their states.
Computations are infinite sequences of interactions satisfying a strong fairness constraint.

A population protocol is well-specified if for every initial configuration C of devices, and every
computation starting at C, all devices eventually agree on a consensus value depending only on
C. If a protocol is well-specified, then it is said to compute the predicate that assigns to each
initial configuration its consensus value.

While the predicates computable by well-specified protocols have been extensively studied,
the two basic verification problems remain open: is a given protocol well-specified? Does a
protocol compute a given predicate? We prove that both problems are decidable. Our results
also prove decidability of a natural question about home spaces of Petri nets.
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1 Introduction

Population protocols [2] are a model of distributed computation by anonymous, interacting
finite-state agents. In each step, a fixed number of agents are chosen nondeterministically,
and the agents interact and update their states according to a joint transition function. A
population protocol is said to compute a predicate on the initial states of the agents if, in
all fair executions, all agents eventually converge to the correct value of the predicate. An
execution is fair if it is finite and cannot be extended, or it is infinite and every configuration
of agent states that is reachable at infinitely many positions along the execution is also
reached infinitely often along that execution.

The original motivation for population protocols was to model distributed computation in
passively mobile sensors [2], but the model captures the essence of distributed computation
in diverse areas such as trust propagation [7] and chemical reactions [15].

Much of the work on population protocols has concentrated on characterizing what
predicates on the input values can be computed by well-specified protocols. A protocol is
well-specified if, on every input, every fair execution eventually converges to configurations in
which every agent agrees on a consensus value that depends only on the input. Angluin et al.
[2] gave explicit well-specified protocols to compute every predicate definable in Presburger
arithmetic. Later, Angluin et al. [4] showed that well-specified population protocols compute
exactly the Presburger-definable predicates.

© Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar;
licensed under Creative Commons License CC-BY

26th International Conference on Concurrency Theory (CONCUR 2015).
Editors: Luca Aceto and David de Frutos Escrig; pp. 470–482

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.470
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


J. Esparza, P. Ganty, J. Leroux, and R. Majumdar 471

Since it is easy to erroneously design protocols that are not well-specified, one can ask
the natural verification question: given a population protocol, is it well-specified? In this
paper, we show that the well-specification problem for population protocols is decidable. We
also study the correctness problem: given a protocol and a Presburger specification, does
the protocol compute the specification? Our techniques show decidability of the correctness
problem as well.

The semantics of a population protocol is an infinite family of finite-state transition
systems, one for each possible input. Whether the protocol reaches consensus for a given
input can be decided by inspecting only one of these transition systems. However, the
well-specification problem asks if consensus is reached for all inputs, and so it is not obviously
decidable; indeed, similar questions are undecidable for many parameterized systems [5].
Moreover, the set of configurations where all agents agree on a value is not upward-closed;
thus, coverability-like techniques are not immediately applicable.

Our main result is a characterization of well-specification using Presburger-definable
predicates. We show that for every well-specified protocol, one can find a witness consisting
of four Presburger-definable predicates (S0,S1,B0,B1) and a bounded regular language W
such that:

each predicate is inductive (closed under taking a step of the protocol),
each initial state is either in S0 or in S1, but not in both,
for i ∈ {0, 1}, all configurations of Bi agree on the consensus value i; moreover, Bi is
reachable from each configuration in Si using a string from W .

Using the decidability of Presburger arithmetic, we show that each condition above is
decidable. Our proof of correctness uses recent results from the theory of Petri nets. We use
the existence of Presburger-definable inductive sets that separate unreachable markings [11]
to identify S0 and S1. We use the Presburger-definability of the mutual reachability relation
[12] to identify B0 and B1. Finally, we use the theory of accelerations [14] to identify W .
Along the way, we obtain an alternative proof of the theorem that well-specified protocols
compute only Presburger-definable predicates.

Ultimately, our decision procedure consists of running two semi-decision procedures in
parallel and does not provide a complexity upper bound. For lower bounds, we show that
reachability for Petri nets can be reduced in polynomial-time to the complement of the
well-specification problem.

While we focus on population protocols, our techniques also lead to new results for the
theory of Petri nets. The home space problem asks, given a Petri net and two sets I and H
of markings, if every marking reachable from I can also reach H. De Frutos and Johnen
[8] showed that the home space problem is decidable if I is a single marking and H is a
linear set. They left the case in which H is a Presburger-definable set open. We make the
first partial progress on this problem. Our results show that the home space problem is
decidable for Presburger-definable sets I and H, provided the set of markings reachable from
any marking in I is finite.

The paper is organized as follows. Section 2 introduces population protocols. Section 3
formally defines witnesses of well-specification, shows decidability of the conditions to be
met by a witness, and proves that existence of a witness implies well-specification. The proof
of the converse (well-specification implies existence of a witness) is more involved. Section 4
introduces the results of Petri net theory needed for the proof, and Section 5 the proof itself.
Section 6 reduces Petri net reachability to the complement of the well-specification problem.
Finally, Section 7 proves the result about home spaces in Petri nets.
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2 Population Protocols

A population on a finite set E is a mapping P : E → N such that P (e) > 0 for some e ∈ E.
Intuitively, P (e) denotes the number of individuals of type e ∈ E in the population. The
set of all populations on E is denoted by Pop(E). Operations on populations, like addition
or maximum, are implicitly defined component wise. Given e ∈ E, we denote by e the
population consisting of one individual of type e, that is, the population satisfying e(e) = 1
and e(e′) = 0 for every e′ 6= e. The support of a population P ∈ NE , denoted by Sup(P ), is
the subset of E given by {e ∈ E | P (e) > 0}. A set of populations C ⊆ Pop(E) is said to be
Presburger if it can be denoted by a formula in Presburger arithmetic, i.e., in the first-order
theory of addition FO(N,+).

I Example 1. Let E = {a, b}. The set of populations {P ∈ Pop(E) | P (a) ≥ P (b)} is
Presburger, since it is denoted by the Presburger formula F (Xa, Xb) = ∃Y : Xa = Y +Xb.
The set {P ∈ Pop(E) | P (a) = P (b)2} is not Presburger.

2.1 Protocol Scheme
A protocol scheme A = (Q,∆) consists of a finite non-empty set Q of states and a set ∆ ⊆ Q4.
If (q1, q2, q

′
1, q
′
2) ∈ ∆, we write (q1, q2) 7→ (q′1, q′2) and call it a transition. The populations

of Pop(Q) are called configurations. Intuitively, a configuration C describes a collection of
identical finite-state agents with Q as set of states, containing C(q) agents in state q for every
q ∈ Q. Pairs of agents interact using transitions from ∆.1 Formally, given two configurations
C and C ′ and a transition δ = (q1, q2) 7→ (q′1, q′2), we write C δ−→ C ′ if

C ≥ (q1 + q2) holds, and C ′ = C − (q1 + q2) + (q′1 + q′2) .

We write C w−→ C ′ for a word w = δ1 . . . δk of transitions if there exists a sequence C0, . . . , Ck

of configurations satisfying C = C0
δ1−→ C1 · · ·

δk−→ Ck = C ′. In this case, we say that C ′ is
reachable from C. We also write C → C ′ if C δ−→ C ′ for some transition δ ∈ ∆. We have:

I Lemma 2. For every configuration C, the set of configurations reachable from C is finite.

Proof. Follows immediately from the fact that an interaction does not create or destroy
agents, just changes their current states. Since Q is finite, there are only finitely many
configurations C ′ satisfying

∑
q∈Q C(q) =

∑
q∈Q C

′(q). J

Observe that (Pop(Q),→) defines a directed graph with infinitely many vertices and
edges. Consider the partition {Pop(Q)i}i≥1 of Pop(Q), where Pop(Q)i = {C ∈ Pop(Q) |∑
q∈Q C(q) = i}. (Note that i starts at 1 because every population contains at least

one agent.) Since interactions do not create or destroy agents, the set {→i}i≥1, where
→i=→ ∩Pop(Q)2

i , is also a partition of →. Therefore (Pop(Q),→) consists of the infinitely
many disjoint and finite subgraphs {(Pop(Q)i,→i)}i≥1.

An execution of A is a finite or infinite sequence of configurations C0, C1, . . . such that
Ci → Ci+1 for each i ≥ 0. An execution is fair if it is finite and cannot be extended, or it is
infinite and for every step C → C ′, if C occurs infinitely often along the execution, then C ′
also occurs infinitely often. It follows from Lemma 2 that every execution reaches a strongly

1 While protocol schemes model pairwise interactions only, one can model k-way interactions for a fixed
k > 2 by adding additional states.
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connected component (SCC) of (Pop(Q),→) and never leaves it. We deduce the following
lemma, where a bottom SCC of (Pop(Q),→) is an SCC such that every edge of → whose
source is in the SCC also belongs the SCC. (In particular, a single vertex with no outgoing
transition forms a bottom SCC.)

I Lemma 3. Every fair execution eventually reaches a bottom SCC of (Pop(Q),→).

Proof. If the execution is finite, then, since it cannot be extended, its last configuration is a
bottom SCC with one single vertex and no outgoing transitions. If the execution is infinite,
then the fairness condition forces it to eventually leave every non-bottom SCC it enters. J

2.2 Computation by Population Protocols
We define what it means for a protocol scheme to compute a predicate Π: Pop(Σ)→ {0, 1},
where Σ is a non-empty, finite set of inputs.

An initial mapping of a protocol scheme A = (Q,∆) is a function I : Pop(Σ)→ Pop(Q)
that maps each input population X to a configuration of A. The set of initial configurations
is I = {I(X) | X ∈ Pop(Σ)}. An initial mapping I is Presburger if the predicate C = I(X),
where C ∈ Pop(Q) and X ∈ Pop(Σ), is definable in Presburger arithmetic. An initial
mapping I is simple if there exists a sequence (qσ)σ∈Σ of states of Q satisfying

I(X) =
∑
σ∈Σ

X(σ) qσ

for every input population X on Σ.
An output mapping of a protocol scheme A = (Q,∆) is a function O : Pop(Q)→ {0,⊥, 1}

that associates to each configuration C of A an output value in {0,⊥, 1}. A population C
on Q such that O(C) = b for some b ∈ {0,⊥, 1} is called a b-population. An output mapping
O is Presburger if the predicate O(C) = b where C ∈ Pop(Q) and b ∈ {0, 1} is definable in
Presburger arithmetic. An output mapping O is simple if there exists a partition (Q0, Q1) of
Q such that

O(C) =


0 if Sup(C) ⊆ Q0

1 if Sup(C) ⊆ Q1

⊥ otherwise

for every configuration C. Notice that O is well-defined because Sup(C) 6= ∅. An execution
C0, C1, . . . stabilizes to b for a given b ∈ {0,⊥, 1} if there exists n ∈ N such that O(Cm) = b

for every m ≥ n (if the execution is finite, then this means for every m between n and the
length of the execution). So, intuitively, an execution stabilizes to b if from some moment on
all agents stay within the subset of states with output b. Notice that there may be many
different executions from a given configuration C0, each of which may stabilize to 0, 1, or ⊥,
or not stabilize at all.

Most papers only consider population protocols with simple initial and output mappings.
We study the more general class of Presburger initial and output mappings. In our general
setting, a population protocol is a triple (A, I, O), where A is a protocol scheme, I(X,C) is
a formula in Presburger arithmetic denoting a Presburger initial mapping C = I(X), and
O(C, b) is a formula in Presburger arithmetic denoting a Presburger output mapping O(C) = b.
This definition encompasses population protocols with leader [3]. In these protocols the
initial configuration contains one agent, called the leader, occupying a distinguished initial
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state ql not initially occupied by any other agent. This corresponds to the initial mapping
I(X) = ql +

∑
σ∈ΣX(σ) qσ which is obviously Presburger.

A population protocol (A, I, O) is well-specified if for every input population X ∈ Pop(Σ),
every fair execution of A starting at I(X) stabilizes to the same value, and ill-specified
otherwise. A population protocol (A, I, O) computes a predicate Π if every fair execution of
A starting at I(X) stabilizes to Π(X) for every X ∈ Pop(Σ).

The well-specification problem asks if a given protocol (A, I, O) is well-specified. The
correctness problem asks if a given population protocol (A, I, O) computes a given Presburger
predicate Π. Note that the correctness problem does not assume (A, I, O) to be well-specified.
Consequently, if (A, I, O) does not compute Π then either the population protocol is ill-
specified; otherwise it stabilizes to b for some input X ∈ Pop(Σ) such that Π(X) = 1− b.

3 A Decidable Criterion for Well-Specification

In this paper, the well-specification problem is shown to be decidable thanks to a decidable
criterion based on Presburger arithmetic. This criterion is defined as follows. Let A = (Q,∆)
be a protocol scheme. A set C of configurations of A is said to be inductive if C ∈ C and
C → C ′ implies C ′ ∈ C. Given a language W ⊆ ∆∗ and a set C of configurations, we denote
by preA(C,W ) the set of configurations C such that C w−→ C ′ for some word w ∈ W and
some configuration C ′ ∈ C.

I Definition 4. Let A = (Q,∆) be a protocol scheme. A witness of well-specification of
the population protocol (A, I, O) is a tuple (S0, S1, B0, B1, w1, . . . , wk), where S0, S1, B0, B1 are
predicates in Presburger arithmetic denoting Presburger sets of configurations S0,S1,B0,B1,
and w1, . . . , wk are words in ∆∗ denoting the language W = w∗1 . . . w

∗
k, such that:

(1) S0,S1,B0,B1 are inductive.
(2) The pair (I0, I1), where I0 = S0 ∩ I and I1 = S1 ∩ I, is a partition of I.
(3) B0 is a set of 0-populations and S0 ⊆ preA(B0,W ).
(4) B1 is a set of 1-populations and S1 ⊆ preA(B1,W ).

I Lemma 5. The set of witnesses of well-specification is recursive.

Proof. Let (A, I, O) and (S0, S1, B0, B1, w1, . . . , wk) be as in Definition 4. We show that
conditions (1)–(4) can be effectively expressed in Presburger arithmetic. For (1), a setM
of configurations denoted by a predicate M(C) in Presburger arithmetic is inductive iff the
following Presburger formula is valid:

∀C,C ′ : M(C) ∧ C → C ′ ⇒ M(C ′) .

So the inductiveness of S0,S1,B0,B1 is expressible. For (2), (I0, I1) is a partition of I iff

∀C : (∃X : I(X,C))⇔
(
(I0(C) ∧ ¬I1(C)) ∨ (¬I0(C) ∧ I1(C)

)
is valid, where Ib(C) = (∃X : I(X,C)) ∧ Sb(C). For (3-4), Bb is a set of b-populations iff

∀C : Bb(C)⇒ O(C, b)

is valid. It remains to express Sb ⊆ preA(Bb,W ). Observe that for every word w ∈ ∆∗, the
relation w∗−−→ defined by C w∗−−→ C ′ if C wn

−−→ C ′ for some n ∈ N is effectively definable in
Presburger arithmetic. (For w = δ, where δ = (q1, q2) 7→ (q′1, q′2), this follows easily from
C ′ = C − (q1 + q2) + (q′1 + q′2). For the general case, see [14].) So the inclusion holds iff

∀C0 :
(
Sb(C0)⇒ ∃C1, . . . , Ck : C0

w∗1−−→ C1 · · ·
w∗k−−→ Ck ∧ Bb(Ck)

)
is valid. J
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3.1 The Criterion is Sound
We show that every population protocol satisfying the criterion is well-specified.

I Lemma 6. Every population protocol (A, I, O) admitting a witness (S0, S1, B0, B1, w1, . . . , wk)
of well-specification is well-specified. Moreover, in this case the population protocol computes
the predicate Π : Pop(Σ)→ {0, 1} defined by:

Π(X) =
{

0 if ∃C : I(X,C) ∧ S0(C)
1 if ∃C : I(X,C) ∧ S1(C) .

Proof. Let S0,S1,B0,B1 be the Presburger sets of configurations denoted by S0, S1, B0, B1,
respectively. Let W = w∗1 . . . w

∗
k. Since I0 and I1 form a partition of I, it suffices to prove

that every fair execution starting at Ib stabilizes to b. Let C ∈ Ib and let C0, C1, . . . be a
fair execution starting at C. Lemma 3 shows that the execution ends up in a bottom SCC.
Hence, there exists n ∈ N such that Cn is in a bottom SCC. As Sb is inductive, it follows
that Cn is in this set. Moreover, as Sb ⊆ preA(Bb,W ), there exists a word w ∈ W and a
configuration C ′ ∈ Bb such that Cn

w−→ C ′. Since Cn is in a bottom SCC, there exists a word
w′ ∈ ∆∗ such that C ′ w

′

−→ Cn. Now, let m ≥ n. Since Cm is reachable from Cn, it follows
that Cm is reachable from C ′. As C ′ ∈ Bb and Bb is inductive, it follows that Cm ∈ Bb. As
Bb is a set of b-populations, it follows that O(Cm) = b; thus, the execution stabilizes to b. J

In the rest of the paper we prove the converse of Lemma 6: every well-specified protocol
admits a witness of well-specification. But before, we close the section with an example.

3.2 Example
Let Σ = {σ}, and consider the predicate Π : Pop(Σ)→ {0, 1}, where Π(X) is the parity of
X(σ). In other words, Π(X) = 0 if X(σ) is even, and Π(X) = 1 otherwise. This predicate is
computed by a simple well-specified population protocol. The protocol scheme A = (Q,∆)
has Q = {A0, A1, P0, P1} as set of states. We call agents in A0 and A1 active, and those in
P0 and P1 passive. Further, we say that agents in Ab and Pb carry the value b. The set ∆ of
transitions is {δx,y, δx | x, y ∈ {0, 1}}. Transitions δx,y allow two active agents to add their
numbers modulo 2 and deactivate one of them:

δx,y = (Ax, Ay) 7→ (Ax+y, Px+y) .

Transitions δx allow an active agent to change the value of a passive agent:

δx = (Ax, P1−x) 7→ (Ax, Px) .

The simple population protocol computing Π is given by (A, I, O), where the simple input
mapping is defined by

I(X) = X(σ)A0

and the simple output mapping by Q0 = {A0, P0} and Q1 = {A1, P1}.

Let us provide a witness of well-specification explaining why the protocol computes Π. We
choose B0(C) =

(
C(A0) = 1 ∧ C(A1) = 0 ∧ C(P1) = 0

)
and B1(C) =

(
C(A1) = 1 ∧ C(A0) =

0 ∧ C(P0) = 0
)
. Notice that the set of configurations Bb denoted by Bb is inductive for every

b ∈ {0, 1}. In fact, since a configuration C ∈ Bb only has one active agent, and all agents
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carry the same value b, no transition in ∆ is enabled at C. Further, we define S0(C) as
“C(A1) is even” and S1(C) as “C(A1) is odd”. Inspection of the transitions in ∆ immediately
shows that the sets S0 and S1 denoted by these two Presburger predicates are inductive.
Notice that I ∩ S0 and I ∩ S1 is a partition of I.

It remains to define the language W . Let us first describe a strategy to reach B0 ∪ B1
from any configuration C. We first execute the transition δ0,0 as long as possible, until there
is at most one active agent carrying a 0. Then we execute δ1,1 as long as possible, until
there is at most one active agent carrying a 1. Then we execute δ1,0 if possible, reaching
a configuration with exactly one active agent carrying a value b. Finally, we execute δ0 as
long as possible, followed by δ1 as long as possible, leading to a configuration in which every
passive agent also carries the value b. The language W models this strategy:

W = δ∗0,0 δ
∗
1,1 δ

∗
1,0 δ

∗
0 δ
∗
1 .

4 Petri Net Theory for the Population Protocols Aficionados

The computation of a population protocol can be simulated by an associated Petri net. This
allows us to apply results on Petri nets to population protocols.

A Petri net N = (P, T, F ) consists of a finite set P of places, a finite set T of transitions,
and a flow function F : (P × T )∪ (T ×P )→ N. A marking is a mapping from P to N, i.e. a
mapping in NP . A transition t ∈ T is enabled at marking M , written M [t〉, if F (p, t) ≤M(p)
for each place p ∈ P . A transition t that is enabled atM can fire, yielding a markingM ′ such
that M ′(p) = M(p)− F (p, t) + F (t, p) for each p ∈ P . We write this fact as M [t〉M ′. We
extend enabledness and firing inductively to words of transitions as follows. Let w = t1 . . . tk
be a finite word of transitions tj ∈ T . We define M [w〉M ′ if, and only if, there exists a
sequence M0, . . . ,Mk of markings such that M = M0 [t1〉M1 · · · [tk〉Mk = M ′. In that case,
we say that M ′ is reachable from M .

4.1 From Population Protocols To Petri Nets
Given a protocol scheme A = (Q,∆), we define the Petri net N(A) = (Q,∆, F ), whose
places and transitions are the states and transitions of the protocol, respectively, and where
F is defined for every transition δ = (q1, q2) 7→ (q′1, q′2) in ∆ and every state q ∈ Q by
F (q, δ) = q1(q)+q2(q) and F (δ, q) = q′1(q)+q′2(q). Note that a configuration of the protocol
scheme A is a marking of the Petri net N(A). Further, whenever C δ−→ C ′ for configurations
C and C ′, we have C [δ〉C ′ in the Petri net, and vice versa.

The correspondence between A and N(A) allows us to transfer results from Petri nets to
population protocols. Next, we briefly recall the results we need.

4.2 Acceleration Technique
Given a Petri net N = (P, T, F ), a setM of markings, and a language W ⊆ T ∗, we introduce
the sets:

postN (M,W ) = {M ′ ∈ NP | ∃M ∈M ∃w ∈W : M [w〉M ′}
preN (M,W ) = {M ∈ NP | ∃M ′ ∈M ∃w ∈W : M [w〉M ′} .

When W = T ∗ these sets are denoted by post∗N (M) and pre∗N (M), respectively.
The theory of acceleration (see for instance [14]) will provide a simple way for extracting

the language W introduced in Definition 4. A language W ⊆ T ∗ is said to be bounded [10] if
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there exists a sequence w1, . . . , wk of words in T ∗ such that W ⊆ w∗1 . . . w∗k. The following
result will be useful for extracting the language W introduced in Definition 4.

I Theorem 7 ([14, Corollary XI.3]). For every Petri net N = (P, T, F ) and for every
Presburger sets of markings S and B such that S ⊆ pre∗N (B), there exists a bounded language
W ⊆ T ∗ such that S ⊆ preN (B,W ).

4.3 Separators For Reachability Problems
Recently, the reachability problem for Petri nets was proved to be decidable using a very
simple algorithm based on Presburger inductive sets of markings. Let us recall that a setM
of markings is inductive for a Petri net N = (P, T, F ), if postN (M, T ) ⊆M. The following
result will provide the sets S0 and S1 introduced in Definition 4.

I Theorem 8 ([13, Lemma 9.1]). For every Petri net N and for every Presburger set of
markingsM andM′ such that post∗N (M) ∩M′ = ∅, there exists a Presburger inductive set
of markings S for N such thatM⊆ S and S ∩M′ = ∅.

4.4 Mutual Reachability Relations
The mutual reachability relation of a Petri net N is the binary relation over the markings
that contains the pair (M,M ′) if M ′ is reachable from M and M is reachable from M ′.
Intuitively, M and M ′ coincide and otherwise they are in the same SCC for the reachability
graph. The following theorem will be useful for extracting the sets B0 and B1 introduced in
Definition 4.

I Theorem 9 ([12]). For every Petri net N , the mutual reachability relation is effectively
definable in Presburger arithmetic.

4.5 Decomposable sets
In this section, we introduce a new result for Petri nets. This result will be used for
characterizing the sets I0 and I1 introduced in Definition 4. The proof of this result is based
on the geometrical characterization of the reachability sets of Petri nets based on almost
semi-linear sets and decomposable sets (see [12] for definitions). It uses the technical result
that if the union of two disjoint decomposable sets X,Y is Presburger definable, then both X
and Y are Presburger definable as well. We defer the details to the full version of the paper.

I Theorem 10. For every Petri net N , and for every Presburger sets of markings B0,B1
and I such that I0 = I ∩ pre∗N (B0) and I1 = I ∩ pre∗N (B1) is a partition of I, it follows that
I0 and I1 are Presburger.

5 The Criterion is Complete

We use the previous results to prove that every well-specified protocol admits a witness.

5.1 Characterization of Bottom Strongly Connected Components
Given a protocol scheme A = (Q,∆), a bottom SCC of the graph (Pop(Q),→) of A is said
to be b-bottom (b ∈ {0, 1}) if all its configurations, which are called bottom configurations,
are b-populations. When this holds, the configurations of the SCC are called b-bottom
configurations. We denote the sets of bottom configurations and b-bottom configurations by
B and Bb, respectively.
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I Proposition 11. Given a protocol scheme, the sets B, B0 and B1are effectively Presburger.

Proof. We show that the predicate B(C) associated to the set of bottom configurations is
definable in Presburger arithmetic. Let us introduce the predicate MR(C,C ′) associated to
the mutual reachability relation. Theorem 9 shows that MR(C,C ′) is effectively Presburger.
Now, we just observe that C is a bottom configuration iff for every configuration C ′ such
that C and C ′ are mutually reachable and for every C ′′ such that C ′ → C ′′, we have C and
C ′′ are also mutually reachable:

B(C) = ∀C ′ ∀C ′′ : (MR(C,C ′) ∧ C ′ → C ′′)⇒ MR(C,C ′′) .

We claim that Bb is a Presburger set of configurations. To prove this, we just notice that Bb
is denoted by the following formula:

Bb(C) = B(C) ∧ ∀C ′ : MR(C,C ′)⇒ O(C ′, b) . J

5.2 The final piece
In the rest of this section, we show that a population protocol is well-specified if, and only
if, it admits a witness of well-specification. We deduce from this characterization that the
well-specification problem, and the correctness problem are decidable.

I Theorem 12. A population protocol is well-specified iff it admits a witness of well-
specification.

Proof. Lemma 6 shows that a population protocol that admits a witness of well-specification
is well-specified. Conversely, let us consider a population protocol (A, I, O) that is well-
specified. We define B0 and B1 as the 0-bottom configurations and 1-bottom configurations,
respectively. Proposition 11 shows that these sets are Presburger. Notice these two sets are
also inductive.

Let us show that (I0, I1) defined by Ib = I ∩ pre∗A(Bb) is a partition of I. Since the
population protocol is well specified, it follows that I0 ∩ I1 = ∅. Now let C be an initial
configuration in I. Notice that there exists at least one fair execution C0, C1, . . . with C0 = C

that stabilizes to b. Lemma 3 shows that the execution ends up in a bottom SCC. It follows
that there exists n ∈ N such that Cn is a bottom configuration. Thanks to the fairness of the
execution, all the configurations of the strongly connected component of Cn are b-populations.
Thus Cn ∈ Bb. We have proved that C ∈ Ib. Thus (I0, I1) is a partition of I. Following
Section 4.1, define N(A) as the Petri net associated with A. From Theorem 10, we derive
that I0 and I1 are Presburger.

Since the population protocol is well-specified, it follows that post∗A(I0)∩ (B\B0) is empty.
Hence post∗N(A)(I0)∩(B\B0) is also empty and Theorem 8 shows that there exists a Presburger
inductive set of markings and, by extension, configurations S0 such that I0 ⊆ S0 and such
that S0 ∩ (B\B0) is empty. Let us prove that S0 ⊆ pre∗A(B0). Let C be a configuration in S0
and let us consider a fair execution C0, C1, . . . starting from C0 = C. Lemma 3 shows that
the execution ends up in a bottom SCC. It follows that there exists n ∈ N such that Cn is a
bottom configuration. As S0 is inductive, it holds that Cn ∈ S0. Moreover, as S0 ∩ (B\B0)
is empty, we derive Cn ∈ B0. We have proved that S0 ⊆ pre∗A(B0). Theorem 7 shows that
there exists a bounded language W0 ⊆ ∆∗ such that S0 ⊆ preN(A)(B0,W0), hence the same
holds for A. Symmetrically, there exists a Presburger inductive set of configurations S1 such
that I1 ⊆ S1 and a bounded language W1 ⊆ ∆∗ such that S1 ⊆ preA(B1,W1). Since W0
and W1 are bounded languages, it follows that W = W0 ∪W1 is also a bounded language.
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Hence, there exists a sequence of words w1, . . . , wk in ∆∗ such that W ⊆ w∗1 . . . , w
∗
k. We

have proved that (S0, S1, B0, B1, w1, . . . , wk) is a witness of well-specification. J

That well-specified population protocols can compute Presburger predicates was shown
by Angluin et al. [2] using a direct construction. Showing that well-specified population
protocols can not compute anything else than Presburger predicates was harder, and first
proved by Angluin, Aspnes and Eisenstat [4]. Our constructions provide an alternate proof.

I Corollary 13. The well-specification problem and the correctness problem are decidable.
Moreover, well-specified population protocols compute Presburger predicates, and we can
effectively compute formulas in Presburger arithmetic denoting the predicates computed by
well-specified population protocols.

Proof. Notice that if a population protocol is ill-specified there exists a witness of this
property given by an initial input population X in Pop(Σ) and a configuration C satisfying
I(X,C) such that not all the bottom configurations reachable from C are b-populations for
some b ∈ {0, 1}.

In particular, enumerating the finite graphs (Pop(Q)i,→i), and checking, for each, whether
it contains a witness of ill-specification shows that the problem of deciding if a population
protocol is ill-specified is recursively enumerable.

By Theorem 12, when a population protocol is well-specified, the algorithm that enumer-
ates all the tuples (S0, S1, B0, B1) of predicates in Presburger arithmetic, and all the finite
sequences w1, . . . , wk of words in ∆∗ and checks using Lemma 5 that we have a witness of
well-specification, will eventually terminate with such a witness. It follows that the well-
specification problem is recursively enumerable. Moreover, in that case, from the computed
witness, we derive a predicate in Presburger arithmetic denoting the computed predicate
Π using Lemma 6. Together with the recursive enumerability of ill-specification above, it
follows that the problem is decidable. J

Clement et al. [6] proved the decidability of the well-specification problem when the
number of agents is fixed. Corollary 13 shows decidability of the same problem but for an
arbitrary number of agents.

6 Lower Bounds

Finally, we show hardness for the well-specification problem by showing a polynomial-time
reduction from Petri net reachability to its complement.

I Theorem 14. The reachability problem for Petri nets is polynomially reducible to the
complement of the well-specification problem and the complement of the correctness problem
for population protocols (even with simple output mappings).

Proof. We proceed by means of a sequence of polynomial time reductions so as to reduce the
reachability problem for Petri nets to the problem of reaching, in a Petri Net N = (P, T, F )
with initial marking M0, a marking M with no tokens in z ∈ P , i.e. M(z) = 0. Furthermore,
the reduction is such that:
(a) M0(z) > 0,
(b) N is deadlock-free, and
(c) every transition of N has at least one output place, and at most two input and two

output places.
(d) N contains no two transitions with the same set of input and output places
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The details of the reductions are standard and omitted.
Then we construct a population protocol (A, I, O) with semi-linear initial mapping. We

first describe the protocol scheme A = (Q,∆). The set Q of states of the protocol contains
a state qp for every place p ∈ P ;
a state qt for every transition t ∈ T ; and
two states Source and Sink.

Following (d), we write t = (P1, P2) to denote that transition t has P1 as set of input
places and P2 as set of output places. The set ∆ of transitions contains
(1) for every Petri net transition t = ({p1, p2}, {p3, p4}), two protocol transitions (qp1 , qp2) 7→

(qt,Sink) and (qt,Source) 7→ (qp3 , qp4);
(2) for every Petri net transition t = ({p1, p2}, {p3}), two protocol transitions (qp1 , qp2) 7→

(qt,Sink) and (qt,Source) 7→ (qp3 ,Sink);
(3) for every Petri net transition t = ({p1}, {p2, p3}), one protocol transition (qp1 ,Source) 7→

(qp2 , qp3); and
(4) for every Petri net transition t = ({p1}, {p2}), one protocol transition (qp1 ,Source) 7→

(qp2 ,Sink);
(5) a transition (qp, qz) 7→ (Sink, qz) for each place p 6= z.
This completes the description of A.

The output mapping O, which is simple, is given by the partition Q0, Q1 of Q such
that Q0 = {z,Sink}. The initial mapping I : Pop(Σ)→ Pop(Q) is defined as follows. The
set Σ is a singleton {σ}, and I assigns to the number n – a population of Pop({σ}) – the
configuration that puts

n agents in Source;
M0(p) agents in qp for every place p; and
0 agents elsewhere.

Observe that I is a semi-linear mapping.
The transitions of (1)–(4) simulate the firing of t (in the case of (1) and (2), firing t is

simulated by the occurrence, one after the other, of two protocol transitions). In all cases,
simulating the firing of t requires one agent to leave the Source state. On the other hand,
no agents ever enter Source. Hence each execution of (A, I, O) contains only finitely many
occurrences of transitions of (1)–(4). Further, since every transition of (5) moves an agent
to Sink, and no agents ever leave Sink, the transitions of (5) also occur only finitely often.
Therefore all executions of (A, I, O) are finite.

Assume that some reachable markingM of N satisfiesM(z) = 0. Let τ ∈ T ∗ be such that
M0 [τ〉M , and let k be the length of τ . Since M0(z) > 0, we have k > 0. We claim that A
has a fair (finite) execution from I(kσ) that does not stabilize. Consider the execution that
starts by simulating τ through transitions (1)–(4). At the end of this simulation the protocol
reaches a configuration C such that C(Source) = C(qz) = 0 and C(Sink) > 0. Observe that
C cannot be extended because C(Source) = 0 disables all transitions (1)–(4) and C(qz) = 0
disables all transitions (5). Further, since every transition has at least one output place, the
configuration satisfies C(qp) > 0 for some p 6= z. Since Sink ∈ Q0 and {qp | p ∈ P} ⊆ Q1, we
have that O(C) = ⊥, hence that (A, I, O) is ill-specified.

Assume now that every reachable marking M of N satisfies M(z) > 0. Let C0C1 . . . be
an arbitrary fair execution of (A, I, O). As shown above, there is a configuration Cj such that
from that moment on Cj disable all transitions (1)–(4). In particular since N is deadlock-free,
we necessarily have Cj(Source) = 0. Because some transitions of (5) might be enabled at
Cj , we extend the execution by firing them as many times as possible. This can occur only
finitely many times and yield a configuration C` which cannot be extended further – all
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transitions of (1)–(5) are disabled – and in which all agents are in state qz or Sink. We thus
find that Sup(C`) ⊆ Q0, hence that O(C`) = 0 and finally that C0 . . . C` is a fair execution
that converges to 0. Since we picked an arbitrary fair execution we conclude that every fair
execution stabilizes to 0, and therefore (A, I, O) is well-specified.

The same reduction shows hardness for the complement of the correctness problem for
the predicate false. J

7 Home Spaces

As a byproduct of our main result, we present a new theorem on home spaces of Petri nets.
Let N be a Petri net, and let I,H be two sets of markings of N . We say that H is a home
space of N with respect to I if post∗N (I) ⊆ pre∗N (H), that is, if H can be reached from any
marking reachable from I. The home space problem for a given triple (N, I,H) asks whether
H is a home space of N with respect to I.

De Frutos and Johnen [8] have proved that the home space problem is decidable when I
is a singleton and H is a linear set, that is, a set of the form {M0 + n1M1 + · · ·+ nkMk |
n1, . . . , nk ∈ N} for a given root marking M0 and a given finite set {M1, . . . ,Mk} of periods.
They also extend the result to finite unions of linear sets having the same periods. While
every such set is a Presburger set, the converse does not hold, and De Frutos and Johnen [8]
explicitly leave the case of arbitrary Presburger sets H open.

We prove decidability of the home space problem for triples (N, I,H) where I and H are
arbitrary Presburger sets, and the net N satisfies the following condition: for every marking
M0 ∈ I, the set post∗N ({M0}) is finite. Observe that this condition is met by Petri nets
modelling parameterized systems, as in the many-process systems of German and Sistla [9, 1].
Indeed, in these systems each token of M0 ∈ I models a finite-state process, and, since the
systems have no dynamic process creation, the number of tokens does not change while the
net evolves. So, while our result does not close the open problem left by De Frutos and
Johnen, it provides a partial answer, and the first new result in the area since 1989.

If post∗N ({M0}) is finite for every M0 ∈ I, then each reachable marking can reach a
bottom SCC. This is the fact we exploit. Notice that this fact no longer holds for arbitrary
Petri nets. For instance, it is easy to exhibit a Petri net whose reachability graph is an
infinite line, and so has no bottom SCC.

I Lemma 15. Let N be a net, and let B be the set of bottom markings of N , i.e., the set
of markings M that are reachable from any marking reachable from M . Let I be a set of
markings of N such that post∗N ({M0}) is finite for every M0 ∈ I. A set H is a home space
of N with respect to I iff B \ post∗N (B ∩H) is not reachable from I.

Proof. (⇒): Assume that some marking M ∈ B \ post∗N (B ∩ H) is reachable from some
marking of I. We claim that post∗N ({M}) ∩ H = ∅, which implies that H is not a home
space. Let M ′ ∈ post∗N ({M}). By the definition of B, the markings M and M ′ are mutually
reachable, and soM ∈ post∗N ({M ′}). IfM ′ ∈ H, thenM ′ ∈ B∩H, and soM ∈ post∗N (B∩H),
contradicting the hypothesis. So M ′ /∈ H, and we are done.

(⇐): Assume H is not a home space. Then there exists a marking M ∈ post∗N (I) such
that post∗N ({M}) ∩ H = ∅. Let M0 ∈ I be a marking such that M ∈ post∗N ({M0}). By
hypothesis post∗N ({M0}) is finite, and so, since M is reachable from M0, some marking
M ′ ∈ post∗N (I) ∩ B is reachable from M . We prove that M ′ ∈ B \ post∗N (B ∩ H). Since
M ′ ∈ B, it suffices to prove M ′ /∈ post∗N (B ∩ H). Assume M ′ is reachable from some
M ′′ ∈ B∩H, henceM ′′ 6= M ′. By the definition of B, the markingsM ′ andM ′′ are mutually
reachable, and so M ′′ is also reachable from M . But, since M ′′ ∈ H, then some marking of
H is reachable from M , contradicting the definition of M . J
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I Theorem 16. The home space problem is decidable for triples (N, I,H) where
1. I and H are arbitrary Presburger sets of markings, and
2. post∗N ({M0}) is finite for every M0 ∈ I.

Proof. By Lemma 15, it suffices to decide whether B \post∗N (B∩H) is reachable from I. We
show that B \ post∗N (B ∩H) is an effectively Presburger set, and then apply the decidability
of the reachability problem for Presburger sets of markings (i.e., given two Presburger sets
P1,P2, decide if some marking of P2 is reachable from some marking of P1.)

By Theorem 9 and Proposition 11, the set B of bottom markings of N is effectively
Presburger. So, since Presburger sets are effectively closed under boolean operations, it
suffices to show that post∗N (B ∩ H) is effectively Presburger. Observe first that, since H
is effectively Presburger, so is B ∩ H. By the definition of B, if M ′ ∈ post∗N (M) for some
M ∈ B ∩H, then M ∈ post∗N (M ′). So M ∈ post∗N (B ∩H) iff there is a marking M ′ ∈ B ∩H
such that M and M ′ are mutually reachable. Since the mutual reachability relation of N is
effectively Presburger, post∗N (B ∩H) is effectively Presburger. J
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Abstract
Asynchronous programming has become ubiquitous in smartphone and web application develop-
ment, as well as in the development of server-side and system applications. Many of the uses of
asynchrony can be modeled by extending programming languages with asynchronous procedure
calls – procedures not executed immediately, but stored and selected for execution at a later point
by a non-deterministic scheduler. Asynchronous calls induce a flow of control that is difficult to
reason about, which in turn makes formal verification of asynchronous programs challenging. In
response, we take a rely/guarantee approach: Each asynchronous procedure is verified separately
with respect to its rely and guarantee predicates; the correctness of the whole program then
follows from the natural conditions the rely/guarantee predicates have to satisfy. In this way, the
verification of asynchronous programs is modularly decomposed into the more usual verification
of sequential programs with synchronous calls. For the sequential program verification we use
Hoare-style deductive reasoning, which we demonstrate on several simplified examples. These
examples were inspired from programs written in C using the popular Libevent library; they are
manually annotated and verified within the state-of-the-art Frama-C platform.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases asynchronous programs, rely/guarantee reasoning

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2015.483

1 Introduction

Asynchronous programming is a technique to efficiently manage multiple concurrent in-
teractions with the environment. Application development environments for smartphone
applications provide asynchronous APIs; client-side web programming with Javascript and
AJAX, high-performance systems software (e.g., nginx, Chromium, Tor), as well as embedded
systems, all make extensive use of asynchronous calls. By breaking long-running tasks into
individual procedures and posting callbacks that are triggered when background processing
completes, asynchronous programs enable resource-efficient, low-latency management of
concurrent requests.

In its usual implementation, the underlying programming system exposes an asynchronous
procedure call construct (either in the language or using a library), which allows the
programmer to post a procedure for execution in the future when a certain event occurs.
An event scheduler manages asynchronously posted procedures. When the corresponding
event occurs, the scheduler picks the associated procedure and runs it to completion. These
procedures are sequential code, possibly with recursion, and can post further asynchronous
procedures.
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Unfortunately, while asynchronous programs can be very efficient, the manual management
of resources and asynchronous procedures can make programming in this model quite difficult.
The natural control flow of a task is obscured and the programmer must ensure correct
behavior for all possible orderings of external events. Specifically, the global state of the
program can change between the time an asynchronous procedure is posted and the time the
scheduler picks and runs it.

In recent years, a number of automatic static analyses for asynchronous programs have
been proposed. The main theoretical result is the equivalence between an abstract model
of asynchronous programs with Boolean variables and Petri nets, thus showing that safety
and liveness verification problems are decidable for this model [14, 9, 6]. In practice, this
equivalence has been the basis for several automatic tools [11, 3]. Unfortunately, existing
tools still fall short of verifying “real” asynchronous programs. First, existing tools often
ignore important features such as passing data as arguments to asynchronous calls or heap
data structures in order to find a Boolean abstraction. Second, existing tools perform a
global coverability analysis of the Petri net equivalent to the abstracted program. Despite
the use of sophisticated heuristics, global coverability analysis tools scale poorly, especially
when there are many Boolean variables [4].

In this paper, we provide a modular proof system for asynchronous programs based on
rely/guarantee reasoning [10, 1, 5]. For each asynchronous procedure, we use a (“local”)
precondition and a postcondition, similar to modular proofs for sequential recursive programs.
In addition, we use a rely and a guarantee. Intuitively, the rely is the assumption about the
global state that the procedure makes about all other procedures that may happen in parallel
with it. The guarantee is what the procedure ensures about the global state. In addition to
predicates over global state, our rules also use predicates posted and pending that track if
a task was posted asynchronously in the current call stack, or if it is pending, respectively.
With these additional predicates, our modular proof rules are extremely simple:

running each task from its precondition establishes its guarantee and postcondition;
the rely of each task must preserve its precondition;
if a procedure posts task h and does not cancel it, it establishes the precondition of h at
the end of its execution; and finally,
the guarantee of each task that may run between the time h is posted and h is executed
establishes the rely of h.

We prove soundness of these rules, based on an invariant that ensures that if a procedure is
pending, then its precondition remains valid at every schedule point.

It is possible to simulate asynchronous programs using multi-threaded programs and
vice versa [12]. Thus, in principle, rely/guarantee reasoning for multi-threaded programs
[10, 5, 8, 7] – extended with rules for dynamic thread creation – could be used to reason about
asynchronous programs. However, by focusing on the specific concurrency model, we can deal
with programming features such as recursive tasks, as well as more advanced asynchronous
programming features such as deletion of tasks. To support these features, the reduction to
multi-threaded programs would add additional data structures to the program, losing the
structure of the program. Thus, “compiling” to threads, while theoretically possible, is not
likely to preserve the local, and often simple, reason why a program is correct.

We have implemented our proof system on top of the Frama-C framework and show
modular proofs of partial correctness on two asynchronous programs written in C using the
Libevent library. The programs are simple but realistic examples of common asynchronous id-
ioms. We show that one can verify these idioms by constructing “small” modular proofs, using
generic rely and guarantee predicates that can be automatically derived from preconditions.
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1 struct client_state { ... };
2
3 async main () {
4 // prepare a socket for
5 // incoming connections
6 int socket = prepare_socket ();
7 post accept ( socket );
8 }
9

10 //@ requires \ valid (s);
11 async read( struct client_state *s) {
12 if (/* s->fd ready */) {
13 // receive a chunk and store a
14 // rot13 ’d version into s-> buffer
15 post write (s);
16 post read(s);
17 }
18 else { // connection closed
19 delete write (s);
20 free(s);
21 }
22 }

23 async accept (int socket ) {
24 if (/* socket ready */) {
25 struct client_state *s = malloc (...);
26 s->fd = accept_connection ( socket );
27 // initialize s-> buffer
28 post read(s);
29 }
30 post accept ( socket );
31 }
32
33 //@ requires \ valid (s);
34 async write ( struct client_state *s) {
35 if (/* s->fd ready */) {
36 // send a chunk
37 if (/* there ’s more to send */)
38 post write (s);
39 }
40 else { // connection closed
41 delete read(s);
42 free(s);
43 }
44 }

Figure 1 Snippet of the ROT13 program. In this and the subsequent figures, parts of the code
are omitted and replaced by comments for brevity.

Moreover, reasoning about asynchronous programs can be effectively reduced to modular rea-
soning about sequential programs, for which sophisticated verification environments already
exist.

2 Main Idea

Asynchronous Programs. Figure 1 shows a version of the ROT13 server from the Libevent
manual [13]. The server receives input strings from a client, and sends back the strings
obfuscated using ROT13. The execution starts in the procedure main, which prepares a
non-blocking socket for incoming connections, and passes it to the procedure accept via an
asynchronous call. The asynchronous call, denoted by the keyword post, schedules accept
for later execution. In general, a procedure marked with the keyword async can be posted
with some arguments. The arguments determine an instance of the procedure; the instance
is stored in a set of pending instances. After some pending instance finishes executing, a
scheduler non-deterministically selects the next one and executes it completely. In case of the
ROT13 server, after main is done, the scheduler selects the single pending instance of accept.
accept checks whether a client connection is waiting to be accepted; if so, it accepts the
connection and allocates memory consisting of a socket and a buffer for communication with
the client. The allocated memory, addressed by the pointer s, is then asynchronously passed
to the procedure read. Finally, regardless of whether the connection has been accepted or
not, accept re-posts itself to reschedule itself for processing any upcoming connections.

While the client connection is open, the corresponding memory allocated by accept
is handled by a reader-writer pair: the reader (read) receives an input string and stores
an obfuscated version of it into the buffer. It then posts the writer (write), which sends
the content of the buffer back to the client. An interesting thing happens when the client
disconnects, which can happen during the execution of either the reader or the writer. When
one of the procedures notices that the connection has been closed, it releases the allocated
memory. However, the procedure does not know whether an instance of its counterpart is
still pending; if it is, it would try to access the deallocated memory. To make sure this
does not happen, before releasing the memory, the procedure deletes (keyword delete) the
potentially pending instance of its counterpart.
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The example shows that control structures for asynchronous programs can be complex:
tasks may post other tasks for later processing, arguments can be passed on to asynchronously
posted tasks, and an unbounded number of tasks can be pending at a time.

Safety Verification. We would like to verify that every memory access in this program is
safe; that is, we want to verify that both read and write can safely dereference the pointer
s. We assume this property is expressed by the predicate valid(s). We write valid(s) as a
precondition for read and write in lines 10 and 33.

Let us focus only on read. Its precondition clearly holds at each call site: it holds at
line 28 since the memory addressed by s has just been freshly allocated (for simplicity,
we assume malloc succeeds), and it holds at line 16 assuming read’s precondition holds.
However, between the point read is posted and the point it is executed, two different things
might invalidate its precondition. First, the caller may still have code to execute after the
call. Second, there may be pending instances of accept, read, and write concurrent with
read(s) that get executed before read(s) and deallocate the memory addressed by s.

To deal with the code of read’s callers, also referred to as read’s parents, we introduce
predicates postedr(s) and pendingr(s). (We also introduce a pair of predicates for every
other asynchronous procedure, namely main, accept, and write.) Predicate postedr(s) holds
if and only if read(s) has been posted during the execution of the current asynchronous
procedure (and not deleted). Predicate pendingr(s) holds if and only if read(s) is in the set
of pending instances. Note that if an asynchronous procedure posts and afterwards deletes
read(s), neither postedr(s) nor pendingr(s) will hold. Using the introduced predicates,
read’s parents can now express the following parent-child postcondition:

∀s. postedr(s) =⇒ valid(s) . (PC)

Informally, this postcondition says that every instance of read that has been posted during
the execution of the procedure, and that has not been deleted afterwards, has been posted
with the argument s that is valid, i.e., that can be safely dereferenced.

Rely/Guarantee. To deal with the procedures whose instances are concurrent with read,
also referred to as read’s concurrent siblings, we employ rely/guarantee reasoning. We
introduce a rely condition for read:

∀s. pending′r(s) ∧ pendingr(s) ∧ valid′(s) =⇒ valid(s) , (R)

where the primed versions of the predicates denote their truth at the beginning of execution
of a procedure. Informally, the rely condition says that if read(s) was pending with a valid
s when a concurrent sibling started executing, and read(s) is still pending at the end of
that execution, then s is still valid. In other words, read relies on the assumption that
its precondition is preserved by its concurrent siblings. Any of read’s concurrent siblings,
namely accept, read, and write, must guarantee read’s rely condition. This is achieved by
ensuring the concurrent siblings’ postconditions imply the rely condition.

As shown formally in the next section, the rely/guarantee conditions ensure the following
global invariant:

∀s. pendingr(s) =⇒ valid(s) . (I)

This invariant holds at the beginning of execution of every asynchronous procedure. Conse-
quently, read’s precondition holds at the moment read is executed.
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The benefit of the described approach is that it abstracts away reasoning about the
non-deterministic scheduler and the order in which it dispatches pending instances. We only
need to verify that each asynchronous procedure satisfies its postcondition. This can be
achieved using a sequential verification tool (e.g., Frama-C in our case).

A natural question to ask is why we have two predicates – postedr and pendingr – when it
seems that pendingr alone should be sufficient? If the global invariant (I) is what we are after,
why not just make it a precondition and a postcondition of every asynchronous procedure?
While this is sufficient, in order to prove (I) as a postcondition of an asynchronous procedure,
one would need to do a case split, and separately consider read’s instances posted during
the execution of the procedure, and instances that had been pending before the procedure
started executing. In the first case, the procedure knows why read’s precondition holds,
while in the second case it assumes that read’s precondition holds. By having the special
predicate postedr, we can make this case split explicit: the two separate cases correspond to
the parent-child condition (PC) and the rely condition (R). The asynchronous procedures
assume only their original preconditions, making the overall reasoning more local.

3 Technical Details

We formalize the rely/guarantee proof rules on SLAP, a simple language with asynchronous
procedure calls. The main result of the paper is Theorem 1, which says that in order to verify
a program with asynchronous procedure calls, it suffices to modularly verify each procedure
of a sequential program.

3.1 SLAP: Syntax and Semantics
Syntax. A SLAP program consists of a set of program variables Var , a set of procedure
names H, a subset AH ⊆ H of asynchronous procedures including a special procedure main,
and a mapping Π from procedure names in H to commands from a set Cmds of commands
(defined below).

We distinguish between global variables, denoted by GVar , and local variables, denoted
by LVar . Local variables also include parameters of procedures. We also introduce a set
of logical variables, disjoint from the program variables, which are used for constructing
quantified formulas. We write x, y, z for single variables, and ~x, ~y, ~z for vectors of variables.
We usually use x, ~x to denote global variables, and y, z, ~y, ~z to denote local variables. We use
the same letters for logical variables; this should not cause confusion.

We use a disjoint, primed, copy of the set of variables Var . Primed variables are used
to denote the state of the program at the beginning of execution of a procedure, while
the unprimed variables denote the current state. Logical variables do not have primed
counterparts, although we often abuse notation and write them primed.

Variables are used to construct expressions. We leave the exact syntax of expressions
unspecified. We just distinguish between Boolean expressions (usually denoted by B), and
all expressions (usually denoted by E).

The set of commands, denoted Cmds, is generated by the grammar:

C ::= x := E | assume(B) | assert(B) | g(E1, . . . , Ek)
| post h(E1, . . . , Ek) | delete h(E1, . . . , Ek) | enter h | exit h
| C1;C2 | C1 + C2 | C∗

The atomic commands are assignments (x := E), assumptions (assume(B)), assertions
(assert(B)), and synchronous calls (g(. . .) for g ∈ H \ AH ), as in a sequential imperative
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σ′, σ, o′, o, p′, p |= posted′h(E1, . . . , Ek) iff (h,⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ]) ∈ o′

σ′, σ, o′, o, p′, p |= postedh(E1, . . . , Ek) iff (h,⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ]) ∈ o
σ′, σ, o′, o, p′, p |= pending′h(E1, . . . , Ek) iff (h,⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ]) ∈ p′

σ′, σ, o′, o, p′, p |= pendingh(E1, . . . , Ek) iff (h,⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ]) ∈ p
σ′, σ, o′, o, p′, p |= B iff JBKσ′,σ = true

Figure 2 Semantics of atomic formulas.

language, together with the additional commands for asynchronous calls (post h(. . .) for
h ∈ AH ), deletions of pending instances (delete h(. . .)), and special commands enter h
and exit h marking the entrance to and exit from a procedure. Starting with the atomic
commands, complex commands are built using sequential composition (;), non-deterministic
choice (+), and iteration (∗).

Most of the commands in the language have their expected semantics. The command
post h(E1, . . . , Ek) posts an asynchronous call of procedure h ∈ AH with arguments
E1, . . . , Ek for future execution, and delete h(E1, . . . , Ek) deletes the pending occurrence of
the asynchronously posted procedure h with arguments E1, . . . , Ek if it exists. The enter h
and exit h commands are there for a technical reason: they mark the entry and exit of
procedure h. We assume that the command Π(h) of each procedure h starts with enter h,
ends with exit h, and that those two commands do not appear anywhere in between.

Formulas are generated as first order formulas whose atomic predicates are Boolean
expressions as well as the predicates posted′h, postedh, pending′h, and pendingh, for each
asynchronous procedure h ∈ AH . Intuitively, postedh is used for reasoning about the
accumulated asynchronous calls to h made during the execution of a single asynchronous
procedure, and pendingh is used for reasoning about the pending asynchronous calls to h,
not necessarily made during the execution of a single asynchronous procedure. Like program
variables, these predicates have the corresponding primed versions, used for reasoning about
the state at the beginning of execution of a procedure. For every formula F we write F ′ for
the formula obtained by replacing all unprimed occurrences of program variables, as well as
the predicates postedh and pendingg, by their primed counterparts.

Semantics. Assuming there is a set of values Val, a function σ : Var → Val is called a
valuation. We use notation σG := σ|GVar for the restriction of σ to global variables, and
σL := σ|LVar for the restriction of σ to local variables. We call the restrictions global
valuation and local valuation, respectively. We use notation σ[x1 7→ v1, . . . , xk 7→ vk] to
denote a valuation that differs from σ only in variables x1, . . . , xk, which are mapped to
values v1, . . . , vk. We assume there is a special value ⊥ ∈ Val denoting a non-initialized value.
We also use ⊥ to denote a constant valuation that maps every variable to ⊥.

Given valuations σ′ and σ, we denote the value of an expression E by JEKσ′,σ. Here, σ′
is used for evaluating the primed variables (the values at the beginning of execution of the
current procedure), and σ is used for evaluating the unprimed variables (the current values).

Next, we define a configuration Φ = (s, σG, o, p) of a SLAP program, where s is a stack
that keeps track of synchronous calls, σG is a valuation that describes the global state, o is a
set of instances asynchronously posted within the current asynchronous procedure, and p is
a set of pending instances. Stack s holds stack frames – tuples of the form (C, σ′, σL, o′, p′),
where C is the command that needs to be executed in the current stack frame, σ′ is the
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[Enter]

((enter h;C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C, σ′, σL, o′, p′) :: s, σG, o, p)

[Exit]

((exit h, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s (s, σG, o, p)

[Assume]
σ
′
, σ, o

′
, o, p

′
, p |= F

((assume(F );C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C, σ′, σL, o′, p′) :: s, σG, o, p)

[Assert OK]
σ
′
, σ, o

′
, o, p

′
, p |= F

((assert(F );C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C, σ′, σL, o′, p′) :: s, σG, o, p)

[Assert Wrong]
σ
′
, σ, o

′
, o, p

′
, p 6|= F

((assert(F );C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s wrong

[Assign]
ρ = σ[x 7→ JEKσ′,σ]

((x := E;C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C, σ′, ρL, o′, p′) :: s, ρG, o, p)

[Choice]
i ∈ {1, 2}

((C1 + C2;C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((Ci;C, σ′, σL, o′, p′) :: s, σG, o, p)

[Loop Skip]

((C∗;C′, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C′, σ′, σL, o′, p′) :: s, σG, o, p)

[Loop Step]

((C∗;C′, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C;C∗;C′, σ′, σL, o′, p′) :: s, σG, o, p)

[Sync Call]
h ∈ H \ AH ρ = ⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ ]

((h(E1, . . . , Ek);C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((Π(h), σG ∪ ρL, ρL, o, p) :: (C;σ′, σL, o′, p′) :: s, σG, o, p)

[Async Call]
h ∈ AH ρ = ⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ] q = o ∪ {(h, ρL)} r = p ∪ {(h, ρL)}

((post h(E1, . . . , Ek);C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C, σ′, σL, o′, p′) :: s, σG, q, r)

[Async Delete]
h ∈ AH ρ = ⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ] q = o \ {(h, ρL)} r = p \ {(h, ρL)}

((delete h(E1, . . . , Ek);C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C, σ′, σL, o′, p′) :: s, σG, q, r)

Figure 3 Semantics of SLAP – sequential part.

valuation at the beginning of execution in the current stack frame, σL is the valuation that
describes the current local state, and o′ and p′ are sets of posted and pending instances at
the beginning of execution in the current stack frame. Sets o, p, o′, and p′ hold pairs of
the form (h, σL), where h is the posted or pending procedure, and σL is a valuation that
describes the values passed to h. We use notation t :: ts to denote a stack consisting of a
head t and a tail ts, and ∅ to denote both an empty stack and an empty set. Apart from
configurations of the form (s, σG, o, p), which are part of the correct program execution, there
is also a special configuration wrong.

At this point we have introduced all the concepts and terminology needed to give semantics
to SLAP programs. First, the semantics of formulas is given in terms of valuations σ′, σ, and
sets o′, o, p′, p. The semantics of atomic formulas is shown in Figure 2, and the semantics
of complex formulas is defined inductively. We write σ′, σ, o′, o, p′, p |= F if F holds with
respect to σ′, σ, o′, o, p′, p. We also write Φ |= F if Φ = ((C, σ′, σL, o′, p′) :: s, σG, o, p) and
σ′, σ, o′, o, p′, p |= F . If Φ = (∅, σG, o, p), the truth of F containing local or primed variables,
or the predicates posted′h and pending′h is undefined. Finally, wrong |= F for any F .

Next, we define the sequential semantics of a SLAP program Π: H → Cmds as a
transition system over configurations. The rules that define the sequential transition relation
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[Extend]

Φ Π−→s Φ′

Φ Π−→a Φ′

[Dispatch]
h ∈ AH (h, σL) ∈ p r = p \ {(h, σL)}

(∅, σG, o, p)
Π−→a ((Π(h), σ, σL, ∅, r) :: ∅, σG, ∅, r)

Figure 4 Semantics of SLAP – asynchronous part.

∀~x ′, ~x, ~y ′, ~y. P ′h(~x ′, ~y ′) ∧Qh(~x ′, ~y ′, ~x, ~y) =⇒ Gh(~x ′, ~x) (1)

∀~x ′, ~x, ~y, ~z ′, ~z. postedh(~y) ∧ P ′g(~x ′, ~z ′) ∧Qg(~x ′, ~z ′, ~x, ~z) =⇒ Ph(~x, ~y) , (2)
where g ∈ parents(h)

∀~x ′, ~x, ~y. pending′h(~y) ∧ pendingh(~y) ∧ P ′h(~x ′, ~y) ∧Rh(~x ′, ~x) =⇒ Ph(~x, ~y) (3)

∀~x ′, ~x. Gg(~x ′, ~x) =⇒ Rh(~x ′, ~x) , (4)
where g ∈ siblings(h)

Figure 5 Rely/guarantee conditions. Variables ~x ′, ~x represent global variables, and variables
~y ′, ~y, ~z ′, ~z represent parameters.

Π−→s are given in Figure 3. The asynchronous semantics extends the sequential semantics
by integrating the behavior of the non-deterministic scheduler. The rules that define the
asynchronous transition relation Π−→a are given in Figure 4.

Note that we are modeling the pool of pending procedure instances using a set. Therefore,
posting an instance that is already pending has no effect. An alternative would be to use
a multiset and count the number of pending instances. We chose the first option for three
reasons. First, it corresponds to the semantics of Libevent’s function event_add(). Second,
it simplifies the semantics of deleting procedure instances. And third, one can always simulate
the counting semantics by extending the procedure with an extra parameter that acts as a
counter.

3.2 Rely/Guarantee Decomposition
In order to reason about an asynchronous program Π: H → Cmds modularly, for each of its
asynchronous procedures h ∈ AH we require a specification in terms of formulas Ph, Rh, Gh,
and Qh. Formulas Ph and Qh are h’s precondition and postcondition in the standard sense:
Ph is a formula over Var that is supposed to hold at the beginning of h’s execution, while Qh
is a formula over Var ′ ∪Var that is supposed to hold at the end of h’s execution. Predicates
Rh and Gh are formulas over GVar ′ ∪GVar , and they represent the procedure’s rely and
guarantee conditions. Intuitively, Rh tells what h relies on about the change of the global
state, while Gh tells what h guarantees about the change of the global state. We require that
the predicates posted′g, postedg, pending′g, and pendingg appear in the specification only
in negative positions. Furthermore, in Ph we allow only the unprimed predicates, and we
require Pmain ≡ true.

We will say that the specification (Ph, Rh, Gh, Qh)h∈AH is a rely/guarantee decomposition
of Π if the four conditions in Figure 5 are satisfied. Condition (1) requires procedure h to
establish its guarantee. Condition (2) requires that each parent of h, i.e. each asynchronous
procedure that posts h, establishes h’s precondition. Condition (3) is the stability condition:
it requires the rely predicate Rh to be strong enough to preserve preconditions of procedure
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h’s pending instances. Finally, condition (4) requires that h’s rely predicate is guaranteed by
each of h’s concurrent siblings, i.e. asynchronous procedures that may be executed between
the point when h is posted and the point when h itself is executed. Together, conditions
(1)–(4) imply the following lifecycle of an asynchronous procedure instance: once posted by
its parent, its precondition is established. Before it is executed, its precondition is preserved
by its concurrent siblings. When the procedure instance is finally executed, its precondition
holds.

Given a rely/guarantee decomposition (Ph, Rh, Gh, Qh)h∈AH of a program Π: H → Cmds,
we define a transformation of commands τ : Cmds → Cmds that inserts assumptions and
assertions of preconditions and postconditions at the right places:

τ(enter h) := enter h; assume(Ph), for h ∈ AH,
τ(exit h) := assert(Qh); exit h, for h ∈ AH,
τ(C1;C2) := τ(C1); τ(C2)

τ(C1 + C2) := τ(C1) + τ(C2)
τ(C∗) := τ(C)∗

τ(C) := τ(C), otherwise.

The definition of τ is naturally lifted to configurations (s, σG, o, p) and wrong: in case
of (s, σG, o, p), τ transforms all commands that await execution on the stack s, while
τ(wrong) = wrong.

Given a program Π: H → Cmds, we will say that Π is sequentially correct with respect to
a rely/guarantee decomposition (Ph, Rh, Gh, Qh)h∈AH if for every valuation σ : Var → Val,
every set of pending instances p, and every asynchronous procedure h ∈ AH we have

((τ(Π(h)), σ, σL, ∅, p) :: ∅, σG, ∅, p) 6τ◦Π−−→∗s wrong .

We will say that Π is correct if we have

(∅,⊥G, ∅, {(main,⊥L)}) 6Π−→∗a wrong .

With these definitions, the soundness of rely/guarantee reasoning is stated in the following
theorem.

I Theorem 1. Let Π: H → Cmds be an asynchronous program. If Π is sequentially correct
with respect to a rely/guarantee decomposition (Ph, Rh, Gh, Qh)h∈AH , then it is correct.

The proof of Theorem 1 is based on four technical results.

I Lemma 2. Let Π: H → Cmds be an asynchronous program, and let Φ0,Φ be configurations
of Π such that Φ0 = (∅,⊥G, ∅, {(main,⊥L)}), Φ = (s, σG, o, p) and Φ0

Π−→∗a Φ.
1. For every stack frame (C, σ′, σL, o′, p′) ∈ s, p ⊆ o ∪ p′.
2. If s is non-empty, then for every h ∈ AH,

Φ |= ∀~y. pendingh(~y) =⇒ (postedh(~y) ∨ pending′h(~y)) .

Proof. The first statement is proved by induction on the length of the trace. A straightforward
check shows that every rule preserves the invariant p ⊆ o ∪ p′. The second statement is a
direct corollary of the first statement. J

The next lemma states that preconditions of pending instances hold at each dispatch
point. Thus, it formalizes the discussion in Section 2, where the invariant (I) is found to hold
at each dispatch point.
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I Lemma 3. Let Π: H → Cmds be an asynchronous program with a rely/guarantee decom-
position (Ph, Rh, Gh, Qh)h∈AH . If (∅,⊥G, ∅, {(main,⊥L)}) τ◦Π−−→∗a (∅, σG, o, p), then for every
g ∈ AH we have σG, σG, ∅, o, p, p |= ∀~y. pendingg(~y) =⇒ Pg(~x, ~y).

Proof. By induction on the number of applications of the rule [Dispatch], using the
rely/guarantee conditions (1)–(4) and the invariant from Lemma 2(2). J

I Corollary 4. Let Π: H → Cmds be an asynchronous program with a rely/guarantee
decomposition (Ph, Rh, Gh, Qh)h∈AH , and let (∅,⊥G, ∅, {(main,⊥L)}) τ◦Π−−→+

a τ(Φ), with the
last step being a dispatch of procedure h ∈ AH. Then, τ(Φ) |= Ph(~x, ~y).

Proof. From Lemma 3, we know that the state just before the dispatch satisfies Ph(~x, ~y)
because h is pending in that state. Our conclusion, therefore, follows because Ph(~x, ~y) can
contain predicates postedg and pendingg only in negative positions, and the rule [Dispatch]
makes the sets of posted and pending instances smaller. J

I Lemma 5. Let Π: H → Cmds be an asynchronous program with a rely/guarantee decom-
position (Ph, Rh, Gh, Qh)h∈AH , and let Φ0,Φ′0, . . . ,Φk,Φ′k be configurations of Π such that
Φ0 = (∅,⊥G, ∅, {(main,⊥L)}) and

Φ0
Π−→∗s Φ′0

Π−→a Φ1
Π−→∗s Φ′1

Π−→a · · ·
Π−→a Φk

Π−→∗s Φ′k ,

with all of the asynchronous steps being taken according to the rule [Dispatch]. Either:
1. ∀i ∈ 0..k. τ(Φi)

τ◦Π−−→∗s τ(Φ′i), or
2. ∃i ∈ 0..k. τ(Φi)

τ◦Π−−→∗s wrong

Proof. By induction on the length of the trace. A straightforward inspection of the rules
in Figure 3 shows that each step of the original trace can be simulated by one or two steps
of the transformed trace. The only non-trivial point is showing that the inserted assume
statements always hold, which follows from Corollary 4. J

Proof of Theorem 1. By contraposition and application of Lemma 5. J

Notice that the rely/guarantee decomposition uses two relations: parents and siblings.
Formally, g ∈ parents(h) if there is a reachable configuration obtained by executing exit g
in which h is in the set of posted instances. Similarly, g ∈ siblings(h) if there is a reachable
configuration in which both g and h are in the set of pending instances. While these relations
are hard to compute precisely, Theorem 1 holds when we use any over-approximation of these
relations. A trivial over-approximation of both relations is the set AH of all asynchronous
procedures. In Section 4, we discuss a better approximation obtained through simple static
analysis.

4 Rely/Guarantee in Practice

4.1 Implementation for Libevent
We focused on C programs that use the Libevent library1. Libevent is an event notification
library whose main purpose is to unify OS-specific mechanisms for handling events that occur
on file descriptors. From this it also extends to handling signals and timeout events. The

1 http://libevent.org/

http://libevent.org/
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Rh(~x ′, ~x) ≡ ∀~y. pending′h(~y) ∧ pendingh(~y) ∧ P ′h(~x ′, ~y) =⇒ Ph(~x, ~y)

Gh(~x ′, ~x) ≡
∧

g∈siblings(h)

Rg(~x ′, ~x)

Qh(~x ′, ~z ′, ~x, ~z) ≡ Gh(~x ′, ~x) ∧
∧

g∈children(h)

∀~y. postedg(~y) =⇒ Pg(~x, ~y)

Figure 6 Generic rely/guarantee predicates.

library is used in asynchronous applications such as the Chromium web browser, Memchached,
SNTP, and Tor.

We abstract away the details of the events by assuming their handlers are dispatched
non-deterministically, instead of when the events actually occur. Thus, registering an event
handler for a specific event corresponds to calling the handler asynchronously in our model.

Even with this abstraction, Libevent remains too complex for reasoning about directly.
Therefore, we hide it behind a much simpler interface that corresponds to SLAP: For
each asynchronous procedure h, we provide two (synchronous) functions called post_h and
delete_h, with the same parameters as h. As the prefixes suggest, these functions are used
for posting and deleting h’s instances. With these functions, the C code we are analyzing
directly resembles the code of the ROT13 server in Figure 1; the difference is that instead of
the keywords post and delete, we use the functions with the corresponding prefixes.

We implemented the rely/guarantee rules on top of the Frama-C verification platform
[2]. We use ACSL, Frama-C’s specification language, which is expressive enough to encode
the predicates posted and pending, with their state being maintained using ghost code.
The specification is a fairly straightforward encoding of the semantics of SLAP. After the
transformation that inserts appropriate preconditions and postconditions (along with the
necessary ghost code), we use Frama-C’s WP (weakest-precondition) plugin to generate
verification conditions that are discharged by Z3.

In order to over-estimate the sets of parents and concurrent siblings, we manually perform
a simple static analysis. In this analysis, we ignore deletes, and only look at posts. For each
procedure h we perform a 0–1–ω abstraction of the number of asynchronous procedures’
instances posted at each location. Specifically, at h’s exit point this gives us an abstracted
number of instances of each procedure posted by h. From this information, we can directly
construct sets of children, or equivalently parents. Furthermore, if h posts f and g, then
f ∈ siblings(g) and g ∈ siblings(f). Also, if h posts more than one instance of g, then
g ∈ siblings(g). We use these two facts to bootstrap the following recursion that computes
siblings: if f ∈ siblings(g), then f ′ ∈ siblings(g) and f ∈ siblings(g′) for every f ′ ∈ children(f)
and g′ ∈ children(g).

An archive with the verified programs can be found at the URL: http://www.mpi-sws.
org/~fniksic/concur2015/rely-guarantee.tar.gz.

4.2 Generic Rely/Guarantee Predicates
Instead of asking the programmer to manually specify rely/guarantee predicates and post-
conditions, and then checking that they satisfy the rely/guarantee conditions (1)–(4), we
can use generic predicates shown in Figure 6. These predicates trivially satisfy conditions
(1)–(4); in fact, they are the weakest predicates to do so.

Note that the generic predicates, while convenient, might not be sufficient for verifying
correctness of all programs. The reason is that the proof obligations for the sequential
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1 struct device {
2 int owner ;
3 // ...
4 } dev;
5
6 async main () {
7 dev. owner = 0;
8 int socket = prepare_socket ();
9 post listen ( socket );

10 }
11
12 /*@ requires id > 0;
13 @ requires global_invariant_write ;
14 @*/
15 async new_client (int id , int fd) {
16 if (dev. owner > 0)
17 post new_client (id , fd );
18 else {
19 dev. owner = id;
20 post write (id , fd );
21 }
22 }

23 async listen (int socket ) {
24 if (/* socket ready */) {
25 int id = new_client_id ();
26 int fd = accept_connection ( socket );
27 post new_client (id , fd );
28 }
29 post listen ( socket );
30 }
31
32 /*@ requires
33 @ id > 0 ∧
34 @ dev. owner = id ∧
35 @ ∀ int id1 , int fd1 ;
36 @ pending_write (id1 , fd1 )
37 @ ⇒ id = id1 ∧ fd = fd1
38 @*/
39 async write (int id , int fd) {
40 if ( transfer (fd , dev ))
41 post write (id , fd );
42 else // write complete
43 dev. owner = 0;
44 }

Figure 7 Snippet of the Race program.

programs obtained by applying the transformation τ may not be provable. The generic
predicates are sufficient for the ROT13 server from Section 2, where the preconditions are:
Pmain ≡ Paccept ≡ true, and Pread ≡ Pwrite ≡ valid(s). Plugging these preconditions into the
generic predicates from Figure 6 gives rise to proof obligations that can be discharged by Z3.
However, the generic predicates are not sufficient for the program we discuss next.

Consider the Race program [9] in Figure 7. Initially, procedure main sets up a global
resource called dev to which multiple clients will transfer data by setting the dev.owner
flag to zero. main then prepares a socket and posts the procedure listen to listen to client
connections. listen checks whether the socket is ready; if so, it accepts the connection to get
a file descriptor fd, and generates a unique positive id for the client. It then passes id and
fd to the procedure new_client. new_client checks whether the device is currently owned
by some client (dev.owner>0); if so, it re-posts itself. If the device is free (dev.owner==0),
new_client takes the ownership for the client identified by id and posts the procedure write
that performs the transfer of the client’s data. write operates in multiple steps, re-posting
itself until the transfer is done. At the end, it releases the device by setting dev.owner back
to zero.

In this example, since multiple clients are trying to non-atomically write to a single shared
resource, the important property is mutual exclusion: there should always be at most one
pending instance write(id, fd), and if there is one, dev.owner should be set to id. We
encode this property as a precondition Pwrite to write in lines 32–37.

To ensure mutual exclusion, procedure new_client assumes id>0 as its precondition in
line 12. However, this precondition is not sufficiently strong for new_client to establish
write’s generic rely predicate. This is due to write’s precondition including assumptions
about other of write’s pending instances. However, new_client can establish write’s
rely if it additionally assumes write’s global invariant ∀id, fd. pendingwrite(id, fd) =⇒
Pwrite(id, fd) (line 13).

In order to justify new_client’s additional assumption, and show that there is no hidden
circular reasoning, we show that we can weaken the rely/guarantee conditions (1) and (2).
Indeed, Lemma 3 still holds if we replace conditions (1) and (2) with the following weaker
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versions:

∀~x ′, ~x, ~y ′, ~y.
∧

f∈AH

(
∀~z. pending′f (~z) =⇒ P ′f (~x ′, ~z)

)
∧ P ′h(~x ′, ~y ′) ∧Qh(~x ′, ~y ′, ~x, ~y) =⇒ Gh(~x ′, ~x)

(1’)

∀~x ′, ~x, ~y, ~z ′, ~z.
∧

f∈AH

(
∀~u. pending′f (~u) =⇒ P ′f (~x ′, ~u)

)
∧ postedh(~y) ∧ P ′g(~x ′, ~z ′) ∧Qg(~x ′, ~z ′, ~x, ~z) =⇒ Ph(~x, ~y) ,

(2’)

where g ∈ parents(h)

The generic postconditions Qh can now be weakened as follows.

Qh(~x ′, ~z ′, ~x, ~z) ≡
∧

f∈AH

(
∀~y. pending′f (~y) =⇒ P ′f (~x ′, ~y)

)
=⇒

(
Gh(~x ′, ~x) ∧

∧
g∈children(h)

∀~y. postedg(~y) =⇒ Pg(~x, ~y)
)

This allows asynchronous procedures to freely assume any of the global invariants ensured
by Lemma 3 if it helps them to establish their guarantees. Even though at first glance such
additional assumptions might seem vacuous, the Race example shows this is not the case.

4.3 Limitations
In practice, Frama-C and the WP plugin have limitations that are orthogonal to the
rely/guarantee approach. One limitation is WP’s lack of support for dynamic memory
allocation. In fact, in order to verify the ROT13 server, we were not able to use Frama-C’s
built-in predicate \valid. Instead, we had to specify our own validity predicate and use
corresponding dedicated malloc and free functions. Generalizing such an approach to more
complicated programs is infeasible, as our custom memory model does not integrate well
with the built-in one. A related limitation is restricted reasoning about inductive data
structures. While Frama-C’s specification language ACSL supports inductive predicates,
the WP plugin does not fully support them. Moreover, reasoning about even the simplest
inductive data structures such as linked lists may require separation predicates that are
beyond the expressive power of ACSL. Our rely/guarantee rules work “modulo” a sequential
verifier, so better handling of these limitations will allow reasoning about more complex
asynchronous programs.

Acknowledgements. This research was sponsored in part by the EC FP7 FET project
ADVENT (308830) and an ERC Synergy Award (“ImPACT”).
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Abstract
Security protocols are concurrent processes that communicate using cryptography with the aim
of achieving various security properties. Recent work on their formal verification has brought
procedures and tools for deciding trace equivalence properties (e.g., anonymity, unlinkability,
vote secrecy) for a bounded number of sessions. However, these procedures are based on a naive
symbolic exploration of all traces of the considered processes which, unsurprisingly, greatly limits
the scalability and practical impact of the verification tools.

In this paper, we mitigate this difficulty by developing partial order reduction techniques for
the verification of security protocols. We provide reduced transition systems that optimally elim-
inate redundant traces, and which are adequate for model-checking trace equivalence properties
of protocols by means of symbolic execution. We have implemented our reductions in the tool
Apte, and demonstrated that it achieves the expected speedup on various protocols.
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Keywords and phrases cryptographic protocols, verification, process algebra, trace equivalence
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1 Introduction

Security protocols are concurrent processes that use various cryptographic primitives in
order to achieve security properties such as secrecy, authentication, anonymity, unlinkability,
etc. They involve a high level of concurrency and are difficult to analyse by hand. Actually,
many protocols have been shown to be flawed several years after their publication (and
deployment). This has led to a flurry of research on formal verification of protocols.

A successful way of representing protocols is to use variants of the π-calculus, whose
labelled transition systems naturally express how a protocol may interact with a (potentially
malicious) environment whose knowledge increases as more messages are exchanged over
the network. Some security properties (e.g., secrecy, authentication) are then described as
reachability properties, while others (e.g., unlinkability, anonymity) are expressed as trace
equivalence properties. In order to decide such properties, a reasonable assumption is to
bound the number of protocol sessions, thereby limiting the length of execution traces. Even
under this assumption, infinitely many traces remain, since each input may be fed infinitely
many different messages. However, symbolic execution and dedicated constraint solving
procedures have been devised to provide decision procedures for reachability [18, 12] and,
more recently, equivalence properties [23, 9]. Unfortunately, the resulting tools, especially
those for checking equivalence (e.g., Apte [8], Spec [22]), have a very limited practical impact
because they scale very badly. This is not surprising since they treat concurrency in a very
naive way, exploring all possible symbolic interleavings of concurrent actions.
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Contributions. We develop partial order reduction (POR) techniques for trace equivalence
checking of security protocols. Our main challenge is to do it in a way that is compatible with
symbolic execution: we should provide a reduction that is effective when messages remain
unknown, but leverages information about messages when it is inferred by the constraint
solver. We achieve this by refining interleaving semantics in two steps, gradually eliminating
redundant traces. The first refinement, called compression, uses the notion of polarity [2] to
impose a simple strategy on traces. It does not rely on data analysis at all and can easily be
used as a replacement for the usual semantics in verification algorithms. The second one,
called reduction, takes data into account and achieves optimality in eliminating redundant
traces. In practice, the reduction step can be implemented in an approximated fashion,
through an extension of constraint resolution procedures. We have done so in the tool Apte,
showing that our theoretical results do translate to significant practical optimisations.

Related work. The theory of partial order reduction is well developed in the context of
reactive systems verification (e.g., [21, 6, 16]). However, as pointed out by E. Clarke et al.
in [11], POR techniques from traditional model-checking cannot be directly applied in the
context of security protocol verification. Indeed, the application to security requires one to
keep track of the knowledge of the attacker, and to refer to this knowledge in a meaningful
way (in particular to know which messages can be forged at some point to feed some input).
Furthermore, security protocol analysis does not rely on the internal reduction of a protocol,
but has to consider arbitrary execution contexts (representing interactions with arbitrary,
active attackers). Thus, any input may depend on any output, since the attacker has the
liberty of constructing arbitrary messages from past outputs. This results in a dependency
relation which is a priori very large, rendering traditional POR arguments suboptimal, and
calling for domain-specific techniques.

In order to achieve our goal of improving existing tools, our techniques are designed to
integrate nicely with symbolic execution. This is necessary to precisely deal with infinite,
structured data, without considering an a priori fixed and finite set of messages, as is the case
in several earlier works, e.g., [11, 13]. In this task, we get some inspiration from Mödersheim
et al. [20]. While their reduction is very limited, it brings some key insight on how POR
may be combined with symbolic execution in the context of security protocols verification.
All of the papers mentioned above only consider reachability properties, while we develop
an approach which is adequate for model-checking trace equivalence properties. In earlier
work [4] we have combined the idea of [20] with more powerful partial order reduction, in
a way that is compatible with trace equivalence checking. This settled the general ideas
behind the present paper, but only covered the very restrictive class of simple processes
(parallel processes communicate on distinct channels, and replication and nested parallel
composition are not allowed). Actually, we made heavy use of specific properties of those
simple processes to define our reductions and prove them correct. The present work also
brings a solid implementation in the tool Apte [8].

Outline. We consider in Section 2 a rich process algebra for representing security protocols.
It supports arbitrary cryptographic primitives, and even includes a replication operator
suitable for modelling unbounded numbers of sessions. Thus, we are not restricted to a
particular fragment for which a decision procedure exists, but show the full scope of our
theoretical results. We give in Section 3 an annotated semantics that will facilitate the
following technical developments. We then define our compressed semantics in Section 4
and the reduced semantics in Section 5. In both sections, we first restrict the transition
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system, then show that the restriction is adequate for checking trace equivalence under
some action-determinism condition. We finally discuss how these results can be lifted to
the symbolic setting in Section 6. Specifically, we describe how we have implemented our
techniques in Apte, and we present experimental results showing that the optimisations are
fully effective in practice.

Due to lack of space, the reader is referred to the companion technical report [5] for the
missing proofs and additional details. In particular, a comparison of this work with the
extensive literature about POR can be found in [5, §7].

2 Model for security protocols

In this section we introduce our process algebra, which is a variant of the applied π-calculus [1]
that has been designed with the aim of modelling cryptographic protocols. Processes can
exchange complex messages, represented by terms quotiented by some equational theory.

One of the key difficulties in the applied π-calculus is that it models the knowledge of
the environment, seen as an attacker who listens to network communication and may also
inject messages. One has to make a distinction between the content of a message (sent by
the environment) and the way the message has been created (from knowledge available to
the environment). While the distinction between messages and recipes came from security
applications, it may be of much broader interest, as it gives a precise, intentional content to
labelled transitions that we exploit to analyse data dependencies.

We study a process algebra that may seem quite restrictive: we forbid internal commu-
nication and private channels. However, this is reasonable when studying security protocols
faced with the usual omnipotent attacker. In such a setting, we end up considering the
worst-case scenario where any communication has to be made via the environment.

2.1 Syntax
We assume a number of disjoint and infinite sets: a set C of channels, whose elements are
denoted by a, b, c; a set N of private names or nonces, denoted by n or k; a set X of variables,
denoted by x, y, z as usual; and a set W of handles, denoted by w and used for referring to
previously output terms. Next, we consider a signature Σ consisting of a finite set of function
symbols together with their arity. Terms over S, written T (S), are inductively generated
from S and function symbols from Σ. When S ⊆ N , elements of T (S) are called messages.
When S ⊆ W, they are called recipes and written M , N . Intuitively, recipes express how a
message has been derived by the environment from the messages obtained so far. Finally, we
consider an equational theory E over terms to assign a meaning to function symbols in Σ.

I Example 1. Let Σ = {enc/2, dec/2, h/1} and E be the equational theory induced by the
equation dec(enc(x, y), y) = x. Intuitively, the symbols enc and dec represent symmetric
encryption and decryption, whereas h is used to model a hash function. Now, assume that
the environment knows the key k as well as the ciphertext enc(n, k), and that these two
messages are referred to by handles w and w′. The environment may decrypt the ciphertext
with the key k, apply the hash function, and encrypt the result using k to get the message
m0 = enc(h(n), k). This computation is modelled using the recipe M0 = enc(h(dec(w′, w)), w).

I Definition 2. Processes are defined by the following syntax where c, a ∈ C, x ∈ X ,
u, v ∈ T (N ∪ X ), and #»c (resp. #»n) is a sequence of channels from C (resp. names from N ).

P,Q ::= 0 | (P | Q) | in(c, x).P | out(c, u).P | if u = v then P else Q | !a#»c , #»nP

CONCUR’15
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The last construct combines replication with channel and name restriction: !a#»c , #»nP may be
read as !(ν #»c .out(a, #»c ).ν #»n.P ) in standard applied π-calculus. Our goal with this compound
construct is to support replication in a way that is not fundamentally incompatible with the
action-determinism condition which we eventually impose on our processes. This is achieved
here by advertising on the public channel a any new copy of the replicated process. At the
same time, we make public the new channels #»c on which the copy may operate – but not
the new names #»n . While it may seem restrictive, this style is actually natural for security
protocols where the attacker knows exactly to whom he is sending a message and from whom
he is receiving, e.g., via IP addresses.

We shall only consider ground processes, where each variable is bound by an input. We
denote by fc(P ) and bc(P ) the set of free and bound channels of P .

I Example 3. The process P0 models an agent who sends the ciphertext enc(n, k), and then
waits for an input on c. In case the input has the expected form, the constant ok is emitted.

P0 = out(c, enc(n, k)).in(c, x).if dec(x, k) = h(n) then out(c, ok).0 else 0
The processes P0 as well as !ac,nP0 are ground. We have that fc(P0) = {c} and bc(P0) = ∅
whereas fc(!ac,nP0) = {a} and bc(!ac,nP0) = {c}.

2.2 Semantics
We only consider processes that are normal w.r.t. internal reduction  defined as follows:

if u = v then P else Q P when u =E v P | Q  P ′ | Q
if u = v then P else Q Q when u 6=E v Q | P  Q | P ′

}
when P P ′

(P1 | P2) | P3  P1 | (P2 | P3) P | 0 P 0 | P  P

Any process in normal form built from parallel composition can be uniquely written as
P1 | (P2 | (. . . | Pn)) with n ≥ 2, which we denote Πn

i=1Pi, where each process Pi is neither
a parallel composition nor the process 0.

We now define our labelled transition system. It deals with configurations (denoted
by A, B) which are pairs (P ; Φ) where P is a multiset of ground processes and Φ, called the
frame, is a substitution mapping handles to messages that have been made available to the
environment.

Given a configuration A, Φ(A) denotes its second component. Given a frame Φ, dom(Φ)
denotes its domain.

In ({in(c, x).Q} ] P; Φ) in(c,M)−−−−−→ ({Q{MΦ/x}} ] P; Φ) M ∈ T (dom(Φ))

Out ({out(c, u).Q} ] P; Φ) out(c, w)−−−−−→ ({Q} ] P; Φ ∪ {w 7→ u}) w ∈ W fresh

Repl ({!a#»c , #»nP} ] P; Φ) sess(a, #»c )−−−−−−→ ({P ; !a#»c , #»nP} ] P; Φ) #»c , #»n fresh

Par ({Πn
i=1Pi} ] P; Φ) τ−→ ({P1, . . . , Pn} ] P; Φ)

Zero ({0} ] P; Φ) τ−→ (P; Φ)

Rule In expresses that an input process may receive any message that the environment
can derive from the current frame. In rule Out, the frame is enriched with a new message.
The last two rules simply translate the parallel structure of processes into the multiset
structure of the configuration. As explained above, rule Repl combines the replication of a
process together with the creation of new channels and nonces. The channels #»c are implicitly
made public, but the newly created names #»n remain private. Remark that channels #»c

and names #»n must be fresh, i.e., they do not appear free in the original configuration. As
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usual, freshness conditions do not block executions: it is always possible to rename bound
channels #»c and names #»n of a process !a#»c , #»nP before applying Repl. We denote by bc(tr)
the bound channels of a trace tr, i.e., all the channels that occur in second argument of an
action sess(a, #»c ) in tr, and we consider traces where channels are bound at most once.

I Example 4. Going back to Example 3 with Φ0 = {w1 7→ k}, we have that:

({!ac,nP0}; Φ0) sess(a, c)−−−−−→ out(c, w2)−−−−−→ in(c,M0)−−−−−→ ({out(c, ok).0; !ac,nP0}; Φ)

where Φ = {w1 7→ k,w2 7→ enc(n, k)} and M0 = enc(h(dec(w2, w1)), w1).

2.3 Equivalences
We are concerned with trace equivalence, which is used [7, 15] to model anonymity, un-
traceability, strong secrecy, etc. Finer behavioural equivalences, e.g., weak bisimulation,
appear to be too strong with respect to what an attacker can really observe. Intuitively, two
configurations are trace equivalent if the attacker cannot tell whether he is interacting with
one or the other. To make this formal, we introduce a notion of equivalence between frames.

I Definition 5. Two frames Φ and Φ′ are in static equivalence, written Φ ∼ Φ′, when
dom(Φ) = dom(Φ′), and: MΦ =E NΦ ⇔ MΦ′ =E NΦ′ for any terms M,N ∈ T (dom(Φ)).

I Example 6. Continuing Example 4, consider Φ′ = {w1 7→ k′, w2 7→ enc(n, k)}. The test
enc(dec(w2, w1), w1) = w2 is true in Φ but not in Φ′, thus Φ 6∼ Φ′.

We then define obs(tr) to be the subsequence of tr obtained by erasing τ actions.

I Definition 7. Let A and B be two configurations. We say that A v B when, for any
A tr−→ A′ such that bc(tr) ∩ fc(B) = ∅, there exists B tr′−→ B′ such that obs(tr) = obs(tr′) and
Φ(A′) ∼ Φ(B′). They are trace equivalent, written A ≈ B, when A v B and B v A.

In order to lift our optimised semantics to trace equivalence, we will require configurations
to be action-deterministic. This common assumption in POR techniques [6] is also reasonable
in the context of security protocols, where the attacker knows with whom he is communicating.

I Definition 8. A configuration A is action-deterministic if whenever A tr−→ (P ; Φ), and P,Q
are two elements of P, we have that P and Q cannot perform an observable action of the
same nature (in, out, or sess) on the same channel (i.e., if both actions are of same nature,
their first argument has to differ).

3 Annotated semantics

We shall now define an intermediate semantics whose transitions are equipped with more
informative actions. The annotated actions will notably feature labels ` ∈ N∗ indicating from
which concurrent processes they originate. A labelled action will be written [α]` where α is
an action and ` is a label. Similarly, a labelled process will be written [P ]`. When reasoning
about trace equivalence between two configurations, it will be crucial to maintain a consistent
labelling between configurations along the execution. In order to do so, we define skeletons
of observable actions, which are of the form inc, outc or !a where a, c ∈ C, and we assume a
total ordering over those skeletons, denoted < with ≤ being its reflexive closure. Any process
that is neither 0 nor a parallel composition induces a skeleton corresponding to its toplevel
connective, and we denote it by sk(P ) (e.g., sk(in(c, x).0) = inc).
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In ({[in(c, x).Q]`} ] P; Φ) [in(c,M)]`−−−−−−−→a ({[Q{MΦ/x}]`} ] P; Φ) M ∈ T (dom(Φ))

Out ({[out(c, u).Q]`} ] P; Φ) [out(c,w)]`−−−−−−−→a ({[Q]`} ] P; Φ ∪ {w 7→ u}) w ∈ W fresh

Repl ({[!a#»c , #»nP0]`} ] P; Φ) [sess(a, #»c )]`−−−−−−−−→a ({[P0]`·1, [!a#»c , #»nP0]`·2} ] P; Φ) #»c , #»n fresh

Par ({[Πn
i=1Pi]`} ] P; Φ)

[par(σπ(1);...;σπ(n))]`
−−−−−−−−−−−−−→a ({[Pπ(1)]`·1, . . . , [Pπ(n)]`·n} ] P; Φ)

σi = sk(Pi) and π is a permutation over [1, ...n] such that σπ(1) ≤ . . . ≤ σπ(n)

Zero ({[0]`} ] P; Φ) [zero]`−−−−→a (P; Φ)

Figure 1 Annotated semantics.

We then define in Figure 1 the annotated semantics −→a over configurations whose
processes are labelled. In Par, note that sk(Pi) is well defined as Pi cannot be 0 nor
a parallel composition. Note that the annotated transition system does not restrict the
executions of a process but simply annotates them with labels, and replaces τ actions by
more descriptive actions.

We now define how to extract dependencies from annotated traces, which will allow us to
analyse concurrency in an execution without referring to configurations. We obtain sequential
dependencies from labels, in a way that is similar, e.g., to the use of causal relations in
CCS [14]. We also define recipe dependencies which are a sort of data dependencies reflecting
our specific setting, where we consider an arbitrary attacker who may interact with the
process, relying on (maybe several) previously outputted messages to derive input messages.

I Definition 9. Two labels are dependent if one is a prefix of the other. We say that the
labelled actions α and β are sequentially dependent when their labels are dependent, and
recipe dependent when {α, β} = {[in(c,M)]`, [out(c′, w)]`′} with w occurring inM . They are
dependent when they are sequentially or recipe dependent. Otherwise, they are independent.

I Definition 10. A configuration (P ; Φ) is well labelled if P is a multiset of labelled processes
such that two elements of P have independent labels.

Obviously, any unlabelled configuration may be well labelled. Further, it is easy to see
that well labelling is preserved by −→a. Thus, we shall implicitly assume to be working with
well labelled configurations. Under this assumption, we obtain the following lemma.

I Lemma 11. Let A be a (well labelled) configuration, α and β be two independent labelled
actions. We have A α.β−−→a A

′ if, and only if, A β.α−−→a A
′.

Symmetries of trace equivalence. We will see that, when checking A ≈ B for action-
deterministic configurations, it is sound to require that B can perform all traces of A in the
annotated semantics (and the converse). In other words, labels and detailed non-observable
actions zero and par(σ1 . . . σn) are actually relevant for trace equivalence. Obviously, this
can only hold if A and B are labelled consistently. In order to express this, we extend sk(P )
to parallel and 0 processes: we let their skeletons be the associated action in the annotated
semantics. Next, we define the labelled skeletons by skl([P ]`) = [sk(P )]`. When checking for
equivalence of A and B, we shall assume that skl(A) = skl(B), i.e., the configurations have
the same set of labelled skeletons. This technical condition is not restrictive in practice.
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I Example 12. Let A = ({[in(a, x).((out(b,m).P1) | P2)]0}; Φ) with P1 = in(c, y).0 and
P2 = in(d, z).0, and B the configuration obtained from A by swapping P1 and P2. We have
skl(A) = skl(B) = {[ina]0}. Consider the following trace:

tr = [in(a, ok)]0.[par({outb; ind})]0.[out(b, w)]0·1.[in(c, w)]0·1.[in(d,w)]0·2

Assuming outb < ind and ok ∈ Σ, we have A tr−→a A
′. However, there is no B′ such that

B tr−→a B
′, for two reasons. First, B cannot perform the second action since skeletons of sub-

processes of its parallel composition are {outb; inc}. Second, B would not be able to perform
the action in(c, w) with the right label. Such mismatches can actually be systematically
used to show A 6≈ B, as shown next.

I Lemma 13. Let A and B be two action-deterministic configurations such that A ≈ B
and skl(A) = skl(B). For any execution A

[α1]`1
−−−−→a A1

[α2]`2
−−−−→a A2 . . .

[αn]`n−−−−→a An with

bc(α1. . . . αn)∩ fc(B) = ∅, there exists an execution B [α1]`1
−−−−→a B1

[α2]`2
−−−−→a B2 . . .

[αn]`n−−−−→a Bn
such that Φ(Ai) ∼ Φ(Bi) and skl(Ai) = skl(Bi) for any 1 ≤ i ≤ n.

4 Compression

Our first refinement of the semantics, which we call compression, is closely related to focusing
from proof theory [2]: we will assign a polarity to processes and constrain the shape of
executed traces based on those polarities. This will provide a first significant reduction of the
number of traces to consider when checking reachability-based properties such as secrecy, and
more importantly, equivalence-based properties in the action-deterministic case. Moreover,
compression can easily be used as a replacement for the usual semantics in verification
algorithms.

I Definition 14. A process P is positive if it is of the form in(c, x).Q, and it is negative
otherwise. A multiset of processes P is initial if it contains only positive or replicated
processes, i.e., of the form !a#»c , #»nQ.

The compressed semantics (see Figure 2) is built upon the annotated semantics. It
constrains the traces to follow a particular strategy, alternating between negative and positive
phases. It uses enriched configurations of the form (P;F ; Φ) where (P; Φ) is a labelled
configuration and F is either a process (signalling which process is under focus in the positive
phase) or ∅ (in the negative phase). The negative phase lasts until the configuration is initial
(i.e., unfocused with an initial underlying multiset of processes) and in that phase we perform
actions that decompose negative non-replicated processes. This is done using the Neg rule,
in a completely deterministic way. When the configuration becomes initial, a positive phase
can be initiated: we choose one process and start executing the actions of that process (only
inputs, possibly preceded by a new session) without the ability to switch to another process
of the multiset, until a negative subprocess is released and we go back to the negative phase.
The active process in the positive phase is said to be under focus. Between any two initial
configurations, the compressed semantics executes a sequence of actions, called blocks, of the
form foc(α).tr+.rel.tr− where tr+ is a (possibly empty) sequence of input actions, whereas
tr− is a (possibly empty) sequence of out, par, and zero actions. Note that, except for
choosing recipes, the compressed semantics is completely non-branching when executing a
block. It may branch only when choosing which block is performed.
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Start/In

P is initial (P ; Φ) in(c,M)−−−−−→a (P ′; Φ)

(P ] {P};∅; Φ) foc(in(c,M))−−−−−−−−−→c (P;P ′; Φ)

Start/!

P is initial (!a#»c , #»nP ; Φ) sess(a, #»c )−−−−−−→a ({!a#»c , #»nP ;Q}; Φ)

(P ] {!a#»c , #»nP};∅; Φ) foc(sess(a, #»c ))−−−−−−−−−−→c (P ] {!a#»c , #»nP};Q; Φ)

Pos/In

(P ; Φ) in(c,M)−−−−−→a (P ′; Φ)

(P;P ; Φ) in(c,M)−−−−−−→c (P;P ′; Φ)

Neg
(P ; Φ) α−→a (P ′; Φ′)

(P ] {P};∅; Φ) α−−→c (P ] P ′;∅; Φ′)
α ∈ {par(_), zero, out(_,_)}

Release (P; [P ]`; Φ) [rel]`−−−−→c (P ] {[P ]`};∅; Φ) when P is negative

Labels are implicitly set in the same way as in the annotated semantics. Neg is made
non-branching by imposing an arbitrary order on labelled skeletons of available actions.

Figure 2 Compressed semantics.

I Example 15. Consider the process P = !ac,kin(c, x).out(c, enc(x, k)).0. We have that:

({P};∅; Φ) foc(sess(a, ci))−−−−−−−−−→c ({P}; {in(ci, x).out(c, enc(x, ki)).0}; Φ)
in(ci,Mi).rel−−−−−−−−→c ({P, out(c, enc(MiΦ, ki)).0};∅; Φ)

out(ci, wi).zero−−−−−−−−−→c ({P};∅; Φ′).

Once a replication is performed, the resulting process is under focus and must be executed in
priority until the end. Note that, after executing the input, the resulting process is negative
and, thus, still has priority. Thus, on this example, all compressed executions are made of
blocks of the form: sess(a, ci).in(ci,Mi).out(ci.wi).

4.1 Reachability
We now formalise the relationship between traces of the compressed and annotated semantics.
In order to do so, we translate between configuration and enriched configuration as follows:

d(P; Φ)e = (P;∅; Φ), b(P;∅; Φ)c = (P; Φ) and b(P;P ; Φ)c = (P ] {P}; Φ).
Similarly, we map compressed traces to annotated ones:

bεc = ε, bfoc(α).trc = α.btrc, brel.trc = btrc and bα.trc = α.btrc otherwise.

We observe that we can map any execution in the compressed semantics to an execution
in the annotated semantics. Indeed, a compressed execution is simply an annotated execution
with some extra annotations (i.e., foc and rel) indicating positive/negative phase changes.

I Lemma 16. For any configurations A, A′ and tr, A tr−→c A
′ implies bAc btrc−−→a bA′c.

Going in the opposite direction is more involved. In general, mapping annotated executions
to compressed ones requires to reorder actions. Compressed executions also force negative
actions to be performed unconditionally and blocks to be fully executed. One way to handle
this is to consider complete executions of a configuration, i.e., executions after which no more
action can be performed except possibly the ones that consist in unfolding a replication (i.e.,
rule Repl). Inspired by the positive trunk argument of [19], we show the following lemma.
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I Lemma 17. Let A, A′ be two configurations and tr be such that A tr−→a A
′ is complete.

There exists a trace trc, such that btrcc can be obtained from tr by swapping independent
labelled actions, and dAe trc−→c dA′e.

Proof sketch. We proceed by induction on the length of a complete execution starting
from A. If A is not initial, then we need to execute some negative action using Neg: this
action must be present somewhere in the complete execution, and we can permute it with
preceding actions using Lemma 11. If A is initial, we analyse the prefix of input and session
actions and we extract a subsequence of that prefix that corresponds to a full positive
phase. J

4.2 Equivalence
We now define compressed trace equivalence (≈c) and prove that it coincides with ≈.

I Definition 18. Let A and B be two configurations. We say that A vc B when, for any
A tr−→c A

′ such that bc(tr)∩ fc(B) = ∅, there exists B tr−→c B
′ such that Φ(A′) ∼ Φ(B′). They

are compressed trace equivalent, denoted A ≈c B, if A vc B and B vc A.

Compressed trace equivalence can be more efficiently checked than regular trace equi-
valence. Obviously, it explores fewer interleavings by relying on −→c rather than −→. It also
requires that traces of one process can be played exactly by the other, including details
such as non-observable actions, labels, and focusing annotations. The subtleties shown
in Example 12 are crucial for the completeness of compressed equivalence w.r.t. regular
equivalence. Since the compressed semantics forces to perform available outputs before e.g.
input actions, some non-equivalences are only detected thanks to the labels and detailed
non-observable actions of our annotated semantics.

I Theorem 19. Let A and B be two action-deterministic configurations with skl(A) = skl(B).
We have A ≈ B if, and only if, dAe ≈c dBe.

Proof sketch. (⇒) Consider an execution dAe tr−→c A
′. Using Lemma 16, we get A btrc−−→a bA′c.

Then, Lemma 13 yields B btrc−−→a B
′ for some B′ such that Φ(bA′c) ∼ Φ(B′) and labelled

skeletons are equal all along the executions. Relying on those skeletons, we show that
positive/negative phases are synchronised, and thus dBe tr−→c B

′′ for some B′′ with bB′′c = B′.
(⇐) Consider an execution A tr−→a A

′. We first observe that it suffices to consider only complete
executions there. This allows us to get a compressed execution dAe trc−→c dA′e by Lemma 17.
Since dAe ≈c dBe, there exists B′ such that dBe trc−→c B

′ with Φ(dA′e) ∼ Φ(B′). Thus we
have B btrcc−−→a bB′c but also B tr−→a bB′c thanks to Lemma 11. J

Improper blocks. Note that blocks of the form foc(α).tr+.rel.zero do not bring any new
information to the attacker. While it would be incorrect to fully ignore such improper blocks,
it is in fact sufficient to only consider them at the end of traces. We show in [5] that ≈c
coincides with a further optimised compressed trace equivalence that only checks for proper
traces, i.e., ones that have at most one improper block and only at the end of trace.

5 Reduction

Our compressed semantics cuts down interleavings by using a simple focused strategy.
However, this semantics does not analyse data dependency that happen when an input
depends on an output, and is thus unable to exploit the independency of blocks to reduce
interleavings. We tackle this problem now.

CONCUR’15



506 Partial Order Reduction for Security Protocols

I Definition 20. Two blocks b1 and b2 are independent, written b1 ‖ b2, when all labelled
actions α1 ∈ b1 and α2 ∈ b2 are independent. Otherwise they are dependent, written b1 
 b2.

Obviously, Lemma 11 tells us that independent blocks can be permuted in a trace without
affecting the executability and the result of executing that trace. But this notion is not very
strong since it considers fixed recipes, which are irrelevant (in the end, only the derived
messages matter) and can easily introduce spurious dependencies. Thus we define a stronger
notion of equivalence over traces, which allows permutations of independent blocks but also
changes of recipes that preserve messages. During these permutations, we will also require
that traces remain plausible, which is defined as follows: tr is plausible if for any input
in(c,M) such that tr = tr0.in(c,M).tr2 then M ∈ T (W) where W is the set of all handles
occurring in tr0. Given a block b, i.e., a sequence of the form foc(α).tr+.rel.tr−, we denote
by b+ (resp. b−) the part of b corresponding to the positive (resp. negative) phase, i.e.,
b+ = α.tr+ (resp. b− = tr−). We note (b1 =E b2)Φ when b+1 Φ =E b

+
2 Φ and b−1 = b−2 .

I Definition 21. Given a frame Φ, the relation ≡Φ is the smallest equivalence over plausible
compressed traces such that tr.b1.b2.tr′ ≡Φ tr.b2.b1.tr′ when b1 ‖ b2, and tr.b1.tr′ ≡Φ tr.b2.tr′
when (b1 =E b2)Φ.

I Lemma 22. Let A and A′ be two initial configurations such that A tr−→c A
′. We have that

A tr′−→c A
′ for any tr′ ≡Φ(A′) tr.

We now turn to defining our reduced semantics, which is going to avoid the redundancies
identified above by only executing specific representatives in equivalence classes modulo ≡Φ.
More precisely, we shall only execute minimal traces according to some order, which we now
introduce. We assume an order ≺ on blocks that is insensitive to recipes, and such that
independent blocks are always strictly ordered in one way or the other. We finally define ≺lex
on compressed traces as the lexicographic extension of ≺ on blocks.

In order to incrementally build representatives that are minimal with respect to ≺lex,
we define a predicate that expresses whether a block b should be authorised after a given
trace tr. Intuitively, this is the case only when, for any block b′ � b in tr, dependencies forbid
to swap b and b′. We define this with recipe dependencies first, then quantify over all recipes
to capture message dependencies.

I Definition 23. A block b is authorised after tr, noted tr . b, when tr = ε; or tr = tr0.b0 and
either (i) b
 b0 or (ii) b ‖ b0, b0 ≺ b, and tr0 . b.

We finally define −→r as the least relation such that:

Init
A ε−→r A

Block A tr−→r (P;∅; Φ) (P;∅; Φ) b−→c A
′

A tr.b−−→r A
′

if tr . b′ for all b′
with (b′ =E b)Φ

Our reduced semantics only applies to initial configurations: otherwise, no block can be
performed. This is not restrictive since we can, without loss of generality, pre-execute
non-observable and output actions that may occur at top level.

I Example 24. We consider roles Ri := in(ci, x).if x = ok then out(ci, ok) where ok is a
public constant, and then consider a parallel composition of n such processes: Pn := Πn

i=1Ri.
Thanks to compression, we will only consider traces made of blocks, and obtain a first
exponential reduction of the state space. However, contrary to the case of a replicated process
(see Example 15), we still have many interleavings to consider – blocks can be interleaved in
all the possible ways. We will see that our reduced semantics cuts down these interleavings.
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Assume that our order ≺ prioritises blocks on ci over those on cj when i < j, and consider a
trace starting with in(cj ,Mj).out(cj , wj). Trying to continue the exploration with a block
on ci with i < j, the authorisation predicate . will impose that there is a dependency between
the block on ci and the previous one on cj . In this case it must be a data dependency: the
recipe of the message passed as input on ci must make use of the previous output to derive
ok. Since ok is a public constant, it is possible to derive it without using any previous output
and thus the block on ci cannot be authorised by .. Thus, on this simple example, the
reduced semantics will not explore any trace where a block on ci is performed after one on cj
with i < j.

5.1 Reachability
An easy induction on the compressed trace tr allows us to map an execution w.r.t. the
reduced semantics to an execution w.r.t. the compressed semantics.

I Lemma 25. For any configurations A and A′, A tr−→r A
′ implies A tr−→c A

′.

Next, we show that our reduced semantics only explores specific representatives. Given a
frame Φ, a plausible trace tr is Φ-minimal if it is minimal in its equivalence class modulo ≡Φ.

I Lemma 26. Let A be an initial configuration and A′ = (P;∅; Φ) be a configuration such
that A tr−→c A

′. We have that tr is Φ-minimal if, and only if, A tr−→r A
′.

Proof sketch. In order to relate minimality and executability in the reduced semantics, let
us say that a trace is bad if it is of the form tr.b0 . . . bn.b′.tr′ where n ≥ 0, there exists a block
b′′ such that (b′′ =E b

′)Φ, we have bi ‖ b′′ for all i, and bi ≺ b′′ ≺ b0 for all i > 0. This pattern
is directly inspired by the characterisation of lexicographic normal forms by Anisimov and
Knuth in trace monoids [3]. We note that a trace that can be executed in the compressed
semantics can also be executed in the reduced semantics if, and only if, it is not bad. Since
the badness of a trace allows to swap b′ before b0, and thus obtain a smaller trace in the
class ≡Φ, we show that a bad trace cannot be Φ-minimal (and conversely). J

5.2 Equivalence
The reduced semantics induces an equivalence ≈r that we define similarly to the compressed
one, and we then establish its soundness and completeness w.r.t. ≈c.

I Definition 27. Let A and B be two configurations. We say that A vr B when, for every
A tr−→r A

′ such that bc(tr) ∩ fc(B) = ∅, there exists B tr−→r B
′ such that Φ(A′) ∼ Φ(B′).

They are reduced trace equivalent, denoted A ≈r B, if A vr B and B vr A.

I Theorem 28. Let A and B be two initial, action-deterministic configurations.
A ≈c B if, and only if, A ≈r B

Proof sketch. We first prove that tr ≡Φ tr′ iff tr ≡Ψ tr′ when Φ ∼ Ψ. (⇒) This implication is
then an easy consequence of Lemma 26. (⇐) We start by showing that it suffices to consider
a complete execution A tr−→c A

′. Since A′ is initial, by taking trm to be a Φ(A′)-minimal trace
associated to tr, we obtain a reduced execution of A leading to A′. Using our hypothesis
A ≈r B, we obtain that B trm−−→r B

′ with corresponding relations over frames. We finally
conclude that B tr−→c B

′ using Lemma 22 and the result stated above. J

Improper blocks. Similarly as we did for the compressed semantics in Section 4, we can
further restrict ≈r to only check proper traces.
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6 Application

We have developed two successive refinements of the concrete semantics of our process algebra,
eventually obtaining a reduced semantics that achieves an optimal elimination of redundant
interleavings. However, the practical usability of these semantics in algorithms for checking
the equivalence of replication-free processes is far from immediate: indeed, all of our semantics
are still infinitely branching, because each input may be fed with arbitrary messages. We
now discuss how existing decision procedures based on symbolic execution [18, 12, 23, 9]
can be modified to decide our optimised equivalences rather than the regular one, before
presenting our implementation and experimental results.

6.1 Symbolic execution
Our compressed semantics can easily be used as a replacement of the regular one, in any
tool whose algorithm is based on a forward exploration of the set of possible traces. This
modification is very lightweight, and already brings a significant optimisation. In order
to make use of our final, reduced semantics, we would need to enter into the details of
constraint solving. In addition to imposing the compressed strategy and the sequential
dependencies imposed by our predicate tr . b, symbolic execution should be modified to
generate dependency constraints in order to reflect the data dependencies imposed by tr . b.
The generation of dependency constraints can be done in a similar way to [4]. The constraint
solver is then modified in a non-invasive way: dependency constraints are used to dismiss
configurations when it becomes obvious that they cannot be satisfied.

I Example 29. We consider the symbolic reduced executions of process Pn from Example 24.
In symbolic executions, input recipes and messages are initially left unknown, and gradually
discovered by constraint resolution procedures. Assume that we have already executed a
block on cj . After that, we can execute symbolically an input on ci, with i < j: let us write
it in(ci, Xi). Because we use the reduced semantics, a dependency constraint dep(Xi, wj) is
generated, expressing that the recipe denoted by Xi must depend on wj . After executing its
input, process Ri makes a test (x = ok). Its else branch is trivial: it leads to an improper
block, allowing us to stop any further exploration. When taking the then branch, we add a
constraint expressing that recipe Xi must derive the message ok. In a tool such as Apte, this
constraint is immediately solved by instantiating Xi := ok (considering other ways to derive
ok is useless). After this instantiation, our dependency constraint has become dep(ok, wj)
which is obviously unsatisfiable, and thus the branch is discarded.

The modified verification algorithm may explore symbolic traces that do not correspond
to Φ-minimal representatives (when dependency constraints cannot be shown to be infeasible)
but we will see that this approach allows us to obtain a very effective optimisation. Finally,
note that, because we may over-approximate dependency constraints, we must ensure that
constraint resolution prunes executions in a symmetrical fashion for both processes being
checked for equivalence.

6.2 Experimental results
The optimisations developed in the present paper have been implemented, following the
above approach, in the official version of the state of the art tool Apte [10]. We now report
on experimental results; sources and instructions for reproduction are available [17]. We only
show examples in which equivalence holds, because the time spent on inequivalent processes
is too sensitive to the order in which the (depth-first) exploration is performed.
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Figure 3 Impact of optimisations on toy example (left) and Denning-Sacco (right).

Toy example. We consider again our simple example described in Section 6.1. We ran Apte
on Pn ≈ Pn for n = 1 to 22, on a single 2.67GHz Xeon core (memory is not relevant). We
performed our tests on the reference version and the versions optimised with the compressed
and reduced semantics respectively. The results are shown on the left graph of Figure 3,
in logarithmic scale: it confirms that each optimisation brings an exponential speedup, as
predicted by our theoretical analysis.

Denning-Sacco protocol. We ran a similar benchmark, checking that Denning-Sacco en-
sures strong secrecy in various scenarios. The protocol has three roles and we added processes
playing those roles in turn, starting with three processes in parallel. The results are plotted
on Figure 3. The fact that we add one role out of three at each step explains the irregular
growth in verification time. We still observe an exponential speedup for each optimisation.

Practical impact. Finally, we illustrate how our optimisations make Apte much more useful
in practice for investigating interesting scenarios. Verifying a single session of a protocol
brings little assurance into its security. In order to detect replay attacks and to allow the
attacker to compare messages that are exchanged, at least two sessions should be considered.
This means having at least four parallel processes for two-party protocols, and six when
a trusted third party is involved. This is actually beyond what the unoptimised Apte can
handle in a reasonable amount of time. We show below how many parallel processes could
be handled in 20 hours by the different versions of Apte on various use cases of protocols.

Protocol ref comp red Protocol ref comp red
Needham Schroeder (3-party) 4 6 7 Denning-Sacco (3-party) 5 9 10
Private Authent. (2-party) 4 7 7 WMF (3-party) 6 12 13
Yahalom (3-party) 4 5 5 E-Passport PA (2-party) 4 7 9

7 Conclusion

We have developed two POR techniques that are adequate for verifying reachability and
trace equivalence properties of action-deterministic security protocols. We have effectively
implemented them in Apte, and shown that they yield the expected, significant benefit.

We are considering several directions for future work. Regarding the theoretical results
presented here, the main question is whether we can get rid of the action-determinism
condition without degrading our reductions too much. Regarding the practical application
of our results, we can certainly go further. We first note that our compression technique
should be applicable and useful in other verification tools, not necessarily based on symbolic
execution. Next, we could investigate the role of the particular choice of the order ≺, to
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determine heuristics for maximising the practical impact of reduction. Finally, we plan
to adapt our treatment of replication to bounded replication to obtain a first symmetry
elimination scheme, which should provide a significant optimisation when studying security
protocols with several sessions.
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