
B-Chromatic Number: Beyond NP-Hardness∗

Fahad Panolan1, Geevarghese Philip2, and Saket Saurabh1,3

1 Institute of Mathematical Sciences, Chennai, India
{fahad|saket}@imsc.res.in

2 Chennai Mathematical Institute, India
gphilip@cmi.ac.in

3 University of Bergen, Norway

Abstract
The b-chromatic number of a graph G, χb(G), is the largest integer k such that G has a k-vertex
coloring with the property that each color class has a vertex which is adjacent to at least one
vertex in each of the other color classes. In the b-Chromatic Number problem, the objective is
to decide whether χb(G) ≥ k. Testing whether χb(G) = ∆(G) + 1, where ∆(G) is the maximum
degree of a graph, itself is NP-complete even for connected bipartite graphs (Kratochvíl, Tuza and
Voigt, WG 2002). In this paper we study b-Chromatic Number in the realm of parameterized
complexity and exact exponential time algorithms. We show that b-Chromatic Number is
W[1]-hard when parameterized by k, resolving the open question posed by Havet and Sampaio
(Algorithmica 2013). When k = ∆(G) + 1, we design an algorithm for b-Chromatic Number
running in time 2O(k2 log k)nO(1). Finally, we show that b-Chromatic Number for an n-vertex
graph can be solved in time O(3nn4 logn).

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases b-chromatic number, exact algorithm, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2015.389

1 Introduction

Graph coloring (proper vertex coloring), is an assignment of colors to the vertices of a graph
such that no edge connects two identically colored vertices. In other words graph coloring is
a partition of vertex set into independent sets. A proper vertex coloring using k colors is
called a k-vertex coloring. The least number of colors required for a proper vertex coloring
of a graph G is called the chromatic number of G. The most common question about graph
coloring is–“what is the chromatic number of a graph”. This question has got lots of attention
in graph theory and algorithms. The study of graph coloring leads to the four color theorem
in planar graphs by Appel and Haken [1], study of chromatic polynomial introduced by
Birkhoff, which was generalised to the Tutte polynomial by Tutte, etc. Graph coloring
has been studied as an algorithmic problem since the early 1970s. The chromatic number
problem is one of Karp’s 21 NP-complete problems from 1972 [11]. An exact algorithm to
compute the chromatic number of a graph dates back to 1976. Lawler [13] gave an algorithm
for finding chromatic number running in time 2.4423nnO(1). Finally, after 30 years, using the
principle of inclusion-exclusion Björklund et al. [2] gave an algorithm for chromatic number

∗ Supported by the European Research Council (ERC) via grants Rigorous Theory of Preprocessing,
reference 267959 and PARAPPROX, reference 306992; and by the Department of Science and Technology
(DST), Government of India, the German Federal Ministry of Education and Research (BMBF), and the
Max Planck Society (MPG), via the Indo-German Max Planck Center for Computer Science (IMPECS).

© Fahad Panolan, Geevarghese Philip, and Saket Saurabh;
licensed under Creative Commons License CC-BY

10th International Symposium on Parameterized and Exact Computation (IPEC 2015).
Editors: Thore Husfeldt and Iyad Kanj; pp. 389–401

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.389
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

390 B-Chromatic Number: Beyond NP-Hardness

problem running in time 2nnO(1). This is still the fastest known exact algorithm to compute
the chromatic number of a graph.

Not only finding chromatic number but also different variations of graph coloring has
been studied in the literature. A complete coloring of a graph G is a proper vertex coloring
such that no two color classes together form an independent set. The parameter achromatic
number of a graph G is the largest integer k such that there is a complete coloring of G using
k colors. Irving and Manlove [10] introduced b-chromatic number, another parameter related
to graph coloring. The b-chromatic number of a graph G, denoted by χb(G), is the largest
integer k such that G has a k-vertex coloring with the property that each color class has
a vertex which is adjacent to at least one vertex in each of the other color classes. Such a
coloring is called a b-coloring. Irving and Manlove showed that determining b-chromatic
number is NP-complete for general graphs, but polynomial time solvable for trees [10]. From
the definition of b-chromatic number it is clear that χb(G) ≤ ∆(G) + 1, where ∆(G) is the
maximum degree of the graph G. Kratochvíl et al. [12] showed that determining whether
χb(G) = ∆(G)+1 is NP-hard even for connected bipartite graphs. Havet et al. [8] showed that
b-chromatic number can be computed in polynomial time for split graphs and it is NP-hard
for connected chordal graphs. Regarding approximation algorithms for the problem, Galcík
et al. [7] showed that b-chromatic number of an n-vertex graph can not be approximated
within a factor n1/4−ε for any constant ε > 0, in polynomial time, unless P =NP.

In this work we address the algorithmic question of b-chromatic number in the realm of
parameterized complexity and exact exponential time algorithms.

b-Chromatic Number Parameter: k

Input: An n-vertex graph G and an integer k
Question: Is the b-chromatic number of G is at least k

For a detailed overview of parameterized complexity reader is referred to monographs [5, 4].
In the parameterized complexity framework, the b-Chromatic Number problem is studied
with a dual parameter by Havet et al. [9]. In particular, they show that one can decide
whether χb(G) ≥ n−k in time 2O(k log k)nO(1) and asked the question whether b-Chromatic
Number is FPT when parameterized by k. Recently, Effantin et al. [6] studied a relaxed
version of b-coloring and repeated the question about the parameterized complexity of
b-Chromatic Number. In this work we answer this question negatively, by showing that
b-Chromatic Number is W[1]-hard. But, when k = ∆(G)+1, we design an algorithm for b-
Chromatic Number running in time 2O(k2 log k)nO(1). Finally we show that b-Chromatic
Number for an n-vertex graph can be solved in time O(3nn4 logn). After the results in
this article were presented at IPEC, Manfred Cochefert informed us that he had derived, in
his PhD thesis [3] a 3nnO(1) time algorithm for b-Chromatic Number using principle of
inclusion-exclusion.

Our methods. To show b-Chromatic Number is W[1]-hard, when parameterized by k,
we give an FPT-reduction from Multi Colored Independent Set, which is very well
known to be W[1]-hard [4]. When k = ∆(G) + 1, to get an FPT algorithm for b-Chromatic
Number, we first show that it is enough to find C ⊆ V (G) such that χb(G[C]) = k (we call
such a subset C as b-chromatic core of order k). Then we give a polynomial kernel for the
problem of finding b-chromatic core of order ∆(G) + 1, which leads to an FPT algorithm
for b-Chromatic Number when k = ∆(G) + 1. For the exact exponential time algorithm
for b-Chromatic Number, we reduce the problem to many instances of single variate
polynomial multiplication of degree 2n.

F. Panolan, G. Philip, and S. Saurabh 391

2 Preliminaries

We use “graph” to denote simple graphs without self-loops, directions, or labels. We use
V (G), E(G) and ∆(G), respectively, to denote the vertex set, edge set and maximum degree
of a graph G. We also use G = (V,E) to denote a graph G on vertex set V and edge set E.
For v, u ∈ V (G) and V ′ ⊆ V (G), we use G[V ′] to denote the subgraph of G induced on V ′,
N [v] = {u : (v, u) ∈ E(G)} ∪ {v} and d(u, v) is the shortest distance between u and v. For
a graph G and a b-coloring of G with color classes C1, . . . , Ck, we say a vertex v ∈ Ci is a
dominating vertex for the color class Ci if v is adjacent to a vertex in Cj for each j 6= i.

We use [n] to denote the set {1, 2, . . . , n}. We use] to denote the disjoint union of
sets: for any two sets A,B, the set A] B is defined only if (A ∩ B) = ∅, and in this
case (A] B) = (A ∪ B). We assume that] associates to the left; that is, we write⊎

1≤i≤nAi = A1]A2]A3 · · ·]An to mean (· · · ((A1]A2)]A3) · · ·]An). Further, every
use of] in an expression carries with it the implicit assertion that the two sets involved are
disjoint.

A binary vector is a finite sequence of bits, and its width is the number of bits in the
sequence. If A,B are binary vectors, then by A+B we mean the integer val(A) + val(B)
where for a binary vector X the expression val(X) denotes the integer of which X is a binary
representation. Let U = {u1, u2, . . . , un} be a set of cardinality n, and let S ⊆ U . The
characteristic vector χ(S) of S with respect to U is the binary vector with |U | = n bits
whose `th bit, for 1 ≤ ` ≤ n, is 1 if element u` belongs to set S, and 0 otherwise. We use N
to denote the set of non-negative integers. The Hamming weight H(r) of a binary vector r
is the number of 1s in r. For a finite set U , a subset S ⊆ U , and the characteristic vector
χ(S) of S with respect to U , observe that H(χ(S)) = |S|. We define the Hamming weight
of n ∈ N to be the number H(n) of the number of 1s in a binary representation of n. Note
that an integer n ∈ N does not have a unique binary representation, since we can pad any
such representation with zeroes on the left without changing its numerical value. We call the
total number of bits in a binary representation r of n the width of r.

I Lemma 1 (?1). Let S1, S2 be two disjoint subsets of a set U = {u1, u2, . . . , un}, and let
S = S1] S2. Then
1. χ(S) = χ(S1) + χ(S2)
2. χ(S1) + χ(S2) has a binary representation of width n
3. H(χ(S)) = H(χ(S1)) +H(χ(S2))

We make extensive use of single-variate polynomials with integer coefficients. Let P =∑n
i=0 aix

i be such a polynomial. We say that polynomial P contains monomial xi, or that
monomial xi is present in polynomial P , if the coefficient ai of xi is not zero. We say that the
polynomial P ′ =

∑n
i=0 bix

i is the representative polynomial of P if bi = 1 whenever ai 6= 0
and bi = 0 otherwise. That is, the representative polynomial remembers just the degrees
of the monomials which are present in P , and forgets their coefficients. For an h ∈ N, we
define the Hamming projection of polynomial P to h to be Hh(P) =

∑n
i=0 bix

i where bi =
ai if H(i) = h and 0 otherwise. That is, Hh(P) is the sum of all those monomials in P whose
degrees have Hamming weight h. To obtain the stated running time for our exponential-time
algorithm, we make use of the fast algorithm for multiplying polynomials which is based on
the Fast Fourier Transform.

1 Proofs of results marked with a ? are deferred to the full version of the paper.

IPEC’15

392 B-Chromatic Number: Beyond NP-Hardness

c1 . . .
ci−1 ci ci+1 . . .

ck

GV1 . . . Vi−1 Vi Vi+1 . . . Vk

a1 . . .
ai−1

ai
ai+1

. . .
ak

b1

. . .
bi

. . .
bk

s s

Figure 1 The graph G′ constructed from the input instance G = (V1] . . .] Vk, E) of Multi-
Colored Independent Set. The thick edges represent all possible edges between two corresponding
sets of vertices.

I Lemma 2 ([14]). Two polynomials of degree at most n over any commutative ring R can
be multiplied using O(n logn log logn) additions and multiplications in R.

3 Hardness

In this section we show that b-Chromatic Number is W[1]-hard by giving an FPT-reduction
from Multi-Colored Independent Set.

Multi-Colored Independent Set Parameter: k

Input: A k-partite graph G with its k-partition V1] . . .] Vk of V (G)
Question: Is there an independent set of size k containing one vertex from each Vi?

I Theorem 3. There is a polynomial time algorithm that given an instance G = (V1]
. . .] Vk, E) of Multi-Colored Independent Set, constructs an instance (G′, 2k + 1) of
b-Chromatic Number such that G is a Yes instance of Multi-Colored Independent
Set if and only if (G′, 2k + 1) is a Yes instance of b-Chromatic Number.

Proof. Let G be an instance of Multi-Colored Independent Set, with its k-partition
V1] . . .] Vk.

Construction. We construct a graph G′ from G as follows. The vertex set of G′, V (G′) =
V (G) ∪ A ∪ B ∪ C ∪ {s}, where A = {a1, . . . , ak}, B = {b1, . . . , bk} and C = {c1, . . . , ck}.
The edge set E(G′) contains E(G) and the following sets of new edges (see Figure 1).
{(ai, aj) | i 6= j} ∪ {(ci, cj) | i 6= j} (i.e A and C forms cliques),
{(ai, cj) | 1 ≤ i, j ≤ k} (i.e A ∪ C forms a clique),
{(ai, bj) | i 6= j},
{(ai, v) | v ∈ Vi} ∪ {(ci, v) | v ∈ V (G) \ Vi},
{(s, bi), (s, ci) | 1 ≤ i ≤ k}.

F. Panolan, G. Philip, and S. Saurabh 393

Completeness. Suppose G is an Yes instance of Multi-Colored Independent Set.
Let I = {v1, . . . , vk} be an independent set such that vi ∈ Vi for all i ∈ [k]. Now we
give a b-coloring of G′ using 2k + 1 colors as follows. We define 2k + 1 color classes –
C0, C1, . . . , C2k. The color class C0 = I ∪ {s}. For all 1 ≤ i ≤ k, Ci = (Vi ∪ {ci}) \ {vi}. For
all k + 1 ≤ i ≤ 2k, Ci = {ai, bi}. Note that for all 0 ≤ i ≤ 2k, Ci is an independent set in
G′ and C0] C1] . . .] C2k = V (G′). Now we show that each color class has a dominating
vertex. For color class C0, the vertex s is a dominating vertex, because s is adjacent to all
the vertices in the set B ∪ C. For each 1 ≤ i ≤ k, the vertex ci is the dominating vertex
of the color class Ci, because it is adjacent to the vertices A ∪ {s} and C \ {ci}. For each
k + 1 ≤ i ≤ 2k, ai is the dominating vertex for the color class Ci, because it is adjacent to
all the vertices in C ∪ (A \ {ai}) and the vertex vi in the color class C0.

Soundness. Let (G′, 2k + 1) is an Yes instance of b-Chromatic Number. Let φ be a
b-coloring for the graph G′ using at least 2k+1 colors. Since A∪C is a clique, all the vertices
in A ∪ C are colored differently by φ. For 1 ≤ i ≤ k, let Ci be the the color class which
contains the vertex ci and for each k + 1 ≤ i ≤ 2k, let Ci be the color class which contains
the vertex ai. Let C0 be an arbitrary color class other that C1, . . . , C2k in the coloring φ.

First note that since the degree of any vertex in B is k, no vertex in B can be a dominating
vertex for any color class. Now consider the following claim.

I Claim 1. No vertex u ∈ V (G) can be a dominating vertex for any of the color classes
C0, Ck+1, Ck+2, . . . , C2k.

Proof. Suppose u ∈ V (G) is a dominating vertex for the color class Cj for some j ∈
{0, k + 1, k + 2, . . . , 2k}. Let u ∈ Vi for some 1 ≤ i ≤ k. Consider the color class Ci. Note
that ci ∈ Ci. This implies that Ci ⊆ Vi ∪B, because the non-neighborhood of ci is Vi ∪B.
But since u ∈ Vi, u is not adjacent to any vertex in Vi ∪ B. This contradicts that u is a
dominating vertex for Cj . J

Since C0 is disjoint from A∪C and by Claim 1, we can conclude that s is the dominating
vertex for C0. Also note that for any k+ 1 ≤ i ≤ 2k, Ci is disjoint from (A∪C ∪ {s}) \ {ai}.
By Claim 1, this implies that ai is the dominating vertex for the class Ci. Since ai is a
dominating vertex for the class Ci for each k + 1 ≤ i ≤ 2k, there is a vertex v in C0 such
that (ai, v) ∈ E(G′). Since C0 ∩ (A ∪B ∪ C) = ∅ (because s ∈ C0), we have that v ∈ Vi−k.
This implies that for each k + 1 ≤ i ≤ 2k, there is a vertex v ∈ Vi−k such that v ∈ C0.
This implies that G has an independent set of size k containing one vertex from each Vj for
1 ≤ j ≤ k. This completes the proof of the lemma. J

4 FPT Algorithm for deciding whether χb(G) = ∆(G) + 1

In this section we design a parameterized algorithm for b-Chromatic Number to decide
whether χb(G) = ∆(G) + 1. For this section we set k = ∆(G) + 1. Towards this we define a
notion of b-chromatic-core. Given a graph G, and a positive integer `, a set C ⊆ V (G) is
called a b-chromatic-core of order ` if χb(G[C]) ≥ `. Observe that a minimal set such that
χb(G[C]) ≥ ` has size upper bounded by `2. We start by showing that for the case, when we
want to test whether χb(G) = ∆(G) + 1 = k, it is sufficient to find a b-chromatic-core of
order k.

I Lemma 4. Let G be a graph. Then χb(G) = k if and only if G has a b-chromatic-core of
order k. Here k = ∆(G) + 1.

IPEC’15

394 B-Chromatic Number: Beyond NP-Hardness

Proof. For the forward direction let χb(G) = k. Then V (G) is a b-chromatic-core of order k.
For the reverse direction assume that G has a b-chromatic-core C of order k. By the

definition of b-chromatic-core we have that χb(G[C]) ≥ k. Since χb(G[C]) ≤ ∆(G) + 1
we have that χb(G[C]) = k. Let C1, . . . , Ck be the partition of C witnessing the fact that
χb(G[C]) = k. Now we will show that we can extend this partition to the vertex set of G.
Let w1, . . . , wq denote the vertices of V (G) \ C. We iteratively go through the vertices in
V (G) \ C and try to place it in the already existing partition. Suppose at some stage we
have taken care of vertices until say wi. For wi+1 we do as follows. Since the degree of every
vertex is upper bounded by ∆ we have that there is a partition Cj such that wi+1 does not
have any neighbor in Cj . We place wi+1 ∈ Cj . That is, Cj := Cj ∪{wi+1}. Observe that the
placement preserves the fact that Cj after the addition of the vertex remains independent.
This proves the lemma. J

Lemma 4 allows us to look for b-chromatic-core of order k for G. Towards this we define
the following reduction rule.

I Reduction Rule 1. Let (G, k) be an instance to b-Chromatic Number and v be a vertex
such that every vertex w ∈ N [v] has degree at most k − 2. Then (G \ {v}, k).

I Lemma 5 (?). Reduction Rule 1 is safe. That is, (G, k) is a Yes instance to b-Chromatic
Number if and only if (G′ = G \ {v}, k) is a Yes instance to b-Chromatic Number.

I Theorem 6. Let (G, k) be an instance to b-Chromatic Number such that k = ∆(G) + 1.
Then there is an algorithm that decides whether χb(G) = k, in time 2O(k2 log k) + nO(1).

Proof. We first apply Reduction Rule 1 exhaustively. Then, we greedily find a maximal
set S such that (a) degree of every vertex is equal to k − 1 and (b) for any pair of vertices
v, w ∈ S, we have that d(v, w) ≥ 4. We have two cases either |S| ≥ k or |S| < k. In the first
case we can show that χb(G) = k in polynomial time and in the later case we will bound the
number of vertices of G by a polynomial function of k.

Case I: |S| ≥ k. In this case we will show that S and its neighbors form b-chromatic-core
of order k for G. Let C = {v1, . . . , vk} be an arbitrary subset of size k of S. For every vi ∈ C
let Wi = N(vi). Let the vertices of Wi be denoted by {wi1, . . . , wii−1, w

i
i+1, w

i
k}. Observe

that since for any pair of vertices v, w ∈ S, d(v, w) ≥ 4, we have that Wi ∩Wj = ∅ and there
are no edges between Wi and Wj for i 6= j. Now we make color class Ii, i ∈ {1, . . . , k}, as
follows: Ii = {wji | j 6= i} ∪ {vi}. Observe that by construction every vertex vi has neighbor
in every color class except Ii and thus C ∪W forms a b-chromatic-core of order k for G.
Given the partition of C ∪W we can find a b-chromatic partition of G in polynomial time
using the procedure described in Lemma 4.

Case II: |S| < k. In this case we claim that for every vertex v ∈ V (G) \ S, there exists a
vertex u ∈ S such that d(u, v) ≤ 4. First of all notice that either the degree of v is k − 1 or
has a neighbor w with degree k − 1. The last assertion follows from the fact that we can
not apply Reduction Rule 1 on G. Suppose the degree of v is k − 1 then since the greedy
algorithm did not pick v ∈ S, we have that there exists a vertex u ∈ S such that d(u, v) ≤ 3.
In the case when w has degree k − 1, we have that there exists a vertex u ∈ S such that
d(u,w) ≤ 3 and thus d(u, v) ≤ 4. This implies that every vertex in V (G) can be reached
from a vertex in S by a path of length at most 4. Since the maximum degree of this graph is
at most k − 1, we have that |V (G)| = 5k5 = O(k5). Thus, to test whether χb(G) = k we

F. Panolan, G. Philip, and S. Saurabh 395

guess the b-chromatic-core of order k. We know that there exists one of size at most k2.
Thus, this results in (

5k5

k2

)
≤ 2O(k2 log k)

guesses. Given C we can test whether χb(G[C]) = k in time 2O(|C|) = 2O(k2) (see the exact
algorithm for the mentioned running time). Even the brute force partition into k parts will
led to an algorithm with running time 2O(k2 log k). This concludes the proof. J

5 Exact Algorithm

In this section we show that given a graph G on n vertices as input, we can find the b-
chromatic number of G in running time which is single-exponential in n, modulo polynomial
factors:

I Theorem 7. There is an algorithm which, given a graph G on n vertices as input, finds
the b-chromatic number of G in O(3nn4 logn) time.

Our algorithm works by checking, for k = n, (n− 1), . . . , 1 in this order, whether G has a
b-coloring with k colors. It outputs the first (and so, the largest) value of k for which the
check returns Yes.

I Theorem 8. There is an algorithm which, given a graph G on n vertices and an integer
1 ≤ k ≤ n as input, checks if G has a b-coloring with k colors in O(

(
n
k

)
2(n−k)n4 logn) time.

Given Theorem 8, the proof of Theorem 7 is immediate:

Proof of Theorem 7. Since our algorithm for Theorem 7 consists of invoking the algorithm
of Theorem 8 once for each k ∈ {1, 2, . . . , n}, we get that the former algorithm runs in time

∑
0≤k≤n

O(
(
n

k

)
2(n−k)n4 logn) = O(n4 logn

∑
0≤k≤n

(
n

k

)
2(n−k)) = O(3nn4 logn),

where we get the simplified form from the Binomial Theorem. J

Observe that our goal in Theorem 8 is to check whether we can partition the vertex set
of G into exactly k non-empty parts V1, V2, . . . , Vk such that

each set Vi is an independent set in G, and
for each 1 ≤ i ≤ k there is a vertex vi ∈ Vi which has a neighbour in each of the other
sets Vj ; j 6= i.

Such a partition is a b-coloring of G with k colors, and we call such a set of k vertices
{v1, v2, . . . , vk} a dominator set for the b-coloring V1, V2, . . . , Vk. Our algorithm for Theorem 8
checks, for each vertex subset {v1, v2, . . . , vk} of G of size k, whether there is a b-coloring of
G with k colors for which {v1, v2, . . . , vk} is a dominator set.

I Lemma 9. Given a graph G on n vertices and a vertex subset D = {v1, v2, . . . , vk} of
G of size k, we can find whether graph G has a b-coloring with k colors for which D is a
dominator set, in O(2(n−k)n4 logn) time.

Note that Theorem 8 follows directly from Lemma 9. In the next subsection we describe
an algorithm of the kind specified in Lemma 9. We then prove its correctness (subsection 5.2)
and show that it runs within the stated time bounds (subsection 5.3).

IPEC’15

396 B-Chromatic Number: Beyond NP-Hardness

5.1 The Algorithm

We describe an algorithm which, given a graph G on n vertices and a vertex subset D =
{v1, v2, . . . , vk} of G of size k, finds whether graph G has a b-coloring with k colors for which
D is a dominator set. Let I denote the set of all vertex subsets of G which are independent
sets in G. Let V ′ = V (G) \D be the set of all vertices of graph G which are not part of the
candidate dominator set D. We label the vertices of V ′ as V ′ = {u1, u2, . . . , un−k}. Let x
be an indeterminate.

For each pair of distinct indices i, j ; 1 ≤ i 6= j ≤ k, let Sij denote the set of subsets X of
V ′ such that (X ∪ {vi}) is an independent set in G, and (X ∪ {vi, vj}) is not an independent
set in G:

Sij = {X ⊆ V ′ ; (X ∪ {vi}) ∈ I and ∀1 ≤ j 6= i ≤ k : (X ∪ {vi, vj}) /∈ I} (1)

For each index i ; 1 ≤ i ≤ k, let Ti denote the intersection, over all j 6= i, of the sets Sij :

Ti =
⋂

1≤j 6=i≤k
Sij (2)

Note that Ti is the set of all independent sets in V ′ which could potentially form a color
class together with vertex vi in a b-coloring of interest to us. Indeed, any b-coloring of G of
the specified kind will consist—apart from the vertices of D—of a pairwise disjoint collection
of k independent sets, one from each set Ti ; 1 ≤ i ≤ k, such that their union makes up all of
V ′. Our algorithm looks for such a collection of independent sets, one from each set Ti.

For each vertex vi ∈ D we construct the set Ti. We then use Ti to construct a polynomial
Pi in x for each vertex vi ∈ D, in the following manner: We initialize Pi to zero. For each
set X ∈ Ti we compute the characteristic vector χ(X) of X with respect to the set V ′. We
then add the monomial xχ(X) to the polynomial Pi:

Pi =
∑
X∈Ti

xχ(X) (3)

We now compute a sequence of polynomials Q1,Q2, . . . ,Qk. We set Q1 = P1. Now for
each 2 ≤ ` ≤ k we compute the polynomial Q` as follows. We initialize Q` to zero. For each
pair of integers i, j ≥ 0 ; i+ j ≤ (n− k), we

Compute the polynomials Qi = Hi(Q(`−1)) and Pj = Hj(P(`)), and their product
R′ij = Qi × Pj ;
Compute the representative polynomial R′′ij of R′ij .
Compute the Hamming projection Rij = H(i+j)(R′′ij);
Set Q′` := Q` +Rij .
Set Q` to be the representative polynomial of Q′`.

I Remark. Note that this construction ensures that every nonzero monomial in each polyno-
mial Qi ; 1 ≤ i ≤ k has the form xd for some d ∈ N. That is, no monomial has a coefficient
greater than 1 in any of these polynomials.

Our algorithm returns Yes if the polynomial Qk contains at least one monomial whose
degree has Hamming weight (n− k), and No otherwise. This completes the description of
the algorithm.

F. Panolan, G. Philip, and S. Saurabh 397

5.2 Correctness
We now prove that the algorithm of the previous section indeed works exactly as specified in
the statement of Lemma 9. We prove this in two parts; first we show that the algorithm is
complete (Lemma 10), and then we show that it is sound (Lemma 12).

I Lemma 10. If a graph G on n vertices has a b-coloring with k colors for which D =
{v1, v2, . . . , vk} ⊆ V (G) is a dominator set, then the algorithm of subsection 5.1 returns Yes
on input (G,D).

Proof. Suppose graph G has a b-coloring V1, V2, . . . , Vk with k colors for which the set
D = {v1, v2, . . . , vk} is a dominator set. Let V ′ = V (G) \ D and for 1 ≤ i ≤ k, let
Xi = Vi \ {vi}. Let χ(X) be the characteristic vector of a subset X ⊆ V ′ with respect to the
set V ′. For each 1 ≤ i ≤ k let mi = xχ(Xi). It is not difficult to see that for each 1 ≤ i ≤ k,
the set Xi contributes the monomial mi to the polynomial Pi computed by the algorithm.

I Claim 2 (?). For each 1 ≤ i ≤ k, the polynomial Pi constructed by the algorithm contains
the monomial mi = xχ(Xi).

Our method of computing the polynomials Q1,Q2, . . . ,Qk has two desirable implications:
(i) the final polynomial Qk computed by the algorithm contains the product of all the mis as
a monomial, and (ii) the degree of this monomial has Hamming weight exactly (n− k). To
see this, consider first some properties satisfied by all the polynomials Q`:

I Claim 3. For each 1 ≤ ` ≤ k, the following hold:
1. Let d be the degree of the monomial m =

∏
1≤i≤`mi. Then

a. d ≤ 2(n−k), and hence d has a binary representation r of width (n− k).
b. Let S =

⊎
1≤i≤`Xi. Then χ(S) = r.

2. The polynomial Q` contains the monomial m.

Proof of Claim 3. We prove the claim by induction on `.

Base case: ` = 1.
1. Here m = m1 = xχ(X1).

(a) Since X1 ⊆ V ′, |V ′| = (n − k), and the degree d of m1 is χ(X1), we have that
d ≤ 2(n−k) and that d has—by definition–the binary expansion r = χ(X1) of width
(n− k).

(b) The set S is just the subset X1 ⊆ V ′, and hence we get directly that χ(S) = χ(X1) =
r.

2. We get from Claim 2 that the polynomial Q(`−1) = Q1 = P1 contains the monomial
m = m1 = xχ(X1).

Induction step: 2 ≤ ` ≤ k
1. Here m = m1m2 · · ·m`. Let m′ = m1m2 · · ·m(`−1).

(a) Let d be the degree of monomial m, and let d′ be the degree of monomial m′. Let
S′ =

⊎
1≤i≤(`−1) Xi. By the inductive hypothesis, d′ has a binary expansion r′ of

width (n− k), and χ(S′) = r′. Also, m` = xχ(X`) by definition. Since m = m′ ·m`

we get that m = xd
′ · xχ(X`) = xr

′ · xχ(X`) = xχ(S′) · xχ(X`) = xχ(S′)+χ(X`), where
we got the second expression by rewriting d′ in binary. Now by assumption the
sets S′ and X` are disjoint subsets of V ′, and hence we get—see Lemma 1—that
d = χ(S′) +χ(X`) ≤ 2(n−k), and hence that d has a binary representation r of width
(n− k).

IPEC’15

398 B-Chromatic Number: Beyond NP-Hardness

Algorithm 1 Algorithm for computing the sets Ti as bit strings Ti .
1: function ComputeTs(G,V ′, k)
2: Create bit strings T1, T2, . . . , Tk of length 2(n−k) each, with all bits set to zero.
3: for X ⊆ V ′ do
4: for 1 ≤ i ≤ k do
5: if (X ∪ {vi}) is an independent set in G then
6: inT i← True
7: for 1 ≤ j ≤ k, j 6= i do
8: if (X ∪ {vi, vj}) is an independent set in G then
9: inT i← False

10: if inT i == True then
11: Ti[χ(X)]← 1
12: return (T1, T2, . . . , Tk)

(b) Here S = S′] X`, and so from the above argument and Lemma 1 we get that
r = χ(S).

2. We reuse notation from part (a) above. Let i be the Hamming weight of χ(S′). Note
that i = |S′|. Let j = |X`|; then j is the Hamming weight of χ(X`). Since S′ and X`

are disjoint subsets of the set V ′, we get from Lemma 1 that i+ j ≤ (n− k). Therefore
i, j is among the pairs of integers over which we iterate during the computation of the
polynomial Q`. Let us examine carefully that step in this computation where we consider
the pair i, j. Recall that we compute the polynomials Qi, Pj , R′ij , R′′ij , and Rij in this
step.

From the inductive assumption we get that (i) the polynomial Q(`−1) contains the
monomial m′ = m1m2 · · ·m(`−1), and (ii) χ(S′) is the binary representation of the degree
of m′, and hence that i is the Hamming weight of the degree of m′. From these we
get that the polynomial Qi = Hi(Q(`−1)) contains the monomial m′. Further, we have
shown that the polynomial P` contains the monomial m` = xχ(X`), and by definition, j
is the Hamming weight of the degree χ(X`) of m`. From this we get that the polynomial
Pj = Hj(P`) contains the monomial m`. Hence the product R′ij = Qi × Pj , and thence
its representative polynomial R′′ij both contain the monomial m′m`.

From the inductive assumption we get that m′ = xχ(S′), and by definition we have that
m` = xχ(X`). Thus m′m` = xχ(S′)+χ(X`). Now since S′ and X` are disjoint subsets of
the set V ′, we get from Lemma 1 that χ(S′) + χ(X`) has Hamming weight exactly i+ j.
Hence the monomial m = m′m` survives in the Hamming projection Rij = H(i+j)(R′′ij).
Therefore m is present in the polynomial Q`. J

I Corollary 11 (?). Let m =
∏

1≤`≤kmi. Then the polynomial Qk contains m as a monomial,
and the Hamming weight of the degree d of m is exactly (n− k).

Since Qk contains the monomial
∏

1≤`≤kmi whose degree has Hamming weight (n− k),
our algorithm returns Yes on this input. J

I Lemma 12 (?). If the algorithm of subsection 5.1 returns Yes on input (G,D), then graph
G has a b-coloring with k colors for which D is a dominator set.

F. Panolan, G. Philip, and S. Saurabh 399

Algorithm 2 Algorithm for computing the polynomial Q` as a bit string S`.
1: function ComputeQs(S(`−1), T`)

. S(`−1), T` represent the polynomials Q(`−1),P`; see the text.
2: Create bit strings P1, P2, . . . , P(n−k) of length 2(n−k) each, with all bits set to zero.
3: Create bit strings Q1, Q2, . . . , Q(n−k) of length 2(n−k) each, with all bits set to zero.
4: Create bit string S` of length 2(n−k), with all bits set to zero.
5: for 1 ≤ i ≤ 2(n−k) do . Compute all the projections Pi and Qi in one pass.
6: h← the Hamming weight of i
7: if T`[i] == 1 then . The polynomial P` contains the monomial xi
8: Ph[i]← 1
9: if Q(`−1)[i] == 1 then . The polynomial Q` contains the monomial xi

10: Qh[i]← 1
11: for 0 ≤ i ≤ (n− k) do
12: for 0 ≤ j ≤ (n− k − i) do
13: R′′ij ← FFT-Multiply(Qi, Pj) . See explanation in text.
14: for 1 ≤ p ≤ 2(n−k) do
15: if the Hamming weight of p is i+ j then
16: if R′′ij [p] == 1 then
17: S`[p]← 1
18: return S`

5.3 Running Time Analysis
I Lemma 13. The algorithm of subsection 5.1 runs in O(2(n−k)n4 logn) time where n is
the number of vertices of the input graph G, and k is the size of the dominator set D.

Proof. We assume that we are given the adjacency matrix of graph G as input. If required,
we relabel the vertices of graph G as V (G) = {v1, v2, . . . , vn} in such a way that the k
vertices of the set D appear last in this list. In other words, such that V ′ = V (G) \D =
{v1, v2, . . . , v(n−k)}. This can be done in O(n) time.

We compute the sets T1, T2, . . . , Tk as bit strings T1, T2, . . . , Tk, respectively, of length
2n−k each, with the following semantics: the jth bit Ti[j] of bit string Ti is 1 if and only if the
subset X ⊆ V ′ whose characteristic vector χ(X) with respect to V ′ satisfies the condition
val(X) = j is in the set Ti. We use Algorithm 1 to compute these bit strings.

Creating the empty bit strings (line 2) takes O(2(n−k)) time. The innermost for loop
(starting at line 7) has O(k) iterations, each of which takes O(n2) time: this is the time we
need for a brute-force check for independence of the set X ∪ {vi, vj} using the adjacency
matrix of G. The for loop at line 7 therefore takes O(kn2) time. Assuming that we can
access any one bit of a 2(n−k)-sized bit string in time O(log(2(n−k))) = O(n), line 11 takes
O(n) time. The independence test of line 5 takes, as above,O(n2) time. Thus the contents
of the for loop at line 4 take O(n2) +O(kn2) + +O(n) = O(kn2) time. From this we get
that the loop at line 3 takes O(2(n−k) · k · kn2) = O(k2n22(n−k)) time. The algorithm for
creating the bit strings T1, T2, . . . , Tk therefore takes O(k2n22(n−k)) time.

Observe now that each bit-string Ti serves also as a representation of the polynomial
Pi. This follows directly from the way we defined the polynomials Pi from the sets Ti.
Specifically: monomial xd is present in polynomial Pi if and only if the bit Ti[d] is set to 1.
Hence we do not need to explicitly compute the polynomials Pi; we just use the bit-strings
Ti instead.

IPEC’15

400 B-Chromatic Number: Beyond NP-Hardness

Recall that Q1 = P1. For each 2 ≤ ` ≤ k we compute the polynomial Q`, again as a bit
string S` of length 2(n−k), as in Algorithm 2. We first set S1 = T1. For each 2 ≤ ` ≤ k, in
increasing order of `, we invoke the function ComputeQs with the arguments S(`−1), T` to
obtain the bit string S`. The bit string Sk which we obtain at the end of this process is the
representation of the polynomial Q`.

The function ComputeQs is mostly self-explanatory, except perhaps for lines 13 to 17.
On line 13 we invoke the function FFT-Multiply which takes the bit string representations
of two polynomials Qi, Pj , computes the bit string representation of their product R′ij using
the Fast Fourier Transform, and returns the (bit string representation of the) representative
polynomial R′′ij of R′ij (see Lemma 2). In lines 14 to 17 we then add the Hamming projection
Rij = H(i+j)(R′′ij) to S` without explicitly computing Rij as a separate bit string.

We now analyze the time taken by one invocation of ComputeQs. Lines 2 to 4 together
take time O((n−k)2(n−k)). Lines 6 to 10 can each be executed in time O(n−k), and so the for
loop at line 5 takesO((n−k)2(n−k)) time. Line 13 can be performed in O(2(n−k)(n−k) log(n−
k)) time (by Lemma 2), and the for loop at line 14 can be executed in O((n − k)2(n−k))
time as well. It follows that the for loop at line 11 takes O((n− k)32(n−k)) time. In total,
therefore, one invocation of ComputeQs takes O(2(n−k)(n− k)3 log(n− k)) time.

Since we invoke ComputeQs (k − 1) times, it follows that the complete algorithm runs
in O(2(n−k)(n− k)3k log(n− k)) = O(2(n−k)n4 logn) time. J

6 Conclusion

In this paper we studied b-Chromatic Number in the realm of parameterized and exact
algorithm and resolved the parameterized complexity of the problem. We would like to
conclude with two concrete open problems.

Is there an algorithm for b-Chromatic Number running in time 2nnO(1)?
Does there exist an XP algorithm for b-Chromatic Number?
Is the problem of finding a b-chromatic core of order k FPT when parameterized by k?

References
1 Kenneth Appel and Wolfgang Haken. The solution of the four-color-map problem. Sci Am,

237(4):108–121, October 1977.
2 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-

exclusion. SIAM J. Computing, 39(2):546–563, 2009.
3 Manfred Cochefert. Algorithmes Exacts et Exponentiels pour les Problèmes NP-difficiles

sur les Graphes et Hypergraphes. PhD thesis, Université de Lorraine, December 2014.
4 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
5 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.

Texts in Computer Science. Springer, 2013.
6 Brice Effantin, Nicolas Gastineau, and Olivier Togni. A characterization of b-chromatic

and partial grundy numbers by induced subgraphs. CoRR, abs/1505.07780, 2015.
7 Frantisek Galcík and Ján Katrenic. A note on approximating the b-chromatic number.

Discrete Applied Mathematics, 161(7-8):1137–1140, 2013.
8 Frédéric Havet, Cláudia Linhares Sales, and Leonardo Sampaio. b-coloring of tight graphs.

Discrete Applied Mathematics, 160(18):2709–2715, 2012.
9 Frédéric Havet and Leonardo Sampaio. On the grundy and b-chromatic numbers of a graph.

Algorithmica, 65(4):885–899, 2013.

F. Panolan, G. Philip, and S. Saurabh 401

10 Robert W. Irving and David Manlove. The b-chromatic number of a graph. Discrete
Applied Mathematics, 91(1-3):127–141, 1999.

11 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Plenum Press, New York, 1972.

12 Jan Kratochvíl, Zsolt Tuza, and Margit Voigt. On the b-chromatic number of graphs. In
Ludek Kucera, editor, Graph-Theoretic Concepts in Computer Science, 28th International
Workshop, WG 2002, Cesky Krumlov, Czech Republic, June 13-15, 2002, Revised Papers,
volume 2573 of Lecture Notes in Computer Science, pages 310–320. Springer, 2002.

13 E. L. Lawler. A note on the complexity of the chromatic number problem. Information
Processing Lett., 5(3):66–67, 1976.

14 Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer Zahlen. Computing,
7(3-4):281–292, 1971.

IPEC’15

	Introduction
	Preliminaries
	Hardness
	FPT Algorithm for deciding whether b(G)=(G)+1
	Exact Algorithm
	The Algorithm
	Correctness
	Running Time Analysis

	Conclusion

