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Abstract
We present improved exponential time exact algorithms for Max SAT. Our algorithms run in
time of the form O(2(1−µ(c))n) for instances with n variables and m = cn clauses. In this
setting, there are three incomparable currently best algorithms: a deterministic exponential space
algorithm with µ(c) = 1

O(c log c) due to Dantsin and Wolpert [SAT 2006], a randomized polynomial
space algorithm with µ(c) = 1

O(c log3 c) and a deterministic polynomial space algorithm with
µ(c) = 1

O(c2 log2 c) due to Sakai, Seto and Tamaki [Theory Comput. Syst., 2015]. Our first result
is a deterministic polynomial space algorithm with µ(c) = 1

O(c log c) that achieves the previous best
time complexity without exponential space or randomization. Furthermore, this algorithm can
handle instances with exponentially large weights and hard constraints. The previous algorithms
and our deterministic polynomial space algorithm run super-polynomially faster than 2n only
if m = O(n2). Our second results are deterministic exponential space algorithms for Max SAT
with µ(c) = 1

O((c log c)2/3) and for Max 3-SAT with µ(c) = 1
O(c1/2) that run super-polynomially

faster than 2n when m = o(n5/2/ log5/2 n) and m = o(n3/ log2 n) respectively.
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1 Introduction

The maximum satisfiability problem (Max SAT) is, given a set of clauses, to find an assignment
to Boolean variables that maximizes the number of satisfied clauses, where a clause is a
disjunction of literals, a literal is a Boolean variable or its negation, and an assignment
satisfies a clause if at least one literal in the clause becomes true under the assignment. Max
SAT is one of the most fundamental problems in practice and theory. It is known to be
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Table 1 A historical overview of upper bounds. k: an objective value, i.e., the number of
constraints that must be satisfied. l: the length of an instance, i.e., the sum of arities of constraints.
m: the number of constraints. n: the number of variables.

Running time Problem Space Reference
O(20.4414k) Max SAT polynomial [3]
O(20.1000l) Max 2-SAT polynomial [13]
O(20.1450l) Max SAT polynomial [1]
O(20.1583m) Max 2-SAT polynomial [10]
O(20.1801m) Max 2-CSP polynomial [11]
O(20.4057m) Max SAT polynomial [5]
O(20.7909n) Max 2-CSP exponential [21, 35]
O(2(1−α( m

n
))n)), α(c) = 1

O(c/ log c) Max 2-CSP polynomial [12]
O(2(1−β( m

n
))n)), β(c) = 1

O(c log c) Max SAT exponential [9]
O(2(1−γ( m

n
))n)), γ(c) = 1

O(2O(c)) Max SAT polynomial [24]
O(2(1−δ( m

n
))n)), δ(c) = 1

O(c log3 c) Max SAT polynomial [28] (randomized)
O(2(1−ε( m

n
))n)), ε(c) = 1

O(c2 log2 c) Max SAT polynomial [28] (deterministic)
O(2(1−ζ( m

n
))n)), ζ(c) = 1

O(c log c) Max SAT polynomial Theorem 1
O(2(1−η( m

n
))n)), η(c) = 1

O((c log c)2/3) Max SAT exponential Theorem 2
O(2(1−ι( m

n
))n)), ι(c) = 1

O(c1/2) Max 3-SAT exponential Theorem 3

NP-hard. Max `-SAT is a special case of Max SAT with the restriction that each clause
contains at most ` literals. It is also NP-hard even when ` = 2.

The time complexities of Max SAT and Max CSP (constraint satisfaction problem)
have been studied with respect to several parameters such as an objective value k, i.e., the
number of constraints that must be satisfied, the length of an instance l, i.e., the sum of
arities of constraints, the number of constraints m, and the number of variables n, see,
e.g., [1, 2, 3, 5, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 32, 33, 35]. We
summarize the previous and our results in Table 1. We omit polynomial factors with respect
to complexity parameters in the table. Recall that Max CSP is a generalization of Max SAT,
where an instance consists of a set of arbitrary constraints instead of clauses. In Max `-CSP,
each constraint depends on at most ` variables.

An alternative way to parametrize MAX SAT is to ask whether at least m̃+ k clauses
can be satisfied, where m̃ is the expected number of satisfied constraints by a uniformly
random assignment, see, e.g., [15]. As for a special case of Max SAT, it is known that the
satisfiability problem of CNF formulas with n variables and cn clauses can be solved in time
2(1−µ(c))n, where µ(c) = 1/O(log c), see [8]. As for more general problems than Max SAT,
Impagliazzo, Paturi and Schneider [18] showed a satisfiability algorithm for depth-2 threshold
circuits that runs in time 2(1−µ(c))n and exponential space for circuits with n variables and
cn wires, where µ(c) = 1/cO(c2).

In this paper, we consider n and m as complexity parameters. This choice is appropriate
for instances with m = cn clauses, where c > 0 is unbounded. Given an instance with
n variables and m = cn clauses, Max SAT can be solved in time poly(m) · 2n. Our goal
is to design algorithms that run in time of the form poly(m) · 2(1−µ(c))n with µ(c) > 0 as
large as possible. In this setting, there are three incomparable currently best algorithms: a
deterministic exponential space algorithm with µ(c) = 1

O(c log c) due to Dantsin and Wolp-
ert [9], a randomized polynomial space algorithm with µ(c) = 1

O(c log3 c) and a deterministic
polynomial space algorithm with µ(c) = 1

O(c2 log2 c) due to Sakai, Seto and Tamaki [28].

IPEC’15



92 Improved Exact Algorithms for Mildly Sparse Instances of Max SAT

In this paper, we present an algorithm that achieves the previous best time complexity
without exponential space or randomization as follows.

I Theorem 1 (Polynomial Space). Given an instance with n variables, m = cn clauses and
the maximum weight W , Max SAT can be solved deterministically in time poly(m, logW ) ·
2(1−µ(c))n and polynomial space, where µ(c) = 1

O(c log c) .

Furthermore, this algorithm can handle instances with hard constraints as [28]. The previous
algorithms and our deterministic polynoamial space algorithm run super-polynomially faster
than 2n only if m = O(n2). In this paper, we present algorithms that run super-polynomially
faster than 2n for instances with ω(n2) clauses with the help of exponential space as follows.

I Theorem 2 (Exponential Space). Given an instance with n variables, m = cn clauses and the
maximum weight W , Max SAT can be solved deterministically in time poly(m,W ) ·2(1−µ(c))n

and exponential space, where µ(c) = 1
O((c log c)2/3) .

I Theorem 3 (Exponential Space, Max 3-SAT). Given an instance with n variables, m = cn

clauses and the maximum weight W , Max 3-SAT can be solved deterministically in time
poly(m,W ) · 2(1−µ(c))n and exponential space, where µ(c) = 1

O(c1/2) .

These algorithms run super-polynomially faster than 2n for instances of Max SAT and
Max 3-SAT with m = o(n5/2/ log5/2 n) and m = o(n3/ log2 n) respectively. They can handle
instances with hard constraints as well.

After this paper was submitted to this conference, the authors learned that Chen and
Santhanam [7] independently obtained similar but better results than ours, i.e., a deterministic
polynomial space algorithm with µ(c) = 1

O(c) and a deterministic exponential space algorithm
with µ(c) = 1

O(c1/2) .

1.1 Our technique
Our algorithms are based on the combination of width reduction and greedy restriction due
to Sakai, Seto and Tamaki [28]. The basic idea is as follows:

1. Width reduction. Given an instance of Max SAT with n variables and m clauses, we
produce a collection of instances of Max `-SAT with ` = O(log(m/n)) such that the optimum
of the original instance is equal to the maximum of the optima of the produced instances.
Width reduction is originally invented by Schuler [31] to solve the CNF satisfiability problem,
but we can modify it to handle Max SAT.

2. Greedy restriction. For each Max `-SAT instance, we repeat the following until Max
1-SAT instances are obtained: Pick a variable x that appears most frequently in clauses that
contain at least 2 literals, then produce two instances by setting x = 0 and x = 1. Greedy
restriction is inspired by the satisfiability algorithms for Boolean formulas due to Santhanam
and others [6, 30, 34].

3. Max 1-SAT. We solve Max 1-SAT instances by a polynomial time algorithm (majority
voting).

In the previous analysis of greedy restriction [28], they regard each clause as a De Morgan
formula and apply the so-called shrinkage lemma for De Morgan formulas due to Chen,
Kabanets, Kolokolova, Shaltiel and Zuckerman [6]. In this paper, we treat each clause as
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it is and improve the analysis of greedy restriction. Furthermore, if we are allowed to use
exponential space, we can replace the base case of Max 1-SAT by Max 2-SAT and apply
Williams’ algorithm for Max 2-SAT [21, 35]. This further improves the efficiency of greedy
restriction since we only have to consider clauses that contain at least 3 literals instead of
at least 2 literals. Note that there is a difference between the polynomial time algorithm
for Max 1-SAT and Williams’ algorithm for Max 2-SAT with respect to the dependency on
the maximum weight W of instances: The running time of the former and the latter involve
poly(logW ) and poly(W ) factors respectively as seen in Theorem 1 and Theorems 2 and 3.
If (1− ε)-multiplicative approximation is allowed, the dependency is improved to poly(logW )
in Williams’ algorithm, see Section 4.2 in [35].

2 Preliminaries

We denote by Z the set of integers. We define −∞ as −∞+ z = z+−∞ = −∞ and −∞ < z

for all z ∈ Z.
Let V be a set of Boolean variables {x1, . . . , xn}. We use the value 1 to indicate Boolean

‘true’, and 0 ‘false’. The negation of a variable x ∈ V is denoted by x. A literal is either a
variable or its negation. An `-constraint is a Boolean function φ : {0, 1}` → {0, 1}, which
depends on ` variables in V . The width of φ is `. Note that a 0-constraint is either ‘0’ or ‘1’
(a constant function). An `-clause is an `-constraint represented as a disjunction of ` literals,
i.e., y1 ∨ · · · ∨ y` for some literals y1, . . . , y`.

An instance Φ of Max SAT consists of pairs of a constraint and a weight function, i.e., Φ =
{(φ1, w1), . . . , (φm, wm)}, where each φi is an `i-clause and wi : {0, 1} → {−∞}∪Z. We allow
0-constraints to appear in instances of Max SAT. The width of Φ is maxi `i. In Max `-SAT,
each instance has width at most `. The maximum weight of Φ is maxi,a:wi(a) 6=−∞ |wi(a)|. For
a weight function w, we denote by w̃ the weight function defined as w̃(1) := w(1), w̃(0) := −∞.
Note that a constraint with wi(0) = −∞ (wi(1) = −∞, resp.) must be satisfied (unsatisfied,
resp.), i.e., it is a hard constraint. Without loss of generality, we do not consider instances
with wi(0) = wi(1) = −∞ for some i. We use the notation as Val(Φ, a) :=

∑m
i=1 wi(φi(a))

and Opt(Φ) := maxa∈{0,1}n Val(Φ, a).
The length of Φ, denoted by L(Φ), is defined as the sum of widths of clauses, i.e.,

L(Φ) :=
∑m
i=1 `i. More generally, we define Lk(Φ) :=

∑
i:`i≥k `i. We denote by var(Φ) the

set of variables that appear as literals in Φ. The frequency of a variable x with respect to Φ
is the number of literals that appear in Φ as x or x, and denoted by freq(Φ, x). We define
vark(Φ) and freqk(Φ, x) analogously to Lk(Φ).

For any instance Φ of Max SAT, any set of variables {xi1 , . . . , xik} and any constants
a1, . . . , ak ∈ {0, 1}, we denote by Φ[xi1 = a1, . . . , xik = ak] the instance obtained from
Φ by assigning to each xij , xij the value aj , aj respectively and applying the following
simplification rules repeatedly:
1. If Φ contains a clause of the form φ = 0 ∨ ψ where ψ is a disjunction of literals, replace φ

by the clause ψ.
2. If Φ contains a clause of the form φ = 1 ∨ ψ where ψ is a disjunction of literals, replace φ

by 1 (as a 0-constraint).
We similarly define φ[li1 = a1, . . . , lik = ak] for any set of literals {li1 , . . . , lik}.

3 Algorithms for Max 1-SAT and Max 2-SAT

In this section, we introduce a polynomial time algorithm for Max 1-SAT and an exponential
space algorithm for Max 2-SAT. These algorithms serve as the base cases respectively in the
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94 Improved Exact Algorithms for Mildly Sparse Instances of Max SAT

polynomial and exponential space algorithms for Max `-SAT in the next section.
Our polynomial time algorithm for Max 1-SAT is based on simple majority voting.

I Lemma 4 (Max 1-SAT). Given an instance of Max 1-SAT Φ (L2(Φ) = 0) with m clauses
and the maximum weight W , Opt(Φ) can be computed in time poly(m, logW ).

Proof. Let Φ be an instance {(φ1, w1), . . . , (φm, wm)} of Max 1-SAT. Since the width of Φ
is at most 1, each φi is either ‘0’, ‘1’, ’xj ’ or ‘xj ’ (for some j). For each xi, define Si(0), Si(1)
as

Si(0) :=
∑

j:φj=xi

wj(0) +
∑

j:φj=xi

wj(1),

Si(1) :=
∑

j:φj=xi

wj(1) +
∑

j:φj=xi

wj(0).

If Si(0) = Si(1), then set xi = ∗ (don’t care), if Si(0) > Si(1), then set xi = 0, otherwise set
xi = 1. This assignment achieves Opt(Φ), where we assign arbitrary values to don’t care
variables. Operations such as addition and comparison can be done in time poly(m, logW ).

J

Our exponential space algorithm for Max 2-SAT is based on Williams’ algorithm for Max
2-SAT [21, 35].

I Lemma 5 (Max 2-SAT). Given an instance of Max 2-SAT Φ (L3(Φ) = 0) with n variables,
m clauses and the maximum weight W , Opt(Φ) can be computed in time poly(m,W ) · 3n/2
and exponential space.

Proof. We use the following result.

I Theorem 6 ([21, 35]). Given an instance of Max 2-SAT with n variables, m clauses
and the maximum weight W , where each constraint is different from the others and each
weight function wi satisfies wi(1) > 0 and wi(0) = 0, Opt(Φ) can be computed in time
poly(m,W ) · 2ωn/3 and exponential space, where ω < 2.3728639 [25] denotes the exponent of
the matrix multiplication.

Before applying Williams’ algorithm, we need preprocessing on a given instance because our
instances are more general than those considered in [21, 35]. That is, we consider instances
that contain two or more identical clauses, arbitrary weighted functions and hard constraints.
We transform instances to a set of instances that do not contain identical clauses and whose
weight functions are of the form wi(1) > 0 and wi(0) = 0. We ensure that the optimum of
the original instance is equal to the maximum of the optima of the resulting instances. The
preprocessing increases the running time, i.e., 3n/2 > 2ωn/3.

Let Φ be an instance {(φ1, w1), . . . , (φm, wm)} of Max 2-SAT. For simplicity, we treat
only instances with wi(1) ≥ wi(0) for all i. The restriction on instances can be removed with
additional transformation.

First, we replace each wi(a) with wi(0) 6= −∞ by wi(a)− wi(0) to satisfy wi(1) > 0 and
wi(0) = 0. This transformation increases the maximum weight of the instance by at most
twice. We define W0 :=

∑
i:wi(0) 6=−∞ wi(0) and use this later to reset the offset.

Next, we reduce the number of clauses that appear twice or more in the instance as
follows: If the instance contains (φi, wi) and (φj , wj) such that φi = φj , then replace (φi, wi)
by (φi, wi +wj) and remove (φj , wj). The maximum weight of the instance becomes at most
O(mW ).
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Finally, we remove hard constraints and apply Williams’ algorithm. To do so, we consider
a maximal independent set of hard constraints constructed as follows: Set I = ∅ and repeat
the following: Pick arbitrary (φi, wi) in Φ such that wi(0) = −∞ and add it to I if φi is
independent of I, i.e., the literals in φi do not appear in any clause in I. When I becomes a
maximal independent set, the cardinality of I, denoted by |I|, is at most n/2.

We try every assignment that satisfies all the clauses in I one by one. The number of such
assignments is 3|I|. Note that if we assign values to all the literals that appear in some clause
in I, then we obtain an instance whose hard constraints are 0 or 1-constraints. Since hard
1-constraints only determine the values of some variables and hard 0-constraints determine
the feasibility of the instance, now we can apply Williams’ algorithm. Note that we must
add W0 to the result of Williams’ algorithm to obtain Opt(Φ). The overall running time is
poly(m,W ) · 3|I| · 2(ω/3)(n−2|I|) ≤ poly(m,W ) · 3n/2. J

4 Greedy Restriction Algorithms for Max `-SAT

In this section, we present polynomial and exponential space algorithms for Max `-SAT based
on the combination of greedy restriction and the algorithms in the previous section. These
serve as subroutines in our main algorithms for Max SAT. For Max 3-SAT, our exponential
space algorithm for Max `-SAT runs in time as stated in Theorem 3. First, we introduce
shrinkage lemmas that are useful in the analysis of greedy restriction. Then, we describe our
algorithms and their analyses.

4.1 Shrinkage Lemmas
In this section, we provide shrinkage lemmas that are useful in upper-bounding the length
of instances with respect to Lk(·) after a sequence of greedy restriction. For an instance
Φ of Max SAT with n variables, we define a sequence of random variables Φ0,Φ1, . . . ,Φn

inductively as follows: Φ0 := Φ. Given Φ0,Φ1, . . . ,Φi−1, Φi := Φi−1[x = a], where x =
arg maxx∈var(Φi−1) freqk(Φi−1, x) and a is a uniform random bit. We have the following
lemma.

I Lemma 7 (Shrinkage of Max SAT instances with respect to Lk(·), Lemma 4.2 in [29]). For
n′ ≥ 4, we have

Pr
[
Lk(Φn−n′) ≥ 2k · Lk(Φ) ·

(
n′

n

) k+2
2
]
< 2−n

′
.

Note that the shrinkage lemma used in [28] is only for k = 2 and provides the bound

Pr
[
L2(Φn−n′) ≥ 2 · L2(Φ) ·

(
n′

n

) 3
2
]
< 2−n

′
.

Thus, Lemma 7 generalizes the above by introducing a parameter k and also improves the
bound of it. For instances of Max 3-SAT with n variables and k = 3, we further improve the
bound of Lemma 7 as follows.

I Lemma 8 (Shrinkage of Max 3-SAT instances with respect to L3(·)). For n′ ≥ 1, we have

L3(Φn−n′) ≤ L3(Φ) ·
(
n′

n

)3
.

IPEC’15
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Max`SAT(Φ = {(φ1, w1), . . . , (φm, wm)}: instance, n, n′: integer)
01: if n > n′, then
02: x← arg maxx∈var(Φ) freq2(Φ, x).
03: K0 ← Max`SAT(Φ[x = 0], n− 1, n′).
04: K1 ← Max`SAT(Φ[x = 1], n− 1, n′).
05: return max{K0,K1}.
06: else
07: return Opt(Φ) by Lemma 9.

Figure 1 Algorithm for Max `-SAT.

Proof. Let x = arg maxx∈var(Φi) freq3(Φi, x). For all a ∈ {0, 1}, we have L3(Φi[x = a]) =
L3(Φi)− 3 · freq3(Φi, x) because if a clause of width 3 contains x as a literal, it becomes a
clause of width either 0 or 2 by assigning a to x. Since freq3(Φi, x) ≥ L3(Φi)

n−i , for all a ∈ {0, 1},
we have

L3(Φi[x = a]) = L3(Φi)− 3 · freq(Φi, x) ≤
(

1− 3
n− i

)
· L3(Φi) ≤ L3(Φi) ·

(
1− 1

n− i

)3
.

We complete the proof by induction. J

4.2 A Polynomial Space Algorithm
Before presenting our polynomial space algorithm for Max `-SAT, we show a simple algorithm
for Max SAT that is efficient for instances with a small number of clauses of width at least 2.

I Lemma 9 (Algorithm for “almost” Max 1-SAT instances). Given an instance Φ of Max
`-SAT with m clauses and the maximum weight W , Opt(Φ) can be computed in time
poly(m, logW ) · 2L2(Φ).

Proof. Recall that var2(Φ) is the set of variables that appear in clauses of width at least two.
We assume var2(Φ) = {xi1 , xi2 , . . . , xi|var2(Φ)|}. For each assignment a1, a2, . . . , a|var2(Φ)| ∈
{0, 1} to var2(Φ), we can compute Opt(Φ[xi1 = a1, xi2 = a2, . . . , xi|var2(Φ)| = a|var2(Φ)|]) in
time poly(m, logW ) by Lemma 4 since L2(Φ[xi1 = a1, xi2 = a2, . . . , xi|var2(Φ)| = a|var2(Φ)|]) =
0. Define

K := max
a1,a2,...,a|var2(Φ)|∈{0,1}

Opt(Φ[xi1 = a1, xi2 = a2, . . . , xi|var2(Φ)| = a|var2(Φ)|]),

then Opt(Φ) = K holds. The value K can be obtained in time poly(m, logW ) · 2L2(Φ) since
|var2(Φ)| ≤ L2(Φ). J

Our polynomial space algorithm for Max `-SAT is shown in Fig. 1. The same algorithm
and its analysis for the so-called Max De Morgan formula SAT was given by [28]. We analyze
the running time of the algorithm only for instances of Max `-SAT, which is a special case of
Max De Morgan formula SAT, and obtain a better upper bound than that of [28]. Note that
we may break ties arbitrarily in arg max in Line 02. In particular, when var2(Φ) = ∅, we may
choose any variable x. In what follows, we give the running time analysis of the algorithm.

I Lemma 10 (Polynomial Space Algorithm for Max `-SAT). Given an instance Φ of Max
`-SAT with n variables, m = cn clauses and the maximum weight W , Opt(Φ) can be computed
in time poly(m, logW ) · 2(1− 1

16c` )n and polynomial space.
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Proof. Let Φ be an instance {(φ1, w1), . . . , (φm, wm)} of Max `-SAT with n variables, m = cn

clauses and the maximum weight W . Note that L2(Φ) ≤ `m = c`n. We set the parameter
n′ in the algorithm as n′ = n

8c` . For simplicity, we assume n′ is an integer.
Let us regard the computation of the algorithm as a complete binary tree of depth

n − n′ inductively defined as follows. The root is labeled with Φ. The left and the right
children of the root are labeled with Φ[x = 0] and Φ[x = 1] respectively, where x =
arg maxx∈var(Φ) freq2(Φ, x). We define the children of Φ[x = 0] and Φ[x = 1] in the similar
way and so on until depth n− n′ is reached.

To upper-bound the running time of the algorithm, we are interested in L2(·) of instances
that appear as leaves. Pick any leaf and assume its label is Ψ. Then, the algorithm executes
Lines 06–07 on Ψ and it takes poly(m, logW ) · 2L2(Φ) time.

To estimate the average of L2(Ψ), we can apply Lemma 7 because the random sequence
{Φi} is exactly associated with the complete binary tree defined above. In particular, if we
pick a leaf of the tree uniformly at random, then the distribution of its label is exactly the
same as that of Φn−n′ .

By Lemma 7 with k = 2, we can bound the fraction of leaves labeled with Ψ, L2(Ψ) ≥ n′/2,
from above by 2−n′ due to the choice of n′. Thus, the overall running time of the algorithm
is at most

poly(m, logW ) · 2n−n
′
· {2−n

′
· 2n

′
+ (1− 2−n

′
) · 2n

′/2} = poly(m, logW ) · 2(1− 1
16c` )n. J

4.3 An Exponential Space Algorithm
Our exponential space algorithm for Max `-SAT is almost the same as our polynomial space
algorithm except that we use L3(·) and the following lemma instead of L2(·) and Lemma 9.

I Lemma 11 (Algorithm for “almost” Max 2-SAT instances). Given an instance Φ of Max
`-SAT with n variables, m clauses and the maximum weight W , Opt(Φ) can be computed in
time poly(m,W ) · 2L3(Φ) · 3(n−L3(Φ))/2 and exponential space.

Proof. Assume var3(Φ) = {xi1 , xi2 , . . . , xi|var3(Φ)|}. For each assignment a1, a2, . . . , a|var3(Φ)| ∈
{0, 1} to var3(Φ), we can compute Opt(Φ[xi1 = a1, xi2 = a2, . . . , xi|var3(Φ)|) = a|var3(Φ)|]) in
time poly(m,W ) · 3(n−|var3(Φ)|)/2 and exponentiail space by Lemma 5 since L3(Φ[xi1 =
a1, xi2 = a2, . . . , xi|var3(Φ)| = a|var3(Φ)|]) = 0. Define

K := max
a1,a2,...,a|var3(Φ)|∈{0,1}

Opt(Φ[xi1 = a1, xi2 = a2, . . . , xi|var3(Φ)| = a|var3(Φ)|]),

then Opt(Φ) = K holds. The valueK can be obtained in time poly(m,W )·2L3(Φ)·3(n−L3(Φ))/2

and exponential space since |var3(Φ)| ≤ L3(Φ). J

We modify Max`SAT in Fig. 1 as follows: (1) In Line 02, replace freq2 by freq3, (2) in
Line 07, replace Lemma 9 by Lemma 11. The resulting algorithm yields the following.

I Lemma 12 (Exponential Space Algorithm for Max `-SAT). Given an instance of Max `-SAT
with n variables, m = cn constrains and the maximum weight W , Opt(Φ) can be computed
in time poly(m,W ) · 2(1−µ(c))n and exponential space, where µ(c) = 1

O((c`)2/3) .

I Theorem 13 (Restatement of Theorem 3). Given an instance with n variables, m = cn

clauses and the maximum weight W , Max 3-SAT can be solved deterministically in time
poly(m,W ) · 2(1−µ(c))n and exponential space, where µ(c) = 1

O(c1/2) .

The proofs of the above lemma and theorem are almost as the same as that of Lemma 10
except that we apply Lemma 7 with k = 3, n′ = n

(16c`)2/3 and Lemma 8 with n′ = n√
6c

respectively instead of Lemma 7 with k = 2, n′ = n
8c` .
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MaxSAT(Φ = {(φ1, w1), . . . , (φm, wm)}: instance, n, `: integer)
01: if L`+1(Φ) = 0, then
02: return Max`SAT(Φ, n, n′). /∗ n′ = n

8(m/n)` ∗/
03: else
04: Pick arbitrary φi = (l1 ∨ · · · ∨ l`′) such that `′ > `.
05: ΦL ← {Φ \ {(φi, wi)}} ∪ {(l1 ∨ · · · ∨ l`, w̃i)}.
06: KL ←MaxSAT(ΦL, n, `).
07: ΦR ← Φ[l1 = · · · = l` = 0].
08: KR ←MaxSAT(ΦR, n− `, `).
09: return max{KL,KR}.

Figure 2 Max SAT algorithm.

5 Width Reduction Algorithms for Max SAT

In this section, we present polynomial and exponential space algorithms for Max SAT based
on the combination of width reduction and the algorithms in the previous section, completing
the proof of Theorems 1 and 2.

Our polynomial space algorithm for Max SAT is shown in Fig. 2. Again, the same
algorithm and its analysis was given by [28] but we obtain a better upper bound on the
running time because we use a faster Max `-SAT algorithm than that of [28] as a subroutine.
In what follows, we show the running time analysis of the algorithm.

I Theorem 14 (Restatement of Theorem 1). Given an instance with n variables, m = cn

clauses and the maximum weight W , Max SAT can be solved deterministically in time
poly(m, logW ) · 2(1−µ(c))n and polynomial space, where µ(c) = 1

O(c log c) .

Proof. The overall structure of the proof is similar to the analysis of width reduction for the
CNF satisfiability problem due to Calabro et al. [4]. We think of the execution of MaxSAT
as a rooted binary tree T , i.e., the root of T is labeled with an input instance Φ and for each
node labeled with Ψ, its left (right, resp.) child is labeled with ΨL (ΨR, resp.) as defined in
Line 05 (Line 07, resp.) in the algorithm. If Ψ is an instance of Max `-SAT, i.e., every clause
ψi in Ψ has width at most `, then the node labeled with Ψ is a leaf.

Let us consider a path p from the root to a leaf v labeled with Ψ. We denote by L and R
the number of left and right children p selects to reach v. It is easy to see that (1) L ≤ m
since the number of clauses is m, (2) R ≤ n/` since a right branch eliminates ` variables at a
time, and (3) Ψ is defined over at most n−R` variables. Furthermore, the number of leaves
which are reachable by exactly R times of right branches is at most

(
m+R
R

)
. Let T (n,m,W, `)

denote the running time of Max`SAT on instances of Max `-SAT with n variables, m = cn

clauses and the maximum weight W due to Lemma 10. We can upper bound the running
time of MaxSAT as:

poly(m, logW )

 n
2`−1∑
R=0

(
m+R

R

)
T (n−R`,m,W, `) +

n∑̀
R= n

2`

(
m+R

R

)
T (n−R`,m,W, `)

 .

In what follows, we omit poly(m, logW ) factors due to space limitations. That is, the
following inequalities hold if we ignore poly(m, logW ) factors. We first upper bound the
second summation above.
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 n∑̀
R= n

2`

(
m+R

R

)
T (n−R`,m,W, `)

 ≤
 n∑̀
R= n

2`

(
m+R

R

)
2n−R`


≤

(
m+ n

2`
n
2`

)
2n/2 ≤

(
2m
n
2`

)
2n/2 ≤ 2

n log(4c`)
` · 2n/2 ≤ 2(1−µ(c))n,

where we set ` = α log c for sufficiently large constant α > 0 and the last inequality follows
from

(
n
βn

)
≤ poly(n) · 22βn log(1/β) for β ≤ 1/2.

We move on to the analysis of the first summation. n
2`−1∑
R=0

(
m+R

R

)
T (n−R`,m,W, `)

 ≤
 n

2`−1∑
R=0

(
m+R

R

)
2

(
1− 1

16`( cn
n−R`

)

)
(n−R`)


≤

m+ n
2`∑

R=0

(
m+ n

2`
R

)
2(1− 1

32`c )(n−R`)

 =
(

2(1− 1
32`c )n

(
1 + 2−(1− 1

32`c )`
)m+ n

2`

)

≤

(
2(1− 1

32`c )n
(
e2−(1− 1

32`c )`
)m+ n

2`

)
≤

(
2
(1− 1

32`c )n+ 2m

2(1− 1
32`c )`

)
.

Since we set ` = α log c for sufficiently large constant α > 0, the exponent is(
1− 1

32`c

)
n+ 2m

2(1− 1
32`c )` =

(
1− 1

32αc log c

)
n+ 2cn

2α log c− 1
32c

≤
(

1− 1
64αc log c

)
n,

where the last inequality is by the choice of α and c > 4. This completes the proof. J

If we use the modified algorithm for Max `-SAT due to Lemma 12 in Line 02 in Fig. 2
with n′ = n

(16c`)2/3 , we have:

I Theorem 15 (Restatement of Theorem 2). Given an instance with n variables, m = cn

clauses and the maximum weight W , Max SAT can be solved deterministically in time
poly(m,W ) · 2(1−µ(c))n and exponential space, where µ(c) = 1

O((c log c)2/3) .

The proof of the above theorem is almost identical to that of Theorem 14 and we omit it.

6 Concluding Remarks

There are several open questions. First, can we show a (randomized) polynomial space
algorithm that runs super-polynomially faster than 2n for instances with ω(n2) clauses? One
possible way is to design a non-trivial polynomial space algorithm for instances of Max 2-SAT
with arbitrary number of clauses. Second, can we modify our exponential space algorithms
to handle instances with exponentially large weights? To do so, we might have to show
a non-trivial algorithm for instances of Max 2-SAT with arbitrary number of clauses and
exponentially large weights.

Finally, we remark that the recent work of the authors [29] shows a deterministic 2n−n1/O(`)

time and exponential space algorithm for instances of Max SAT with m = O(n`) clauses.

Acknowledgements. We are grateful to Osamu Watanabe, who asked us whether [28] can
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