
Approximating the Regular Graphic TSP in Near
Linear Time
Ashish Chiplunkar1,2 and Sundar Vishwanathan2

1 Amazon Development Center
Bangalore, India
ashish.chiplunkar@gmail.com

2 Department of Computer Science and Engineering
Indian Institute of Technology Bombay
Mumbai, India
sundar@cse.iitb.ac.in

Abstract
We present a randomized approximation algorithm for computing traveling salesperson tours in
undirected regular graphs. Given an n-vertex, k-regular graph, the algorithm computes a tour of
length at most

(
1 + 4+ln 4+ε

ln k−O(1)

)
n, with high probability, in O(nk log k) time. This improves upon

the result by Vishnoi ([27], FOCS 2012) for the same problem, in terms of both approximation
factor, and running time. Furthermore, our result is incomparable with the recent result by Feige,
Ravi, and Singh ([10], IPCO 2014), since our algorithm runs in linear time, for any fixed k. The
key ingredient of our algorithm is a technique that uses edge-coloring algorithms to sample a
cycle cover with O(n/ log k) cycles, with high probability, in near linear time.

Additionally, we also give a deterministic 3
2 +O

(
1√
k

)
factor approximation algorithm for the

TSP on n-vertex, k-regular graphs running in time O(nk).

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases traveling salesperson problem, approximation, linear time

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.125

1 Introduction

Given a complete undirected graph with positive real valued weights on the edges, the
traveling salesperson problem (TSP) is to find a minimum weight cycle that visits each
vertex exactly once. This problem was among the first few proved NP-Complete by Karp
[15]. In the absence of any structural restriction on the weight function, the TSP is hard to
approximate within any constant factor ([26], [24]).

The most widely researched restriction of the TSP is the MetricTSP, where the vertices
form a metric space with the weight function as the metric. This simple imposition of the
triangle inequality over the weights allowed Christofides [7] to efficiently construct tours
with an approximation ratio of 3/2. No improvement has been made on this upper bound in
the last 35 years. However, for the case when the metric is Euclidean with a fixed number
of dimensions (the EuclideanTSP), polynomial time approximation schemes are known
[1, 18, 23, 3].

The possibility of existence of a polynomial time approximation scheme for the Met-
ricTSP was ruled out early on by the proof of its APX-hardness given by Papadimitriou
and Yannakakis [22]. The first explicitly proven lower bound on the approximation factor
was 5381/5380 by Engebretsen [9] (for the MetricTSP with distances 1, and 2). This was

© Ashish Chiplunkar and Sundar Vishwanathan;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 125–135

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.125
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

126 Approximating the Regular Graphic TSP in Near Linear Time

followed by a series of improvements: 3813/3812 by Böckenhauer and Seibert [5], 220/219 by
Papadimitriou and Vempala [21], 185/184 by Lampis [17], and finally, 123/122 by Karpinski,
Lampis, and Schmied [16], which is the best lower bound known currently. The reader is
referred to [16] for a nice overview of recent advances in many natural restrictions of the
MetricTSP.

An important sub-class of the MetricTSP is the GraphTSP, where the weight function
on the edges arises from the shortest path distances in some unweighted undirected graph.
This is believed to be the most promising candidate for capturing the computational hardness
of the MetricTSP. GraphTSP is APX-hard too, as a consequence of its MAX-SNP
hardness [22] and the PCP theorem [2]. The best known lower bound of 4/3 on the integrality
gap of the Held-Karp LP relaxation [13] of the MetricTSP is observed on an instance of
the GraphTSP.

Gharan, Saberi and Singh [12] achieved the first improvement over Christofides [7]
algorithm for the GraphTSP with an approximation ratio strictly less than 3/2, which was
shortly followed by Mömke and Svensson’s [19] bound of 1.461. Mucha [20] later improved
the analysis of Mömke and Svensson’s [19] algorithm and demonstrated a bound of 13/9.
Currently, the best known bound is 7/5, given by Sebö and Vygen [25]. It is widely believed
that the Held-Karp relaxation has an integrality gap of precisely 4/3, and this has been
proven for cubic graphs [6].

Vishnoi [27] opened up a new line of interesting work by arguing that approximating
the GraphTSP might possibly get better with increasing edge density. He studied the
GraphTSP on regular graphs (the RegGraphTSP), and proved that approximation factors
arbitrarily close to 1 can be achieved, as the degree of the regular graph becomes larger. The
reader is referred to to Vishnoi [27] for a nice survey on the MetricTSP in general, and an
interesting discussion on this line of work.

The main technical contribution of Vishnoi’s paper is an algorithm for the RegGraphTSP
with an approximation factor of (1 +

√
64/ ln k) on regular graphs with degree k. Given a k-

regular graph with n vertices, the algorithm first samples a cycle cover using Jerrum, Sinclair
and Vigoda’s algorithm [14] for sampling a matching from an almost uniform distribution
over the perfect matchings in the natural bipartite version of the input graph. This cycle
cover is guaranteed to have O(n/

√
ln k) cycles with high probability. These cycles are then

connected using two copies of a spanning tree on the graph formed by contracting the cycles.
This yields a tour of length at most (1 +

√
64/ ln k)n with probability 1− 1/n. The running

time of this algorithm is dictated by the running time of the sampling method, which is
around O(n10 log3 n). This can be improved marginally by using a faster sampling algorithm,
for example, the algorithm by Bezáková, Stefankovic, Vazirani and Vigoda [4].

In a follow-up paper, Feige, Ravi, and Singh [10] improve the approximation ratio for
the RegGraphTSP to 1 + O(1/

√
k). They use a randomized procedure to construct

vertex disjoint paths in the input graph which, in expectation, contain (1−O(1/
√
k))n

edges. They connect these paths arbitrarily using another O(n/
√
k) edges, resulting in a tree

with O(n/
√
k) vertices of odd degree. Then they show that these vertices can be matched

with paths of total length O(n/
√
k), that is, they have a T-join of size O(n/

√
k), resulting

in an Eulerian graph. Short-cutting an Euler tour of this graph yields a (1 + O(1/
√
k))-

approximation. The running time of this algorithm is dictated by the time taken to find the
T-join, which is O(n3).

Here we propose an alternative method for solving the RegGraphTSP, which achieves
an approximation factor better than Vishnoi’s. More importantly, our algorithm runs in
linear time, for every fixed k.

A. Chiplunkar and S. Vishwanathan 127

I Theorem 1. Fix an ε > 0. There is an algorithm which, given a connected k-regular
undirected graph on n vertices, runs in time O(nk log k), and outputs a TSP tour of cost
at most

(
1 + 4+ln 4+ε

ln(k/2)

)
n with high probability (specifically, probability of failure decaying

exponentially with n).

The idea behind improving the running time is to replace the Jerrum-Sinclair-Vigoda
subroutine in Vishnoi’s algorithm by a much faster sampling subroutine. Although the Jerrum-
Sinclair-Vigoda algorithm comes with stringent guarantees about the resulting sampling
distribution, such guarantees are not requisite for Vishnoi’s algorithm. On the other hand,
while our sampling distribution on the cycle covers may be quite far from uniform, we
demonstrate bounds on the measure concentration around cycle covers with few cycles, using
simple counting arguments. We describe the algorithm in Section 2, and analyze it in Section
3.

While derandomizing our algorithm seems like a difficult problem, we also have a simple
deterministic linear time algorithm that achieves a 3

2 +O
(

1√
k

)
factor approximation. Here,

the main idea is to traverse the graph in a depth-first-like manner and keep removing long
cycles. These cycles cover a good fraction of the vertices. The cycles and the uncovered
vertices can then be connected by a spanning tree. We devote Section 4 for this algorithm
and its analysis.

2 The Randomized Algorithm

The high level idea behind our algorithm is similar to that of Vishnoi’s. Find a cycle cover of
the graph, and then connect the cycles using a spanning tree. Recall that a cycle cover of a
graph is a collection of vertex-disjoint cycles that cover all its vertices. We wish to construct
a cycle cover such that it has a small number of cycles with high probability. It is folklore
that cycle covers in a graph correspond to matchings in the natural encoding of the given
graph as a bipartite graph (see Definition 3). Indeed, Vishnoi selects a random matching in
such an encoding.

Given a k-regular graph, we intend to first partition the edges into cycle covers in a
randomized manner, and then select the best cycle cover. Our algorithm to find the partition
uses ideas from the Gabow-Kariv algorithm [11], which finds a minimum edge-coloring of an
input graph. However, the Gabow-Kariv algorithm works only on graphs with vertex degrees
which are powers of two. Therefore, we attempt to reduce the degree to a power of two, for
which we need to work with directed regular graphs and their bipartite encodings.

I Definition 2. We say that a directed graph is k-regular if the in-degree as well as the
out-degree of each vertex is k. A cycle cover in a directed graph is a 1-regular subgraph of
the graph.

I Definition 3. The bipartite encoding of a directed graph G = (V,A) is the bipartite graph
B = (VL, VR, E), where VL and VR contain vertices vL and vR respectively, for each v ∈ V ,
and E contains the edge {uL, vR} for each arc (u, v) ∈ A.

From the definition, it is easy to see a natural bijection between the cycle covers of a
directed graph and perfect matchings of its bipartite encoding. Analogously, our algorithm
to partition the arcs of a regular directed graph into cycle covers can also be seen as an
algorithm to partition the edges of a regular bipartite graph into perfect matchings.

The reason for working with directed graphs is that one can effectively partition the edges
of a k-regular directed graph into k cycle covers. As a consequence, we have the following

FSTTCS 2015

128 Approximating the Regular Graphic TSP in Near Linear Time

lemma which ensures there is no loss of generality if we restrict our attention to the case
where the degree k is a power of two. This lemma relies on the algorithm by Cole, Ost, and
Schirra [8], which partitions the edges of any given k-regular bipartite undirected graph with
n vertices into perfect matchings, and runs in time O(nk log k).

I Lemma 4. Given a K-regular directed graph G′ = (V,A′) with n vertices and k < K,
there is an algorithm which outputs a k-regular subgraph G = (V,A) of G′, and runs in time
O(nK logK).

Proof. The algorithm constructs the bipartite encoding B′ of G′. Therefore, B′ is aK-regular
bipartite graph. The algorithm then partitions the edges of B′ into K perfect matchings,
using the Cole-Ost-Schirra algorithm, and then deletes an arbitrary set of K − k matchings.
This gives a k-regular bipartite subgraph B of B′. The algorithm returns G = (V,A), where
A ⊆ A′ consisting of arcs which correspond to edges in B. J

Henceforth, we will assume that k is a power of 2. Otherwise, if 2l < k < 2l+1 for some
l ∈ N, we preprocess the given graph using the algorithm from Lemma 4 to obtain a 2l-regular
subgraph. We randomly partition the arcs of the subgraph into cycle covers, and then pick
the best cycle cover.

I Definition 5. Let G = (V,A) be a k-regular directed graph. A cycle cover coloring of this
graph is an ordered partition of the arc set A into k cycle covers. Formally, it is a function
c : A −→ {1, . . . , k}, such that for each i ∈ {1, . . . , k}, the set c−1(i) is a cycle cover of G.

In other words, for any vertex v and color i, exactly one arc leaving v and exactly one
arc entering v have color i. In fact, the algorithm from Lemma 4 creates an arbitrary such
coloring. Thus, regular directed graphs have efficiently constructible cycle cover colorings.
However, the cycle cover coloring resulting from the degree reduction algorithm might not
contain a cycle cover with a small number of cycles. To address this issue, we next describe
a procedure to construct a random cycle cover coloring of a k-regular graph. This falls into
the “divide and conquer” paradigm, where the “conquer” step involves partitioning the edges
of a 2-regular directed graph into two cycle covers, and relies on the following lemma.

I Lemma 6. The arcs of a 2-regular directed graph can be partitioned into two cycle covers
in linear time.

Proof. Construct the bipartite encoding of the 2-regular graph. Since the in-degree and
out-degree of each vertex in the bipartite graph is two, the bipartite encoding is a 2-regular
undirected graph, that is, a collection of vertex disjoint cycles of even length. Partition the
edges of the bipartite encoding into two perfect matchings. Each of these two matchings
encodes a cycle cover of the original directed graph. J

Our procedure to generate a random cycle cover coloring of a given k-regular directed
graph, which forms the heart of the approximation algorithm claimed in Theorem 1, is given
by Algorithm 1, and we call it RandCycleCoverColoring. It is easily verified that the
running time T (n, k) of RandCycleCoverColoring on a k-regular graph with n vertices
is given by the recurrence T (n, k) = T (2n, k/2) +O(nk). This yields T (n, k) = O(nk log k).
Theorem 7 states that the random cycle cover coloring contains, with high probability, a
cycle cover with a small number of components. The proof is deferred to the next section.

I Theorem 7. Fix an ε > 0. Let G be a k-regular directed graph with n vertices, where k is
a power of 2. The algorithm RandCycleCoverColoring, on input G, outputs a random
cycle cover coloring of G, which with high probability contains a cycle cover with at most
(2 + ln 2 + ε)n/ ln k components. The algorithm runs in time O(nk log k).

A. Chiplunkar and S. Vishwanathan 129

Algorithm 1 RandCycleCoverColoring(G)
1: {INPUT: G, a k-regular n vertex directed graph with k being a power of 2; OUTPUT:

A random cycle cover coloring of G.}
2: If k = 1 return G with each arc colored 1.
3: Convert G into a k/2-regular digraph H = (V ′, A′) with 2n vertices, by splitting every

vertex v into a pair of vertices: v0 and v1. Distribute the arcs incident on v randomly
among v0 and v1, so that each gets half of the incoming and half of the outgoing arcs.

4: Recursively call RandCycleCoverColoring(H) to obtain an edge coloring c′ : A′ −→
{1, . . . , k/2} of H.

5: Fuse the pairs of vertices back to obtain G with the coloring c′. For each i, the edges
colored i constitute a 2-regular directed graph. Call it Gi.

6: For each i ∈ {1, . . . , k/2}, partition the arcs of Gi into two cycle covers, using Lemma 6.
Recolor one of these cycle covers with color i+ k/2.

It is worth noting that failure probability of RandCycleCoverColoring decays
exponentially with n, and the parameter ε only affects the rate of this decay. The algorithm
itself (and hence, its running time) is independent of ε.

Theorem 1 follows from Theorem 7 in the following manner. Given a connected K-regular
undirected graph over the vertex set V of size n, construct the directed graph G′ = (V,A′) in
the obvious manner: for each edge {u, v} of the undirected graph, include the arcs (u, v) and
(v, u) in A′. Clearly, G′ is a K-regular directed graph. Use the degree reduction algorithm
from Lemma 4 to get a regular graph G = (V,A) with degree k = 2blog2 Kc. Now run the
procedure RandCycleCoverColoring on G to get a random cycle cover coloring of G.
Choose the best cycle cover from this cycle cover coloring. This cycle cover contains at most
(2 + ln 2 + ε)n/ ln k cycles, with high probability.

The rest of the processing is routine. Take the multi-set E of edges in the original graph
which correspond to the arcs constituting the cycle cover. (If both arcs (u, v) and (v, u)
belong to the cycle cover, then take edge {u, v} with multiplicity two.) Contract these edges,
and find a spanning tree of the resulting minor. Duplicate the edges of the spanning tree,
so that these edges and the edges in E form an Eulerian spanning subgraph of G. Find an
Euler tour in this graph and short-cut it to get a TSP tour of G. The cost of this tour is at
most n+ 2× (2+ln 2+ε)n

ln k ≤
(

1 + 4+ln 4+2ε
ln(K/2)

)
n, and this post-processing can be done in time

O(nk), that is, linear in the size of the graph.

3 Analysis of RandCycleCoverColoring

We first bound from above the probability of getting any fixed cycle cover coloring.

I Lemma 8. Consider a fixed cycle cover coloring c of the k-regular directed graph G′ = (V,A),
where k is a power of 2, let and n = |V |. The probability that RandCycleCoverColoring,
on input G′, outputs c is at most f(n, k), where

f(n, k) =
[
kk

(k!)2

]n
Proof. By induction on k. The claim is trivial for k = 1. Assume now that k > 1. Consider
the coloring c′ : A −→ {1, . . . , k/2} given by

c′(e) =
{
c(e) if c(e) < k/2
c(e)− k/2 otherwise

FSTTCS 2015

130 Approximating the Regular Graphic TSP in Near Linear Time

If a run of the algorithm outputs the coloring c, then it must obtain the coloring c′ at the
end of the recursion step. In order to obtain the coloring c′ at the end of the recursion step,
it is necessary that for all v ∈ V and i ∈ {1, . . . , k/2}, the two arcs having their tails (resp.
heads) at v and colored i in c′, must separate during the splitting of the vertex v. Thus, the
probability that the arcs having tails (resp. heads) at v get distributed correctly between v0

and v1 is 2k/2/
(
k
k/2
)
. The probability that the vertex v gets split correctly is

[
2k/2/

(
k
k/2
)]2

.

Therefore, the probability that all n vertices get split correctly is
[
2k/2/

(
k
k/2
)]2n

, since the
vertices are split independently.

The probability of obtaining c′ after the recursive call, given that all vertices split correctly,
is at most f(2n, k/2), by induction. Thus, the probability that RandCycleCoverColoring
outputs c is at most[

2k/2(
k
k/2
)]2n

× f(2n, k/2) =
[

2k/2(
k
k/2
)]2n

×
[

(k/2)k/2

((k/2)!)2

]2n

=
[
kk

(k!)2

]n
= f(n, k)

J

Using the fact, ln(k!) ≥ k ln k − k, arising from the Stirling’s approximation, we have

f(n, k) =
[
kk

(k!)2

]n
≤
[

kk

(k/e)2k

]n
=
(
e2

k

)kn
(1)

We next bound from above the number of cycle covers with exactly r components.

I Lemma 9. Let G = (V,A) be a k-regular directed graph with n vertices (where k is not
necessarily a power of 2). The number of cycle covers of G having r cycles is at most

(
n
r

)
kn−r.

Proof. Number the vertices of G arbitrarily. Consider a cycle cover C ⊆ A of G which has
r components, and let (S1, . . . , Sr) be the partition of V induced by C, where S1, . . . , Sr
are sorted by the smallest numbered vertices that they contain. We associate the tuple
(|S1|, . . . , |Sr|) with C.

Given a tuple (s1, . . . , sr) such that
∑r
i=1 si = n, let us upper bound the number of cycle

covers C of G that could be associated with this tuple. Since each cycle in G has length at
least 2, we have each si ≥ 2, and hence r ≤ n/2. Let (S1, . . . , Sr) be the partition induced by
C, sorted by the smallest numbered vertices that they contain; si = |Si|. Given S1, . . . , Si−1,
the smallest numbered vertex v0 not in S1 ∪ · · · ∪ Si−1 must be in Si, and that must be
the smallest numbered vertex in Si too. Let the cycle containing v0 in C be (v0, . . . , vsi−1)
where Si = {v0, . . . , vsi−1}. Then each vj must be one of the k out-neighbors of vj−1. Thus,
given S1, . . . , Si−1, the number of possibilities for Si is at most ksi−1. Therefore, the number
of cycle covers of G associated with the tuple (s1, . . . , sr) is at most k

∑r

i=1
(si−1) = kn−r.

Finally, by elementary counting, the number of tuples (s1, . . . , sr), for a fixed r, such
that

∑r
i=1 si = n and each si ≥ 2, is

(
n−r−1
r−1

)
<
(
n
r

)
for r ≤ n/2. Thus, the number of cycle

covers of G having r cycles is at most
(
n
r

)
kn−r. J

Now we are ready to prove Theorem 7.

Proof of Theorem 7. Given a k-regular directed graph G with n vertices, let t = bγn/ ln kc,
where γ > 2 is a constant independent of n as well as k, which we will fix later. Call a cycle
cover of G bad if it contains more than t components; else call it good. Call a cycle cover
coloring c : A −→ {1, . . . , k} of G bad if for each i, the cycle cover c−1(i) is bad; else call it

A. Chiplunkar and S. Vishwanathan 131

good. We need to prove an upper bound on the probability of failure, that is, the probability
that the random cycle cover coloring sampled by RandCycleCoverColoring is bad.

Since each cycle in G has length at least two, a cycle cover can contain at most n/2
components. Thus, if t ≥ n/2, there is nothing to prove. So assume t < n/2. By Lemma 9,
the number of bad cycle covers is at most

n/2∑
r=t+1

(
n

r

)
kn−r ≤

(n
2 − t

)(n
t

)
kn−t ≤ n

2 · 2
n · kn−t

where the first inequality follows from the fact that the function r 7−→
(
n
r

)
kn−r attains its

maximum at bn+1
k+1 c < t, and it is non-increasing in

[
bn+1
k+1 c, n

]
. The number of bad cycle

cover colorings is at most the number of ordered tuples of k bad cycle covers, which is at
most(n

2

)k
2nkkk(n−t) ≤

(n
2

)k
2nkkk(n−

γn
ln k+1) =

(n
2

)k
2nk

(
k

eγ

)nk
kk

Let c be the random cycle cover coloring output by the algorithm. By Lemma 8 and equation
(1), the probability that c is bad is given by

Pr[c is bad] ≤
(n

2

)k
2nk

(
k

eγ

)nk
kk ×

(
e2

k

)kn
=
(

2
eγ−2

)nk
×
(n

2

)k
kk

We take γ = 2 + ln 2 + ε so that 2/eγ−2 < 1. This results in probability of failure decaying
exponentially as n increases. J

4 The Deterministic Approximation Algorithm

The approach here is the similar to that of the randomized algorithm: find a small number of
cycles in the graph covering a large number of vertices, and connect them using a spanning
tree. The main difference is that while we construct a cycle cover in the previous algorithm,
here we find a collection of vertex-disjoint cycles covering almost half the vertices. As before,
we contract the cycles, and connect them and the uncovered vertices together with a spanning
tree. Algorithm 2 essentially does a depth-first traversal, while repeatedly removing long
cycles and vertices that cannot be fit in long cycles.

From the description, it is clear that this algorithm runs in time O(nk), and that it finds
cycles of length no less than d = 2

√
k. In order to derive the approximation ratio of our

algorithm, we first need to bound from above the size of the set B returned by LongCycles.
Let m = |B|.

I Lemma 10. m ≤ n(k−2)
2(k−d+1)

Proof. Suppose the set B of vertices returned by the algorithm is {u1, . . . , um}, with the
vertices added in the order u1, . . . , um. Consider the snapshot of the algorithm when the
vertex ui was added to B. At that time, vertices u1, . . . , ui−1 were already removed from H

and added to B, ui+1, . . . , um were still present in H, and ui was the last vertex in P . If
u ∈ {ui+1, . . . , um} is a neighbor of ui, then u must be in P , otherwise, some neighbor of
ui would have been appended to P , rather than ui getting removed from P . Further, the
distance between u and ui on P would be less than d − 1, otherwise, a cycle would have
been removed instead. Thus, the number of neighbors of ui among ui+1, . . . , um must be
at most d − 2. Therefore, the number of edges in the subgraph of G induced by B is less

FSTTCS 2015

132 Approximating the Regular Graphic TSP in Near Linear Time

Algorithm 2 LongCycles(G)
1: {INPUT: G = (V,E), a k-regular n vertex directed graph; OUTPUT: A collection of

cycles C, each having length at least 2
√
k, and a set B of vertices not in any cycle in C.}

2: Initialize H := G, C = ∅, B := ∅, P := (), d = 2
√
k.

3: {P always remains a path in H.}
4: while H is nonempty do
5: if P is empty then
6: Add an arbitrary vertex of H to P .
7: else
8: {Suppose P = (v1, . . . , vt) with t > 0.}
9: if vt has a neighbor u in H outside P then

10: Append u to P .
11: else if t ≥ d and vt has a neighbor vs in P for s ≤ t− d+ 1 then
12: Remove the vertices vs, vs+1, . . . , vt−1, vt from P and H; add this cycle to C.
13: else
14: Remove vt from P and H, and add it to B.
15: end if
16: end if
17: end while
18: Return C, B.

than (d− 2)m. As a consequence, the number of edges in G between B and V \B is at least
km− 2(d− 2)m = (k − 2d+ 4)m.

Next, the number of vertices in V \ B is n −m and this is exactly the set of vertices
covered by cycles in C. For each vertex in V \B, at most k − 2 of the k edges incident on it
have their other endpoint in B. Thus, the number of edges between B and V \B is at most
(n−m)(k − 2). Hence (k − 2d+ 4)m ≤ (n−m)(k − 2), which implies m ≤ n(k−2)

2(k−d+1) . J

The above lemma implies that almost half of the vertices are covered by cycles in C. We
next use it to prove the approximation ratio.

I Theorem 11. Consider the algorithm for finding a TSP tour, which runs LongCycles on
the input graph, and connects the cycles in C using two copies of a spanning tree of the graph
obtained by contracting the cycles. The approximation ratio of this algorithm is 3

2 +O
(

1√
k

)
.

Proof. Since the vertex-disjoint cycles in C cover n−m vertices, and each cycle contains at
least d vertices, the number of cycles in C is at most (n−m)/d, and hence, the number of
components to be connected using a spanning tree is at most (n−m)/d+m. The TSP tour
that the algorithm constructs consists of the cycles in C, and two copies of a spanning tree in
the graph obtained by contracting the cycles. The former contributes n−m edges, while the

A. Chiplunkar and S. Vishwanathan 133

latter contributes at most 2(n−m)/d+ 2m− 2 edges. Thus, the cost of the tour is at most

n−m+ 2(n−m)
d

+ 2m− 2 = n

(
1 + 2

d

)
+m

(
1− 2

d

)
− 2

≤ n

(
1 + 2

d

)
+ n(k − 2)

2(k − d+ 1)

(
1− 2

d

)
≤ n

(
1 + 2

d
+ k − 2

2(k − d+ 1)

)
= n

(
3
2 + 2

d
+ d− 3

2(k − d+ 1)

)

where we have used Lemma 10 for the first inequality. For d = Θ
(√

k
)
, the cost of the

tour turns out to be n
(

3
2 +O

(
1√
k

))
. Thus, the algorithm achieves a 3

2 + O
(

1√
k

)
factor

approximation. J

5 Concluding Remarks

Vishnoi’s algorithm as well as both of our algorithms work only on regular graphs. Extending
these to work on a larger class of graphs, with weaker assumptions about the vertex degrees,
is an interesting problem, and will involve new techniques. Indeed, Feige et al. [10] have
initiated research on this front. We used the number of vertices as a lower bound on the cost
of the optimal TSP tour. Extending to a larger class of graphs will require a tighter lower
bound, and the cost of the Held-Karp relaxation is one such candidate. Even for regular
graphs, we do not know a hardness of approximation result, as a function of the degree k.
Indeed improving the approximation factor to 1 +O(1/k) cannot be ruled out.

We would like to see whether our algorithm can be derandomized to get a (1 + o(1))-
approximation, possibly with some loss in the running time. We strongly feel that the
following related avenues are worth exploring: first, to determine the best approximation
ratio that can be achieved by deterministic algorithms for the RegGraphTSP, and second,
to determine the best approximation ratio that can be achieved by linear time deterministic
algorithms.

Finally, we feel it would be interesting to use edge coloring ideas to come up with fast
sampling procedures which give better guarantee on the resulting sampling distribution on
matchings, than ours.

Acknowledgments. The authors thank Nisheeth Vishnoi and Parikshit Gopalan for some
initial discussions. The authors also thank Ayush Choure for his substantial contribution to
this paper.

References

1 Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM, 45(5):753–782, 1998.

2 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

3 Yair Bartal and Lee-Ad Gottlieb. A linear time approximation scheme for euclidean TSP.
In FOCS, pages 698–706. IEEE, 2013.

FSTTCS 2015

134 Approximating the Regular Graphic TSP in Near Linear Time

4 Ivona Bezáková, Daniel Stefankovic, Vijay V. Vazirani, and Eric Vigoda. Accelerating
simulated annealing for the permanent and combinatorial counting problems. SIAM J.
Comput., 37(5):1429–1454, 2008.

5 Hans-Joachim Böckenhauer and Sebastian Seibert. Improved lower bounds on the approx-
imability of the traveling salesman problem. ITA, 34(3):213–255, 2000.

6 Sylvia Boyd, René Sitters, Suzanne van der Ster, and Leen Stougie. The traveling salesman
problem on cubic and subcubic graphs. Math. Program., 144(1-2):227–245, 2014.

7 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Technical report, Graduate School of Industrial Administration, Carnegie Mellon
University, 1976.

8 Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-coloring bipartite multigraphs in
O(E logD) time. Combinatorica, 21(1):5–12, 2001.

9 Lars Engebretsen. An explicit lower bound for TSP with distances one and two. Algorith-
mica, 35(4):301–318, 2003.

10 Uriel Feige, R. Ravi, and Mohit Singh. Short tours through large linear forests. In IPCO,
volume 8494 of Lecture Notes in Computer Science, pages 273–284. Springer, 2014.

11 Harold N. Gabow and Oded Kariv. Algorithms for edge coloring bipartite graphs and
multigraphs. SIAM J. Comput., 11(1):117–129, 1982.

12 Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding approach
to the traveling salesman problem. In FOCS, pages 550–559. IEEE, 2011.

13 Michael Held and Richard M. Karp. The traveling-salesman problem and minimum span-
ning trees. Operations Research, 18:1138–1162, 1970.

14 Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation al-
gorithm for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697,
2004.

15 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York,
1972.

16 Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability bounds
for TSP. In ISAAC, volume 8283 of Lecture Notes in Computer Science, pages 568–578.
Springer, 2013.

17 Michael Lampis. Improved inapproximability for TSP. In APPROX-RANDOM, volume
7408 of Lecture Notes in Computer Science, pages 243–253. Springer, 2012.

18 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric TSP, k-MST, and related
problems. SIAM J. Comput., 28(4):1298–1309, 1999.

19 Tobias Mömke and Ola Svensson. Approximating graphic TSP by matchings. In FOCS,
pages 560–569. IEEE, 2011.

20 Marcin Mucha. 13/9-approximation for graphic TSP. In STACS, volume 14 of LIPIcs,
pages 30–41. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2012.

21 Christos H. Papadimitriou and Santosh Vempala. On the approximability of the traveling
salesman problem. Combinatorica, 26(1):101–120, 2006.

22 Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman problem with
distances one and two. Mathematics of Operations Research, 18(1):1–11, 1993.

23 Satish Rao and Warren D. Smith. Approximating geometrical graphs via “spanners” and
“banyans”. In STOC, pages 540–550. ACM, 1998.

24 Sartaj Sahni and Teofilo F. Gonzalez. P-complete approximation problems. J. ACM,
23(3):555–565, 1976.

A. Chiplunkar and S. Vishwanathan 135

25 András Sebö and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-
tsp, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica,
34(5):597–629, 2014.

26 Luca Trevisan. Inapproximability of combinatorial optimization problems. Electronic Col-
loquium on Computational Complexity (ECCC), 2004(065), 2004.

27 Nisheeth K. Vishnoi. A permanent approach to the traveling salesman problem. In FOCS,
pages 76–80. IEEE, 2012.

FSTTCS 2015

	Introduction
	The Randomized Algorithm
	Analysis of RandCycleCoverColoring
	The Deterministic Approximation Algorithm
	Concluding Remarks

