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Abstract
We study weighted bipartite edge coloring problem, which is a generalization of two
classical problems: bin packing and edge coloring. This problem has been inspired from
the study of Clos networks in multirate switching environment in communication networks. In
weighted bipartite edge coloring problem, we are given an edge-weighted bipartite multi-
graph G = (V,E) with weights w : E → [0, 1]. The goal is to find a proper weighted coloring
of the edges with as few colors as possible. An edge coloring of the weighted graph is called a
proper weighted coloring if the sum of the weights of the edges incident to a vertex of any color
is at most one. Chung and Ross conjectured 2m − 1 colors are sufficient for a proper weighted
coloring, where m denotes the minimum number of unit sized bins needed to pack the weights
of all edges incident at any vertex. We give an algorithm that returns a coloring with at most
d2.2223me colors improving on the previous result of 9m

4 by Feige and Singh. Our algorithm
is purely combinatorial and combines the König’s theorem for edge coloring bipartite graphs
and first-fit decreasing heuristic for bin packing. However, our analysis uses configuration linear
program for the bin packing problem to give the improved result.
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1 Introduction

Clos networks were introduced by Clos [3] in the context of designing interconnection
networks with small number of links to route multiple simultaneous connection requests
such as telephone calls. Since then it has found various applications in data communications
and parallel computing systems [1, 11]. The symmetric 3-stage Clos network is generally
considered to be the most basic multistage interconnection network. Let C(m,µ, r) denote a
symmetric 3-stage Clos network, where the input (first) stage consists of r crossbars (switches)
of size m× µ, the center (second) stage consists of µ crossbars of size r × r and the output
(third) stage consists of r crossbars of size µ×m. Moreover, there exists one link between
every center switch and each of the r input or output switch. No link exists between other
pair of switches.
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A request frame is a collection of connection requests between inlets and outlets in the
network such that each inlet or outlet is associated with at most one request. A request
frame is routable if all requests are routed through a middle switch such that no two requests
share same link. An interconnection network is called to be rearrangeably nonblocking if all
request frames are routable. In the classic switching environment all connection requests fully
use a link and all have same bandwidth. However in modern networks, different requests
might have different bandwidths (due to wide range of traffic such as voice, video, facsimile
etc.) and may be combined in a given link if the combined request does not exceed the
link capacity. In this multirate setting, a connection request is a triple (i, j, w) where i, j, w
are inlet, outlet and demand of the connection respectively, and all links have capacity one.
Here a request frame is a collection of connection requests between inlets and outlets in the
network such that the total weight of all requests in the frame for any particular inlet or
outlet is at most one. The central question in 3-stage Clos networks is finding the minimum
number of crossbars µ (= µ(m, r)) in the middle stage such that all request frames are
routable. It is more interesting to obtain bounds independent of r.

Nonblocking rearrangeable properties of 3-stage Clos network C(m,µ, r) can be translated
to the following graph theoretic problem. Formally, in weighted bipartite edge coloring
problem, we are given an edge-weighted bipartite (multi)-graph G := (V,E) with bipartitions
A,B (|A| = |B| = r) and edge weights w : E → [0, 1]. Let we denote the weight of edge
e ∈ E. The goal is to obtain a proper weighted coloring of all edges with minimum number of
colors. An edge coloring of the weighted bipartite graph is called a proper weighted coloring
if the sum of the same color edges incident to a vertex is at most one for any color and any
vertex. Here the sets A and B correspond to the input and output switches, edge (u, v)
corresponds to a request between input switch u and output switch v. A routable request
frame translates into the condition that weights of all incident edges to any vertex can be
proper weighted colored using m colors (or packed into m unit sized bins) and the switches
in the middle stage correspond to the colors (or bins). We refer the reader to Correa and
Goemans [5] for detailed discussion of this reduction.

The weighted bipartite edge coloring problem naturally generalizes two classically studied
problems, the edge coloring problem and the bin packing problem. If all edge weights
are one, this problem reduces to the classical edge coloring problem. On the other hand, if
there is only one vertex in each partition in the bipartite graph, this problem reduces to the
bin packing problem.

Now let us introduce some notation. Let χ′w(G) denote the minimum number of colors
needed to obtain a proper weighted coloring of G. Let m, r ∈ Z+, and µ(m, r) = maxGχ

′
w(G)

where the maximum is taken over all bipartite graphs G = (A ∪ B,E) with |A| = |B| = r

and where m is the maximum over all the vertices of the number of unit-sized bins needed
to pack the weights of incident edges. Chung and Ross [2] made the following conjecture.

I Conjecture 1. Given an instance of the weighted bipartite edge coloring problem,
there is a proper weighted coloring using at most 2m−1 colors where m denotes the maximum
over all the vertices of the number of unit-sized bins needed to pack the weights of edges
incident at the vertex. In other words, µ(m, r) ≤ 2m− 1.

There has been a series of results achieving weaker bounds on µ(m, r) (see related works for
details), the current best bound by Feige and Singh [7] shows that µ(m, r) ≤ 2.25m.
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138 On Weighted Bipartite Edge Coloring

1.1 Our results and techniques.
Our main result is to make progress towards resolution of Conjecture 1 by showing µ(m, r) ≤
20m

9 + o(m).

I Theorem 2. There is a polynomial time algorithm for the weighted bipartite edge
coloring problem which returns a proper weighted coloring using at most d2.2223me colors
where m denotes the maximum over all the vertices of the number of unit-sized bins needed
to pack the weights of incident edges.

In our algorithm and analysis, we exploit that weighted bipartite edge coloring
problem displays features of the classical edge coloring problem as well as the bin packing
problem. Our algorithm starts by decomposing the heavy weight edges into matchings by
applying König’s theorem to find an edge coloring of the subgraph induced by these edges.
For the light weight edges, we employ the first-fit decreasing heuristic where we consider the
remaining edges in decreasing order of weight and give them the first available color. The
detailed algorithm is given in Figure 1 and builds on the algorithm by Feige and Singh [7].

Our work diverges from previous results on this problem in the analysis of this simple
combinatorial algorithm. We employ strong mathematical formulations for the bin packing
problem; in particular, we use the configuration linear program (LP) for the bin packing
problem. This linear program has been used to design the best approximation algorithm for
the bin packing problem [12, 17, 9]. In our work, we use it as follows. We show that if the
algorithm is not able to a color an edge (u, v), then the edges incident at u or v cannot be
packed in m bins as promised. To show this, we formulate the configuration linear program
for the two bin packing problems, one induced by edges incident at u and the other induced
by edges incident at v. We then construct feasible dual solutions to one of these linear
programs of value more than m. Appealing to linear programming duality, it implies that
the optimal primal value, and therefore the optimal bin packing number, is more than m
for at least one of the programs, giving us the desired contradiction. While the weights on
the edges incident at u (or v) can be arbitrary reals between 0 and 1, we group the items
according to weight classes and how our algorithm colors these edges. This allows us to
reduce the number of item types, reducing the complexity of the configuration LP and makes
it easier to analyze. While the grouping according to weight classes is natural in bin packing
algorithms; the grouping based on the output of our algorithm helps us relate the fact that
the edge (u, v) could not be colored by our algorithm to the bin packing bound at u and
v. We mention two additional extensions of our techniques to the problem. Firstly, a more
careful and detailed analysis (based on computer search) can improve the bounds slightly
showing the current bound is not tight. Secondly, our analysis can also be extended to show
d2.2me colors are sufficient when all edge weights are more than 1/4.

1.2 Related Works
Edge-coloring problem has been one of the central problems in graph theory and discrete
mathematics since its appearance in 1880 [21] in relation with the four-color problem. The
chromatic index of a graph is the number of colors required to color the edges of the graph
such that no two adjacent edges have the same color. Three classical results on edge coloring
are König’s theorem [14] for coloring a bipartite graph with ∆ colors, Vizing’s theorem [22]
for coloring any simple graph with ∆ + 1 colors and Shanon’s theorem [18] for coloring any
multigraph with at most 3∆/2 colors where ∆ is the maximum degree of the graph. Though
one can find optimal edge coloring for a bipartite graph in polynomial time using König’s
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1. F ← ∅, t← 2.2223.
2. Include edges with weight > γ = 1

10 in F in nonincreasing order of weight
maintaining the property that degF (v) ≤ dtme for all v ∈ V .

3. Decompose F into r = dtme matchings M1, . . . ,Mr and color them using colors
1, . . . , r. Let Fi ←Mi for each 1 ≤ i ≤ r.

4. Add remaining edges in nonincreasing order of weight to any of the Fi’s main-
taining that weighted degree of each color at each vertex is at most one, i.e.,∑
e∈δ(v)∩Fi

we ≤ 1 for each v ∈ V and 1 ≤ i ≤ r.

Figure 1 Algorithm for Edge Coloring Weighted Bipartite Graphs.

theorem, Holyer [10] showed that it is NP-hard even to decide whether the chromatic index
of a cubic graph is 3 or 4. We refer the readers to [20] for a survey on edge coloring.

On the other hand classical bin packing problem is NP-hard and has been studied extens-
ively from the classical work of Garey et al. [8]. The problem finds numerous applications
in scheduling, logistics, layout design and other resource allocation problems. The present
best polynomial time algorithm is due to Hoberg and Rothvoß [9] based on rounding of
configuration LP using connections to discrepancy [17] and achieves a logarithmic additive
error. However only known hardness bound is Opt + 1 assuming P 6= NP. We refer the
readers to [4] for a survey on the current literature for bin packing.

Now we review the literature related to weighted bipartite edge coloring. First, we
introduce some more notation. When the weight function w : E → I is restricted to a
subinterval I ⊆ [0, 1], then we denote the minimum number of colors by µI(m, r). Slepian
[19] showed that µ[1,1](m, r) = m using König’s theorem. Melen and Turner [15] showed
that µ[0,B](m, r) ≤ m

1−B for B ≤ 1. In particular, µ[0,1/2](m, r) ≤ 2m− 1. There has been a
series of work improving the bounds for µ(m, r) [2, 6, 16, 5]. The best known lower bound
for µ(m, r) is 5/4 due to Ngo and Vu [16]. Correa and Goemans introduced a novel graph
decomposition result and perfect packing of an associated continuous bin packing instance to
show µ(m, r) ≤ 2.5480m+ o(m). The present best algorithm is due to Feige and Singh [7]
who showed µ(m, r) ≤ 9m

4 . Their result holds even if m is the maximum over all the vertices
of the total weight of edges incident at the vertex. For other related results, see [7].

2 Edge Coloring Weighted Bipartite Graphs

In this section we present our main result and prove Theorem 2.

I Theorem 3 (Restatement of Theorem 2). There is a polynomial time algorithm for the
weighted bipartite edge coloring problem which returns a proper weighted coloring
using at most d2.2223me colors where m denotes the maximum over all the vertices of the
number of unit-sized bins needed to pack the weights of incident edges.

Our complete algorithm for edge-coloring weighted bipartite graphs is given in Figure 1.
In the algorithm, we set a threshold γ = 1

10 and consider the subgraph induced by edges with
weights more than γ and apply a combination of König’s Theorem and a greedy algorithm
with dtme colors where t = 2.2223 > 20/9. The remaining edges of weights at most γ are
then added greedily.
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Analysis
Now we prove Theorem 2. Though the algorithm is purely combinatorial, the analysis
uses configuration LP and other techniques from bin packing to prove the correctness
of the algorithm. First, we state the König’s Theorem since we use it as a subroutine in our
algorithm to ensure a decomposition of F into dtme matchings.

I Theorem 4 ([14]). Given a bipartite graph G = (V,E), there exists a coloring of edges
with ∆ = maxv∈V degE(v) colors such that all edges incident at a common vertex receive a
distinct color. Moreover, such a coloring can be found in polynomial time.

The following lemma from Correa and Goemans [5] (it was also implicit in [6]) ensures
that if the algorithm succeeds in coloring all edges of weight at least γ, the greedy coloring
will be able to color the remaining edges of weight at most γ.

I Lemma 5 ([5, 6]). Consider a bipartite weighted graph G = (V,E) with a coloring of all
edges of weight > γ using at least 2m

1−γ colors for some γ > 0. Then the greedy coloring will
succeed in coloring the edges with weight at most γ without any additional colors.

In our setting, we have γ = 1
10 and the number of colors is ≤ 20

9 m = 2m
1− 1

10
and thus

Lemma 5 applies. Hence, it suffices to show the algorithm is able to color all edges with
weight > 1

10 using dtme colors as the remaining smaller edges can be colored greedily. Thus,
w.l.o.g, we assume that the graph has no edges of weight ≤ 1

10 and prove the following lemma.

I Lemma 6. If all edges have weight more than 1
10 and t = 2.2223 (> 20/9) then the

algorithm in Figure 1 returns a coloring of all edges using dtme colors such that the weighted
degree of each color at each vertex is at most one, i.e.,

∑
e∈δ(v)∩Fi

we ≤ 1.

Proof. Suppose for the sake of contradiction, the algorithm is not able to color all edges. Let
e := (u, v) be the first edge that cannot be colored by any color in Step (3) or Step (4) of the
algorithm. Let the weight of edge e, we, be α. Moreover, when e is considered in Step (2),
degree of either u or v is already dtme else we would have included e in F . Without loss of
generality let that vertex be u, i.e., degF (u) = dtme. Now we characterize the colors Fi of
edges incident at u and consider the edges incident at u and v to get a series of inequalities.
Thereafter, we show that α ≤ 1/3 and use these inequalities to arrive at a contradiction.

For each color 1 ≤ i ≤ dtme, either
∑
f∈δ(v)∩Fi

wf > 1 − α or
∑
f∈δ(u)∩Fi

wf > 1 − α,
else we can color e in Step (4). Let Hv = {i|

∑
f∈δ(v)∩Fi

wf > 1− α}, βm = |Hv|. Now for
each color i /∈ Hv, we have

∑
f∈δ(u)∩Fi

wf > 1− α. Moreover, degF (u) = dtme and for all
edge f ∈ δ(u), we have wf ≥ α as the edges were considered in nonincreasing order of weight.
Hence, for each color 1 ≤ i ≤ dtme, there is an edge incident at u colored with color i with
weight at least α. Let us call a color i tight at u if

∑
f∈δ(u)∩Fi

wf > (1− α) and a color i
open at u if

∑
f∈δ(u)∩Fi

wf ∈ [α, 1− α]. Let τ be the number of tight colors at u and θ be
the number of open colors at u. Thus we have,

τ ≥ (t− β)m (1)
θ = (tm− τ) ≤ βm (2)

Now consider all edges incident on v. We get, m > βm(1− α)

⇒ 1 > β(1− α) (3)

Similarly considering all edges incident on u, we get: m > (tm− βm)(1− α) + (βm)α

⇒ 1 > t(1− α) + β(2α− 1) (4)
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Now a unit sized bin can contain at most two items with weight > 1/3. As all edges
incident to a vertex can be packed into m unit sized bins, there can be at most 2m edges
incident to a vertex with weight > 1/3. Since t > 2, we get that all edges with weight more
than 1

3 must have been included in F in Step (2). Thus α ≤ 1/3.

Thus we get from (3): β < 1/(1−α) ≤ 3/2 (5)

Now there are two cases:
Case A: α ≤ 1/4. Consider the RHS of (4): t(1− α) + β(2α− 1). Now,

t(1− α) + β(2α− 1)− 1 > t(1− α)− (1− 2α)
(1− α) − 1, [From (3)]

≥ 20(1− α)2 − 9(1− 2α)− 9(1− α)
9(1− α) [∵ t > 20/9]

≥ (20α2 − 13α+ 2)
9(1− α) = (4α− 1)(5α− 2)

9(1− α) ≥ 0, as α ≤ 1/4

Thus t(1− α) + β(2α− 1) > 1, which contradicts (4).
Case B: 1/4 < α ≤ 1/3. In this case, we will show in Lemma 7 that if β ≤ 13/9, then all

edges incident at u can not be packed in m bins. On the other hand, in Lemma 14 we
show that if β > 13/9, then all edges incident at v can not be packed in m bins.

This two facts together give us the desired contradiction.

I Lemma 7. If β ≤ 13/9, then edges incident at u can not be packed in m bins.

Proof. To give a lower bound on the number of bins required, we will consider a relaxation
to the bin packing problem for edges incident at vertex u and show that the optimal value of
the relaxation, and thus the optimal number of bins required, is greater than m. The lower
bound will be exhibited by constructing a feasible dual solution to the relaxation to the bin
packing problem.

Since degF (u) = dtme when edge e was considered in Step (2) of the algorithm and not
included in F , we have that all edges incident at u in F have weight at least the weight of e.
Moreover, edges are considered in the decreasing order of weight in Step (4), the weight of
all edges incident at u when e is considered in Step (4) is ≥ we. We restrict our attention to
these edges incident at u with weight ≥ α and show that they cannot be packed in m unit
sized bins. Let us divide these edges incident at u into three size classes.

Large L := {f ∈ δ(u) : wf ∈ (1/2, 1]}.
Medium M := {f ∈ δ(u) : wf ∈ (1/3, 1/2]}.
Small S := {f ∈ δ(u) : wf ∈ [α, 1/3]}.

First we have the following observation.

I Observation 8. In any bin packing solution, in any bin there can be at most one item
from L, two items from L ∪M and three items from L ∪M ∪ S.

Now consider the following two simple claims.

I Claim 9. Edges in L ∪M are included in Step (2) of Algorithm 1 and are a subset of F .

Proof. If we are unable to add an edge f in Step (2), it means one of its endpoints have
dtme > 2m edges with weight ≥ wf . Since all edges incident at any vertex v ∈ V can be
packed in m bins, there are at most 2m edges incident at it with weight more than 1

3 . Thus
all edges of weight more than 1

3 , i.e., all edges in L∪M must be included in F in Step (2) of
the algorithm. J
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I Claim 10. For any color i, there is at most one edge in L ∪M with color i.

Proof. As all edges in L∪M must be included in F in Step (2) of the algorithm. In Step (3)
of the algorithm, we include at most one edge of F incident at any vertex in each Fi. Thus
each color class obtains at most one edge incident at each vertex from F and therefore, from
L ∪M . J

Using the observation and the above claim, we itemize the configuration of each of the
tight colors depending on the size of edges with that color. Note that tight colors must have
weight > 1− α ≥ 1− 1/3 = 2/3.
1. If the tight color has a single edge f . Then we have that wf > 2

3 and only possibility is
i)(L); Here by (L), we denote that the bin contains only one item and that item is an
item from the set L.

2. If the tight color contains exactly two edges. Here (S, S) is not tight as the total weight
of edges in such a bin is ≤ 2/3. So, the bin can contain at most one item from S. On the
other hand, the bin can contain at most one item from L ∪M from Claim 10. Thus the
possible size types of these edges are ii)(L, S); iii)(M,S); As above, by (L, S) we denote
that the bin contains only two items: exactly one item from set L and exactly one item
from S.

3. If the tight color contains three edges. The bin can contain at most one item from L∪M
from Claim 10. However if it contains one L item, sum of weights of three items exceeds
one. Thus the only possible size types of these edges are iv)(M,S, S); v)(S, S, S).

Now consider the following LP: LPbin(u):

min

5∑
i=1

yi

x1 + x2 + x3 + x4 + x5 ≥ τ (6)
y1 + y2 ≥ x1 + x2 + z1 (7)

y1 + 2y3 + y4 ≥ x3 + x4 + z2 (8)
y2 + y3 + 2y4 + 3y5 ≥ x2 + x3 + 2x4 + 3x5 + z3 (9)

z1 + z2 + z3 ≥ θ (10)
xj , yk, zl ≥ 0 ∀j ∈ [5], k ∈ [5], l ∈ [3] (11)

I Lemma 11. The optimal number of unit sized bins needed to pack all edges incident at u
is at least the optimum value of LPbin(u).

Proof. Given a feasible packing of edges incident at u in at most m unit sized bins, we
construct a feasible solution (x̄, ȳ, z̄) to the linear programming relaxation whose objective
is at most the number of unit sized bins needed in the packing. In the feasible solution
(x̄, ȳ, z̄), the variables x̄ and z̄ are constructed using the coloring given by the algorithm. The
variables ȳ are constructed using the optimal bin packing.

We first define the variables x̄. Let x̄1, x̄2, x̄3, x̄4, x̄5 be the number of tight colors at u
of type (L), (L, S), (M,S), (M,S, S), (S, S, S), respectively. Since the coloring of the edges
incident at u is one of the five types described above and there are at least τ tight colors,
we have that

∑5
i=1 x̄i ≥ τ and thus the solution satisfies constraint (6). Now we define the

variables z̄1, z̄2, z̄3 to be the number of items in open colors from L,M and S respectively.
There are θ open colors. Each open color contains at least one item L ∪M ∪ S. Thus,
z̄1 + z̄2 + z̄3 ≥ θ and thus the solution satisfies constraint (10).
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To construct the solution ȳ, we will group the bins in the optimal bin packing solutions
depending on the subset of items present in them into five classes and the number of bins in
each class will define the variables ȳ. The constraints (7)-(9) will correspond to making sure
that the optimal bin packing solution has appropriate number of items of each size type.

Now let us characterize the possible bin configurations to explain constraints (7)-(9).

I Claim 12. Consider any feasible bin packing of edges incident at u restricted to edges in
L ∪M ∪ S. Then each bin must contain items which correspond to a subset of one of the
following 5 configurations or subsets of these configurations.

C1 : (L,M) C2 : (L, S) C3 : (M,M,S)
C4 : (M,S, S) C5 : (S, S, S)

Proof. Observe that in any bin there can be at most one item from L, two items from L∪M
and three items from L ∪M ∪ S. Now let us consider two cases.
1. If the bin contains an item from L. In this case, the bin can not contain three items as
the sum of their weights exceeds one. So, it can contain at most one item from L and one
item from M ∪ S. Thus C1 and C2 cover such two cases.
2. If the bin does not contain any item from L. In this case, the bin can contain three items
from M ∪ S and at most two of these items can be from M . Thus C3, C4 and C5 cover such
possibilities. J

We map each configuration in the optimal bin packing solution to one of types Ci where
the configuration is either Ci or its subset. Let ȳi denote the number of bins mapped to type
Ci for each 1 ≤ i ≤ 5. We now count the number of items of each type to show feasibility of
the constraints of the linear program.

Constraint (7). Items of type L equal x̄1 + x̄2 + z̄1 and can only be contained in
configuration C1 and C2. Thus we have ȳ1 + ȳ2 ≥ x̄1 + x̄2 + z̄1 satisfying constraint (7).
Constraint (8). Items of typeM equal x̄3+x̄4+z̄2 and are contained once in configurations
C1, C4 and twice in configuration C3. Thus we have ȳ1 +2ȳ3 + ȳ4 ≥ x̄3 + x̄4 + z̄2 satisfying
constraint (8).
Constraint (9). Items of type S equal x̄2 + x̄3 + 2x̄4 + 3x̄5 + z̄3 and occur once in
configurations C2, C3, twice in configurations C4 and thrice in C5. Thus, we have
ȳ2 + ȳ3 + 2ȳ4 + 3ȳ5 ≥ x̄2 + x̄3 + 2x̄4 + 3x̄5 + z̄3 showing feasibility of constraint (9).

This implies that (x̄, ȳ, z̄) is a feasible solution to LPbin and its objective equals the number of
bins needed to pack the edges incident at u in unit sized bins. Thus we have the lemma. J

We now show a contradiction by showing the optimal value of the LPbin(u) is more than m.

I Lemma 13. The optimal solution to LPbin(u) is strictly more than m.

Proof. We prove this by considering the dual linear program of the LPbin(u). Since every
feasible solution to the dual LP gives a lower bound on the objective of the primal LPbin(u),
it is enough to exhibit a feasible dual solution of objective strictly more than m to prove the
lemma. Now the dual of the LPbin is given in the next page.

A feasible dual solution is: v1 = 2
3 , v2 = 2

3 , v3 = 1
3 , v4 = 1

3 , v5 = 1
3 .
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max τ · v1 + θ · v5

Subject to:
v1 − v2 ≤ 0, v1 − v2 − v4 ≤ 0,
v1 − v3 − v4 ≤ 0, v1 − v3 − 2v4 ≤ 0,
v1 − 3v4 ≤ 0, v2 + v3 ≤ 1,
v2 + v4 ≤ 1, 2v3 + v4 ≤ 1,
v3 + 2v4 ≤ 1, 3v4 ≤ 1,
v5 − v2 ≤ 0, v5 − v3 ≤ 0,
v5 − v4 ≤ 0, vi ≥ 0 ∀i ∈ [5]

Thus dual optima ≥ 2τ
3 + θ

3 and we need at least these many colors to color items in τ tight
colors and θ open colors. Using the fact that θ = tm− τ, τ ≥ (t− β)m and t > 20

9 m,β ≤
13
9 ,

we obtain that the number bins required to pack all items incident on u is:

≥ τ · v1 + θ · v4 ≥ 2
3τ + 1

3(tm− τ) = 1
3τ + 1

3(tm)

≥ 1
3(t− β)m+ 1

3(tm) ≥ 2t
3 m−

β

3m > m(2
3 ·

20
9 −

1
3 ·

13
9 ) = m

Thus the number bins required to pack all items incident on u is strictly greater than m.
This is a contradiction. J

This concludes the proof of Lemma 7. J

I Lemma 14. If β > 13/9, then edges incident at v can not be packed in m bins.

Proof. Similar to the previous lemma, to give a lower bound on the number of bins required,
we will consider a relaxation to the bin packing problem for edges incident at vertex v and
show that the optimal value of the relaxation, and thus the optimal number of bins required,
is greater than m. Again, the lower bound will be exhibited by constructing a feasible dual
solution to the relaxation to the bin packing problem.

As β(1− α) < 1, we get,

α > 1− 1/β ≥ 4/13 > 0.3. (12)

Let us call a color i tight at v if
∑
f∈δ(v)∩Fi

wf > (1− α). Now consider any tight color
B at v. At most one edge f in B was colored in Step (3) of the algorithm and remaining
edges (if any) in B were colored in Step (4) of the algorithm. Now, wf can be smaller than
we as it might be the case that when e was considered in Step (2) then already degree of
other endpoint u was dtme. However, edges are considered in the nonincreasing order of
weight in Step (4), thus the weight of all edges incident at v when e is considered in Step (4)
is also ≥ we. Thus, all the remaining edges (if any) in B that were colored in Step (4) of the
algorithm have weight more than α.

We restrict our attention to the edges at tight colors at v and show that if β > 13
9 they

cannot be packed in m unit sized bins. Let us divide these edges incident at u into four size
classes.

Large L := {f ∈ δ(v) : wf ∈ (1/2, 1]}.
Medium M := {f ∈ δ(v) : wf ∈ (1/3, 1/2]}.
Small S := {f ∈ δ(v) : wf ∈ [α, 1/3]}.
Tiny T := {f ∈ δ(v) : wf ∈ (1/10, α)}.
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First we have the following observation.

I Observation 15. In any bin packing solution, in any bin there can be at most one item
from L, two items from L∪M , three items from L∪M ∪S and nine items from L∪M ∪S∪T .

Now let us claim the following.

I Claim 16. For any tight color i at v, all edges added in Step (4) of the algorithm are in S.
As a corollary, there is at most one edge incident on v with color i that is in L ∪M ∪ T and
it can only be added in Step (2) of the algorithm.

Proof. From Claim 9, it follows that all edges in L ∪M must be included in F in Step (2)
of the algorithm. On the other hand, all edges colored in Step (4) have weight more than α,
they can not be in T . Hence, only edges in S are colored in Step (4). Edges in L∪M ∪T are
colored in Step (3). In Step (3) of the algorithm, we include at most one edge of F incident
at any vertex in each Fi. Thus each color class obtains at most one edge incident at each
vertex from F and therefore, from L ∪M ∪ T . J

Using the observation and the claim, we itemize the configuration of each of the tight
colors depending on the size of edges with that color. Note that in this case tight colors have
weight more than 1− α ≥ 1− 1/3 = 2/3.
1. If the tight color has a single edge f . Then we have that wf > 2/3 and only possibility is

i)(L); Here by (L), we again denote that the bin contains only one item and that item is
an item from the set L.

2. If the tight color contains exactly two edges. From Claim 16, the bin can contain at most
one item from L ∪M ∪ T . On the other hand, (S, S) or (T, S) has weight ≤ 2/3. So the
bin can contain at most one item from S and one item from L ∪M . Thus the possible
size types of these edges are ii)(L, S); iii)(M,S); As above, by (L, S) we denote that the
bin contains only two items: exactly one item from set L and exactly one item from S.

3. If the tight color contains three edges. From Claim 16, the bin can contain at most one
item from L ∪M ∪ T . However if the bin contains an item from L, the sum of weights of
an item from L and two items from S exceeds one. Thus the possible size types of these
edges are iv)(M,S, S); v)(S, S, S); vi)(T, S, S).

Now consider the following configuration LP based on the items at v: LPbin(v):

min

19∑
i=1

yi

x1 + x2 + x3 + x4 + x5 + x6 ≥ βm (13)
y14 ≥ x1 (14)

y8 + y9 + y10 + y15 ≥ x2 (15)
y3 + y7 + y9 + y11 + 2y12 + y16 ≥ x3 (16)

y2 + 2y4 + y6 + y10 + y11 + 2y13 + y17 ≥ x4 (17)
3y1 + 2y2 + 2y3 + y4 + 2y5 + y6 + y7 + y8 + y18 ≥ x2 + x3 + 2x4 + 3x5 + 2x6 (18)
(3y5 + 3y6 + 3y7 + y8 + y9 + y10 + 3y11 + 3y12

+3y13 + 3y14 + 4y15 + 6y16 + 6y17 + 6y18 + 9y19) ≥ x6 (19)
yj , xk ≥ 0 ∀j ∈ [19], k ∈ [6] (20)

I Lemma 17. The optimal number of unit sized bins needed to pack all edges incident at u
is at least the optimum value of LPbin(v).

FSTTCS 2015



146 On Weighted Bipartite Edge Coloring

Proof. Given a feasible packing of edges incident at v in at most m unit sized bins, we
construct a feasible solution (x̄, ȳ) to the linear programming relaxation whose objective is
at most the number of unit sized bins needed in the packing. In the feasible solution (x̄, ȳ),
the variables x̄ are constructed using the coloring given by the algorithm. The variables ȳ
are constructed using the optimal bin packing.

We first define the variables x̄. Let x̄1, x̄2, x̄3, x̄4, x̄5, x̄6 be the number of tight colors at
v of type (L), (L, S), (M,S), (M,S, S), (S, S, S), (T, S, S), respectively. Since the coloring of
the edges incident at v is one of the six types described above and there are at least βm
tight colors at v, we have that

∑6
i=1 x̄i ≥ βm and thus the solution satisfies constraint (13).

To construct the solution ȳ, we will group the bins in the optimal bin packing solutions
depending on the subset of items present in them into nineteen classes and the number of
bins in each class will define the variables ȳ. The constraints (14)-(19) will correspond to
making sure that the optimal bin packing solution has appropriate number of items of each
size type.

To define the 19 different classes of bin types in the optimal solution, we need to further
classify items according to size. Let L1, L2 ⊆ L be the set of large edges that appear in the
configurations of the type (L) and (L, S), respectively, in the tight colors.

As for any item l1 ∈ L1, wl1 + α > 1. We get,

wl1 > 1− α ≥ 1− 1/3 = 2/3. (21)

Let M1,M2 be the set of medium edges that appear in the tight colors of type (M,S)
and (M,S, S), respectively.

We now have the following claim where we characterize the possible bin configurations.
We show that each bin contains items which correspond to one of 19 possible configurations
or their subsets.

I Claim 18. Consider any feasible bin packing of edges incident at v restricted to edges in
L∪M ∪ S ∪ T . Then each bin must contain items which correspond to a subset of one of the
following 19 configurations.

C1 : (S, S, S) C2 : (M2, S, S) C3 : (M1, S, S)
C4 : (M2,M2, S) C5 : (S, S, T, T, T ) C6 : (M2, S, T, T, T )
C7 : (M1, S, T, T, T ) C8 : (L2, S, T ) C9 : (L2,M1, T )
C10 : (L2,M2, T ) C11 : (M1,M2, T, T, T ) C12 : (M1,M1, T, T, T )
C13 : (M2,M2, T, T, T ) C14 : (L1, T, T, T ) C15 : (L2, T, T, T, T )
C16 : (M1, T, T, T, T, T, T ) C17 : (M2, T, T, T, T, T, T ) C18 : (S, T, T, T, T, T, T )
C19 : (T, T, T, T, T, T, T, T, T )

Proof. Observe that since item in L have weight more than 1
2 , items in M have weight more

than 1
3 , items in S have weight more than 1

4 and items in T have weight more than 1
10 , there

can be at most one item from L, two items items from L ∪M , at most three items in total
from L ∪M ∪ S and at most nine items from L ∪M ∪ S ∪ T in any feasible packing.
1. Bins with three items from D := L∪M ∪S. As the sum of weights of three elements from

D is more than 3α > 0.9, elements from T can not appear in these bins as 3α+ wf > 1
for any f ∈ T . Moreover, configurations which contain at least one item of L cannot have
three items from D without the weight exceeding one. Thus, the packing can contain only
items from M and S. When the bin contains only S items, it corresponds to configuration
C1. Packings which contain one item from M1 ∪M2 and two items from S are exactly
the configurations C2, C3.
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Now let us consider the case when we have two items from M1 ∪M2. First observe that
for each h ∈M1, there exists a s ∈ S such that (h, s) are the only edges colored with a
tight color. Thus we have that wh + ws > 1− α. But then for any other h′ ∈M1 ∪M2
and s′ ∈ S, we have that

wh + wh′ + ws′ ≥ wh + ws + α > 1 (22)

where the inequality follows since wh′ ≥ ws and ws′ ≥ α. This implies that configurations
of type (M1,M1, S) or (M1,M2, S) are not feasible. Hence, the only possible remaining
configuration is C4.

2. Bins with two items from D. Here we consider maximal configurations which are not
subsets of configurations which contain three items from D. When the configuration
contains two items s1, s2 ∈ S, we have that ws1 + ws2 > 0.6 and thus the only maximal
configuration is C5. Configurations C6, C7 cover the case when the configuration contains
one item from S and one item from M . Let l ∈ L1. Since l appears alone in a tight
color, we have that wl + α > 1. Since every item in M ∪ S has weight at least α, there
is no valid configuration with two items from D such that one of them is in L1. If the
configuration contains l2 ∈ L2 and g ∈M1 ∪M2 ∪ S, it can at most contain one element
t ∈ T as wl2 + wg + wt > 0.9. Thus configurations C8 cover the case when there is one
item from S and one item from L. Now we are left with cases when there are no S items
in the bin. If there is one L item and one M item, C9, C10 cover such possibilities.
Similarly if the configuration contains two items fromM , it can contain at most 3 elements
from T . Configurations C11, C12, C13 cover all such the possibilities.

3. Bins with one item from D. Here we consider configurations which are not subsets of
configurations which contain at least two items from D. Note that as for any item l1 ∈ L1,
from inequality (21), wl1 > 2/3. Thus (L1, T, T, T ) is the maximal configuration containing
one L1 item. C14 is the corresponding configuration. The other four possible configurations
are C15, C16, C17, C18 where the bins contain one item from L2,M1,M2, S respectively.
In these case the number of T items are upper bounded by 4, 6, 6, 6 respectively from the
lower bound of size of items in the corresponding classes in D.

4. Bins with no item from D. Only possible maximal configuration is C19.
J

We map each configuration in the optimal bin packing solution to one of types Ci where
the configuration is either Ci or its subset. Let ȳi denote the number of bins mapped to type
Ci for each 1 ≤ i ≤ 19. We now count the number of items of each type to show feasibility
of the constraints of the linear program.

Constraint (14). Items of type L1 equal x̄1 and can only be contained in configuration
C14. Thus we have ȳ14 ≥ x̄1.
Constraint (15). Similarly, items of type L2 equal x̄2. They are contained in configurations
C8, C9, C10 and C15. Thus we have ȳ8 + ȳ9 + ȳ10 + ȳ15 ≥ x̄2.
Constraint (16). Items of type M1 equal x̄3 and are contained once in configurations
C3, C7, C9, C11, C16 and twice in configuration C12. Thus we have ȳ3 + ȳ7 + ȳ9 + ȳ11 +
2ȳ12 + ȳ16 ≥ x̄3.
Constraint (17). Items of type M2 equal x̄4 and are contained once in configurations
C2, C6, C10, C11, C17 and twice in configurations C4, C13. Thus we have ȳ2 + 2ȳ4 + ȳ6 +
ȳ10 + ȳ11 + 2ȳ13 + ȳ17 ≥ x̄4 satisfying constraint (17).
Constraint (18). Items of type S equal x̄2 + x̄3 + 2x̄4 + 3x̄5 + 2x̄6 and occur once in
configurations C4, C6, C7, C8, C18, twice in configurations C2, C3, C5 and thrice in C1.
Thus, we have 3ȳ1 + 2ȳ2 + 2ȳ3 + ȳ4 + 2ȳ5 + ȳ6 + ȳ7 + ȳ8 + ȳ18 ≥ x̄2 + x̄3 + 2x̄4 + 3x̄5 + 2x̄6.

FSTTCS 2015



148 On Weighted Bipartite Edge Coloring

Constraint (19). Items of type T equal x̄6 and occur once in configurations C8, C9, C10,
thrice in configurations C5, C6, C7, C11, C12, C13, C14, four times in configuration C15, six
times in configurations C16, C17, C18 and nine times in configurations C19. Thus, we have
(3ȳ5+3ȳ6+3ȳ7+ȳ8+ȳ9+ȳ10+3ȳ11+3ȳ12+3ȳ13+3ȳ14+4ȳ15+6ȳ16+6ȳ17+6ȳ18+9ȳ19) ≥ x̄6.

This implies that (x̄, ȳ) is a feasible solution to LPbin(v) and its objective equals the number
of bins needed to pack the edges incident at v in unit sized bins. Thus we have the lemma. J

We now show a contradiction by showing the optimal value of the LPbin(v) is more than
m.

I Lemma 19. The optimal solution to the LPbin(v) is strictly more than m.

Proof. We prove this by considering the dual linear program of the LPbin(v). Since every
feasible solution to the dual LP gives a lower bound on the objective of the primal LPbin(v),
it is enough to exhibit a feasible dual solution of objective strictly more than m to prove the
lemma. Now the dual of the LPbin(v) is given below:

max βm · v1

Subject to:
v1 − v2 ≤ 0, v1 − v3 − v6 ≤ 0,
v1 − v4 − v6 ≤ 0, v1 − v5 − 2v6 ≤ 0,
v1 − 3v6 ≤ 0, v1 − 2v6 − v7 ≤ 0,
3v6 ≤ 1, v5 + 2v6 ≤ 1,
v4 + 2v6 ≤ 1, 2v5 + v6 ≤ 1,
2v6 + 3v7 ≤ 1, v5 + v6 + 3v7 ≤ 1,
v4 + v6 + 3v7 ≤ 1, v3 + v6 + v7 ≤ 1,
v3 + v4 + v7 ≤ 1, v3 + v5 + v7 ≤ 1,
v4 + v5 + 3v7 ≤ 1, 2v4 + 3v7 ≤ 1,
2v5 + 3v7 ≤ 1, v2 + 3v7 ≤ 1,
v3 + 4v7 ≤ 1, v4 + 6v7 ≤ 1,
v5 + 6v7 ≤ 1, v6 + 6v7 ≤ 1,
9v7 ≤ 1, vi ≥ 0 ∀i ∈ [7].

A feasible dual solution is: v1 = 9
13 , v2 = 9

13 , v3 = 7
13 , v4 = 5

13 , v5 = 1
13 , v6 = 4

13 , v7 = 1
13 .

Thus dual optima is at least βm · 9
13 > m. Thus, we need more than m bins to pack all items

incident at v, a contradiction. J

This completes the proof of Lemma 14. J

Therefore, the proof of Theorem 2 is complete. J

If we assume that all edges have weight more than 1/4, then similar analysis will attain
2.2m colors are sufficient. For the proof, we refer the readers to [13].

I Theorem 20. If all edges have weight more than 1/4, then there is a polynomial time
algorithm for the weighted bipartite edge coloring problem which returns a proper
weighted coloring using at most d2.2me colors where m is denotes the maximum over all the
vertices of the number of unit-sized bins needed to pack the weights of incident edges, i.e.,
µ( 1

4 ,1](m, r) ≤ d2.2me.
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3 Conclusion

Considering the case 1/4 ≥ α > 1/5 separately, might improve the bound by more case
analysis. However we can attain at most 35m/16 ≈ 2.19m by that. Finding a better approx-
imation algorithm (independent of m) or inapproximability, and extending our techniques to
general graphs will be interesting.
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