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Abstract
Two-way finite-state transducers on words are strictly more expressive than one-way transducers.
It has been shown recently how to decide if a two-way functional transducer has an equivalent one-
way transducer, and the complexity of the algorithm is non-elementary. We propose an alternative
and simpler characterization for sweeping functional transducers, namely, for transducers that
can only reverse their head direction at the extremities of the input. Our algorithm works
in 2ExpSpace and, in the positive case, produces an equivalent one-way transducer of doubly
exponential size. We also show that the bound on the size of the transducer is tight, and that
the one-way definability problem is undecidable for (sweeping) non-functional transducers.
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1 Introduction

Regular word languages form the best understood class of languages. They enjoy several
characterizations, in particular by different kinds of finite-state automata. For instance,
two-way finite-state automata have the same expressive power as one-way automata. This
result has been established independently by Rabin and Scott [9] and Shepherdson [10].
Besides automata, regular languages have logical and algebraic characterizations, namely
through monadic second-order logic and congruences of finite index.

Transducers extend automata by producing outputs with each transition. A run generates
an output word by concatenating the words produced by its transitions. A transducer thus
defines a relation over words. It is called functional when this relation is a function. For
finite-state transducers, expressiveness is different than for finite-state automata. As an
example, two-way transducers are strictly more expressive than one-way transducers. For
instance, the function that maps a word to its mirror image can be done by a back-and-forth
pass over the input, but no one-way transducer can do it.

As seen above, we lose some robustness when going from automata to transducers. On
the other hand, some of the classical characterizations of regular languages generalize well
to transducers. An important result is the equivalence of functional two-way transducers
and Ehrenfeucht-Courcelle’s monadic-second order transductions [5] over words. Another
characterization of two-way transducers was provided through a new model called streaming
string transducers [1, 2], that process the input one-way and store the output in write-only
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registers. Finally, first-order transductions are known to be equivalent to aperiodic streaming
transducers [7] and to aperiodic two-way transducers [4].

The question whether a functional two-way word transducer is equivalent to a one-way
transducer has been solved recently in [6]. The algorithm proposed by [6] takes a two-way
transducer S and builds a one-way transducer T that is “maximal” in the following sense: (1)
all accepting runs of T produce correct outputs, and (2) all runs of S that can be performed
one-way are realized by T . As a consequence, the two-way transducer S has an equivalent
one-way transducer if and only if the constructed one-way transducer T has the same domain
as S, which is a decidable problem. The problem is that the upper bound on both the
decision procedure and the size of the constructed one-way transducer is non-elementary.

The main contribution of this paper is an elementary procedure for deciding whether a
functional two-way word transducer is equivalent to a one-way transducer, for the particular
class of sweeping transducers. While two-way transducers can reverse their head direction at
any position of the input, sweeping transducers can only reverse it at the first and last position.
Unsurprisingly, sweeping transducers are strictly less expressive than two-way transducers,
and the following example shows the difference: on input u1 a u2 a . . . a un−1 a un,
where the words ui contain no occurrence of a, the two-way transducer produces as output
un a un−1 a . . . a u2 a u1 (we assume that the alphabet contains at least two letters).

Our decision procedure works in doubly exponential space and, when it succeeds, it
produces an equivalent one-way transducer of doubly exponential size. We show that the
bound on the size of the transducer is tight for any decision algorithm producing an equivalent
one-way transducer from a sweeping transducer. This improves the PSpace lower bound
from [6]. The non-elementary procedure described in [6] relies on Rabin-Scott’s construction
for automata, and works by eliminating basic zigzags in runs. Our procedure is closer to
the textbook approach (due to Shepherdson) and uses crossing sequences. This requires a
decomposition of runs which is incomparable with the zigzag decomposition of [6]. Finally,
we show that the one-way definability problem becomes undecidable for non-functional
transducers.

Overview

Section 2 defines transducers and related concepts. Section 3 defines decomposition of
runs and gives the construction of a one-way transducer based on such decompositions. In
Section 4 we show that all one-way-definable runs admit a decomposition. Section 5 provides
the lower bound and the undecidability result. A long version of the paper can be found on
http://www.labri.fr/perso/anca/Publications/fsttcs15.pdf

2 Preliminaries

Transducers

A two-way transducer is a tuple (Σ,∆, Q, I, F, δ), where Σ (resp., ∆) is a finite input (resp.,
output) alphabet, Q is a finite set of states, I (resp., F ) is a subset of Q representing the
initial (resp., final) states, and δ ⊆ Q× Σ×∆? ×Q× {left, right} is a finite set of transition
rules describing, for each state and input symbol, the possible output string, target state, and
direction of movement. We talk of a one-way transducer whenever δ ⊆ Q×Σ×∆?×Q×{right}.
The size of a transducer is its number of states.

According to standard practice, the states of one-way automata and transducers are
usually located between the letters of the input word u = a1 . . . an. For this it is convenient
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180 One-way Definability of Sweeping Transducer

to introduce n + 1 positions 0, 1, . . . , n and think of each position i > 0 (resp., 0) as a
placeholder between the i-th and the i+ 1-th symbols (resp., just before the first symbol a1).
Moreover, since here we deal with two-way devices, a single position can be visited several
times along a run. Thus, to describe a run of a two-way transducer on input u = a1 . . . an,
we will associate states with locations, namely, with pairs (x, y) where x is a position among
0, 1, . . . , n and y is an integer representing the number of reversals performed up to a certain
point – for short, we call this number y the level of the location.

A run is a sequence of locations, labelled by states and connected by edges, called
transitions. The state at location ` = (x, y) of a run ρ is denoted ρ(`). The transitions must
connect pairs of locations that are either at adjacent positions and on the same level, or at
the same position and on adjacent levels. In addition, each transition is labelled with a pair
a/v consisting of an input symbol a and an output v. There are four types of transitions:

(i− 1, 2y + 1) (i, 2y + 1) (i− 1, 2y) (i, 2y)

(i, 2y + 1)
(i, 2y + 2)

(i− 1, 2y)
(i− 1, 2y + 1)

a/va/v

a/va/v

Note that the transitions between locations at even levels are all directed from left to
right, while the transitions at odd levels are directed from right to left. More precisely,
the upper left (resp., upper right) transition may occur in a run ρ on u = a1 . . . an if(
ρ(i, 2y + 1), a, v, ρ(i − 1, 2y + 1), left

)
(resp.,

(
ρ(i − 1, 2y), a, v, ρ(i, 2y), right

)
) is a valid

transition rule of T and a = ai. Similarly, the lower left (resp., lower right) transition may
occur if

(
ρ(i, 2y+ 1), a, v, ρ(i, 2y+ 2), right

)
(resp.,

(
ρ(i− 1, 2y), a, v, ρ(i− 1, 2y+ 1), left

)
) is a

valid transition rule of T and a = ai. For technical reasons (namely, to enable distinguished
transitions at the extremities of the input word), we will introduce the special fresh symbols
� and � and allow the lower left (resp., lower right) transition also when i = 0 and a = �

(resp., when i = |u| and a = �).
Given a sequence x1, . . . , xn, a factor denotes any contiguous subsequence xi, . . . , xj , for

1 ≤ i ≤ j ≤ n. A run on the input u = a1 . . . an is said to be successful if it starts at the lower
left location (0, 0) with an initial state of T and ends at the upper right location (|u|, ymax)
in a final state of T . The output produced by a run is the concatenation of the outputs of
its transitions, and it is denoted by out(ρ). We denote by dom(T ) the language of all words
u that admit a successful run of T . We order the locations along a run ρ by letting `1 < `2
if `2 is reachable from `1 following the transitions in ρ. Given two locations `1 < `2 of a run
ρ, we denote by ρ[`1, `2] the factor of the run that starts in `1 and ends in `2. Note that
ρ[`1, `2] is also a run, hence the notation out

(
ρ[`1, `2]

)
is consistent.

Further assumptions

We will mostly work with two-way transducers that are sweeping. This means that on every
successful run, the head can change direction only at the extremities of the input. In other
words, the lower right (resp., lower left) transition is possible only if a = � (resp., a = �).

A transducer T is functional if, for each input word u, all successful runs on u produce
the same output. In this case T (u) denotes the unique output produced on input u.

Unless otherwise stated, we will assume that all transducers are sweeping and functional.
Note that functionality is a decidable property, as stated below. The proof is similar to the
decidability proof of equivalence of streaming string transducers [1] and reduces the problem
to the reachability of a 1-counter automaton of exponential size.
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I Proposition 1. Functionality of two-way transducers can be decided in polynomial space.
This problem is PSpace-hard even for sweeping transducers.

Without loss of generality, we can also assume that the successful runs of a functional
transducer are normalized, namely, they never visit two locations with the same position,
the same state and both either at an even level or at an odd level. Indeed, if this were not
the case, say if a successful run ρ visits two locations `1 = (x, y1) and `2 = (x, y2) such that
ρ(`1) = ρ(`2) and y1, y2 are both even or both odd, then the output produced by ρ between
`1 and `2 is either empty – in which case we could remove ρ[`1, `2] and obtain an equivalent
successful run – or is non-empty – in which case, by repeating ρ[`1, `2], we could obtain
successful runs that produces different outputs on the same input, thus contradicting the
assumption that the transducer is functional.

Crossing sequences

Consider a run ρ of a transducer on input u = a1 . . . an. For each position x ∈ {0, 1 . . . , n},
we are interested in the sequence of states labelling the locations at position x. Formally,
we define the crossing sequence of ρ at x as the tuple ρ|x =

(
ρ(x, y0), . . . , ρ(x, yh)

)
, where

y0 < . . . < yh are exactly the levels of the locations of ρ of the form (x, y), with y ∈ N (if the
transducer is sweeping, we simply have yi = i). If the considered run ρ is successful, then
the bottom and top locations at position x have even levels, and the outgoing transitions
move rightward. In particular, every crossing sequence of a successful run has odd length.
Moreover, if we assume that the successful run is normalized, then every crossing sequence
has length at most 2|Q|−1. The crossing number of a run is the maximal length of a crossing
sequence of that run. The crossing number of a transducer is the maximal crossing number
of any of its normalized runs – note that this value is bounded by 2|Q| − 1.

Intercepted factors

An interval of positions has the form I = [x1, x2], with x1 < x2. We say that an interval I =
[x1, x2] contains (resp., strongly contains) another interval I ′ = [x′1, x′2] if x1 ≤ x′1 ≤ x′2 ≤ x2
(resp., x1 < x′1 ≤ x′2 < x2). We say that a factor of a run ρ is intercepted by an interval
I = [x1, x2] if it is maximal among the factors of ρ that visit only positions in I and that
never make a reversal (recall that reversals in sweeping transducers can only occur at the
extremities of the input word).

It is easy to see that distinct factors intercepted by the same interval I visit disjoint
sets of locations. This means that a factor intercepted by I can be uniquely identified by
specifying a location ` in it, e.g., the first or the last one. Accordingly, we will denote by
ρ | I/` the factor intercepted by I that visits the location ` (if this factor does not exist, we
simply let ρ | I/` = ε).

A loop of a run ρ is an interval L = [x1, x2] such that the crossing sequences at positions
x1 and x2 are equal, that is, ρ|x1 = ρ|x2. Loops can be used to pump parts of runs, as
explained below.

Pumping

Given a loop L = [x1, x2] of a run ρ on u and a number m ∈ N, we can replicate m times
the factor u[x1, x2] of the input and simultaneously, on the run, we replicate m times the
loop L. Formally, with β0, . . . , βh denoting the factors intercepted by L, we define the run
obtained by replicating L as a sequence of the form
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182 One-way Definability of Sweeping Transducer

pumpm
L (ρ) = α0 β

m
0 γ0︸ ︷︷ ︸

forward

γ1 β
m
1 α1︸ ︷︷ ︸

backward

α2 β
m
2 γ2︸ ︷︷ ︸

forward

· · · αymax β
m
h γymax︸ ︷︷ ︸

forward

(1)

where h < 2|Q| − 1 is the maximum level visited by ρ, and αy (resp., βy, γy) is the factor
of ρ at level y that is intercepted by the interval [0, x1] (resp., L = [x1, x2], [x2, |u|]). Note
that each αy βy γy (resp., γy βy αy) is a maximal factor of the run ρ that is forward-oriented
(resp., backward-oriented). We also define

pumpm
L (u) = u[1, x1] ·

(
u[x1 + 1, x2]

)m · u[x2 + 1, |u|]

and we observe that pumpm
L (ρ) is a valid run on pumpm

L (u). We also remark that the above
definition of pumped run works only for sweeping transducers, as for arbitrary two-way
transducers we would need to take into account the possible reversals within a loop L and
combine the intercepted factors in a more complex way.

3 Decompositions of one-way definable runs

The problem we consider in this paper is the one-way definability of functional, sweeping
transducers: given a transducer S, we ask if there exists an equivalent one-way transducer T ,
namely, one such that T (u) = S(u) for all u ∈ Σ?. In the answer is “yes”, then we also want
to compute an equivalent one-way transducer. Of course, there are sweeping transducers
S, like S(u) = u · u, that are not equivalent to any one-way transducer (assuming that the
alphabet Σ is not unary).

Before introducing some technical concepts, let us consider an example that highlights
the main idea of the proof. Fix a regular language R (not containing the empty word) and
consider the transduction that maps a word on the mirror of the rightmost maximal factor
belonging to R. That is, f(u v w) = mirror(v) whenever (1) v ∈ R, (2) there is no v′ ∈ R
such that v′ is prefix of vw, and (3) w has no factor in R. It can be easily seen that f can
be realized by a two-way transducer, but not by a one-way transducer. However, f can
be realized by a one-way transducer for particular regular languages R, like the periodic
language R = (ab)+: we simply guess v and output mirror(v) ∈ (ba)+ from left to right,
then we check w. This example shows that periodicities play an important role in deciding
whether a given transduction can be realized by a one-way transducer.

We introduce in the following some notations and concepts that will help us to state a
sufficient condition for the one-way definability of sweeping transducers. For simplicity, we
fix for the remaining of the paper a functional, sweeping transducer S as input. We first
introduce some constants: hS is the maximum number of levels visited by the normalized
runs of S, cS is the maximum number of symbols produced by a single transition of S, and
eS = cS · |Q|2|Q|, where Q is the state space of S. The constant eS will be used to bound
the lengths or the periods of certain parts of the output produced by S, and is related to the
number of crossing sequences of S (see also Lemma 6 in Section 4).

A word v is said to have period p if v ∈ w∗ w′ for some word w of length p and some
prefix w′ of w. For example, v = abc abc ab has period p = 3. Similarly, we say that v is
almost periodic with bound p if v = w0 w1 w2 for some words w0, w2 of length at most p and
some non-empty word w1 of period at most p.

We will also need to identify sub-sequences of a run ρ of S that are induced by particular
sets of locations. Recall that ρ[`1, `2] denotes the factor of ρ delimited by two locations `1
and `2. Similarly, we denote by ρ | Z the sub-sequence of ρ induced by a set Z of locations –
note that Z does not need to be an interval and, even though ρ | Z might not be a valid run
of S, we can still refer to the number of transitions and the size of the output.
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F1

F2

F3

F4

R1

R2

R3

Figure 1 Decomposition of a run into floors and ramps.

I Definition 2. Let ρ be a run of S on u. We define two types of pairs of locations of ρ:
A floor is a pair of locations (`1, `2) such that `1 ≤ `2 are on the same even level.
A ramp is a pair of locations (`1, `2), with `1 = (x1, y1) and `2 = (x2, y2), such that (i)
x1 ≤ x2, (ii) y1 < y2, (iii) both y1 and y2 are even, (iv) the output produced by ρ[`1, `2]
has length at most (y2 − y1 + 1) · eS or it is almost periodic with bound 2 · eS , and (v)
the output produced by the sub-sequence ρ | Z, where Z = [`1, `2] \ [x1, x2] × [y1, y2],
has length at most 2(y2 − y1) · eS .

Before discussing how the above definitions are used, we give some intuition. The simplest
concept is that of floor, which is essentially a forward-oriented factor of a run. Ramps
connect consecutive floors. An important constraint in the definition of a ramp (`1, `2) is
that the output of ρ[`1, `2] is bounded or almost periodic with small bound. We will see later
how this constraint eases the production of the output of ρ[`1, `2] by a one-way transducer.
The last constraint on a ramp (`1, `2) bounds the length of the output produced by the
sub-sequence ρ | Z, where Z = [`1, `2] \ [x1, x2]× [y1, y2]. As shown by the figure to the right,

`1

`2

this sub-sequence (represented by bold arrows) can be obtained from
the factor ρ[`1, `2] by removing the factors intercepted by [x1, x2]
(represented by the hatched area). The constraint is used for those
parts of the run that are not covered by floors or ramps. In particular,
it guarantees that the size of the output above each floor is bounded
by 2hS · eS .

The general idea for turning S into an equivalent one-way trans-
ducer will be to guess (and check) a decomposition of the run of S
into factors that are floors or ramps.

I Definition 3. A decomposition of a run ρ is a factorization into floors and ramps.

Figure 1 gives an example of a decomposition. Note that, thanks to Definition 2, the
number of symbols produced outside the segments F1, F2, . . . and the rectangles R1, R2, . . . is
small (indeed, bounded by 2hS · eS); so most of the output is produced inside these segments
and rectangles. We can now state our main result:

I Theorem 4. A sweeping functional transducer S is one-way definable if and only if every
input word has some successful run of S that admits a decomposition.
Moreover, we can construct from S a one-way transducer T that maps u to v whenever there
is a successful run of S on u that outputs v and admits a decomposition. The construction
of T takes doubly exponential time in |S|.
In particular, S is one-way definable if and only if dom(T ) = dom(S). The latter condition
can be tested in polynomial space in |S| and |T |, so in doubly exponential space in |S|.
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184 One-way Definability of Sweeping Transducer

The first claim of the theorem gives the main characterization, namely, it shows that the
existence of decompositions of successful runs, for all possible inputs in the domain of S, is a
sufficient and necessary condition for the transduction to be one-way definable. The second
claim shows a property that is slightly more general than sufficiency: it allows to compute a
one-way transducer T that is somehow the “best one-way approximation” of S, in the sense
that the transduction computed by T is always contained in the transduction computed by
S and it is equal when S is one-way definable. The last claim deals with the effectiveness of
the characterization, showing that one-way definability is decidable in 2ExpSpace. For the
sake of presentation, we divide the proof of the theorem into two parts. The first part, given
below, deals with the sufficiency and the effectiveness of the characterization (i.e. the second
and third claims of the theorem). The second part, which is the most technical one and is
deferred to Section 4, deals with the necessary part of the characterization.

Proof of Theorem 4 (sufficiency and effectiveness). We build from S a one-way trans-
ducer T that simulates all successful runs of S that admit a decomposition. Consider one
such run ρ. We begin by observing that a decomposition of ρ can be described by a sequence
of locations `0 < `1 < . . . < `t, where `0 = (0, 0), `t = (xmax, ymax), and, for all 0 ≤ i < t,
(`i, `i+1) is a floor or a ramp. In particular, the one-way transducer T will guess the crossing
sequences of ρ, together with a sequence of locations (`i)i≤t, which are intended to represent
a decomposition of ρ. Below, we show how to check that the guessed sequence of locations
represents a valid decomposition, and how to produce the corresponding output.

Traversing the floors of the decomposition does not pose particular problems, as these
are forward-oriented factors of the run ρ, which can be directly simulated by T without
reversing the head. Of course, we need to store the bounded output on the levels above the
floor, and check that the output on the levels below the floor matches some stored output
words. The interesting case happens when T simulates a ramp (`i, `i+1), with `i = (xi, yi)
and `i+1 = (xi+1, yi+1). First of all, it is easy for T to verify the first three conditions of
the definition of ramp, namely, that xi ≤ xi+1, yi < yi+1, and both yi and yi+1 are even.
Checking the remaining conditions is more difficult and requires storing some words for a
total length that does not exceed 8hS ·eS – in particular, this explains the doubly exponential
blowup of the state space of T . More precisely, at the beginning of the computation, T
guesses, for each ramp (`i, `i+1), with `i = (xi, yi) and `i+1 = (xi+1, yi+1):

a word vi that has length at most (yi+1 − yi + 1) · eS or is almost periodic with bound
2 ·eS (in the latter case, in fact, the word is described by a prefix, a suffix, and a repeating
pattern, each one of length at most 2 · eS),
some words �−v y and −�v y, that is, two words for each level y ∈ {yi + 1, . . . , yi+1}, whose
lengths sum up to at most 2hS · eS .

The idea is that each word vi represents the output produced by the factor ρ[`i, `i+1] (this
output is bounded or is almost periodic, thanks to the fourth condition of the definition of
ramp). Note that, by construction, there can be at most hS ramps in the decomposition,
and hence the sum of the lengths of the words used to represent the vi’s does not exceed
6 · hS · eS . Similarly, each word �−v y (resp., −�v y) represents the output produced by the factor
of the run ρ that is at level y and to the left of the position xi (resp., right of xi+1), where i
is the unique index such that yi < y ≤ yi+1 (resp., yi ≤ y < yi+1). The total length of these
words is at most 2hS · eS . Overall, the sum of the lengths of all the words guessed by T
never exceeds 8hS · eS .

Using the words vi, �−v y, −�v y and some additional pointers, the transducer T can verify that
the guessed ramps satisfy the required conditions and that the decomposition is thus valid.
In the same way, the words vi, �−v y, −�v y can be used to produce the output out(ρ[`i, `i+1])
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associated with each ramp (`i, `i+1). For this, it is sufficient to visit the positions of the
ramp (`i, `i+1) and, at the same time, fetch blocks of symbols of appropriate length in the
word vi, so as to eventually match the length of the desired output out(ρ[`i, `i+1]) – note
that this requires taking into account also the words �−v y and −�v y.

We just described informally a one-way transducer T that simulates any run ρ of S that
admits a decomposition. The size of T is doubly exponential in the size of S and this proves
the second claim of the theorem.

Assuming that the existence of decompositions of successful runs is also a necessary
condition for the one-way definability of S (this will be proved in the next section), we can
easily derive from the above constructions a 2ExpSpace decision procedure for testing one-
way definability. More precisely, given a sweeping transducer S, one constructs T as above
in doubly exponential time, and then tests whether dom(S) ⊆ dom(T ). The latter problem
can be seen as a containment problem between a two-way non-deterministic finite-state
automaton A and a one-way non-deterministic finite-state automaton B. Using standard
constructions, one can turn A into an equivalent one-way non-deterministic finite-state
automaton A′ (which is exponential in S), and finally decide the containment A′ ⊆ B in
polynomial space in A′ and B, that is, in doubly exponential space in S. J

4 Characterizing one-way definability

In this section we prove the harder direction of the first claim of Theorem 4: if a sweeping
functional transducer is one-way definable, then every accepted input has a successful run
that can be decomposed into floors and ramps.

We begin by identifying some phenomena that prevent a transducer to be one-way
definable. A first example is the mirror transduction, where a large number of symbols need
to be generated from right to left. Another example is the doubling transduction S(u) = u ·u.
Here, we have an inversion, namely large parts of the input must be generated before other
large parts that are located to their left. We give a formal definition of inversions below.

Fix a successful run ρ of S and consider a loop L = [x1, x2] of ρ. A location `1 of ρ is
called entry point of L if `1 is the first location of the factor intercepted by L at level y, for
some y. Similarly, a location `2 is called an exit point of L if `2 is the last location of the factor
intercepted by L at level k, for some k. Note that `1 belongs to {x1}× (2N) ∪ {x2}× (2N+1),
and `2 belongs to {x2} × (2N) ∪ {x1} × (2N + 1). Finally, we say that an intercepted factor
ρ | I/` is captured by a loop L if I contains L (possibly, I = L) and the subfactor intercepted
by L on the same level as `, has non-empty output.

I Definition 5. An inversion of the run ρ is a pair of locations `1 and `2 for which there
exist two loops L1 = (x1, x

′
1) and L2 = (x2, x

′
2) such that:

`1 is an entry point of L1 and `2 is an exit point of L2,
`1 < `2 and x1 ≥ x2 (namely, `2 strictly follows `1 along the run, but the left endpoint of
L2 precedes the left endpoint of L1),
for both i = 1 and i = 2, the intercepted factor ρ | Li/`i is captured by the loop Li, but
it is not captured by any other loop strongly contained in Li.

We say that the above loops L1 and L2 are witnessing the inversion (`1, `2).

The left-hand side of Figure 2 gives an example of an inversion, where the entry point `1
of L1 and the exit point `2 of are represented by white circles.

The first lemma (proved in the appendix) can be used to bound the lengths of the outputs
produced by the factors ρ | L1/`1 and ρ | L2/`2, where `1, `2, L1, L2 are as in Definition 5:
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L2 L1

`1

`2

X̃
(3,3)
2 X̃

(3,3)
1

v1 v1 v1

v2 v2 v2

Figure 2 To the left: an entry point `1 of L1 and an exit point `2 of L2 forming an inversion. To
the right: the run obtained by pumping the loops L1 and L2.

I Lemma 6. If an intercepted factor ρ | I/` is not captured by any loop L strongly contained
in I, then the length of its output is at most eS .
In particular, for every inversion (`1, `2) witnessed by some loops L1 and L2, we have
1 ≤

∣∣out(ρ | Li/`i)
∣∣ ≤ eS , for both i = 1 and i = 2.

The next proposition gives the crucial property for characterizing one-way definability, as
it shows that the transducer S is one-way definable only if for every inversion (`1, `2), the
output of ρ[`1, `2] is periodic.

I Proposition 7. Suppose that the sweeping transducer S is one-way definable. Then, for
all inversions (`1, `2) of the run ρ witnessed by loops L1, L2 and for both i = 1 and i = 2, the
output of ρ[`1, `2] has period

∣∣out(ρ | Li/`i)
∣∣, hence, in particular, at most eS .

A key ingredient for the proof of the above proposition is Fine and Wilf’s theorem [8].
In short, this theorem says that, whenever two periodic words w1, w2 share a sufficiently
long factor, then they have the same periods. Below, we state a slightly stronger variant
of Fine and Wilf’s theorem, which contains an additional claim that shows how to align a
common factor of the two words w1, w2 so as to form a third word containing a prefix of w1
and a suffix of w2. The additional claim will be exploited in the proof of Proposition 7 and
Lemma 11.

I Lemma 8 (Fine and Wilf). If w1 is a word with period p1, w2 is a word with period p2,
and w1 and w2 have a common factor of length at least p1 + p2 − gcd(p1, p2), then w1 and
w2 have also period gcd(p1, p2). If in addition we have w1 = u1 w v1, w2 = u2 w v2, and
|w| ≥ gcd(p1, p2), then w3 = u1 w v2 has also period gcd(p1, p2).

Proof of Proposition 7. Let L1 = (x1, x
′
1), L2 = (x2, x

′
2) be the loops witnessing the inver-

sion (`1, `2). Note that the two loops L1 and L2 might not be ordered exactly as shown in
Figure 2. In fact, two cases can arise: either x2 < x′2 ≤ x1 < x′1 (that is, L1 and L2 are
disjoint and L1 is to the right of L2) or x2 ≤ x1 < x′2 ≤ x′1 (that is, L1 overlaps to the right
with L2).

We begin by pumping the loops L1 and L2 (see the right-hand side of Figure 2). Formally,
for all positive numbers m1,m2, we define

ρ(m1,m2) = pumpm2
L2

(pumpm1
L1

(ρ)) and u(m1,m2) = pumpm2
L2

(pumpm1
L1

(u)) .

We identify the positions of u(m1,m2) that mark the endpoints of the copies of the loops L1
and L2 in the pumped run ρ(m1,m2). Because L2 precedes L1 with respect to the ordering of
positions, it is easier to define first the set of endpoints of the copies of L2:

X̃
(m1,m2)
2 = {x2 + i∆2 | 0 ≤ i ≤ m2} where ∆2 = x′2 − x2 .
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The set of endpoints of the copies of L1 is defined as

X̃
(m1,m2)
1 = {x1 + i∆1 +m2∆2 | 0 ≤ i ≤ m1} where ∆1 = x′1 − x1 .

We then exploit the hypothesis that S is one-way definable and assume that the one-way
transducer T is equivalent to S. In particular, T produces the same output as S on every
input u(m1,m2). Let σ(m1,m2) be a successful run of T on u(m1,m2). Since T has finitely
many states, we can find a large enough number h > 0 and two positions x̃1 < x̃′1 ∈ X̃

(h,h)
1

such that the crossing sequences of σ(h,h) at x̃1 and x̃′1 are the same. Similarly, we can find
two positions x̃2 < x̃′2 ∈ X̃

(h,h)
2 such that the crossing sequences of σ(h,h) at x̃2 and x̃′2 are

the same. This means that L̃1 = (x̃1, x̃
′
1) and L̃2 = (x̃2, x̃

′
2) can be equally seen as loops of

ρ(h,h) or as loops of σ(h,h). In particular, there are constants k1, k2 > 0, 0 ≤ h1 < k1, and
0 ≤ h2 < k2 such that, for all positive numbers m1,m2:

u(k1·m1+h1,k2·m2+h2) = pumpm2
L̃2

(pumpm1
L̃1

(u(h,h)))

and the above word has a successful run in T of the form pumpm2
L̃2

(pumpm1
L̃1

(σ(h,h))). Consider
the outputs v1 and v2 produced by the intercepted factors ρ | L1/`1 and ρ | L2/`2, respectively.
By Lemma 6, both v1 and v2 are non-empty. Moreover, by definition of pumped run, the
output produced by ρ(k1·m1+h1,k2·m2+h2) contains k1 ·m1 + h1 consecutive occurrences of v1
followed by k2 ·m2 +h2 consecutive occurrences of v2 (see again the right-hand side Figure 2).
Formally, we can write

out(ρ(k1·m1+h1,k2·m2+h2)) = v0(m1,m2)·vk1·m1+h1
1 ·v3(m1,m2)·vk2·m2+h2

2 ·v4(m1,m2) (2)

for some words v0(m1,m2), v3(m1,m2), and v4(m1,m2) that may depend on m1 and m2 (we
highlighted in bold the repeated occurrences of v1 and v2 and we observe that v1 precedes
v2).

In a similar way, because the same output is also produced by the the one-way transducer
T , i.e. by the run pumpm2

L̃2
(pumpm1

L̃1
(σ(h,h))), and because the loop L2 precedes the loop L1

according to the natural ordering of positions, we have

out(ρ(k1·m1+h1,k2·m2+h2)) = w0 ·wm2
2 · w3 ·wm1

1 · w4 (3)

where w1 (resp., w2) is the output produced by the unique factor of σ(h,h) intercepted by
L̃1 (resp., L̃2), and w0, w3, w4 are the remaining parts of the output. Note that, differently
from the previous equation, here the first repetition is produced during the loop L̃2 and the
remaining parts w0, w3, w4 do not depend on m1,m2. We now consider the factor

v(m1,m2) = vk1·m1+h1
1 · v3(m1,m2) · vk2·m2+h2

2

of the output produced by S. The following claim shows that this factor is periodic, with a
small period that only depends on S (in particular, it does not depend on any of the indices
h, k1, k2, h1, h2,m1,m2).

I Claim. For all numbers m1,m2 > 0, the word v(m1,m2) = vk1·m1+h1
1 · v3(m1,m2) ·

vk2·m2+h2
2 is periodic with period gcd(|v1|, |v2|).

The idea for the proof of the above claim, detailed in the appendix, is to let m1 and m2 grow
independently. We exploit Equations (2) and (3) to show that vk1·m1+h1

1 · v3(m1,m2) · v2
has period gcd(|v1|, |w1|), and that v1 · v3(m1,m2) · vk2·m2+h2

2 has period gcd(|v2|, |w2|). A
last application of Fine and Wilf’s theorem (Lemma 8) gives the desired periodicity.
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Recall that we aim at proving the periodicity of the output out(ρ[`1, `2]) of the original
run ρ of S between the locations `1 and `2. The previous arguments, however, concern the
outputs v(m1,m2), which are produced by factors of the pumped runs ρ(k1·m1+h1,k2·m2+h2).
By Equation (1) in Section 2, out(ρ[`1, `2]) can be obtained from any v(m1,m2) by deleting
some occurrences of non-empty words produced by factors intercepted by L1 or L2. More
precisely, the words that need to be deleted in v(m1,m2) to obtain out(ρ[`1, `2]) are non-
empty and of the form out(ρ | Li/`

′
i), for some i ∈ {1, 2} and some location `′i such that

`1 ≤ `′i ≤ `2. Let us denote by v′1, . . . , v′m these words. Note that, as m1 and m2 get larger,
v(m1,m2) contains arbitrarily long repetitions of each word v′i, and hence long factors of
period |v′i|, for i = 1, . . . ,m. Thus, by applying Lemma 8, we get that v(m1,m2) has period
p = gcd(|v1|, |v2|, |v′1|, . . . , |v′m|).

Towards a conclusion, we know that out(ρ[`1, `2]) is obtained from v(m1,m2) by removing
occurrences of the words v′1, . . . , v′m whose lengths are multiple of the period p of v(m1,m2).
This implies that out(ρ[`1, `2]) is also periodic with period p, which divides

∣∣out(ρ | Li/`i)
∣∣

for both i = 1 and i = 2. J

Recall that the proof of the remaining part of Theorem 4 (necessity of the condition
characterizing one-way definability) amounts at constructing a decomposition of the suc-
cessful run ρ under the assumption that S is one-way definable. We begin to construct a
decomposition of ρ by identifying some ramps in it. Intuitively, such ramps are obtained by
considering the classes of a suitable equivalence relation:

I Definition 9. Let be the relation that pairs every two locations `, `′ along the run ρ
whenever there is an inversion (`1, `2) of ρ such that `1 ≤ `, `′ ≤ `2, namely, whenever ` and
`′ occur within the same inversion. Let ? be the reflexive and transitive closure of .

It is easy to see that every equivalence class of ? is a convex subset with respect to
the natural ordering of locations of ρ. The following lemma shows that every non-singleton
equivalence class of ? is a union of a series of inversions that are two-by-two overlapping.

I Lemma 10. If two locations ` ≤ `′ of ρ belong to the same non-singleton equivalence class
of ?, then there is a sequence of locations `1 ≤ `3 ≤ `4 ≤ . . . ≤ `n−3 ≤ `n−2 ≤ `n, for some
even number n ≥ 4, such that

`1 ≤ ` ≤ `4 and `n−3 ≤ `′ ≤ `n,
(`1, `4), (`3, `6), (`5, `8), . . . , (`n−5, `n−2), (`n−3, `n) are inversions.

The next result uses Lemma 6, Proposition 7, and Lemma 10 to show that the output
produced inside a ?-equivalence class is also periodic with small period, provided that S is
one-way definable.

I Lemma 11. If S is one-way definable and ` ≤ `′ are two locations of the run ρ such that
` ? `′, then the output out(ρ[`, `′]) produced between ` and `′ has period at most eS .

Below, we introduce some “bounding boxes” of non-singleton ?-equivalence classes.
Intuitively, these bounding boxes are the smallest possible rectangles that start and end at
some even levels and that cover all the locations forming an inversion inside a non-singleton

?-equivalence class. Subsequently, in Lemma 13 we show that these bounding boxes can
be given the status of ramps in a suitable decomposition of ρ.

I Definition 12. Let K be a non-singleton ?-equivalence class and let H be the subset of
K that contains all the locations `, `′ ∈ K forming an inversion (`, `′).
We define [K] to be the pair of locations `1 = (x1, y1) and `2 = (x2, y2) such that
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x1 (resp., x2) is the position of the leftmost (resp., rightmost) location ` ∈ H,
y1 (resp., y2) is the highest (resp., lowest) even level such that y1 ≤ y (resp., y2 ≥ y) for
all locations ` = (x, y) ∈ H.

I Lemma 13. If K is a non-singleton ?-equivalence class, then [K] is a ramp.

For the sake of brevity, we call ?-ramp any ramp of the form [K], where K is a non-
singleton ?-equivalence class. The results obtained so far imply that every location of the
run ρ covered by an inversion is also covered by a ?-ramp. To complete the decomposition
of ρ, we need to consider the locations that are not strictly covered by ?-ramps, formally,
the set B = {` | @ (`1, `2) ?-ramp s.t. `1 < ` < `2}. We equip B with the natural ordering
of locations induced by ρ. We now consider some maximal convex subset C of B. Note that
the left/right endpoint of C coincides with the first/last location of the run ρ or with the
right/left endpoint of some ?-ramp. Below, we show how to decompose the sub-run ρ | C
into a series of floors and ramps. After this, we will be able to get a full decomposition of
ρ by interleaving the ?-ramps that we defined above with the floors and the ramps that
decompose each sub-run ρ | C.

Let DC be the set of locations ` = (x, y) of C such that there is some loop L = [x, x′],
with x′ ≥ x, whose intercepted factor ρ | L/` lies entirely inside C and produces non-empty
output. We remark that the set DC may be non-empty. To see this, one can imagine the
existence of two consecutive ?-ramps (e.g. R1 and R2 in Figure 1) and a loop between
them that produces non-empty output (e.g. the factor F2). In a more general scenario, one
can find several loops between two consecutive ?-ramps that span across different levels.
We can observe however that all the locations in DC are on even levels. Indeed, if this were
not the case for some ` = (x, y) ∈ DC , then we could select a minimal loop L = [x1, x2] such
that x1 ≤ x ≤ x2 and out(ρ | L/`) 6= ε. Since y is odd, `1 = (x2, y) is an entry point of L and
`2 = (x1, y) is an exit point of L, and hence (`1, `2) is an inversion. Since `1 ≤ ` ≤ `2 and
all inversions are covered by ?-ramps, there is a ?-ramp (`′1, `′2) such that `′1 ≤ ` ≤ `′2.
However, as `′1 and `′2 are at even levels, ` must be different from these two locations, and
this would contradict the definition of DC . Using similar arguments, one can also show that
the locations in DC are arranged along a “rising diagonal”, from lower left to upper right.

The above properties suggest that the locations in DC identify some floors and ramps
that form a decomposition of ρ | C. The following lemma shows that this is indeed the case,
namely, that any two consecutive locations in DC form a floor or a ramp.

I Lemma 14. Let `1 = (x1, y1) and `2 = (x2, y2) be two consecutive locations of DC . Then,
x1 ≤ x2 and y1 ≤ y2 and the pair (`1, `2) is a floor or a ramp, depending on whether y1 = y2
or y1 < y2.

We have just shown how to construct a decomposition of the entire run ρ, assuming that
the sweeping transducer S is one-way definable. This completes the proof of the only-if
direction of the first claim of Theorem 4.

5 Lower bound and undecidability

We show now that the doubly exponential blow-up in size stated by Theorem 4, cannot be
avoided.

I Proposition 15. There is a family (fn)n of functions from {0, 1}∗ to {0, 1}∗ such that:
fn can be computed by a sweeping transducer of size quadratic in n,
fn can be computed by a one-way transducer,
any one-way transducer computing fn has at least 22n−1 states.
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We exhibit such a family of function by defining the domain of fn to be the set of words
of the form

a0 bin0 a1 bin1 a2 . . . a2n−1 bin2n−1 a2n

where ai ∈ {0, 1} for all i ∈ {0, . . . , 2n}. On those words, we define fn as follows:

fn

(
a0 bin0 a1 bin1 a2 . . . a2n−1 bin2n−1 a2n

)
= w · w where w = a0 a1 . . . a2n .

We conclude the section by showing that the one-way definability problem becomes
undecidable for relations computed by sweeping non-functional transducers. Note that
ε-transitions are needed in order to capture the class of one-way definable relations. On the
other hand, for one-way definable functions, ε-transitions can be excluded.

I Proposition 16. The problem of testing whether a sweeping non-functional transducer is
one-way definable is undecidable.

6 Conclusion

In this paper we proposed a new algorithm that decides whether a sweeping transducer is
equivalent to a one-way transducer. Our decision algorithm works in doubly exponential
space and produces one-way transducers of doubly exponential size. The latter bound is
shown to be optimal. An open question is whether the decision problem has lower complexity
if we do not build the one-way transducer.

The main open question is whether our algorithm can be extended to two-way functional
transducers that are not necessarily sweeping. We conjecture that this is the case and that
a similar characterization based on decompositions of runs into floors and ramps can be
obtained. The main difficulty is that (de)pumping loops is more complicated because of
permutations.

One-way definability is also a special case of the following open problem: given an integer
k and a two-way transducer, decide if there is an equivalent k-crossing two-way transducer.
Finally, note that the problem that we considered here becomes much simpler in the origin
semantics of [3]: there, the output of a transducer also includes the origin of each symbol,
i.e., the input position where the symbol was generated. In the origin semantics, the one-
way definability problem is PSpace-complete, and an equivalent one-way transducer has
exponential size.
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