
Simple Priced Timed Games are not That Simple∗

Thomas Brihaye1, Gilles Geeraerts2, Axel Haddad1,
Engel Lefaucheux3, and Benjamin Monmege4

1 Université de Mons, Belgium, {thomas.brihaye,axel.haddad}@umons.ac.be
2 Université libre de Bruxelles, Belgium, gigeerae@ulb.ac.be
3 LSV, ENS Cachan, Inria Rennes, France, engel.lefaucheux@ens-cachan.fr
4 LIF, Aix-Marseille Université, CNRS, France,

benjamin.monmege@lif.univ-mrs.fr

Abstract
Priced timed games are two-player zero-sum games played on priced timed automata (whose
locations and transitions are labeled by weights modeling the costs of spending time in a state
and executing an action, respectively). The goals of the players are to minimise and maximise
the cost to reach a target location, respectively. We consider priced timed games with one clock
and arbitrary (positive and negative) weights and show that, for an important subclass of theirs
(the so-called simple priced timed games), one can compute, in exponential time, the optimal
values that the players can achieve, with their associated optimal strategies. As side results, we
also show that one-clock priced timed games are determined and that we can use our result on
simple priced timed games to solve the more general class of so-called reset-acyclic priced timed
games (with arbitrary weights and one-clock).

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and
Verifying and Reasoning about Programs

Keywords and phrases Priced timed games, Real-time systems, Game theory

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.278

1 Introduction

The importance of models inspired from the field of game theory is nowadays well-established
in theoretical computer science. They allow to describe and analyse the possible interactions
of antagonistic agents (or players) as in the controller synthesis problem, for instance. This
problem asks, given a model of the environment of a system, and of the possible actions of
a controller, to compute a controller that constraints the environment to respect a given
specification. Clearly, one can not, in general, assume that the two players (the environment
and the controller) will collaborate, hence the need to find a controller strategy that enforces
the specification whatever the environment does. This question thus reduces to computing a
so-called winning strategy for the corresponding player in the game model.

In order to describe precisely the features of complex computer systems, several game
models have been considered in the literature. In this work, we focus on the model of Priced
Timed Games [17] (PTGs for short), which can be regarded as an extension (in several
directions) of classical finite automata. First, like timed automata [2], PTGs have clocks,
which are real-valued variables whose values evolve with time elapsing, and which can be

∗ The research leading to these results has received funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under Grant Agreement n◦ 601148 (CASSTING).

© Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin Monmege;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 278–292

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.278
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege 279

`1

−2

`2

−14
`3

4 `4

3

`5

8

`6

−12

`7

−16
`f

1

2

6 −7

ν
0

1
4

1
2

3
4

9
10 1

Val(`1, ν)
−9.5

−6
−5.5

−2
−0.2

Figure 1 A simple priced timed game (left) and the lower value function of location `1 (right).

tested and reset along the transitions. Second, the locations are associated with price-rates
and transitions are labeled by discrete prices, as in priced timed automata [4, 3, 6]. These
prices allow one to associate a cost with each run (or play), which depends on the sequence
of transitions traversed by the run, and on the time spent in each visited location. Finally, a
PTG is played by two players, called Min and Max, and each location of the game is owned
by either of them (we consider a turn-based version of the game). The player who controls
the current location decides how long to wait, and which transition to take.

In this setting, the goal of Min is to reach a given set of target locations, following a
play whose cost is as small as possible. Player Max has an antagonistic objective: he tries
to avoid the target locations, and, if not possible, to maximise the accumulated cost up to
the first visit of a target location. To reflect these objectives, we define the upper value Val
of the game as a mapping of the configurations of the PTG to the least cost that Min can
guarantee while reaching the target, whatever the choices of Max. Similarly, the lower value
Val returns the greatest cost that Max can ensure (letting the cost being +∞ in case the
target locations are not reached).

An example of PTG is given in Figure 1, where the locations of Min (respectively, Max)
are represented by circles (respectively, rectangles), and the integers next to the locations
are their price-rates, i.e., the cost of spending one time unit in the location. Moreover,
there is only one clock x in the game, which is never reset and all guards on transitions
are x ∈ [0, 1] (hence this guard is not displayed and transitions are only labeled by their
respective discrete cost): this is an example of simple priced timed game (we will define them
properly later). It is easy to check that Min can force reaching the target location `f from all
configurations (`, ν) of the game, where ` is a location and ν is a real valuation of the clock
in [0, 1]. Let us comment on the optimal strategies for both players. From a configuration
(`4, ν), with ν ∈ [0, 1], Max better waits until the clock takes value 1, before taking the
transition to `f (he is forced to move, by the rules of the game). Hence, Max’s optimal value
is 3(1− ν)− 7 = −3ν − 4 from all configurations (`4, ν). Symmetrically, it is easy to check
that Min better waits as long as possible in `7, hence his optimal value is −16(1− ν) from all
configurations (`7, ν). However, optimal value functions are not always that simple, see for
instance the lower value function of `1 on the right of Figure 1, which is a piecewise affine
function. To understand why value functions can be piecewise affine, consider the sub-game
enclosed in the dotted rectangle in Figure 1, and consider the value that Min can guarantee
from a configuration of the form (`3, ν) in this sub-game. Clearly, Min must decide how long
he will spend in `3 and whether he will go to `4 or `7. His optimal value from all (`3, ν) is thus
inf06t61−ν min

(
4t+ (−3(ν+ t)−4), 4t+ 6−16(1− (ν+ t))

)
= min(−3ν−4, 16ν−10). Since

16ν − 10 > −3ν − 4 if and only if ν 6 6/19, the best choice of Min is to move instantaneously
to `7 if ν ∈ [0, 6/19] and to move instantaneously to `4 if ν ∈ (6/19, 1], hence the value
function of `3 (in the subgame) is a piecewise affine function with two pieces.

FSTTCS 2015

280 Simple Priced Timed Games are not That Simple

Related work. PTGs were independently investigated in [8] and [1]. For (non-necessarily
turn-based) PTGs with non-negative prices, semi-algorithms are given to decide the value
problem that is to say, whether the upper value of a location (the best cost that Min can
guarantee in valuation 0), is below a given threshold. They have also shown that, under the
strongly non-Zeno assumption on prices (asking the existence of κ > 0 such that every cycle
in the underlying region graph has a cost at least κ), the proposed semi-algorithms always
terminate. This assumption was justified in [11, 7] by showing that, without it, the existence
problem, that is to decide whether Min has a strategy guaranteeing to reach a target location
with a cost below a given threshold, is indeed undecidable for PTGs with non-negative prices
and three or more clocks. This result was recently extended in [9] to show that the value
problem is also undecidable for PTGs with non-negative prices and four or more clocks. In
[5], the undecidability of the existence problem has also been shown for PTGs with arbitrary
price-rates (without prices on transitions), and two or more clocks. On a positive side, the
value problem was shown decidable by [10] for PTGs with one clock when the prices are
non-negative: a 3-exponential time algorithm was first proposed, further refined in [18, 16]
into an exponential time algorithm. The key point of those algorithms is to reduce the
problem to the computation of optimal values in a restricted family of PTGs called Simple
Priced Timed Games (SPTGs for short), where the underlying automata contain no guard,
no reset, and the play is forced to stop after one time unit. More precisely, the PTG is
decomposed into a sequence of SPTGs whose value functions are computed and re-assembled
to yield the value function of the original PTG. Alternatively, and with radically different
techniques, a pseudo-polynomial time algorithm to solve one-clock PTGs with arbitrary prices
on transitions, and price-rates restricted to two values amongst {−d, 0,+d} (with d ∈ N)
was given in [14].

Contributions. Following the decidability results sketched above, we consider PTGs with
one clock. We extend those results by considering arbitrary (positive and negative) prices.
Indeed, all previous works on PTGs with only one clock (except [14]) have considered non-
negative weights only, and the status of the more general case with arbitrary weights has so
far remained elusive. Yet, arbitrary weights are an important modeling feature. Consider,
for instance, a system which can consume but also produce energy at different rates. In
this case, energy consumption could be modeled as a positive price-rate, and production by
a negative price-rate. We propose an exponential time algorithm to compute the value of
one-clock SPTGs with arbitrary weights. While this result might sound limited due to the
restricted class of simple PTGs we can handle, we recall that the previous works mentioned
above [10, 18, 16] have demonstrated that solving SPTGs is a key result towards solving more
general PTGs. Moreover, this algorithm is, as far as we know, the first to handle the full class
of SPTGs with arbitrary weights, and we note that the solutions (either the algorithms or the
proofs) known so far do not generalise to this case. Finally, as a side result, this algorithm
allows us to solve the more general class of reset-acyclic one-clock PTGs that we introduce.
Thus, although we can not (yet) solve the whole class of PTGs with arbitrary weights, our
result may be seen as a potentially important milestone towards this goal.

Due to lack of space most proofs and technical details may be found in a detailed
version [12].

2 Priced timed games: syntax, semantics, and preliminary results

Notations and definitions. Let x denote a positive real-valued variable called clock. A
guard (or clock constraint) is an interval with endpoints in N ∪ {+∞}. We often abbreviate

T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege 281

guards, for instance x 6 5 instead of [0, 5]. Let S ⊆ Guard(x) be a finite set of guards. We
let [[S]] =

⋃
I∈S I. Assuming M0 = 0 < M1 < · · · < Mk are all the endpoints of the intervals

in S (to which we add 0), we let RegS = {(Mi,Mi+1) | 0 6 i 6 k − 1} ∪ {{Mi} | 0 6 i 6 k}
be the set of regions of S. Observe that RegS is also a set of guards.

We rely on the notion of cost function to formalise the notion of optimal value function
sketched in the introduction. Formally, for a set of guards S ⊆ Guard(x), a cost function
over S is a function f : [[RegS]]→ R = R ∪ {+∞,−∞} such that over all regions r ∈ RegS ,
f is either infinite or a continuous piecewise affine function, with a finite set of cutpoints
(points where the first derivative is not defined) {κ1, . . . , κp} ⊆ Q, and with f(κi) ∈ Q for
all 1 6 i 6 p. In particular, if f(r) = {f(ν) | ν ∈ r} contains +∞ (respectively, −∞) for
some region r, then f(r) = {+∞} (f(r) = {−∞}). We denote by CFS the set of all cost
functions over S. In our algorithm to solve SPTGs, we will need to combine cost functions
thanks to the B operator. Let f ∈ CFS and f ′ ∈ CFS′ be two costs functions on set of guards
S, S′ ⊆ Guard(x), such that [[S]] ∩ [[S′]] is a singleton. We let f B f ′ be the cost function
in CFS∪S′ such that (f B f ′)(ν) = f(ν) for all ν ∈ [[RegS]], and (f B f ′)(ν) = f ′(ν) for all
ν ∈ [[RegS′]] \ [[RegS]].

We consider an extended notion of one-clock priced timed games (PTGs for short) allowing
for the use of urgent locations, where only a zero delay can be spent, and final cost functions
which are associated with each final location and incur an extra cost to be paid when ending
the game in this location. Formally, a PTG G is a tuple (LMin, LMax, Lf , Lu,ϕ,∆, π) where

LMin (respectively, LMax) is a finite set of locations for player Min (respectively, Max),
with LMin ∩ LMax = ∅; Lf is a finite set of final locations, and we let L = LMin ∪ LMax ∪ Lf
be the whole location space; Lu ⊆ L \ Lf indicates urgent locations1;

∆ ⊆ (L \ Lf) × Guard(x) × {>,⊥} × L is a finite set of transitions; ϕ = (ϕ`)`∈Lf
associates to each ` ∈ Lf its final cost function, that is an affine2 cost function ϕ` over
SG = {I | ∃`, R, `′ : (`, I, R, `′) ∈ ∆}; π : L ∪ ∆ → Z mapping an integer price to each
location – its price-rate – and transition.

Intuitively, a transition (`, I, R, `′) changes the current location from ` to `′ if the clock
has value in I and the clock is reset according to the Boolean R. We assume that, in all PTGs,
the clock x is bounded, i.e., there is M ∈ N such that for all guards I ∈ SG , I ⊆ [0,M].3
We denote by RegG the set RegSG of regions of G. We further denote4 by Πtr

G , Πloc
G and

Πfin
G respectively the values maxδ∈∆ |π(δ)|, max`∈L |π(`)| and supν∈[0,M] max`∈L |ϕ`(ν)| =

max`∈L max(|ϕ`(0)|, |ϕ`(M)|). That is, Πtr
G , Πloc

G and Πfin
G are the largest absolute values of

the location prices, transition prices and final cost functions.
Let G = (LMin, LMax, Lf , Lu,ϕ,∆, π) be a PTG. A configuration of G is a pair s = (`, ν) ∈

L×R+. We denote by ConfG the set of configurations of G. Let (`, ν) and (`′, ν′) be two
configurations. Let δ = (`, I, R, `′) ∈ ∆ be a transition of G and t ∈ R+ be a delay. Then,
there is a (t, δ)-transition from (`, ν) to (`′, ν′) with cost c, denoted by (`, ν) t,δ,c−−−→ (`′, ν′), if

1 Here we differ from [10] where Lu ⊆ LMax.
2 The affine restriction on final cost function is to simplify our further arguments, though we do believe

that all of our results could be adapted to cope with general cost functions.
3 Observe that this last restriction is not without loss of generality in the case of PTGs. While all timed

automata A can be turned into an equivalent (with respect to reachability properties) A′ whose clocks
are bounded [4], this technique can not be applied to PTGs, in particular with arbitrary prices.

4 Throughout the paper, we often drop the G in the subscript of several notations when the game is clear
from the context.

FSTTCS 2015

282 Simple Priced Timed Games are not That Simple

(i) ` ∈ Lu implies t = 0;
(ii) ν + t ∈ I;
(iii) R = > implies ν′ = 0;
(iv) R = ⊥ implies ν′ = ν + t;
(v) c = π(δ) + t× π(`).
Observe that the cost of (t, δ) takes into account the price-rate of `, the delay spent in `, and
the price of δ. We assume that the game has no deadlock: for all s ∈ ConfG , there are (t, δ, c)
and s′ ∈ ConfG such that s t,δ,c−−−→ s′. Finally, we write s c−→ s′ whenever there are t and δ such
that s t,δ,c−−−→ s′. A play of G is a finite or infinite path ρ = (`0, ν0) c0−→ (`1, ν1) c1−→ (`2, ν2) · · · .
For a finite play ρ = (`0, ν0) c0−→ (`1, ν1) c1−→ (`2, ν2) · · · cn−1−−−→ (`n, νn), we let |ρ| = n. For an
infinite play ρ = (`0, ν0) c0−→ (`1, ν1) c1−→ (`2, ν2) · · · , we let |ρ| be the least position i such
that `i ∈ Lf if such a position exists, and |ρ| = +∞ otherwise. Then, we let CostG(ρ) be the
cost of ρ, with CostG(ρ) = +∞ if |ρ| = +∞, and CostG(ρ) =

∑|ρ|−1
i=0 ci + ϕ`|ρ|(ν|ρ|) otherwise.

A strategy for player Min is a function σMin mapping every finite play ending in location
of Min to a pair (t, δ) ∈ R+ × ∆, indicating what Min should play. We also request
that the strategy proposes only valid pairs (t, δ), i.e., that for all runs ρ ending in (`, ν),
σMin(ρ) = (t, (`, I, R, `′)) implies that ν + t ∈ I. Strategies σMax of player Max are defined
accordingly. We let StratMin(G) and StratMax(G) be the sets of strategies of Min and Max,
respectively. A pair of strategies (σMin, σMax) ∈ StratMin(G)× StratMax(G) is called a profile
of strategies. Together with an initial configuration s0 = (`0, ν0), it defines a unique play
Play(s0, σMin, σMax) = s0

c0−→ s1
c1−→ s2 · · · sk

ck−→ · · · where for all j > 0, sj+1 is the unique
configuration such that sj

tj ,δj ,cj−−−−−→ sj+1 with (tj , δj) = σMin(s0
c0−→ s1 · · · sj−1

cj−1−−−→ sj) if
`j ∈ LMin; and (tj , δj) = σMax(s0

c0−→ s1 · · · sj−1
cj−1−−−→ sj) if `j ∈ LMax. We let Play(σMin)

(respectively, Play(s0, σMin)) be the set of plays that conform with σMin (and start in s0).
As sketched in the introduction, we consider optimal reachability-cost games on PTGs,

where the aim of player Min is to reach a location of Lf while minimising the cost. To formalise
this objective, we let the value of a strategy σMin for Min be the function ValσMin

G : ConfG → R
such that for all s ∈ ConfG : ValσMin

G (s) = supσMax∈StratMax
Cost(Play(s, σMin, σMax)). Intuit-

ively, ValσMin
G (s) is the largest value that Max can achieve when playing against strategy

σMin of Min (it is thus a worst case from the point of view of Min). Symmetrically, for
σMax ∈ StratMax, ValσMax

G (s) = infσMin∈StratMin Cost(Play(s, σMin, σMax)), for all s ∈ ConfG .
Then, the upper and lower values of G are respectively the functions ValG : ConfG → R
and ValG : ConfG → R where, for all s ∈ ConfG , ValG(s) = infσMin∈StratMin ValσMin

G (s) and
ValG(s) = supσMax∈StratMax

ValσMax
G (s). We say that a game is determined if the lower and the

upper values match for every configuration s, and in this case, we say that the optimal value
ValG of the game G exists, defined by ValG = ValG = ValG . A strategy σMin of Min is optimal
(respectively, ε-optimal) if ValσMin

G = ValG (ValσMin
G 6 ValG + ε), i.e., σMin ensures that the cost

of the plays will be at most ValG (ValG + ε). Symmetrically, a strategy σMax of Max is optimal
(respectively, ε-optimal) if ValσMax

G = ValG (ValσMax
G > ValG − ε).

Properties of the value. Let us now prove useful preliminary properties of the value
function of PTGs, that – as far as we know – had hitherto never been established. Using
a general determinacy result by Gale and Stewart [15], we can show that PTGs (with one
clock) are determined. Hence, the value function ValG exists for all PTG G. We can further
show that, for all locations `, ValG(`) is a piecewise continuous function that might exhibit
discontinuities only on the borders of the regions of RegG (where ValG(`) is the function such
that ValG(`)(ν) = ValG(`, ν) for all ν ∈ R+).

T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege 283

I Theorem 1. For all (one-clock) PTGs G:
(i) ValG = ValG, i.e., PTGs are determined; and
(ii) for all r ∈ RegG, for all ` ∈ L, ValG(`) is either infinite or continuous over r.

Simple priced timed games. As sketched in the introduction, our main contribution is to
solve the special case of simple one-clock priced timed games with arbitrary costs. Formally,
an r-SPTG, with r ∈ Q+ ∩ [0, 1], is a PTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π) such that for
all transitions (`, I, R, `′) ∈ ∆, I = [0, r] and R = ⊥. Hence, transitions of r-SPTGs are
henceforth denoted by (`, `′), dropping the guard and the reset. Then, an SPTG is a 1-SPTG.
This paper is devoted mainly to proving the following theorem on SPTGs:

I Theorem 2. Let G be an SPTG. Then, for all locations ` ∈ L, the function ValG(`) is either
infinite, or continuous and piecewise-affine with at most an exponential number of cutpoints.
The value functions for all locations, as well as a pair of optimal strategies (σMin, σMax) (that
always exist if no values are infinite) can be computed in exponential time.

Before sketching the proof of this theorem, we discuss a class of (simple) strategies that
are sufficient to play optimally. Roughly speaking, Max has always a memoryless optimal
strategy, while Min might need (finite) memory to play optimally – it is already the case
in untimed quantitative reachability games with arbitrary weights [13]. Moreover, these
strategies are finitely representable (recall that even a memoryless strategy depends on the
current configuration and that there are infinitely many in our time setting).

Strategies of Max are formalised with the notion of finite positional strategies (FP-
strategies): they are memoryless strategies σ (i.e., for all finite plays ρ1 = ρ′1

c1−→ s and
ρ2 = ρ′2

c2−→ s ending in the same configuration, we have σ(ρ1) = σ(ρ2)), such that for all
locations `, there exists a finite sequence of rationals 0 6 ν`1 < ν`2 < · · · < ν`k = 1 and a finite
sequence of transitions δ1, . . . , δk ∈ ∆ such that
(i) for all 1 6 i 6 k, for all ν ∈ (ν`i−1, ν

`
i], either σ(`, ν) = (0, δi), or σ(q, ν) = (ν`i − ν, δi)

(assuming ν`0 = min(0, ν`1)); and
(ii) if ν`1 > 0, then σ(`, 0) = (ν`1, δ1).
We let pts(σ) be the set of ν`i for all ` and i, and int(σ) be the set of all successive intervals
generated by pts(σ). Finally, we let |σ| = |int(σ)| be the size of σ. Intuitively, in an interval
(ν`i−1, ν

`
i], σ always returns the same move: either to take immediately δi or to wait until the

clock reaches the endpoint ν`i and then take δi.
Min, however may require memory to play optimally. Informally, we will compute optimal

switching strategies, as introduced in [13] (in the untimed setting). A switching strategy
is described by a pair (σ1

Min, σ
2
Min) of FP-strategies and a switch threshold K, and consists

in playing σ1
Min until the total accumulated cost of the discrete transitions is below K; and

then to switch to strategy σ2
Min. The role of σ2

Min is to ensure reaching a final location: it
is thus a (classical) attractor strategy. The role of σ1

Min, on the other hand, is to allow
Min to decrease the cost low enough (possibly by forcing negative cycles) to secure a cost
below K, and the computation of σ1

Min is thus the critical point in the computation of
an optimal switching strategy. To characterise σ1

Min, we introduce the notion of negative
cycle strategy (NC-strategy). Formally, an NC-strategy σMin of Min is an FP-strategy such
that for all runs ρ = (`1, ν) c1−→ · · · ck−1−−−→ (`k, ν′) ∈ Play(σMin) with `1 = `k, and ν, ν′ in
the same interval of int(σMin), the sum of prices of discrete transitions is at most −1, i.e.,
π(`1, `2) + · · · + π(`k−1, `k) 6 −1. To characterise the fact that σ1

Min must allow Min to
reach a cost which is small enough, without necessarily reaching a target state, we define
the fake value of an NC-strategy σMin from a configuration s as fakeσMin

G (s) = sup{Cost(ρ) |

FSTTCS 2015

284 Simple Priced Timed Games are not That Simple

ρ ∈ Play(s, σMin), ρ reaches a target}, i.e., the value obtained when ignoring the σMin-induced
plays that do not reach the target. Thus, clearly, fakeσMin

G (s) 6 ValσMin(s). We say that an
NC-strategy is fake-optimal if its fake value, in every configuration, is equal to the optimal
value of the configuration in the game. This is justified by the following result whose proof
relies on the switching strategies described before:

I Lemma 3. If ValG(`, ν) 6= +∞, for all ` and ν, then for all NC-strategies σMin, there is a
strategy σ′Min such that Valσ

′
Min
G (s) 6 fakeσMin

G (s) for all configurations s. In particular, if σMin
is a fake-optimal NC-strategy, then σ′Min is an optimal (switching) strategy of the SPTG.

Then, an SPTG is called finitely optimal if
(i) Min has a fake-optimal NC-strategy;
(ii) Max has an optimal FP-strategy; and
(iii) ValG(`) is a cost function, for all locations `.
The central point in establishing Theorem 2 will thus be to prove that all SPTGs are
finitely optimal, as this guarantees the existence of well-behaved optimal strategies and
value functions. We will also show that they can be computed in exponential time. The proof
is by induction on the number of urgent locations of the SPTG. In Section 3, we address the
base case of SPTGs with urgent locations only (where no time can elapse). Since these SPTGs
are very close to the untimed min-cost reachability games of [13], we adapt the algorithm
in this work and obtain the solveInstant function (Algorithm 1). This function can also
compute ValG(`, 1) for all ` and all games G (even with non-urgent locations) since time
can not elapse anymore when the clock has valuation 1. Next, using the continuity result
of Theorem 1, we can detect locations ` where ValG(`, ν) ∈ {+∞,−∞}, for all ν ∈ [0, 1],
and remove them from the game. Finally, in Section 4 we handle SPTGs with non-urgent
locations by refining the technique of [10, 18] (that work only on SPTGs with non-negative
costs). Compared to [10, 18], our algorithm is simpler, being iterative, instead of recursive.

3 SPTGs with only urgent locations

Throughout this section, we consider an r-SPTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π) where all
locations are urgent, i.e., Lu = LMin ∪ LMax. We first explain briefly how we can compute
the value function of the game for a fixed clock valuation ν ∈ [0, r] (more precisely, we can
compute the vector (ValG(`, ν))`∈L). Since no time can elapse, we can adapt the techniques
developed in [13] to solve (untimed) min-cost reachability games. The adaptation consists
in taking into account the final cost functions. This yields the function solveInstant
(Algorithm 1), that computes the vector (ValG(`, ν))`∈L for a fixed ν. The results of [13] also
allow us to compute associated optimal strategies: when Val(`, ν) /∈ {−∞,+∞} the optimal
strategy for Max is memoryless, and the optimal strategy for Min is a switching strategy
(σ1

Min, σ
2
Min) with a threshold K (as described in the previous section).

Now let us explain how we can reduce the computation of ValG(`) : ν ∈ [0, r] 7→ Val(`, ν)
(for all `) to a finite number of calls to solveInstant. Let FG be the set of affine functions
over [0, r] such that FG = {k + ϕ` | ` ∈ Lf ∧ k ∈ I}, where I = [−(|L| − 1)Πtr, |L|Πtr] ∩ Z.
Observe that FG has cardinality 2|L|2Πtr, i.e., pseudo-polynomial in the size of G. From
[13], we conclude that the functions in FG are sufficient to characterise ValG , in the following
sense: for all ` ∈ L and ν ∈ [0, r] such that Val(`, ν) /∈ {−∞,+∞}, there is f ∈ FG with
Val(`, ν) = f(ν). Using the continuity of ValG (Theorem 1), we show that all the cutpoints
of ValG are intersections of functions from FG , i.e., belong to the set of possible cutpoints
PossCPG = {ν ∈ [0, r] | ∃f1, f2 ∈ FG f1 6= f2 ∧ f1(ν) = f2(ν)}. Observe that PossCPG

T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege 285

Algorithm 1: solveInstant(G,ν)
Input: r-SPTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π), a valuation ν ∈ [0, r]

1 foreach ` ∈ L do
2 if ` ∈ Lf then X(`) := ϕ`(ν) else X(`) := +∞
3 repeat
4 Xpre := X
5 foreach ` ∈ LMax do X(`) := max(`,`′)∈∆

(
π(`, `′) + Xpre(`′)

)
6 foreach ` ∈ LMin do X(`) := min(`,`′)∈∆

(
π(`, `′) + Xpre(`′)

)
7 foreach ` ∈ L such that X(`) < −(|L| − 1)Πtr −Πfin do X(`) := −∞
8 until X = Xpre
9 return X

contains at most |FG |2 = 4|Lf |4(Πtr)2 points (also a pseudo-polynomial in the size of G) since
all functions in FG are affine, and can thus intersect at most once with every other function.
Moreover, PossCPG ⊆ Q, since all functions of FG take rational values in 0 and r ∈ Q. Thus,
for all `, ValG(`) is a cost function (with cutpoints in PossCPG and pieces from FG). Since
ValG(`) is a piecewise affine function, we can characterise it completely by computing only its
value on its cutpoints. Hence, we can reconstruct ValG(`) by calling solveInstant on each
rational valuation ν ∈ PossCPG . From the optimal strategies computed along solveInstant
[13], we can also reconstruct a fake-optimal NC-strategy for Min and an optimal FP-strategy
for Max, hence:

I Proposition 4. Every r-SPTG G with only urgent locations is finitely optimal. Moreover,
for all locations `, the piecewise affine function ValG(`) has cutpoints in PossCPG of cardinality
4|Lf |4(Πtr)2, pseudo-polynomial in the size of G.

4 Solving general SPTGs

In this section, we consider SPTGs with possibly non-urgent locations. We first prove
that all such SPTGs are finitely optimal. Then, we introduce Algorithm 2 to compute
optimal values and strategies of SPTGs. To the best of our knowledge, this is the first
algorithm to solve SPTGs with arbitrary weights. Throughout the section, we fix an SPTG
G = (LMin, LMax, Lf , Lu,ϕ,∆, π) with possibly non-urgent locations. Before presenting our
core contributions, let us explain how we can detect locations with infinite values. As already
argued, we can compute Val(`, 1) for all ` assuming all locations are urgent, since time can
not elapse anymore when the clock has valuation 1. This can be done with solveInstant.
Then, by continuity, Val(`, 1) = +∞ (respectively, Val(`, 1) = −∞), for some ` if and only if
Val(`, ν) = +∞ (respectively, Val(`, ν) = −∞) for all ν ∈ [0, 1]. We remove from the game
all locations with infinite value without changing the values of other locations (as justified
in [13]). Thus, we henceforth assume that Val(`, ν) ∈ R for all (`, ν).

The GL′,r construction. To prove finite optimality of SPTGs and to establish correctness
of our algorithm, we rely in both cases on a construction that consists in decomposing G
into a sequence of SPTGs with more urgent locations. Intuitively, a game with more urgent
locations is easier to solve since it is closer to an untimed game (in particular, when all
locations are urgent, we can apply the techniques of Section 3). More precisely, given a
set L′ of non-urgent locations, and a valuation r0 ∈ [0, 1], we will define a (possibly infinite)

FSTTCS 2015

286 Simple Priced Timed Games are not That Simple

sequence of valuations 1 = r0 > r1 > · · · and a sequence GL′,r0 , GL′,r1 , . . . of SPTGs such
that
(i) all locations of G are also present in each GL′,ri , except that the locations of L′ are now

urgent; and
(ii) for all i > 0, the value function of GL′,ri is equal to ValG on the interval [ri+1, ri]. Hence,

we can re-construct ValG by assembling well-chosen parts of the values functions of the
GL′,ri (assuming infi ri = 0).

This basic result will be exploited in two directions. First, we prove by induction on the
number of urgent locations that all SPTGs are finitely optimal, by re-constructing ValG (as
well as optimal strategies) as a B-concatenation of the value functions of a finite sequence
of SPTGs with one more urgent locations. The base case, with only urgent locations, is
solved by Proposition 4. This construction suggests a recursive algorithm in the spirit of
[10, 18] (for non-negative prices). Second, we show that this recursion can be avoided (see
Algorithm 2). Instead of turning locations urgent one at a time, this algorithm makes them
all urgent and computes directly the sequence of SPTGs with only urgent locations. Its proof
of correctness relies on the finite optimality of SPTGs and, again, on our basic result linking
the values functions of G and games GL′,ri .

Let us formalise these constructions. Let G be an SPTG, let r ∈ [0, 1] be an endpoint, and
let x = (x`)`∈L be a vector of rational values. Then, wait(G, r,x) is an r-SPTG in which
both players may now decide, in all non-urgent locations `, to wait until the clock takes value
r, and then to stop the game, adding the cost x` to the current cost of the play. Formally,
wait(G, r,x) = (LMin, LMax, L

′
f , Lu,ϕ

′, T ′, π′) is such that L′f = Lf] {`f | ` ∈ L \ Lu}; for
all `′ ∈ Lf and ν ∈ [0, r], ϕ′`′(ν) = ϕ`′(ν), for all ` ∈ L \ Lu, ϕ′`f (ν) = (r − ν) · π(`) + x`;
T ′ = T ∪ {(`, [0, r],⊥, `f) | ` ∈ L \ Lu}; for all δ ∈ T ′, π′(δ) = π(δ) if δ ∈ T , and π′(δ) = 0
otherwise. Then, we let Gr = wait

(
G, r, (ValG(`, r))`∈L

)
, i.e., the game obtained thanks to

wait by letting x be the value of G in r. One can check that this first transformation does
not alter the value of the game, for valuations before r: ValG(`, ν) = ValGr (`, ν) for all ν 6 r.

Next, we make locations urgent. For a set L′ ⊆ L \ Lu of non-urgent locations, we let
GL′,r be the SPTG obtained from Gr by making urgent every location ` of L′. Observe that,
although all locations ` ∈ L′ are now urgent in GL′,r, their clones `f allow the players to wait
until r. When L′ is a singleton {`}, we write G`,r instead of G{`},r. While the construction
of Gr does not change the value of the game, introducing urgent locations does. Yet, we can
characterise an interval [a, r] on which the value functions of H = GL′,r and H+ = GL′∪{`},r
coincide, as stated by the next proposition. The interval [a, r] depends on the slopes of the
pieces of ValH+ as depicted in Figure 2: for each location ` of Min, the slopes of the pieces
of ValH+ contained in [a, r] should be 6 −π(`) (and > −π(`) when ` belongs to Max). It is
proved by lifting optimal strategies of H+ into H, and strongly relies on the determinacy
result of Theorem 1:

I Proposition 5. Let 0 6 a < r 6 1, L′ ⊆ L \ Lu and ` /∈ L′ ∪ Lu a non-urgent location of
Min (respectively, Max). Assume that GL′∪{`},r is finitely optimal, and for all a 6 ν1 < ν2 6 r

ValGL′∪{`},r (`, ν2)− ValGL′∪{`},r (`, ν1)
ν2 − ν1

> −π(`) (respectively, 6 −π(`)) . (1)

Then, for all ν ∈ [a, r] and `′ ∈ L, ValGL′∪{`},r(`
′, ν) = ValGL′,r(`

′, ν). Furthermore, fake-
optimal NC-strategies and optimal FP-strategies in GL′∪{`},r are also fake-optimal and optimal
over [a, r] in GL′,r.

T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege 287

ValG`,r (`, ν)

νa r

•

•

ν1 ν2

ValG`,r (`, ν1)

ValG`,r (`, ν2)

Figure 2 The condition (1) (in the case L′ =
∅ and ` ∈ LMin): graphically, it means that the
slope between every two points of the plot in
[a, r] (represented with a thick line) is greater
than or equal to−π(`) (represented with dashed
line).

ValG`?,r (`?, ν)

ν

ValG(`?, r)

left(r) r

Figure 3 In this example L′ = {`?} and
`? ∈ LMin. left(r) is the leftmost point such
that all slopes on its right are smaller than or
equal to −π(`?) in the graph of ValG`?,r (`?, ν).
Dashed lines have slope −π(`?).

Given an SPTG G and some finitely optimal GL′,r, we now characterise precisely the
left endpoint of the maximal interval ending in r where the value functions of G and GL′,r
coincide, with the operator leftL′ : (0, 1]→ [0, 1] (or simply left, if L′ is clear) defined as:

leftL′(r) = sup{r′ 6 r | ∀` ∈ L ∀ν ∈ [r′, r] ValGL′,r (`, ν) = ValG(`, ν)} .

By continuity of the value (Theorem 1), this supremum exists and ValG(`, leftL′(r)) =
ValGL′,r (`, leftL′(r)). Moreover, ValG(`) is a cost function on [left(r), r], since GL′,r is finitely
optimal. However, this definition of left(r) is semantical. Yet, building on the ideas of
Proposition 5, we can effectively compute left(r), given ValGL′,r . We claim that leftL′(r) is
the minimal valuation such that for all locations ` ∈ L′ ∩ LMin (respectively, ` ∈ L′ ∩ LMax),
the slopes of the affine sections of the cost function ValGL′,r (`) on [left(r), r] are at least (at
most) −π(`). Hence, left(r) can be obtained (see Figure 3), by inspecting iteratively, for
all ` of Min (respectively, Max), the slopes of ValGL′,r (`), by decreasing valuations, until we
find a piece with a slope > −π(`) (respectively, < −π(`)). This enumeration of the slopes
is effective as ValGL′,r has finitely many pieces, by hypothesis. Moreover, this guarantees
that left(r) < r. Thus, one can reconstruct ValG on [infi ri, r0] from the value functions of
the (potentially infinite) sequence of games GL′,r0 , GL′,r1 , . . . where ri+1 = left(ri) for all i
such that ri > 0, for all possible choices of non-urgent locations L′. Next, we will define two
different ways of choosing L′: the former to prove finite optimality of all SPTGs, the latter
to obtain an algorithm to solve them.

SPTGs are finitely optimal. To prove finite optimality of all SPTGs we reason by induction
on the number of non-urgent locations and instantiate the previous results to the case where
L′ = {`?} where `? is a non-urgent location of minimum price-rate (i.e., for all ` ∈ L,
π(`?) 6 π(`)). Given r0 ∈ [0, 1], we let r0 > r1 > · · · be the decreasing sequence of valuations
such that ri = left`?(ri−1) for all i > 0. As explained before, we will build ValG on [infi ri, r0]
from the value functions of games G`?,ri . Assuming finite optimality of those games, this will
prove that G is finitely optimal under the condition that r0 > r1 > · · · eventually stops, i.e.,
ri = 0 for some i. This property is given by the next lemma, which ensures that, for all i,
the owner of `? has a strictly better strategy in configuration (`?, ri+1) than waiting until ri
in location `?.

FSTTCS 2015

288 Simple Priced Timed Games are not That Simple

I Lemma 6. If G`?,ri is finitely optimal for all i > 0, then
(i) if `? ∈ LMin (respectively, LMax), ValG(`?, ri+1) < ValG(`?, ri) + (ri − ri+1)π(`?) (re-

spectively, ValG(`?, ri+1) > ValG(`?, ri) + (ri − ri+1)π(`?)), for all i; and
(ii) there is i 6 |FG |2 + 2 such that ri = 0.

By iterating this construction, we make all locations urgent iteratively, and obtain:

I Proposition 7. Every SPTG G is finitely optimal and for all locations `, ValG(`) has at
most O

(
(Πtr|L|2)2|L|+2) cutpoints.

Proof. As announced, we show by induction on n > 0 that every r-SPTG G with n non-
urgent locations is finitely optimal, and that the number of cutpoints of ValG(`) is at most
O
(
(Πtr(|Lf |+ n2))2n+2), which suffices to show the above bound, since |Lf |+ n2 6 |L|2.
The base case n = 0 is given by Proposition 4. Now, assume that G has at least

one non-urgent location, and consider `? one with minimum price. By induction hypo-
thesis, all r′-SPTGs G`?,r′ are finitely optimal for all r′ ∈ [0, r]. Let r0 > r1 > · · ·
be the decreasing sequence defined by r0 = r and ri = left`?(ri−1) for all i > 1. By
Lemma 6, there exists j 6 |FG |2 + 2 such that rj = 0. Moreover, for all 0 < i 6 j,
ValG = ValG`?,ri−1

on [ri, ri−1] by definition of ri = left`?(ri−1), so that ValG(`) is a cost
function on this interval, for all `, and the number of cutpoints on this interval is bounded
by O

(
(Πtr(|Lf |+ (n− 1)2 + n))2(n−1)+2) = O

(
(Πtr(|Lf |+ n2))2(n−1)+2) by induction hy-

pothesis (notice that maximal transition prices are the same in G and G`?,ri−1 , but that we
add n more final locations in G`?,ri−1). Adding the cutpoint 1, summing over i from 0 to
j 6 |FG |2 + 2, and observing that |FG | 6 2Πtr|Lf |, we bound the number of cutpoints of
ValG(`) by O

(
(Πtr(|Lf |+ n2))2n+2). Finally, we can reconstruct fake-optimal and optimal

strategies in G from the from fake-optimal and optimal strategies of G`?,ri . J

Computing the value functions. The finite optimality of SPTGs allows us to compute the
value functions. The proof of Proposition 7 suggests a recursive algorithm to do so: from an
SPTG G with minimal non-urgent location `?, solve recursively G`?,1, G`?,left(1), G`?,left(left(1)),
etc. handling the base case where all locations are urgent with Algorithm 1. While our results
above show that this is correct and terminates, we propose instead to solve – without the
need for recursion – the sequence of games GL\Lu,1, GL\Lu,left(1), . . . i.e., making all locations
urgent at once. Again, the arguments given above prove that this scheme is correct, but
the key argument of Lemma 6 that ensures termination can not be applied in this case.
Instead, we rely on the following lemma, stating, that there will be at least one cutpoint
of ValG in each interval [left(r), r]. Observe that this lemma relies on the fact that G is
finitely optimal, hence the need to first prove this fact independently with the sequence G`?,1,
G`?,left(1), G`?,left(left(1)),. . . Termination then follows from the fact that ValG has finitely many
cutpoints by finite optimality.

I Lemma 8. Let r0 ∈ (0, 1] such that GL′,r0 is finitely optimal. Suppose that r1 = leftL′(r0) >
0, and let r2 = leftL′(r1). There exists r′ ∈ [r2, r1) and ` ∈ L′ such that
(i) ValG(`) is affine on [r′, r1], of slope equal to −π(`), and
(ii) ValG(`, r1) 6= ValG(`, r0) + π(`)(r0 − r1).
As a consequence, ValG(`) has a cutpoint in [r1, r0).

Algorithm 2 implements these ideas. Each iteration of the while loop computes a
new game in the sequence GL\Lu,1, GL\Lu,left(1), . . . described above; solves it thanks to
solveInstant; and thus computes a new portion of ValG on an interval on the left of the
current point r ∈ [0, 1]. More precisely, the vector (ValG(`, 1))`∈L is first computed in line 1.

T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege 289

Algorithm 2: solve(G)
Input: SPTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π)

1 f = (f`)`∈L := solveInstant(G, 1) /* f` : {1} → R */
2 r := 1
3 while 0 < r do /* Invariant: f` : [r, 1]→ R */
4 G′ := wait(G, r,f(r)) /* r-SPTG G′ = (LMin, LMax, L

′
f , L

′
u,ϕ

′, T ′, π′) */
5 L′u := L′u ∪ L /* every location is made urgent */
6 b := r

7 repeat /* Invariant:f` : [b, 1]→ R */
8 a := max(PossCPG′ ∩ [0, b))
9 x = (x`)`∈L := solveInstant(G′, a) /* x` = ValG′(`, a) */

10 if ∀` ∈ LMin
f`(b)−x`
b−a 6 −π(`) ∧ ∀` ∈ LMax

f`(b)−x`
b−a > −π(`) then

11 foreach ` ∈ L do f` :=
(
ν ∈ [a, b] 7→ f`(b) + (ν − b) f`(b)−x`b−a

)
B f`

12 b := a ; stop := false

13 else stop := true

14 until b = 0 or stop
15 r := b

16 return f

Then, the algorithm enters the while loop, and the game G′ obtained when reaching line 6
is GL\Lu,1. Then, the algorithm enters the repeat loop to analyse this game. Instead of
building the whole value function of G′, Algorithm 2 builds only the parts of ValG′ that
coincide with ValG . It proceeds by enumerating the possible cutpoints a of ValG′ , starting in r,
by decreasing valuations (line 8), and computes the value of ValG′ in each cutpoint thanks
to solveInstant (line 9), which yields a new piece of ValG′ . Then, the if in line 10 checks
whether this new piece coincides with ValG , using the condition given by Proposition 5. If it
is the case, the piece of ValG′ is added to f` (line 11); repeat is stopped otherwise. When
exiting the repeat loop, variable b has value left(1). Hence, at the next iteration of the
while loop, G′ = GL\Lu,left(1) when reaching line 6. By continuing this reasoning inductively,
one concludes that the successive iterations of the while loop compute the sequence GL\Lu,1,
GL\Lu,left(1), . . . as announced, and rebuilds ValG from them. Termination in exponential
time is ensured by Lemma 8: each iteration of the while loop discovers at least one new
cutpoint of ValG , and there are at most exponentially many (note that a tighter bound on
this number of cutpoints would entail a better complexity of our algorithm).

I Example 9. Let us briefly sketch the execution of Algorithm 2 on the SPTG in Figure 1.
During the first iteration of the while loop, the algorithm computes the correct value
functions until the cutpoint 3

4 : in the repeat loop, at first a = 9/10 but the slope in `1 is
smaller than the slope that would be granted by waiting, as depicted in Figure 1. Then,
a = 3/4 where the algorithm gives a slope of value −16 in `2 while the cost of this location
of Max is −14. During the first iteration of the while loop, the inner repeat loop thus ends
with r = 3/4. The next iterations of the while loop end with r = 1

2 (because `1 does not
pass the test in line 10); r = 1

4 (because of `2) and finally with r = 0, giving us the value
functions on the entire interval [0, 1].

FSTTCS 2015

290 Simple Priced Timed Games are not That Simple

`00 `1

−1
`2

1
`f

x = 1x 6 1x 6 1

x = 1, x := 0

1

Figure 4 A PTG where the number of resets in optimal plays can not be bounded a priori.

5 Beyond SPTGs

In [10, 18, 16], general PTGs with non-negative prices are solved by reducing them to a finite
sequence of SPTGs, by eliminating guards and resets. It is thus natural to try and adapt
these techniques to our general case, in which case Algorithm 2 would allow us to solve
general PTGs with arbitrary costs. Let us explain why it is not (completely) the case. The
technique used to remove guards from PTGs consists in enhancing the locations with regions
while keeping an equivalent game. This technique can be adapted to arbitrary weights.

The technique to handle resets, however, consists in bounding the number of clock resets
that can occur in each play following an optimal strategy of Min or Max. Then, the PTG can
be unfolded into a reset-acyclic PTG with the same value. By reset-acyclic, we mean that
no cycle in the configuration graph visits a transition with a reset. This reset-acyclic PTG
can be decomposed into a finite number of components that contain no reset and are linked
by transitions with resets. These components can be solved iteratively, from the bottom
to the top, turning them into SPTGs. Thus, if we assume that the PTGs we are given as
input are reset-acyclic, we can solve them in exponential time, and show that their value
functions are cost functions with at most exponentially many cutpoints, using our techniques.
Unfortunately, the arguments to bound the number of resets do not hold for arbitrary costs,
as shown by the PTG in Figure 4. We claim that Val(`0) = 0; that Min has no optimal
strategy, but a family of ε-optimal strategies σεMin each with value ε; and that each σεMin
requires memory whose size depends on ε and might yield a play visiting at least 1/ε times
the reset between `0 and `1 (hence the number of resets can not be bounded). For all ε > 0,
σεMin consists in: waiting 1− ε time units in `0, then going to `1 during the d1/εe first visits
to `0; and to go directly to `f afterwards. Against σεMin, Max has two possible choices:
(i) either wait 0 time unit in `1, wait ε time units in `2, then reach `f ; or
(ii) wait ε time unit in `1 then force the cycle by going back to `0 and wait for Min’s next

move.
Thus, all plays according to σεMin will visit a sequence of locations which is either of the form
`0(`1`0)k`1`2`f , with 0 6 k < d1/εe; or of the form `0(`1`0)d

1
εe`f . In the former case, the

cost of the play will be −kε+ 0 + ε = −(k − 1)ε 6 ε; in the latter, −ε(d1/εe) + 1 6 0. This
shows that Val(`0) = 0, but there is no optimal strategy as none of these strategies allow one
to guarantee a cost of 0 (neither does the strategy that waits 1 time unit in `0).

However, we may apply the result on reset-acyclic PTGs to obtain:

I Theorem 10. The value functions of all one-clock PTGs are cost functions with at most
exponentially many cutpoints.

Proof. Let G be a one-clock PTG. Let us replace all transitions (`, g,>, `′) resetting the
clock by (`, g,⊥, `′′), where `′′ is a new final location with ϕ`′′ = ValG(`, 0) – observe that
ValG(`, 0) exists even if we can not compute it, so this transformation is well-defined. This
yields a reset-acyclic PTG G′ such that ValG′ = ValG . J

T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege 291

References

1 Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for weighted
timed games. In Proceedings of the 31st International Colloquium on Automata, Languages
and Programming (ICALP’04), volume 3142 of Lecture Notes in Computer Science, pages
122–133. Springer, 2004.

2 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3 Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted timed
automata. Theoretical Computer Science, 318(3):297–322, 2004.

4 Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Judi Romijn, and Frits W.
Vaandrager. Minimum-cost reachability for priced timed automata. In Proceedings of the
4th International Workshop on Hybrid Systems: Computation and Control (HSCC’01),
volume 2034 of Lecture Notes in Computer Science, pages 147–161. Springer, 2001.

5 J. Berendsen, T. Chen, and D. Jansen. Undecidability of cost-bounded reachability in
priced probabilistic timed automata. In Theory and Applications of Models of Computation,
volume 5532 of LNCS, pages 128–137. Springer, 2009.

6 Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On the
optimal reachability problem of weighted timed automata. Formal Methods in System
Design, 31(2):135–175, 2007.

7 Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results on
weighted timed automata. Information Processing Letters, 98(5):188–194, 2006.

8 Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strategies
in priced timed game automata. In Proceedings of the 24th Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’04), volume 3328 of
Lecture Notes in Computer Science, pages 148–160. Springer, 2004.

9 Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On the value problem in weighted timed
games. Research Report LSV-14-12, Laboratoire Spécification et Vérification, ENS Cachan,
France, October 2014. 24 pages.

10 Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen. Almost
optimal strategies in one-clock priced timed games. In Proceedings of the 26th Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’06),
volume 4337 of Lecture Notes in Computer Science, pages 345–356. Springer, 2006.

11 Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed
strategies. In Proceedings of the Third international conference on Formal Modeling and
Analysis of Timed Systems (FORMATS’05), volume 3829 of Lecture Notes in Computer
Science, pages 49–64. Springer, 2005.

12 Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin Mon-
mege. Simple priced timed games are not that simple. Research Report 1507.03786, arXiv,
July 2015.

13 Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. To reach or not
to reach? Efficient algorithms for total-payoff games. In Luca Aceto and David de Frutos Es-
crig, editors, Proceedings of the 26th International Conference on Concurrency Theory
(CONCUR’15), volume 42 of LIPIcs, pages 297–310. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, September 2015.

14 Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi Manasa, Ben-
jamin Monmege, and Ashutosh Trivedi. Adding Negative Prices to Priced Timed Games. In
Proceedings of the 25th International Conference on Concurrency Theory (CONCUR’13),
volume 8704 of Lecture Notes in Computer Science, pages 560–575. Springer, 2014.

FSTTCS 2015

292 Simple Priced Timed Games are not That Simple

15 D. Gale and F. M. Stewart. Infinite games with perfect information. In Contributions to
the theory of games, vol. 2. Annals of Mathematical Studies, volume 28 of Lecture Notes in
Computer Science, pages 245–266. Princeton University Press., 1953.

16 Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. A faster al-
gorithm for solving one-clock priced timed games. In Proceedings of the 24th International
Conference on Concurrency Theory (CONCUR’13), volume 8052 of Lecture Notes in Com-
puter Science, pages 531–545. Springer, 2013.

17 Peter J. Ramadge and W. Murray Wonham. The control of discrete event systems. In
Proceedings of the IEEE, volume 77(1), pages 81–98, 1989.

18 Michał Rutkowski. Two-player reachability-price games on single-clock timed automata.
In Proceedings of the 9th Workshop on Quantitative Aspects of Programming Languages
(QAPL’11), volume 57 of Electronic Proceedings in Theoretical Computer Science, pages
31–46, 2011.

	Introduction
	Priced timed games: syntax, semantics, and preliminary results
	SPTGs with only urgent locations
	Solving general SPTGs
	Beyond SPTGs

