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Abstract
In this paper, we introduce a new model for sublinear algorithms called dynamic sketching. In
this model, the underlying data is partitioned into a large static part and a small dynamic part
and the goal is to compute a summary of the static part (i.e, a sketch) such that given any
update for the dynamic part, one can combine it with the sketch to compute a given function.
We say that a sketch is compact if its size is bounded by a polynomial function of the length of
the dynamic data, (essentially) independent of the size of the static part.

A graph optimization problem P in this model is defined as follows. The input is a graph
G(V,E) and a set T ⊆ V of k terminals; the edges between the terminals are the dynamic part
and the other edges in G are the static part. The goal is to summarize the graph G into a
compact sketch (of size poly(k)) such that given any set Q of edges between the terminals, one
can answer the problem P for the graph obtained by inserting all edges in Q to G, using only
the sketch.

We study the fundamental problem of computing a maximum matching and prove tight
bounds on the sketch size. In particular, we show that there exists a (compact) dynamic sketch
of size O(k2) for the matching problem and any such sketch has to be of size Ω(k2). Our sketch
for matchings can be further used to derive compact dynamic sketches for other fundamental
graph problems involving cuts and connectivities. Interestingly, our sketch for matchings can
also be used to give an elementary construction of a cut-preserving vertex sparsifier with space
O(kC2) for k-terminal graphs, which matches the best known upper bound; here C is the total
capacity of the edges incident on the terminals. Additionally, we give an improved lower bound
(in terms of C) of Ω(C/ logC) on size of cut-preserving vertex sparsifiers, and establish that
progress on dynamic sketching of the s-t max-flow problem (either upper bound or lower bound)
immediately leads to better bounds for size of cut-preserving vertex sparsifiers.
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1 Introduction

Massive data sets are arising more and more frequently in many application domains.
Traditional gold standards of computational efficiency, namely, linear-time and linear-space,
no longer seem sufficient for managing and analyzing such massive data sets. As a result, a
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beautiful new area of sublinear algorithms has developed over the past two decades – these
are algorithms whose resource requirements are substantially smaller than the size of the
input on which they operate. A rich theory of sublinear algorithms has emerged, and has
brought remarkable new insights into combinatorial structure of well-studied optimization
problems (see, for instance, the surveys [23, 25, 27], and references therein).

In recent years, graph optimization problems have received a lot of attention in the study
of sublinear algorithms in various models, and the streaming model of computation is one of
the most popular examples. In the streaming model, an algorithm is presented with a stream
of edge insertions and deletions and is required to give an answer to a pre-specified graph
problem at the end of the stream. Unfortunately, for many fundamental graph problems,
no small space streaming algorithm is possible. For instance, [10] showed that determining
whether or not there is a path from a specific vertex s to a specified vertex t in a directed
graph requires Ω(n2) space even for streams with only edge insertions; here n denotes the
number of vertices in the input graph. This immediately implies that computing the length
of the s-t shortest path, the value of the minimum cut between s and t, or the edge/vertex
connectivity between s and t also requires Ω(n2) space since the output of these problems
is non-zero only when there is a path from s to t. The same lower bound is also obtained
for computing the size of the maximum matching [10]. In fact, most of recent works for
graph problem focus on approximation algorithms developed under the semi-streaming model
introduced in [10], where an algorithm is allowed to output an approximate answer while using
space linear in n. But is there hope left for exact sublinear algorithms? More specifically,
is there a non-trivial model where sublinear algorithms are achievable for outputting exact
answers for fundamental graph problems like matchings, connectivities, cuts, etc.?

In this paper, we explore this direction by considering the case where the input graph
only undergoes local changes, and study how local changes influence the solutions of several
fundamental graph problems. The goal is to exploit the locality of these updates and compress
the rest of the graph into a small-size sketch that is able to answer queries regarding a specific
problem (e.g. the s-t edge connectivity problem) for every possible local changes made to
the graph. We introduce a model in this spirit and in the rest of this section, we formally
define the model, discuss the connection to existing models, and summarize our results.

1.1 The Dynamic Sketching Model
We define the dynamic sketching model, where algorithms are required to construct data
structures (called sketches) that are composable with local updates to the underlying data.
Specifically, for graph problems in the dynamic sketching model, we consider the following
setup (see Section 1.1 in the full version [5] for a more general definition which is not restricted
to graph problems). Given a graph optimization problem P , an input graph G(V,E) on
n vertices with k vertices identified as terminals T = {q1, . . . , qk}, the goal of k-dynamic
sketching for P is to construct a sketch Γ such that given any possible subset of the edges
between the terminals (a query), we can solve the problem P using only the information
contained in the sketch Γ. Formally,

I Definition 1. Given a graph-theoretic problem P , a k-dynamic sketching scheme for P is
a pair of algorithms with the following properties.
(i) A compression algorithm that given any input graph G(V,E) with a set T of k

terminals, outputs a data structure Γ (i.e, a dynamic sketch).
(ii) An extraction algorithm that given any subset of the edges between the terminals,

i.e, a query Q, and the sketch Γ, outputs the answer to the problem P for the graph,
denoted by GQ, obtained by inserting all edges in Q to G (without further access to G).
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We allow both compression and extraction algorithms to be randomized and err with
some small probability. Furthermore, we say a sketching scheme is compact if it constructs
dynamic sketches of size poly(k), where the size of a sketch is measured by the number of
machine words of length O(logn).

We should note right away that of course not every graph problem admits a compact
dynamic sketch. For example, one can show that any dynamic sketch for the maximum clique
problem or the minimum vertex cover problem requires min{Ω(n), 2Ω(k)} space (see the full
version of the paper [5], Section 6).

1.2 Connection to Existing Models
Streaming. Any single-pass streaming algorithm with space requirement s can be used as
a dynamic sketching scheme with a sketch of size s: run the streaming algorithm on graph
G(V,E) for the static data and store the state of the algorithm as the sketch; continue running
the algorithm using the stored state when the dynamic data is presented. However, note that
a streaming algorithm directly gives a compact scheme only when the space requirement is
logarithmic in n, which, as we just discussed, is not the case for nearly all fundamental graph
optimization problems. In the following, we use the s-t shortest path problem as an example
to elaborate the distinction between the two models. Our results in Section 2, illustrates a
similar distinction for the case of the maximum matching problem.

As we already mentioned, outputting the length of the s-t shortest path requires Ω(n2)
space in the streaming model. We now give a simple dynamic sketching scheme for the s-t
shortest problem with a sketch of size O(k2). The input to the s-t shortest path problem
in the k-dynamic sketching model is a weighted graph G, a set T of terminals, and two
designated vertices s and t. Without loss of generality, we can assume s and t are terminals;
otherwise we can add them to the set of terminals and record their edges to the other
terminals in O(k) space. The compression algorithm creates a graph H with V (H) = T ,
where for any pair of terminals qi and qj , a directed edge from qi to qj is added to H with
weight equal to the weight of a shortest path from qi to qj in G. The size of H is O(k2).
To obtain the answer for each query Q, the extraction algorithm adds the edges in Q to H,
building a small graph HQ, and compute the shortest path from s to t in HQ. It is easy to
see that the weights of the shortest paths between s and t in HQ and GQ are equal, thus H
can be used as a dynamic sketch for the s-t shortest path problem.

Linear sketches. A very strong notion of sketching for handling arbitrary changes to the
original data is linear sketching, which corresponds to applying a randomized low-dimensional
linear transformation to the input data. This allows for compressing the data into a smaller
space while (approximately) preserving some desired property of the input. Moreover,
composability of these sketches (as they are linear transformations) allow them to handle
arbitrary changes to the input data. Linear sketching technique has been successfully applied
to various graph problems, mainly involving cuts and connectivity [2, 3, 14] (see also [23] for
a survey of such results in dynamic graph streams). However, these results use space that
is prohibitively large for dynamic sketching (a linear dependence on n), and typically only
yield approximation answers.

Kernelization. Dynamic sketching shares some similarity to Kernelization developed in
parametrized complexity [17, 16, 11] in the following two aspects. Firstly, the number of
terminals k in dynamic sketching may be viewed as a parameter. However, the main difference
here is that for dynamic sketching, k is a parameter of the model, while for kernelization, the
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parameter is usually the size of the solution, which is the property of the input rather than
the model. Secondly, since a kernel for an instance of a problem is defined to be an equivalent
instance of the same problem with size bounded by a function of a fixed parameter of the
problem, both dynamic sketching and kernelization are in the spirit of compression. However,
the techniques developed in kernelization do not directly carry over to dynamic sketching for
the following two reasons. Firstly, kernelization typically focuses only on static data and
secondly, the space target in kernelization (which is different compare to dynamic sketching)
is normally polynomial in the parameter (usually the size of the solution to the problem)
which could be Ω(n) in the dynamic sketching model. Finally, it is worth mentioning that
there are problems (e.g. minimum vertex cover) that admit polynomial size kernels, while it
can be shown that the dynamic sketching for these problem require sketches of size 2Ω(k)

(see the full version of the paper [5], Section 6).

Provisioning. We should note that dynamic sketching shares some ancestry with provision-
ing, a technique developed by [8] for avoiding repeated expensive computations in what-if
analysis, where the input data is formed by k known overlapping subsets of some universe,
and the goal is to compress these subsets so as to answer a specific database query when
only some of those subsets are presented at run-time. Note that a main distinction between
the two model is that in provisioning the dynamic input is neither small nor local.

1.3 Our Results
Maximum matching. The main focus of this paper is on the maximum matching prob-
lem [20] in the dynamic sketching model, and its applications to various others problems. We
give a dynamic sketching scheme with a sketch of size O(k2), using a technique based on an
algebraic formulation of the matchings introduced by Tutte [29]. At a high level, we store a
sketch that computes the rank of the Tutte matrix (see Definition 4) of the underlying graph.
Since the queries only affect O(k2) entries of the Tutte matrix, we can compress this matrix
using algebraic operations into a few small matrices of dimensions k × k. Storing the small
matrices as the sketch and modifying the related entries when a query is presented allows us
to compute the rank of the original Tutte matrix, and hence the maximum matching size.
Furthermore, we prove that our sketching scheme is optimal in terms of its space requirement
(up to a logarithmic factor). In particular, we show that any dynamic sketching scheme for
the matching problem has to store a sketch of size Ω(k2) bits. We emphasize that the lower
bound is information-theoretic; it holds even if the compression and extraction algorithms
are computationally unbounded.

Cut-preserving sketches. Interestingly, we discovered that our scheme for matchings can
be used to design a cut-preserving sketch, which is the information-theoretic version of
a cut-preserving vertex sparsifier [12, 24, 19]. Given a capacitated graph G (assume all
capacities are integers) with a set T of k terminals, a cut-preserving vertex sparsifier (or a
sparsifier for short) of G is a graph H with T ⊆ V (H) (V (H) denotes the set of vertices of
H) such that for any bipartition S and T \ S of terminals, the value of the minimum cut
between S and T \ S in G is preserved in H. A vertex sparsifier where the stored data is not
restricted to be a graph is called a cut-preserving sketch.

In recent years, cut-preserving vertex sparsifiers have been extensively studied (see, for
example, [6, 9, 7, 4]). For instance, exact sparsifiers with 22k vertices are shown by [12, 15],
and sparsifiers with O(C3) vertices are shown by [17], where C is the total capacity of the
edges incident on the terminals. Additionally, the size of any exact sparsifier is shown to be
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2Ω(k) [18, 15]. Cut-preserving sketches are also studied in the literature [4, 18, 16], where the
best construction is known to be of size O(kC2) by [16]. Moreover, the 2Ω(k) lower bound
of [18] is also shown to hold for the cut-preserving sketches.

We show that our dynamic sketching scheme for matchings can be used to obtain an
elementary construction of a cut-preserving sketch of size O(kC2) that matches the best
known upper bound of [16]. [16] showed that given a graph G and a set of k terminals T ,
a single gammoid can be used to produce a matroid that encodes all terminal vertex cuts.
The authors then use the result of [22] to show how to obtain a matrix representation of this
gammoid with O(k2) entries of O(k) bits each (see Corollary 3.2 of [16]). Using standard
techniques, one can use this sketch for vertex cuts to obtain an sketch for edge cuts (i.e, a
cut-preserving sketch) that requires O(kC2) space. Our construction, on the other hand, uses
the connection between matchings and the Tutte matrix followed by a simple reduction from
cut-preserving sketches to the maximum matching problem. We believe that the simplicity
of this construction and its connection to dynamic sketches for the matching problem is of
independent interest and gives further insights into the structure of cut-preserving sketches.
Moreover, we prove an improved lower bound (in terms of C) of Ω(C/ logC) bits on the size
of any cut-preserving sketch; prior to our work, the best lower bound in terms of C is Ω(Cε)
for some small constant ε > 0 obtained by [18].

s-t edge-connectivity and s-t maximum flow. As it turns out, any cut preserving sketch
can be (almost directly) used to obtain a dynamic sketching scheme for the s-t edge-
connectivity problem. However, using our lower bound for cut-preserving sketches, the
resulting sketch size for edge-connectivity would be Ω(C/ logC), where C could be as large
as n (hence the sketch is not compact). To obtain a compact sketch for edge-connectivity,
we further design a dynamic sketching scheme which directly uses our dynamic sketching
scheme for matchings, and obtain compact sketches of size O(k4). We further establish that
cut-preserving sketches are, in fact, more related to the s-t maximum flow problem, in the
sense that progress on either upper bound or lower bound on size of dynamic sketches for
the s-t maximum flow problem immediately leads to better bounds for size of cut-preserving
sketches.

Minimum spanning tree. Finally, we present an O(k)-size dynamic sketch for the minimum
spanning tree (MST) problem. Our idea for creating a compact dynamic sketch for MST is
as follows. First of all, it is easy to see that if we add an edge to a graph, an MST of the
resulting graph can be created by adding the edge to an MST of the original graph. Hence,
it is sufficient to store an MST H of the original graph as a sketch. But this sketch is of
size Ω(n). We show that H can be compressed into a tree H ′ such that all leaf nodes are
terminals and there are at most O(k) internal nodes in this tree; moreover, for any query Q,
the weights of the MSTs in GQ and H ′Q are equal. Hence, H ′ can be stored as a dynamic
sketch. Due to the space constraints, the proof of this result is deferred entirely to the full
version of the paper [5] (see Section 5).

Organization. The rest of the paper is organized as follows. We first introduce our dynamic
sketching scheme for the maximum matching problem in Section 2 and prove its optimality in
terms of the sketch size. Then, in Section 3.1, we show how to use our sketching scheme for
the matching problem to construct a cut-preserving sketch. Next, we provide our improved
lower bound on the size of cut-preserving sketches in Section 3.2. We further establish the
connection between cut-preserving sketches and s-t edge-connectivity (and s-t maximum
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flow) and introduce a compact dynamic sketch for edge connectivity in Section 4. Finally,
we conclude the paper with some future directions in Section 5.

Notation. We denote by [n] the set {1, 2, . . . , n}. The bold-face upper-case letters represent
matrices. A matrix with a ‘tilde’ on top (e.g. M̃) denotes a symbolic matrix, i.e, a matrix
containing formal variables. For any prime p, Zp denotes the field of integers modulo p.

For any undirected graph G, we use ν(G) to denote the size of a maximum matching in
G. For any directed graph G(V,E), an edge e = (u, v) is directed from u to v, where we
say u is the tail and v is the head of e. For any vertex v ∈ V , d+(v) (resp. d−(v)) denotes
the number of outgoing (resp. incoming) edges of v. For a capacitated graph, c+(v) (resp.
c−(v)) denotes the total capacity of the outgoing (resp. incoming) edges of v. We assume all
the capacities are integers and can be stored in a single machine word of size O(logn).

2 The Maximum Matching Problem

In this section, we provide our results for the maximum matching problem. In particular, we
show that,

I Theorem 2. For any 0 < δ < 1, there exists a randomized k-dynamic sketching scheme
for the maximum matching problem with a sketch of size O(k2 log (1/δ)), which answers any
query correctly with probability at least 1− δ.

Furthermore, we prove that the sketch size obtained in Theorem 2 is tight (up to an
O(logn) factor). Formally,

I Theorem 3. For any k ≥ 2, any k-dynamic sketching scheme for the maximum matching
problem that answers any query correctly with probability at least 2/3, requires a dynamic
sketch of size Ω(k2) bits.

Our sketching scheme for the proof of Theorem 2 relies on an algebraic formulation for
the matching problem due to Tutte [29]. In the remainder of this section, we present this
algebraic formulation, state our sketching scheme for matchings and proves its correctness
and then present our lower bound result.

Algebraic formulation for the matching problem. The following matrix was first introduced
by Tutte [29].

I Definition 4 (Tutte matrix [29]). Suppose G(V,E) is an undirected graph. The Tutte
matrix of G is the following symbolic matrix M̃ of dimension n× n.

M̃i,j =


xi,j if (i, j) ∈ E and i < j

−xj,i if (i, j) ∈ E and i > j

0 otherwise

where the xi,j are distinct formal variables.

Lovász [21] established the following result for computing the size of a maximum matching
using Tutte matrix (see also [26] for more details on performing the computations over a
finite field).
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I Lemma 5 ([21, 26]). Let G be an undirected graph with n vertices and the maximum
matching size of ν(G). For any prime p > n, let Zp be the field of integers modulo p. Suppose
M̃ is the Tutte matrix of G and M is the matrix obtained by evaluating each variable in M̃
by a number chosen independently and uniformly at random from Zp; then:

Pr (rank(M) = 2ν(G)) ≥ 1− n

p

Note that the computation of rank(M) is also done over the field Zp.

2.1 An O(k2) size upper bound
In this section, we provide our k-dynamic sketching scheme for the maximum matching
problem and prove Theorem 2.

Notation. Suppose the input is an undirected graph G(V,E) with a set T = {q1, . . . , qk} of
k terminals. Let p be any prime of magnitude Θ(n/δ); we perform the algebraic computations
in the field Zp. Let M̃ be the Tutte matrix of the graph obtained by adding all edges between
the terminals to G, where the first k rows and k columns correspond to the vertices in T .
We decompose M̃ into four sub matrices Ã, B̃, C̃, and D̃ as follows:

M̃ =
[

Ãk×k B̃k×(n−k)
C̃(n−k)×k D̃(n−k)×(n−k)

]

Compression algorithm: The compression algorithm consists of 4 steps. Each of them
performs a simple algebraic manipulation on the Tutte matrix M̃.

Step 1. For each non-zero entry of M̃ that corresponds to an edge in G (i.e., not between
the terminals), assign an integer chosen uniformly at random from Zp. Denote the resulting
matrix by,

M̃1 =
[

Ãk×k Bk×(n−k)
C(n−k)×k D(n−k)×(n−k)

]
Note that except for Ã, all sub-matrices in M̃1 are no longer symbolic.

Step 2. Let r = rank(D). Use elementary row and column operations to change D into
a diagonal matrix diag(1, . . . , 1, 0, . . . , 0) with only r non-zero entries. Note that after this
process, matrices B and C would also change, but the symbolic matrix Ã remains unchanged.
We denote the matrix M̃1 after this process by,

M̃2 =

 Ãk×k Xk×r B′k×(n−k−r)
Yr×k Ir×r 0r×(n−k−r)

C′(n−k−r)×k 0(n−k−r)×r 0(n−k−r)×(n−k−r)


Step 3. Use the sub-matrix Ir×r in M̃2 to zero out the matrix X by elementary row
operations. Similarly, zero out Y by elementary column operations. Note that after this
process, the matrix Ã would be added by a linear combination of the rows in Y, denoted by
A′. Denote the resulting matrix by,

M̃3 =

Ãk×k + A′k×k 0k×r B′k×(n−k−r)
0r×k Ir×r 0

C′(n−k−r)×k 0 0
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Step 4. Consider the matrix B′ in M̃3; pick a maximal set of linearly independent columns
from B′ (if less than k columns are picked, arbitrarily pick from the remaining columns until
having picked k columns), denoted by B′′k×k. Do the same for the matrix C′ (but using
linearly independent rows) and create C′′k×k. Finally, pick k2 numbers from Zp, independently
and uniformly at random and form a matrix of dimension k × k, denoted by Â. Store the
value r (i.e., the rank of D), the matrix Â, and three k × k matrices A′, B′′ and C′′ as the
sketch.

Extraction algorithm: Given a query Q, create the matrix ÂQ from Â by zeroing out every
entry that corresponds to an edge not in Q. Evaluate Ã by ÂQ and obtain a (non-symbolic)
matrix A. Construct a matrix M̂ as follows,

M̂ =
[
Ak×k + A′k×k B′′k×k

C′′k×k 0k×k

]

Return
(
rank(M̂) + r

)
/2 as the maximum matching size.

We now prove the correctness of this scheme and show that it satisfies the bound given
in Theorem 2 and hence prove this theorem.

Proof of Theorem 2. Since the prime p is of magnitude Θ(n/δ), any number in Zp requires
O(log(n/δ)) = O(logn+ log(1/δ)) bits to store, which is at most O(log(1/δ)) machine words.
The compression algorithm stores a number r, which needs O(logn) bits, four matrices
of dimension k × k, where each entry is a number in Zp and requires O(log(1/δ)) space.
Therefore, the total sketch size is O(k2 log(1/δ)). We now prove the correctness.

We need to show that for each query Q, the extraction algorithm correctly outputs the
matching size with probability at least 1− δ. By Lemma 5,

Pr
(
rank(M) = 2ν(GQ)

)
≥ 1− n

p
≥ 1− δ

Here M is the (randomly evaluated) Tutte matrix of the graph obtained by applying the
query Q to G, i.e., GQ. Since the extraction algorithm outputs

(
rank(M̂) + r

)
/2 as the

matching size, it suffices for us to show that rank(M̂) + r = rank(M).
More specifically, the extraction algorithm evaluates Ã by assigning a (pre-selected)

random number to each entry that corresponds to an edge in Q, i.e, the matrix ÂQ. For
the sake of analysis, assume this is done before the compression algorithm is executed.
Then, at the first step of the compression algorithm, all entries of the matrices B,C,D are
randomly and independently evaluated. Combined with evaluating Ã by ÂQ, the resulting
matrix (denoted by M1) is obtained from randomly and independently evaluating every
non-zero entry of the Tutte matrix of the graph GQ. In other words, it suffices to show that
rank(M1) = rank(M̂) + r.

Since step 2 and step 3 only perform elementary row/column operations on the matrix,
the rank does not change. For the matrix M̃3 obtained after step 3, denote by M3 the
matrix after evaluating the Ã part in M̃3. M3 is non-symbolic and it suffices to prove that
rank(M3) = rank(M̂) + r. Note that after reordering rows and columns of M3, M3 can be
rewritten asAk×k + A′k×k B′k×(n−k−r) 0

C′(n−k−r)×k 0 0
0 0 Ir×r
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Therefore, the rank of M3 is equal to r plus the rank of the following sub-matrix of M3.

M4 =
[

Ak×k + A′k×k B′k×(n−k−r)
C′(n−k−r)×k 0

]

We now show that M4 has the same rank as M̂. Since the matrix C′′ (in step 4 of the
compression algorithm) contains a maximal set of linearly independent rows of C′, each
remaining row of C′ is a linear combination of the rows in C′′. Therefore, all remaining rows
in C′ can be zero-out using elementary row operations. Hence, the rank of M4 is equal to
the rank of the following matrix

M5 =

Ak×k + A′k×k B′k×(n−k−r)
C′′k×k 0

0(n−2k−r)×k 0


Similarly, using elementary column operations, the sub-matrix B′ in M5 can be made into
[B′′ 0k×(n−2k−r)] without changing the rank, and the resulting matrix has the same rank
as M̂. J

2.2 An Ω(k2) size lower bound
In this section, we prove an Ω(k2) bits lower bound on the sketch size of any k-dynamic
sketching scheme for the matching problem, which implies that our space upper bound in
Theorem 2 is tight (up to a logarithmic factor). We establish this lower bound by reducing
from the Membership problem studied in communication complexity defined as follows.

The Membership Problem

Input: Alice is given a set S ⊆ [N ] and Bob is given an element e∗ ∈ [N ].
Goal: Alice has to send a message to Bob such that Bob can determine whether e∗ ∈ S or
not.

It is well-known that in order for Bob to succeed with probability at least 2/3, Alice has
to send a message of size Ω(N) bits [1], where the probability is taken over the random coin
tosses of Alice and Bob.

Reduction. For simplicity, assume N is a perfect square. Given any S ⊆ [N ], Alice
constructs a graph G(V,E) with a set T of k terminals as follows:

The vertex set V = {u,w} ∪ V1 ∪ V2 ∪ V3 ∪ V4, where |Vi| =
√
N for any i ≤ 4 and

T = {u,w} ∪ V1 ∪ V4. We will use v(i)
j to denote the j-th vertex in Vi.

For any i ∈ [
√
N ], v(1)

i (resp. v(3)
i ) is connected to v(2)

i (resp. v(4)
i ); i.e, there is perfect

matching between V1 and V2 (resp. V3 and V4).
Fix a bijection σ : [N ] 7→ [

√
N ]× [

√
N ]; for any element e ∈ S with σ(e) = (i, j), v(2)

i is
connected to v(3)

j .
Note that in this construction, n = 4

√
N + 2 and k = 2

√
N + 2, and initially there is no edge

between the terminals.
Alice constructs this graph, run the compression algorithm of the dynamic sketching

scheme on it and sends the sketch to Bob. Let Q be the query in which, for σ(e∗) = (i, j),
u is connected to v(1)

i and v
(4)
j is connected to w. Bob queries the sketch with Q, finds
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the maximum matching size in GQ, and returns e∗ ∈ [S] iff the maximum matching size is
2
√
N + 1 in GQ.
The proof of the following lemma can be found in the full version [5] (Lemma 2.2).

I Lemma 6. ν(GQ) = 2
√
N + 1 if and only if e∗ ∈ S.

Theorem 3 now follows from Lemma 6, along with the lower bound of Ω(N) = Ω(k2) on
the communication complexity of the Membership problem.

3 Cut-Preserving Sketches

We establish a connection between k-dynamic sketching schemes for the maximum matching
problem and cut-preserving sketches. In particular, we use our dynamic sketching scheme
for the matching problem in Section 2 to design an exact cut-preserving sketch (i.e, an
information-theoretic vertex sparsifier) with size O(kC2), where C is the total capacity of
the edges incident on the terminals. This matches the best known upper bound on the space
requirement of cut-preserving sketches. We further provide an improved lower bound of
Ω(C/ logC) on the size of any cut-preserving sketch. Throughout this section, we will use
the term bipartition cut to refer to a cut between a bipartition of the terminals and the term
terminal cut to refer to a cut which separates two arbitrary disjoint subsets of terminals
(not necessarily a bipartition). With a slight abuse of notation, we refer to the value of
the minimum cut for a bipartition/terminal cut as the value of the bipartition/terminal cut
directly.

Before we present our results, we make a general remark about the property of all
cut-preserving sparsifiers (and sketches) that is also used crucially in our lower bound proof.
In [18], a generalized sparsifier is defined as a sparsifier that preserves the minimum cut
between all disjoint subsets of terminals, i.e, terminal cuts and not only bipartition cuts. The
authors then point out that their upper bound results, as well as the previous constructions
of cut sparsifiers in [12], also satisfy this general definition. The following simple claim gives
an explanation why all known cut sparsifiers satisfy this general definition.

I Claim 1. Suppose H is a cut sparsifier of the graph G(V,E) with terminals T that preserves
the value of all bipartition cuts. Then, H also preserves the value of all terminal cuts.

Proof. For any two disjoint subsets of terminals A,B ⊆ T , any cut separating A and B in
G must form a bipartition (S, S) of the terminals, and since H preserves the value of all
minimum cuts like (S, S), the (A,B) minimum cut value in H is also equal to the minimum
cut value in G. In the case that H is a cut-preserving sketch, the (A,B) minimum cut can
be answered by querying H with all bipartition cuts that separate (A,B), and outputting
the smallest value. J

3.1 An O(kC2) Size Cut-Preserving Sketch

In this section, we construct a cut-preserving sketch for any digraph G and a set of terminals
T . We achieve this by constructing an instance G′ of the maximum matching problem in
the dynamic sketching model and show that the value of any terminal cut (A,B) in G can
be computed using a carefully designed query for the maximum matching size in G′. Our
reduction is based on a classical result relating edge connectivity and bipartite matching due
to [13] (see also [28], Section 16.7).
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I Theorem 7. For any directed graph G with a set of k terminals, there is an exact cut-
preserving sketch that uses space O(kC2), where C is the total capacity of the edges incident
on the terminals.

Without loss of generality, we will replace each edge in G with capacity ce with ce parallel
edges and still denote the new graph with G. Consider the following cut-preserving sketch.

A cut-preserving sketch

Input: A graph G with m edges and a set T of terminals.
Compression: Construct a bipartite graph G′(L,R,E′) with terminals T ′ as follows
and create a dynamic sketch for the maximum matching problem for G′ and T ′.
a. For each edge e in G, create two vertices e− (in L) and e+ (in R).
b. For any terminal q in T and any outgoing (resp. incoming) edge e of q, create

a vertex q→e in R (resp. q←e in L). q→e (resp. q←e), along with e− (resp. e+),
belongs to the set T ′ of terminals in G′.

c. For each edge e in G, there is an edge between vertices e− and e+ in G′.
d. For any two edges e1 and e2 in G where the tail of e1 is the head of e2, there is an

edge between the vertices e+
1 and e−2 in G′.

Extraction: Given any two disjoint subsets A,B ⊆ T , let QA,B be the query where for
any terminal q in A (resp. in B) and any outgoing (resp. incoming) edge e of q, an
edge between the vertices q→e and e− (resp. q←e and e+) is inserted in G′.
Return ν(G′QA,B )−m, where ν(G′QA,B ) is the maximum matching size in G′QA,B .

The total number of terminals in G′ is 2C, and the total number of different A-B pairs
(i.e., the total number of different possible queries) is at most 3k. To ensure that every
query is answered correctly, by Theorem 2, the sketch size is O(kC2). We now prove the
correctness.

Proof. For any A,B ⊆ T , denote the value of the minimum A-B cut (which is equal to
the edge-connectivity from A to B), by c(A,B). Recall that for a graph G, ν(G) denotes
the maximum matching size in G. We prove that ν(G′QA,B )−m = c(A,B). Let M be the
matching in GQA,B where for each edge e in G, e− is matched with e+; hence |M | = m.

We first show that if c(A,B) = l, then M can be augmented by l vertex disjoint paths
and hence ν(G′QA,B ) ≥ m+ l. There are l edge-disjoint path P1, P2, . . . , Pl from A to B in
G. For each path Pi = (e1, e2, . . . , ej), where e1 starts with a terminal qa ∈ A and ej ends
with a terminal qb ∈ B, create a path P ′i = (qa

→e1 , e−1 , e
+
1 , e
−
2 , . . . , e

+
j , qb

←ej ) in G′QA,B . It
is straightforward to verify that the P ′i paths are valid vertex-disjoint paths in G′QA,B and
moreover, form disjoint augmenting paths of the matching M .

We now show that if the maximum matching M∗ in G′ is of size m+ l, then c(A,B) ≥ l.
The symmetric difference between M and M∗ forms a graph with l augmenting paths of the
matching M . Each augmenting path must start and end with a vertex of the form q→e or
q←e since they are the only vertices that are unmatched in M . Since every q→e is in R and
every q←e is in L, each augmenting path must start with a q→e vertex and ends with a q←e

vertex. Using the reversed transformation as in the previous case, the l augmenting paths
can be converted into l edge disjoint paths from A to B in G. J
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3.2 An Ω̃(C) Size Lower Bound
In this section, we provide a lower bound on the size of any cut-preserving sketch.

I Theorem 8. For any integer C > 0, any cut-preserving sketch for k-terminal undirected
graphs, where the total capacity of edges incident on the terminals is equal to C, requires
Ω(C/ logC) bits.

To prove this lower bound, we show how to encode a binary vector of length N :=
Ω(C/ logC) in an undirected graph G, so that given only a cut-preserving sketch for G, one
can recover any entry of this vector. Standard information-theoretical arguments (similar
to the lower bound for the Membership problem in Section 2) then imply that size of the
cut-preserving sketch has to be of size Ω(N) = Ω(C/ logC). We emphasize that while in the
proof we assume the cut-preserving sketch has to return the value of minimum cuts between
any subsets (A,B) of the terminals (even when they are not a bipartition), by Claim 1, this
is without loss of generality; hence, the lower bound holds also for cut-preserving sketches
that only guarantee to preserve minimum cuts for bipartitions.

Construction. Let k′ = k − 2. For simplicity, assume k′ is even, and let N =
(

k′
k′
2

)
. For any

N -dimensional binary vector v ∈ {0, 1}N , we define a graph Gv(V,E) as follows:

Vertices: The set of vertices of Gv is V = {s, t}∪{q1, . . . , qk′}∪{u1, . . . , uk′}∪{v1, . . . , vN}
and the k terminals are T = {s, q1, . . . , qk′ , t}.

Edges: Let S = {S1, . . . , SN} be a collection of all (k′/2)-size subsets of {q1, . . . , qk′}. The
set of edges are defined as:

For any i ∈ [k′], there is an edge (qi, ui) with capacity N .
For any i ∈ [k′], there is an edge (s, ui) with capacity N .
For any j ∈ [N ], there is an edge (vj , t) with capacity 1.
A vertex uj is connected to a vertex vi with an edge of capacity 1 iff vi = 1 or qj /∈ Si.
Additionally, if uj is connected to vi, there are two more edges f1 = (s, vi) and f2 = (uj , t)
each with capacity 1.
There is an edge (s, t) with capacity kN −m, where m is the number of edges between
{u1, . . . , uk′} and {v1, . . . , vN}.

To recover the vector v from a cut-preserving sketch of Gv, we will consider the terminal
cuts (A,B) where A = {s}∪Si for some Si ∈ S and B = {t}. We further denote the terminal
cut (A,B) corresponding to picking Si ∈ S in the part A by TC(Si). We define the output
profile of a graph Gv ∈ G to be an N -dimensional vector op(Gv) where the i-th entry of
op(Gv) is equal to the value of the terminal cut TC(Si). We show that there is a one-to-one
correspondence between the vector v and op(Gv).

I Lemma 9. Let 1 be the N -dimensional vector of all ones. There exists a value c independent
of v such that op(Gv) = v + c · 1.

Proof. Fix an i ∈ [N ] and consider TC(Si). We argue that the maximum flow value from
{s} ∪ Si to {t} is (k + 1)N − 1 + vi; the lemma then follows from the max-flow min-cut
duality and the choice of c = (k + 1)N − 1.

In Gv, we can first send a flow of size kN from s to t by sending one unit of flow along
every s→ vl → uj → t path for any edge of the form (uj , vl) (m units of flow in total) and
kN−m units of flow over the (s, t) edge. After this process, the residual graph of Gv becomes
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a directed graph where any edge of the form (uj , vl) is directed from uj to vl. Now consider
any vertex vp where p 6= i. There exists at least one terminal qj ∈ Si (in fact, in Si \ Sp),
such that there is an edge between uj and vp in Gv. Since in the residual graph of Gv, this
edge is directed from uj to vp, we can send one unit of flow over this edge also through the
path qj → uj → vp → t. Hence, in Gv, we can always send kN +N − 1 = (k+ 1)N − 1 units
of flow from {s} ∪ Si to {t}.

First suppose the i-th entry of v is equal to 1; then there is an edges from uj to vi for
any qj ∈ Si. In particular, we can send one extra unit of flow over one of these edges to t,
hence having a flow of size (k+ 1)N entering t. Since the total capacity of the edges incident
on t is (k + 1)N , this ensures that the max-flow is also (k + 1)N .

Now suppose the i-th entry of v is equal to 0. For the vertex vi, by construction, there is
no edge from any uj to vi, where qj ∈ Si. Hence in the residual graph of Gv, there is no
path from {s} ∪Si to {t}, meaning that the maximum flow in this case is (k+ 1)N − 1. This
completes the proof. J

Proof of Theorem 8. Lemma 9 ensures that for any graph Gv, there is a one-to-one cor-
respondence between the value of i-th entry in v and i-th entry in op(Gv). Assuming that
the cut-preserving sketch is able to answer each terminal cut (deterministically or even
with a sufficiently small constant probability of error), we can recover i-th bit of vi, from
the i-th index in op(Gv) with a constant probability. Standard information-theoretical
arguments imply that the size of the cut-preserving has to be Ω(N). Moreover, since
N = 2Ω(k) = Ω(C/k) = Ω(C/ logC) in this construction, we obtain the final bound of
Ω(C/ logC) bits on the sketch size. J

We should point out for the case of randomized cut-preserving sketches that are only
guaranteed to have a constant probability of failure over bipartition cuts (and not necessarily
terminal cuts), we first need to reduce the probability of error to 2−k before performing the
described construction (and applying Claim 1) which results in a lower bound of Ω(C/ log2 C).

We further point out that, as a corollary of Theorem 8, we also obtain a simple proof for
a lower bound of 2Ω(k) on size of cut-preserving sketches (see [18, 15]).

4 The s-t Edge-Connectivity Problem

In this section, we study dynamic sketching for the s-t edge-connectivity problem. As it
turns out, any cut-preserving sketch can be directly adapted to a dynamic sketching scheme
for the s-t edge-connectivity problem as follows. Given a graph G with a set T of k terminals
and two designated vertices s and t, create a cut-preserving sketch for G with terminals
T ∪ {s, t}. Note that given a query Q (i.e., a set of edges among T ), the s-t minimum cut
(which is equal to the s-t edge-connectivity) will partition T ∪ {s, t} into two sets Ts and Tt,
where Ts contains s and Tt contains t. Hence, the minimum cut from Ts to Tt is equal to the
minimum cut from s to t. The cut-preserving sketch can answer the minimum cut from Ts to
Tt in the original graph, and the additional cut value caused by the query is simply the total
number of the edges from Ts to Tt. Therefore, if we enumerate all possible partitions of the
terminals that separate s and t, and compute the minimum cut for each partition as above,
the smallest minimum cut among those partitions is equal to the minimum cut from s to t.

Nevertheless, by our lower bound on the size of cut-preserving sketches (Theorem 8),
a dynamic sketching scheme constructed as above, will have a linear dependency on the
total degree of the vertices in T ∪ {s, t}, which could be as large as the number of vertices
in the graph. To resolve this issue, we propose a scheme which directly uses our dynamic
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sketching scheme for the maximum matching problem and achieve a sketch of size O(k4).
The reduction is in the same spirit as the one we used for cut-preserving sketches. But note
that the main differences is that unlike the case for cut-preserving sketches, in the dynamic
sketching problem the set of edges in the original graph changes which require additional
care.

I Theorem 10. For any δ > 0, there exists a randomized k-dynamic sketching scheme for
the s-t edge-connectivity problem with a sketch of size O(k4 log(1/δ)), which answers any
query correctly with probability at least 1− δ.

Given a digraph G with two designated vertices s and t, along with a set of T terminals,
recall that, for the query Q∀ where an edge is inserted between each (ordered) pair of
terminals, GQ∀ denotes the graph after applying the query Q∀ to G. Assume s does not
have any incoming edge and t does not have any outgoing edge, since removing them will
not affect the s-t edge-connectivity. We further assume that s are t are not terminals. This
is without loss of generality since we can create two vertices s′ and t′ that are not terminals,
while adding d+(s) (resp. d−(t)) new vertices and for each of these vertices v, adding an
edge from s′ to v and v to s (resp. t to v and v to t′). In this new graph, the s′-t′ edge
connectivity is equal to the s-t edge-connectivity in G and s′, t′ are not terminals. Consider
the following dynamic sketching scheme.

A dynamic sketching scheme for the s-t edge-connectivity problem

Input: A graph G with m edges, two designated vertices s and t, and a set T of k
terminals.
Compression: Construct a bipartite graph G′(L,R,E′) with a set T ′ of terminals as
follows and create a dynamic sketch for the maximum matching problem for G′ and
T ′.
a. For each edge e in GQ∀ , if e starts with s, create a vertex e+ (in R), if e ends with

t create a vertex e− (in L), otherwise, create two vertices e+ (in R) and e− (in L).
b. For each edge e between two terminals in G, create two vertices ê+ and ê−; ê− and

ê+, along with e− and e+, are terminals of G′.
c. For each edge e in G where both e− and e+ exist, there is an edge between e− and

e+.
d. For any two edges e1 and e2 in GQ∀ where the tail of e1 is the head of e2, there is

an edge between e+
1 and e−2 .

Extraction: Given any query Q of G, let Q′ be the query of G′ where
a. For each edge e in Q, insert an edge between e− and e+.
b. For each edge e in Q∀ \Q, insert an edge between e− and ê+, and between e+ and

ê−.
c. Let the maximum matching size of G′Q′ be ν. Output ν − (m+ 2k2 − |Q|).

The total number of terminals in G′ is 4k2. Hence by Theorem 2, the sketch size is
O(k4 log(1/δ)). The correctness of the reduction is similar in spirit to the proof of Theorem 7
and is deferred to the full version [5] (see Section 4.1).

We conclude this section by remarking that there exists an equivalence between dynamic
sketching the capacitated version of the s-t edge connectivity problem (i.e., the s-t maximum
flow problem) and cut-preserving sketches. In particular,
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I Theorem 11. Any cut-preserving sketch can be adapted to a dynamic sketching scheme
for the s-t maximum flow problem while increasing the number of terminals by at most 2,
and vice versa.

The proof of this theorem together with a detailed discussion on the similarity of the
s-t maximum flow problem and cut-preserving sketches is provided in Section 4.2 of the
full version of the paper [5]. However, we point out here that Theorem 11 combined with
Theorem 8, proves a similar 2Ω(k) lower bound on size of dynamic sketches for the s-t
maximum flow problem. In other words, this problem does not admit a compact dynamic
sketch.

5 Conclusions

In this paper we have introduced dynamic sketching, a new approach for compressing data
sets separated into static and dynamic parts. We studied dynamic sketching for graph
problems where the dynamic part consists of k vertices and the edges between them may
get modified in an arbitrary manner (a query). We showed that the maximum matching
problem admits a sketch of size O(k2) and the space bound is tight. Moreover, this sketch
can be used to obtain cut-preserving sketches of size O(kC2), and dynamic sketches for s-t
edge-connectivity of size O(k4).

There are problems (even in P) for which any dynamic sketch requires 2Ω(k) space. An
interesting direction for future work is to identify broad classes of problems that admit
compact dynamic sketches, i.e, sketches of size poly(k).

Some data compression schemes (most notably, cut sparsifiers and kernelization results)
generate as compressed representation an instance of the original problem, while the sketches
we introduced do not fall into this category. A natural question is to understand if there
exist polynomial-size “sparsifier-like” compressed representations for matchings and s-t edge
connectivity in the dynamic sketching model.

Finally, while our work narrows the gap between upper and lower bounds on the size of
a cut-preserving sketches, it remains an intriguing open question to get an asymptotically
tight bound on the size of cut-preserving sketches.

Acknowledgments. We are grateful to Chandra Chekuri and Michael Saks for helpful
discussions.
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