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Abstract
We study the problem of counting the number of nodes in a slotted-time communication network,
under the challenging assumption that nodes do not have identifiers and the network topology
changes frequently. That is, for each time slot links among nodes can change arbitrarily provided
that the network is always connected.

This network model has been motivated by the ongoing development of new communication
technologies that enable the deployment of a massive number of devices with highly dynamic
connectivity patterns. Tolerating dynamic topologies is clearly crucial in face of mobility and
unreliable communication. Current communication networks do have node identifiers though.
Nevertheless, in future massive networks, it might be suitable to avoid nodes IDs to facilitate mass
production. Consequently, knowing what is the cost of anonymity is of paramount importance
to understand what is feasible or not for future generations of Dynamic Networks.

Counting is a fundamental task in distributed computing since knowing the size of the system
often facilitates the desing of solutions for more complex problems. Also, the size of the system
is usually used to decide termination in distributed algorithms. Currently, the best upper bound
proved on the running time to compute the exact network size is double-exponential. However,
only linear complexity lower bounds are known, leaving open the question of whether efficient
Counting protocols for Anonymous Dynamic Networks exist or not.

In this paper we make a significant step towards answering this question by presenting a
distributed Counting protocol for Anonymous Dynamic Networks which has exponential time
complexity. This algorithm, which we call Incremental Counting, ensures that eventually
every node knows the exact size of the system and stops executing the protocol. Previous
Counting protocols have either double-exponential time complexity, or they are exponential but
do not terminate, or terminate but do not provide running-time guarantees, or guarantee only an
exponential upper bound on the network size. Other protocols are heuristic and do not guarantee
the correct count.
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1 Introduction

We study the problem of Counting the number of nodes in a communication network, under
the challenging assumption that nodes do not have identifiers (IDs) and the network topology
changes frequently. We consider broadcast networks in slotted-time scenarios. That is, in any
given time slot, a message sent by a given node is received by all nodes directly connected
to it (one-hop neighbors). Worst-case topology changes are modeled assuming the presence
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of an adversary that, for each time slot, chooses the set of links among nodes. The choice
is arbitrary as long as, in each time slot, the network is connected. This dynamic topology
model, called 1-interval connectivity, was introduced in [10] for Dynamic Networks where
each node has a unique identifier.

The network model described, called Anonymous Dynamic Network, has attracted a lot of
attention recently [12, 4, 5, 6]. The model has been motivated by the ongoing development of
new communication technologies that enable the deployment of a massive number of devices
with highly dynamic connectivity patterns. Tolerating dynamic topologies is clearly crucial
in face of mobility and unreliable communication. Current communication networks do have
node IDs (or otherwise a labeling is defined at startup). Nevertheless, in future massive
networks, it might be suitable to avoid nodes IDs to facilitate mass production. Consequently,
knowing what is the cost of anonymity is of paramount importance to understand what is
feasible or not for future generations of Dynamic Networks.

Counting is a fundamental distributed computing problem since knowing the size of the
system facilitates the solution of more complex problems. Also this parameter is usually
used to ensure the termination of the algorithm.

Counting can be solved in Anonymous Dynamic Networks, but the best known upper
bound on the time complexity is double-exponential [4]. A double-exponential running time
precludes the application of such algorithm to networks of significant size, but only linear
lower bounds are known. Such a large gap leaves open the question of whether practical
protocols exist or not.

The protocol presented in this paper makes a significant step towards answering the latter
question, reducing the time complexity for exact Counting to exponential. Our algorithm,
which we call Incremental Counting, ensures that there is a time slot when all nodes
know the exact size of the system and they stop executing the algorithm. All nodes stop at
the same round and this is known by every node. Thus it is easy to concatenate another
algorithm which uses the system size.

Previous Counting protocols for Anonymous Dynamic Networks have either double-
exponential time complexity [4], or they are exponential but do not terminate [4], or
terminate but do not provide running-time guarantees [5], or guarantee only an exponential
upper bound on the network size [12]. Other protocols are heuristic and do not guarantee
the correct count [6].

All current Counting protocols for Anonymous Dynamic Networks [5, 12, 4, 6] assume
the presence of one distinguished node, usually called leader, and additionally use some
knowledge of the number of neighbors of each node, called degree. In our model, we include
both assumptions. Namely, the presence of a leader node, and an upper bound on the
maximum degree of the adversarial topology which is known by all nodes. While these
assumptions may seem too strong it was proved in [12] that Counting is not solvable in
Anonymous Networks without the presence of a leader, even if the topology does not change.
In the same work, it was conjectured that any non-trivial computation is impossible without
knowledge of some network characteristics.

Incremental Counting is inspired by the algorithm presented by Di Luna et al. in [4],
which starts computing an upper bound on the network size using the algorithm presented
in [12]. Then, it verifies each candidate size down to the correct size. To verify each candidate
size, an energy-transfer approach is used. Namely, each non-leader node is initially assigned
a unit of energy which is shared evenly with neighbors in each communication round, except
for the leader that works as a sink. This energy-transfer protocol is a backwards version
of mass-distribution and gossip-based algorithms [9, 1, 8] used to compute the size in other
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network models. The unit mass initially held in only one node in the latter system is shared
throughout the network, converging to the average which is the inverse of the size. The
energy-transfer protocol is shown to be at most exponential in the candidate size which in
turn is exponential in the worst case, yielding a double-exponential Counting protocol.

Starting with an upper bound on the size of the system (as in previous works) facilitates
the verification phase, because it tells the leader after how many rounds it has “heard” (i.e.
received any needed information) from all the nodes. Unfortunately, it is not known how to
obtain an upper bound better than exponential, and if an upper bound is not known, the
challenge is to understand which is the condition the leader has to check to know that all
nodes have been heard.

In this paper, Incremental Counting leverages the above idea of verifying candidate
sizes using an energy-transfer protocol, but rather than starting with an upper bound, it
follows a bottom-up approach. That is, it verifies 2, 3, . . . , etc. up to the actual size. Then,
an energy threshold is carefully chosen to decide when the count is accurate. This novel
approach yields an exponential speedup in the worst-case running-time guarantees.

The running time proved also identifies the collection of energy at the leader as the speedup
bottleneck for gossip-based Counting, given that all other factors in the time complexity
obtained are polynomial. In contrast, in the running time of other exact Counting protocols
that terminate, all factors are exponential or double exponential [4], or the running time is
not proved [5].

Contributions

In the following we summarize the main contributions of our work.
Following-up on the Conscious Counting protocol of [4], we present an improved Incre-
mental Counting protocol for Anonymous Dynamic Networks that computes the exact
number of nodes in less than (2∆)n+1(n+ 1) ln(n+ 1)/ ln(2∆) communication rounds,
where n is the number of nodes and ∆ is any upper bound on the maximum number of
neighbors that any node will ever have. Incremental Counting tolerates worst-case
changes of topology, limited to 1-interval connectivity. The protocol requires the presence
of one leader node and knowledge of ∆.
The running time of Incremental Counting entails an exponential speedup over
the previous best Counting algorithm in [4], which was proved to run in O(e(∆2n)∆3n)
communication rounds, which is double-exponential. The speedup attained is mainly due
to a carefully chosen energy threshold used to verify candidate sizes that are not bigger
than the actual size. Our analysis shows the correctness of such verification.
The time complexity proved identifies the phase where the leader collects energy from
all other nodes as the speedup bottleneck for Counting with gossip-based protocols.
Indeed, the exponential cost is due to this collection, whereas all other terms in the
time complexity are polynomial. In contrast, in the running time of [4] all terms are
exponential or double exponential.

Roadmap

The rest of the paper is organized as follows. In Section 2 we briefly overview previous work
directly related to this paper. After formally defining the model and the problem in Section 3,
we present the Incremental Counting protocol in Section 4 and its analysis in Section 5.
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2 Related Work

The following is an overview of previous work on Counting in Anonymous Dynamic Networks
directly related to this paper. Other related work may be found in a survey on Dynamic
Networks and Time-varying Graphs by Casteigts et al. [3], and in the papers cited below.

Worst-case topology changes in Dynamic Networks may be limited assuming that the
network is always connected (cf. [12, 10, 14, 4]), or sometimes disconnected but for some
limited time (cf. [2, 15, 7, 13]). The T -interval connectivity model was introduced in [10].
For T ≥ 1, a network is said to be T -interval connected if for every T consecutive rounds
the network topology contains a stable connected subgraph spanning all nodes. In the
same paper, a Counting protocol was presented, but it requires each node to have a unique
identifier. In [10] it is also proved that, if no restriction on the size of the messages is required,
the counting problem can be easily solved in O(n) time when nodes have IDs. In our work,
we focus on Anonymous Dynamic Networks. Understanding if a linear counting algorithm
exists also when IDs are not available will help to understand the difficulty introduced by
anonymity (if any).

A Counting protocol for Anonymous Dynamic Networks where an upper bound ∆ on the
maximum degree is known was presented in [12]. The adversarial topology is limited only to
1-interval connectivity, but the algorithm obtains only an upper bound on the size of the
network n, which in the worst case is exponential, namely O(∆n). In our work, we aim to
obtain an exact count, rather than only an upper bound.

The Conscious Counting algorithm presented later in [4] does obtain the exact count for
the same network model, but requires knowledge of an initial upper bound K on the size of
the network. Conscious Counting would be exponential if such upper bound were tight, since
it runs in O(eK2

K3) communication rounds. However, K is obtained using the algorithm
in [12] mentioned above. Consequently, in the worst case the overall running time of the
Conscious Counting Algorithm is O(e(∆2n)∆3n), which is double-exponential. In our work,
we obtain the exact count in exponential time. That is, we reduce exponentially the best
known upper bound for exact Counting.

Anonymous Dynamic Networks where an upper bound on the maximum degree is not
known where also studied [4, 5, 6]. In [4], the protocol does not have a termination condition.
That is, nodes running the protocol do not know whether the correct count has been reached
or not. Hence, they have to continue running the protocol forever. In a companion paper [6],
the authors stop the protocol heuristically. Hence, the count obtained is not guaranteed to be
correct. Indeed, errors appear when the conductance of the underlying connectivity graph is
low. In our work, we aim for Counting algorithms that terminate returning always the correct
count. The protocol in [5] is shown to eventually terminate, although the running time is not
proved. In their model, it is assumed that each node is equipped with an oracle that provides
an estimation of its degree at each round. This is still an assumption of knowledge of network
characteristics, although local. This and the above shortcomings are not unexpected in light
of the conjecture in [12], which states that Counting (actually, any non-trivial computations)
in Anonymous Dynamic Networks without knowledge of some network characteristics is
impossible. Nevertheless, a proof of such conjecture has not been found yet.

Known lower bounds for Counting in Anonymous Dynamic Networks include only the
trivial Ω(D), where D is the dynamic diameter of the network, and Ω(logn) 1 even if D is
constant, proved in [11].

1 Throughout the paper, log means logarithm base 2, unless otherwise stated.
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3 Preliminaries

3.1 The Counting Problem
An algorithm is said to solve the Counting problem if whenever it is executed in a Dynamic
Network comprising n nodes, all nodes eventually terminate and output n.

3.2 The Anonymous Dynamic Network Model
We consider a synchronous Dynamic Network composed of a fixed set of nodes V where
|V | = n. Nodes have no identifiers (IDs) or labels. We also assume the presence of a special
node called the leader and denoted `.

Nodes communicate by broadcast. In particular, communication proceeds in synchronous
rounds. At each round a node broadcasts a message to its neighbors and simultaneously
receives the messages broadcast in the same round by its neighbors (if any), then it makes
some local computation. The time of computation is negligible. Thus, we compute the time
complexity in rounds of communication.

At each round the set of communication links changes adversarially. Thus, the network is
modeled as a dynamic graph G = (V,E) where E : N→ {(u, v)s.t.(u, v) ∈ V } is a function
mapping a round number r to a set of undirected edges E(r). In particular, we consider the
following 1-interval connectivity model proposed by Kuhn et al. in [10].

I Definition 1. A dynamic graph G = (V,E) is 1-interval connected if for all r ∈ N, the
static graph Gr := (V,E(r)) is connected.

Finally, we assume that the size of the neighborhood of a node is upper bounded by a
number ∆ > 0 at every round, and we assume that ∆ is known by the nodes.

At a first glance, some knowledge of the degree seems unnecessary because, after one
message from each neighbor has been received in a given round, the degree is simply the
message count. However, for the next round of communication, the degree may change due
to changing topology. Thus, a node does not know its current degree before sending messages
to its neighbors.

4 Distributed Counting Algorithm

Incremental Counting consists of a sequence of iterations. In each iteration, a candidate
size is checked to decide if it is correct. If not, the candidate size is increased and a new
iteration starts. In the following, we provide a high level explanation of the algorithm
executed in each iteration.

At the beginning of each iteration every node is assigned energy value 1, except for
the leader which has 0 energy. Then, the iteration proceeds in three consecutive phases
described below. Each phase lasts a fixed amount of rounds which only depends on the
current estimation of the system size. This is intended to synchronize the computation at all
the nodes in the system without extra communication.

During the first phase, called the Collection Phase, each node discharges itself by sending
at each round a fraction at most half of its current energy to its neighbors. Then it computes
its new energy by taking into account the energy given to its neighbors and the energy
received from them. The leader acts as a sink collecting energy but not disseminating it.
This phase completes when the leader has received an amount of energy such that, if the
candidate size for the current iteration is the correct system size n, there is no node in the
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system with more than 1/kc residual energy, for some constant c > 1. The function τ(k)
in Algorithms 1 and 2 gives the number of iterations of the Collection Phase needed to
guarantee this. An exponential upper bound on τ(k) is computed in Corollary 7. However,
the bound may not be tight, so τ(k) is left as a parameter in the protocol. Should a better
bound on τ(k) be proved, the protocol can be used as is.

Then, the Verification Phase starts. During this phase, the energy at each node does not
change and the leader verifies the correctness of the current candidate size looking for a node
with residual energy greater than 1/kc. To this aim at each round of the Verification phase
each non leader node broadcasts the maximal energy it has “heard” during this phase. At
the beginning each such node broadcasts its own residual energy. This phase lasts sufficiently
long to ensure that if a node with residual energy greater than 1/kc exists, then the leader
will hear from it. If the leader does not hear from such node, it knows that the candidate
size was indeed correct, and the verification phase completes successfully.

The last phase, called Notification Phase, is used by the leader when the verification
phase completes successfully. To notify such event, the leader broadcasts a special 〈Halt〉
message, and each node in turn broadcasts it as soon as it is received and as long as the
Notification Phase is not completed. If the Verification Phase completes unsuccessfully, the
leader and every other node simply wait for the same number of rounds of communication
without taking any action, and then all the nodes start a new iteration. This procedure
ensures synchronism. A node stops executing the algorithm at the end of the Notification
phase if it has received the 〈Halt〉 message. At this time every node knows the exact size of
the system.

The Incremental Counting protocol for the leader and non-leader nodes is detailed
in Algorithms 1 and 2.

PseudoCode

Variables at the leader node
e` is the energy of the leader at the current round. It is initialized to 0 at the beginning
of each iteration.
k is the estimation of the system size. Initially equal to 1 and increased by one in each
iteration.
1/kc is a threshold value for the energy such that, for a given estimate k, if k is the
correct size of the system, after the Collection Phase no node has energy greater than
1/kc for some constant c > 1.
IsCorrect, initially true is set to false if the leader discovers that its estimate k is wrong.
This happens if the value of e` > k− 1 at the end of the Collection phase or if during the
Verification phase the leader discovers a node with energy greater than 1/kc.
halt, initially false is set to true when the leader verifies that k is the correct size of the
system.

Variables at non leader nodes
e is the energy of the node at the current round. It is initialized to 1 at the beginning of
each iteration.
k is the estimation of the system size. Initially equal to 1 and increased by one in each
iteration.
emax, is the maximum energy the node is aware of at the current round of the Verification
Phase.
halt, initially false, is set to true when the node receives a 〈Halt〉 message.
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Algorithm 1: Incremental Counting algorithm for the leader node.
1 k ← 1
2 halt← false

3 while ¬halt do
4 k ← k + 1
5 IsCorrect← true

6 e` ← 0
// Collection Phase

7 for each of τ(k) communication rounds do
8 receive e1, e2, . . . es from neighbors, where 1 ≤ s ≤ ∆
9 e` ← e` + e1 + e2 + . . .+ es

// Verification Phase

10 for each of 1 +
⌈

k
1−1/kc

⌉
communication rounds do

11 receive e1, e2, . . . es from neighbors, where 1 ≤ s ≤ ∆
12 if k − 1− 1/kc ≤ e` ≤ k − 1 then
13 for j := 1 . . . s do
14 if ej > 1/kc then
15 IsCorrect← false

16 else
17 IsCorrect← false

// Notification Phase
18 for each of k communication rounds do
19 if IsCorrect then
20 broadcast 〈Halt〉
21 halt← true

22 else
23 do nothing

24 output k

5 Analysis

The following notation will be used. The energy of node i at the beginning of round r, is
denoted as eri , which is also generalized to any set of nodes S ⊆ V as erS =

∑
i∈S e

r
i . For any

given round r and node i, let the set of neighbors of i be Nr
i and the average energy of i’s

neighbors be eNr
i
. The superindex indicating the round number will be omitted when clear

from context or irrelevant. Also, at any time, let
∑
i∈V ei be called the system energy and∑

i∈V \{`} ei be called the energy left. At the beginning of each iteration of the protocol, that
is, for each new size estimate k, the energy of the leader is reset to zero and the energy of the
non-leader nodes is reset to 1. Thus, the system energy is

∑
i∈V ei = n− 1 and the energy

left is
∑
i∈V \{`} ei = n− 1.

I Lemma 2. For any network of n nodes, including a leader `, running the Incremental
Counting Protocol under the communication and connectivity models defined the following
holds. For any given node i ∈ V \ {`} and for any given round r of the Collection Phase, it
is eri ≤ 1.
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Algorithm 2: Incremental Counting algorithm for non-leader nodes.
1 k ← 1
2 halt← false

3 while ¬halt do
4 k ← k + 1
5 e← 1

// Collection Phase
6 for each of τ(k) communication rounds do
7 broadcast 〈 e2∆ 〉 and receive e1, e2, . . . es from neighbors, where 1 ≤ s ≤ ∆
8 e← e · (1− s

2∆ ) +
∑s
j=1 ej

// Verification Phase
9 emax ← e

10 for each of
⌈
1 + k

1−1/kc

⌉
communication rounds do

11 broadcast 〈emax〉 and receive e1, e2, . . . es from neighbors, where 1 ≤ s ≤ ∆
12 for j := 1 . . . s do
13 if ej > emax then
14 emax ← ej

// Notification Phase
15 for each of k communication rounds do
16 if halt then
17 broadcast 〈Halt〉
18 if receive 〈Halt〉 from some neighbor
19 then
20 halt← true

21 output k

Proof. Fix some arbitrary (non-leader) node i. Consider the transition between round r and
r + 1. We have that

er+1
i ≤ eri + eNr

i

|Nr
i |

2∆ − eri
|Nr

i |
2∆ = eri + (eNr

i
− eri )

|Nr
i |

2∆ .

If eNr
i
≤ eri , then er+1

i ≤ eri . That is, i’s energy does not increase from round r to round
r + 1. If on the other hand it is eNr

i
> eri , we have

er+1
i ≤ eri + (eNr

i
− eri )/2 = (eri + eNr

i
)/2.

That is, the energy of i in round r + 1 is at most the average between the energy of i in
round r and the average of i’s neighbors’ energy in round r.

Now consider the evolution of the protocol along many rounds. We ignore the rounds
when eNr

i
≤ eri since they do not increase the energy. For the other rounds, given that all

nodes start with energy 1, and that the average of some numbers cannot be bigger than
the maximum, the energy at any given node cannot get bigger than 1. Hence, the claim
follows. J

I Lemma 3. For any network of n nodes, under the communication and connectivity models
defined, the following holds. If a message m is held by all nodes in a set V1 ⊆ V , after
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|V | − |V1| rounds when every node holding the message broadcasts m in each round, all nodes
in V hold the message.

Proof. For any round r > 0, consider the partition of nodes {V r1 , V r2 } defined by the nodes
holding the message at the beginning of round r. That is, ∀i ∈ V r1 the node i holds m and
∀j ∈ V r2 the node j does not hold m. By 1-interval connectivity, there must exist a link u, v,
such that u ∈ V r1 and v ∈ V r2 . Given that all nodes holding the message broadcast m, v must
receive the message in round r. Thus, at the beginning of round r + 1 it is |V r+1

1 | ≥ |V r1 |+ 1
and |V r+1

2 | ≤ |V r2 | − 1. Applying the same argument inductively, after |V r+1
2 | more rounds

all nodes hold the message. J

The following lemma is a straightforward application of Lemma 3 to the Notification
Phase, where the message broadcasted is 〈Halt〉 for the first time when k = n.

I Lemma 4 (Correctness of the Notification Phase). For any network of n nodes, including
a leader `, running the Incremental Counting Protocol under the communication and
connectivity models defined the following holds. If at the end of the Verification Phase
IsCorrect = true, then at the end of the Notification Phase all nodes stop the Counting
Protocol holding the size n.

I Lemma 5 (Correctness of the Verification Phase). For any network of n > 3 nodes, including
a leader `, running the Incremental Counting Protocol under the communication and
connectivity models defined the following holds. For any estimate of the size of the network
k and constant c > 1, at the end of the Verification Phase IsCorrect = true if and only if
k = n.

Proof. We start observing that, for each estimate k, each non-leader node is initialized with
one unit of energy (Line 5 in Algorithm 2) and the leader’s energy is initialized to 0 (Line 6
in Algorithm 1). Until a new iteration of the outer loop (in both algorithms) is executed, no
energy is lost or gained by the system as a whole. Hence, the system energy is always n− 1.

We prove first that, if k = n, at the end of the Verification Phase it is IsCorrect = true.
Given that k = n, the system energy is k−1 and therefore e` ≤ k−1. Also because k = n, we
know that after the Collection Phase it is e` ≥ k − 1− 1/kc by definition of τ(k). Therefore,
IsCorrect is not set to false in Line 17 of Algorithm 1. Also because e` ≥ k− 1− 1/kc at the
end of the Collection Phase, we know that the energy left at the beginning of the Verification
Phase is eV \{`} = k − 1− e` ≤ 1/kc. Therefore, no non-leader node could have more than
that energy. That is, ∀i ∈ V \ {`} : ei ≤ 1/kc. Thus, during the Verification Phase, the
leader will not be able to detect a node with energy bigger than 1/kc. Therefore, IsCorrect
is not set to false in Line 15 of Algorithm 1 either. There is no other line where IsCorrect is
set to false. Hence, at the end of the Verification Phase it is IsCorrect = true.

We prove now the other direction of the implication. That is, if at the end of the
Verification Phase IsCorrect = true, then it is k = n. For the sake of contradiction, assume
that IsCorrect = true but k 6= n. Notice that k cannot be larger than n, because the estimate
is increased one by one, we already proved that if k = n at the end of the Verification Phase
it is IsCorrect = true, and Lemma 4 shows that all nodes would have stopped running the
protocol. Thus, we are left with the case when k < n.

Notice that if e` > k − 1 the variable IsCorrect is set to false in Line 17 of Algorithm 1.
Hence, it must be e` ≤ k − 1 and, given that the system energy is n− 1, the energy left is
eV \{`} ≥ n− k. This energy left is stored in the n− 1 non-leader nodes. Hence, there must
exist some node j ∈ V \{`} in the network such that ej ≥ (n−k)/(n−1). If IsCorrect = true

it means that the leader did not detect a node with energy bigger than 1/kc in Line 14 of
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Algorithm 1. However, for any 2 ≤ k ≤ n− 1, n > 3, and c > 1, it is 1/kc < (n− k)/(n− 1)
which means that such node must exist.

To see why the latter inequality is true, we verify that kc(n− k)− n+ 1 > 0 as follows.
With respect to k, this function has a maximum for k = cn/(c+1). That is, for 2 ≤ k ≤ n−1
(recall that we are in the case k < n), the function has minima in 2 and n− 1. Then, it is
enough to verify that 2c(n− 2)− n+ 1 > 0, which is true for any c > 1 and n > 3, and that
(n− 1)c − n+ 1 > 0, which is also true for any c > 1 and n ≥ 2.

Thus, to complete the proof, it is enough to show that 1 + kc+1/(kc − 1) rounds are
enough to detect a node with energy bigger than 1/kc. To do that, we upper bound the
number of nodes in the network with energy at most 1/kc as follows. We know that at any
time when the leader has energy e`, the energy left is n− 1− e`. Let S ⊆ V be the set of
nodes with energy at most 1/kc. Then, we have that n − 1 − e` =

∑
j∈S ej +

∑
k∈V \S ek.

To maximize the size of S, we minimize the size of V \ S assuming that all nodes in
V \ S have maximum energy, which according to Lemma 2 is at most 1. Then, we have
that n − 1 − e` =

∑
j∈S ej + (n − |S|) which yields |S| − 1 − e` =

∑
j∈S ej Given that∑

j∈S ej ≤ |S|/kc, we have that |S| ≤ (1 + e`)/(1− 1/kc). Recall that e` ≤ k − 1 because
IsCorrect would have been set to false in Line 17 of Algorithm 1 otherwise. Replacing, we
get |S| ≤ kc+1/(kc − 1).

Let {V1, V2} be a partition of V such that V2 = S ∪ {`}. Recall that, for any v ∈ V1
it is ev > 1/kc. Using Lemma 3, we know that |V2| = 1 + kc+1/(kc − 1) iterations in the
Verification Phase of Algorithm 1 are enough for the leader to detect that there is a node
with energy larger than 1/kc, which contradicts our assumption that IsCorrect = true. J

The following theorem establishes our main result.

I Theorem 6. For any anonymous dynamic network of n > 3 nodes, including a leader `,
and for any constant c > log 5, the following holds. If the adversarial topology is limited by a
maximum degree ∆ and the connectivity model defined, and nodes run the Incremental
Counting Protocol in Algorithms 1 and 2 under the communication model defined, after r
rounds, all nodes stop holding the size of the network n, where

r < n(n+ 3) + lnn− 4 +
n∑
k=2

τ(k).

Where τ(k) is a function such that, if k = n and the Collection Phase is executed for at least
τ(k) rounds, then at the end of the phase the leader has energy e` ≥ k − 1− 1/kc.

Proof. Correctness is a direct consequence of Lemmas 4 and 5. The running time is obtained
adding the number of iterations of each phase, as follows.

r =
n∑
k=2

(
τ(k) +

⌈
1 + k

1− 1/kc

⌉
+ k

)

≤
n∑
k=2

(
τ(k) + 2 + k

1− 1/kc + k

)

= n(n+ 3)− 4 +
n∑
k=2

(
τ(k) + k

kc − 1

)
.
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Using that k/(kc − 1) < 1/k for any c > log 5 and k ≥ 2, we obtain the following.

r < n(n+ 3)− 4 +
n∑
k=2

(
τ(k) + 1

k

)

≤ n(n+ 3) + lnn− 4 +
n∑
k=2

τ(k). J

Bounding the running time of the Collection Phase using Lemma 2 in [4] in Theorem 6,
the following corollary is obtained.

I Corollary 7. For any anonymous dynamic network of n > 6 nodes, including a leader `,
the following holds. If the adversarial topology is limited by a maximum degree 1 ≤ ∆ ≤ n− 1
and the connectivity model defined, and nodes run the Incremental Counting Protocol in
Algorithms 1 and 2 under the communication model defined, after r rounds, all nodes stop
holding the size of the network n, where

r <
(2∆)n+1(n+ 1) ln(n+ 1)

ln(2∆) .

Proof. Lemma 2 in [4] proves that, for any estimate k ≥ n and integer ρ > 0, starting with
e` = 0 and ei = 1 for all i ∈ V \ {`}, after running ρk rounds of the energy transfer protocol
the energy stored in the leader is e` ≥ n(1− (((2∆)k − 1)/(2∆)k)ρ). Notice in Theorem 6
that the condition e` ≥ k − 1− 1/kc only applies when k = n. Thus, it is enough to find ρ
such that

k

(
1−

(
(2∆)k − 1

(2∆)k

)ρ)
≥ k − 1− 1/kc

ρ ≥ ln(k/(1 + 1/kc))
ln (1/(1− 1/(2∆)k)) .

Using that 1 − x ≤ e−x for x ≤ 1, it is enough to have ρ = d(2∆)k ln ke. Replacing in
Theorem 6, we obtain

r < n(n+ 3) + lnn− 4 +
n∑
k=2

kd(2∆)k ln ke

≤ n(n+ 3) + lnn− 4 +
n∑
k=2

k(1 + (2∆)k ln k)

= n(3n+ 7)/2 + lnn− 5 +
n∑
k=2

k(2∆)k ln k.

Bounding with the integral,

r < n(3n+ 7)/2 + lnn− 5 +
∫ n+1

k=2
k(2∆)k ln k dk

= n(3n+ 7)/2 + lnn− 5 + (2∆)k((k ln(2∆)− 1) ln k − 1) + Ei(k ln(2∆))
ln2(2∆)

∣∣∣∣n+1

2

≤ n(3n+ 7)/2 + lnn+
(2∆)n+1(((n+ 1) ln(2∆)− 1) ln(n+ 1)− 1) + Ei((n+ 1) ln(2∆))

ln2(2∆)
.
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Using that Ei(ln x) = li(x) < x, for any real number x 6= 1, it is Ei((n+1) ln(2∆)) < (2∆)n+1.
Replacing,

r < n(3n+ 7)/2 + lnn+ (2∆)n+1((n+ 1) ln(2∆)− 1) ln(n+ 1)
ln2(2∆)

= n(3n+ 7)/2 + lnn+ (2∆)n+1(n+ 1) ln(n+ 1)
ln(2∆) − (2∆)n+1 ln(n+ 1)

ln2(2∆)
.

Using that n(3n+ 7)/2 + lnn < (2∆)n+1 ln(n+ 1)/ ln2(2∆) for any n > 6 and 1 ≤ ∆ ≤ n− 1,
the claim follows. J

5.1 Discussion
In this paper we have studied the problem of Counting in Anonymous Dynamic Networks.
The problem is challenging because the lack of identifiers and changing topology make difficult
to decide if a new message has been received before from the same node. Also, the obvious
lack of knowledge of the network size makes difficult to decide when the algorithm has to
stop.

Assuming an upper bound on the size of the system facilitates termination but may lead
to very bad time complexity if the upper bound is a huge overestimate. According to our
knowledge, the algorithm in [12] is the only one to compute an upper bound of the system
size for Anonymous Dynamic Networks and in the worst case it is exponential, i.e. O(∆n)
where n is the size of the system and ∆ is an upper bound on the nodes’ degree. Finding
the termination condition when an upper bound on the network size is not available is more
challenging, but it is expected to provide more efficient algorithms. Our Incremental
Counting algorithm does not assume such upper bound, and computes the exact size of
the system applying a bottom-up approach where the size is possibly underestimated several
times.

It is known that if no restriction on the size of the messages is required, the Counting
problem can be easily solved in O(n) time when nodes have IDs [10]). In this paper, we
have made a significant step towards understanding if a linear Counting algorithm exists also
when IDs are not available, by identifying the speedup bottleneck and reducing exponentially
the best known upper bound. This will help to understand the difficulty introduced by
anonymity (if any). Despite our contribution, there is still a big gap with respect to the
linear lower bound trivially given by the dynamic diameter.

Finally, although we focus on communication networks, our results carry over into any
distributed system of similar characteristics.
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