Non-Blocking Doubly-Linked Lists with Good
Amortized Complexity

Niloufar Shafiei

Department of Electrical Engineering and Computer Science, York University,
4700 Keele Street, Toronto, Ontario, Canada
niloo@cse.yorku.ca

—— Abstract

We present a new non-blocking doubly-linked list implementation for an asynchronous shared-
memory system. It is the first such implementation for which an upper bound on amortized
time complexity has been proved. In our implementation, operations access the list via cursors.
Fach cursor is located at an item in the list and is local to a process. In our implementation,
cursors can be used to traverse and update the list, even as concurrent operations modify the
list. The implementation supports two update operations, insertBefore and delete, and two move
operations, moveRight and moveLeft. An insertBefore(c, x) operation inserts an item x into the
list immediately before the cursor ¢’s location. A delete(c) operation removes the item at the
cursor ¢’s location and sets the cursor to the next item in the list. The move operations move
the cursor one position to the right or left. Update operations use single-word Compare&Swap
instructions. Move operations only read shared memory and never change the state of the
data structure. If all update operations modify different parts of the list, they run completely
concurrently. A cursor is active if it is initialized, but not yet removed from the process’s set
of cursors. Let ¢(op) be the maximum number of active cursors at any one time during the
operation op. The amortized step complexity is O(¢(op)) for each update op and O(1) for each
move. We provide a detailed correctness proof and amortized analysis of our implementation.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases non-blocking data structure, doubly-linked list, shared memory, amort-
ized complexity, cursor

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.35

1 Introduction

The linked list is a fundamental data structure that has many applications in distributed
systems including processor scheduling, memory management and sparse matrix computations
[9, 15, 17]. Tt is also used as a building block for more complicated data structures such
as deques, skip graphs and Fibonacci heaps. We design a concurrent doubly-linked list for
asynchronous shared-memory systems that is non-blocking (also sometimes called lock-free):
it guarantees some operation will complete in a finite number of steps. Our list has a full proof
of correctness and analysis of its amortized complexity. The first non-blocking singly-linked
list [23] was proposed two decades ago. Designing a non-blocking doubly-linked list was an
open problem for a long time. Doubly-linked lists have been implemented using multi-word
synchronization primitives that are not widely available [1, 10]. Sundell and Tsigas [21] gave
the first implementation from single-word compare&swap (CAS). However, they did not
provide a correctness proof and their implementation has some problems. (See Section 2.)
A process accesses our list via a cursor, which is an object in the process’s local memory
that is located at an item in the list. Update operations can insert or delete an item at the

© Niloufar Shafiei; WS,
5v licensed under Creative Commons License CC-BY ® O

19th International Conference on Principles of Distributed Systems (OPODIS 2015). @
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 35; pp. 35:1-35:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2

Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

cursor’s location, and moveLeft and moveRight operations move the cursor to the adjacent
item in either direction. If the item where a cursor ¢ located at is removed by another process,
an operation called with c first needs to recover ¢’s location in the list. In our list, recovering
a cursor’s location and moving a cursor are achieved using only reads of shared memory,
even when there are concurrent updates. Thus, in our list, only updates might interfere with
other concurrent operations. However, if all concurrent updates are on disjoint parts of the
list, they do not interfere with one another. Our implementation is modular and can be
adapted for other updates, such as replacing one item by another. For simplicity, we assume
the existence of a garbage collector such as the one in Java.

In Section 3, we give a novel specification that describes how updates affect cursors and
how a process gets feedback about other processes’ updates at the location of its cursor. This
interface makes the list easy to use as a black box. In our implementation, a cursor ¢ becomes
tnvalid if an update is performed at ¢’s location using another cursor. If an operation is
called with an invalid cursor, it returns invalidCursor and makes the cursor valid again. This
avoids having a process perform an operation on the wrong item. If an insertion is performed
before a cursor ¢ using another cursor, ¢ becomes invalid for insertions only, to ensure that
an item can be inserted between two specific items. This makes it easy to maintain a sorted
list. For example, if two processes try to insert 5 and 7 at the same location simultaneously,
one fails and returns invalidCursor. This avoids inserting 7 and then 5 out of order.

We provide a detailed proof that our list is linearizable: each operation appears to take place
atomically at some time during the operation. One of the main challenges is to ensure the
two pointer changes required by an update appear to occur atomically. Our implementation
uses two CAS steps to change the pointers. Each update appears to take effect at the first
CAS. Between the two CAS steps, the data structure is temporarily inconsistent. We design
a mechanism for detecting such inconsistencies by only reading the shared memory, which
allows concurrent operations to behave as if the second change has already occurred. This
makes moves and recovering cursors’ locations very efficient.

We give an amortized analysis of our implementation (excluding garbage collection),
which is the first for any non-blocking doubly-linked list. A cursor is active if it is initialized,
but not removed from the process’s set of cursors. Let ¢(op) be the maximum number of
active cursors at any one time during the operation op. The amortized complexity of each
operation op is O(¢(op)) for updates and O(1) for moves. Due to space restrictions, we sketch
the proof of correctness and amortized analysis here. Complete details are in [19].

To summarize the contributions of this paper:

We present a non-blocking linearizable doubly-linked list using single-word CAS.

The cursors provided by our implementation are robust: they can be used to traverse

and update the list, even as concurrent operations modify the list.

Cursors’ locations are recovered and cursors are moved by only reading the shared memory.

Our implementation and proof are modular and can be adapted for other data structures.

Our implementation can easily maintain a sorted list.

In our list, the amortized complexity of each update op is O(¢(op)) and each move is O(1).

We empirically show our list outperforms the one in [21] on a multi-core machine.

2 Related Work

In this paper, we focus on non-blocking algorithms of doubly-linked lists, which do not use
locks. There are two general techniques for obtaining non-blocking data structures: universal
constructions (see [7] for a survey) and transactional memory (see [11] for a survey). Such

N. Shafiei

Implementation supports | operations to | recover cursor’s | primitive | # of CAS with
cursors? | move cursor? location? used no contention

Greenwald [10] No - - 2-CAS depends on

size of list

Attiya and Hillel [1] Yes No No 2-CAS 13-15

Sundell and Tsigas [21] | Yes Yes (CAS used) | Yes (CAS used) | CAS 2-4

List presented here Yes Yes (No CAS) Yes (No CAS) CAS 5

Figure 1 Implementations of doubly-linked lists.

general techniques are usually less efficient than implementations designed for specific data
structures. Turek, Shasha and Prakash [22] and Barnes [2] introduced a technique in which
processes cooperate to complete operations to ensure non-blocking progress. Each update
operation stores information that other processes can use to help complete the update in
a descriptor object. This technique has been used for various data structures. Here, we
extend the scheme used in [3, 4, 5, 8] to coordinate processes for tree structures and the
scheme used in [18] for updates that make more than one change to a Patricia trie. The
implementations in [3, 4, 5, 8] only handle one change atomically, but updates in our list
make multiple changes atomically using a simpler scheme than the one used in [18]. However,
handling the cursors and move operations in our list are original.

The k-CAS primitive modifies k locations atomically. Although it is usually not available
in hardware, it can be implemented from single-word CAS [12, 16, 20]. Doubly-linked lists
can be implemented using k-CAS, but it is not completely straightforward to do so. Suppose

each item is represented by a node with nat and prv fields that point to the adjacent nodes.

Consider a list of four nodes, A, B, C' and D. A deletion of C' must change the nat pointer in
B from C to D and the prv pointer in D from C' to B. It is not sufficient for the deletion to
update these two pointers with a 2-CAS. If two concurrent deletions remove B and C' in this
way, C' would still be accessible through A after the deletions. This problem can be avoided if
the deletion of C' uses a 4-CAS to simultaneously update the two pointers and check whether
the two pointers of C still point to B and D. Then, the 4-CAS of one of the two concurrent
deletions would fail. The most efficient k-CAS implementation [20] uses 2k + 1 CAS steps to
update k words when there is no contention. Thus, at least 9 CAS steps would be used for a
4-CAS. Moreover, although the 4-CAS works for updating pointers, it is not obvious how to
recover a cursor’s location when another process deletes the cursor’s node.

Greenwald’s doubly-linked list [10] uses 2-CAS, but does not provide cursors. His approach
does not support concurrency: all processes cooperate to execute one operation at a time.

Attiya and Hillel [1] proposed a doubly-linked list using 2-CAS, but it only supports
update operations. It has the nice property that concurrent updates can interfere with
one another only if they are changing nodes close to each other. If there is no interference,
an update performs 13 to 15 CAS steps (and one 2-CAS). Their implementation does not
recover a cursor’s location, so deletions might make other processes lose their place in the
list. They also give a restricted implementation using single-word CAS, in which deletions
can be performed only at the ends of the list.

None of the implementations that use k-CAS handle cursors with the same functionality
as ours. (See Figure 1.) Since the implementations in [1, 10] do not provide a way to traverse
the list, they are not complete implementations of a doubly-linked list. Moreover, they all
perform many CAS steps for contention-free updates, whereas ours performs only five.

Sundell and Tsigas [21] gave the first non-blocking doubly-linked list using single-word
CAS (although a word must store both a bit and a pointer). Non-blocking data structures

35:3

OPODIS 2015

35:4

Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

are notoriously difficult to design, so detailed correctness proofs are essential. In [21], the
claim of linearizability is justified by defining linearization points without proving that they
are correct. The implementation has at least minor errors: using the Java PathFinder
model checker [13], we found an execution that incorrectly dereferences a null pointer. We
contacted the authors, who suggested changing some lines to fix the problem, but a correctness
proof of the revised version is still lacking. Their implementation is ingenious but quite
complicated. In particular, the helping mechanism is very complex, partly because updates
can terminate before completing the necessary changes to the list, so operations may have to
help non-concurrent updates.

There are a number of differences between the designs of our list and the one in [21]. In
[21], to recover a cursor’s location or to move a cursor, sometimes CAS steps are performed.
Our approach is quite different, allowing a cursor’s location to be recovered and cursors to
be moved only by reading shared memory, even when there is contention. So, moves do not
interfere with one another. This is a desirable property since moves are more common than
updates in many applications. In the best case, the updates in [21] perform 2 to 4 CAS steps.
However, moves must perform CAS steps to help complete updates. In fact, deletions can
construct long chains of deleted nodes whose pointers do not get updated by the deletions.
Then, a move may have to traverse this chain, performing CAS steps at every node. In our list,
an update helps only updates that are concurrent with itself, and moves do not help at all.
Our implementation can easily be used to maintain a sorted list. It is not straightforward to
see how the implementation in [21] could maintain a sorted list. Our empirical evaluation
shows our list outperforms the one in [21] on a multi-core machine.

3 The Sequential Specification

We give a sequential specification, which describes how operations behave when performed
one at a time. (A more formal specification is available in [19].) This specification is extended
to concurrent implementations by requiring them to be linearizable [14].

A list is a pair (L, S) where L is a finite sequence of items ending with a special end-
of-list marker (EOL), and S is a set of cursors. Each cursor ¢ in S is located at one item
in L and c.item presents that item. Eight types of operations are supported: initialize-
Cursor, destroyCursor, resetCursor, moveRight, moveLeft, get, delete and insertBefore.
An initializeCursor(c) adds new cursor ¢ to S whose item is the first item in L. A
destroyCursor(c¢) removes cursor ¢ from S. A process p can call an operation with a cursor
c only if p itself initialized ¢ and ¢ has not been removed from S. A resetCursor(c) locates
¢ at the first item in L. A moveRight(c) advances ¢’s location to the next item in L and
returns true, (unless it is already at the last item in L, in which case it returns false and has
no effect). Similarly, moveLeft(c) sets ¢’s location to the previous item in L and returns
true, (unless it is already at the first item in L, in which case it returns false and has no
effect). A get(c) returns the value of c.item.

To keep track of cursor invalidation, each cursor in S has two additional fields called
invDel and invIns, which indicates whether the cursor is invalid for different operations. A
delete(c) removes the item that c is located at and returns true, (unless c is located at EOL
in which case the delete returns false). If the deletion is successful, it also moves each cursor
¢ located at the deleted item to the next item in L. This ensures that all cursors continue
to point to items that are currently in the list, so that no other process can lose its place in
the list as a result of the deletion. For each cursor ¢’ # ¢ that is moved as a result of the
delete, ¢’.invDel is set to true so that if the next operation called with ¢’ is an update, get

N. Shafiei

or move, it returns invalidCursor to indicate that ¢’ has been moved. This ensures that the
operation is not inadvertently applied to the wrong location. For example, suppose a process
p performs a delete(c) that removes item . If another process p’ has cursor ¢’ located at z,
' .item is set to the next item y in L and ¢’ becomes invalid (i.e., ¢’.invDel becomes true).
Thus, the deletion cannot cause ¢’ to lose its place in L. Since x is removed by p, p’ does not
yet know that ¢’ is no longer located at x. If p’ then calls a delete(¢’) to attempt to remove
x, since ¢’ .invDel is true, it returns invalidCursor and does not remove y. When ¢’.invDel
is true, the next operation called with ¢ sets ¢’.invDel to false, making ¢’ valid again.

An insertBefore(c, v) adds a new item with value v to the left of ¢’s location and returns
true. When an insertBefore(c, v) succeeds, each other cursor ¢’ located at the same item
as ¢ becomes invalid for insertions only. This is indicated by setting ¢’.invIns to true. If
an insertBefore(c’, v’) operation is called when ¢’.invIns is true, it returns invalidCursor.
This invalidation ensures an item can be inserted between two specific items in the list. For
example, suppose we wish to maintain L so that values of items are sorted and process p’
has a cursor ¢’ whose item’s value is 5. Then, p’ advances ¢’ to the next item in the sequence,
which has value 8. If 7 is inserted before 8 by another process p, ¢’ becomes invalid only
for insertions (i.e., ¢.invIns becomes true). Since 7 is inserted by p, p’ does not yet know
that the item before 8 is 7. If p’ then calls an insertBefore operation with ¢’ to attempt to
insert 6 before 8, it does not succeed because that would place 6 between 7 and 8. Since
c .invIns is true, insertion by p’ returns invalidCursor instead. When ¢’.invIns is true, the
next operation called with ¢ sets ¢’.invins to false, making ¢’ valid for insertions again.

4 The Non-blocking Implementation

List items are represented by Node objects, which have pointers to adjacent Nodes. A Cursor
object is simply a pointer to a Node in a process’s local memory. Updates are done in several
steps as shown in Fig. 2 and 3. To avoid simultaneous updates to overlapping parts of the
list, an update flags a Node before removing it or changing one of its pointers. This flag acts
like a lock on the Node’s pointers. To ensure the non-blocking property, other operations
can help complete the update that placed the flag and then remove the flag. To facilitate
this, a Node is flagged by storing a pointer to an Info object, which is a descriptor of the
update and contains the information needed to help complete the update. List pointers are
updated using CAS, so that helpers cannot perform an operation more than once.

The correctness of algorithms using CAS often depends on the fact that, if a CAS on
variable V' succeeds, V has not changed since an earlier read. An ABA problem occurs when
V' changes from one value to another and back before the CAS occurs, causing the CAS
to succeed when it should not. When a Node new is inserted between Node = and y, we
replace y by a new copy, yCopy (Fig. 3). This avoids an ABA problem that would occur if|
instead, insertBefore simply changed the pointers in z and y to new, because a subsequent
deletion of new could then change x’s pointer back to y again. Creating a new copy of y also
makes invalidation of Cursors for insertions easy. An insertion of a Node before y writes a
permanent pointer in y to yCopy before replacing y, so that any other process whose Cursor
is at y can detect that an insertion has occurred there and update its Cursor to yCopy.

The objects used in our implementation are described in line 1 to 16 of Fig. 4. A Node
has the following fields. The wal field contains the item’s value, nzt and prv point to the
next and previous Nodes in the list, copy points to a new copy of the Node (if any), info
points to an Info object that is the descriptor of the update that last flagged the Node, and
state is initially ordinary and is set to copied (before the Node is replaced by a new copy)

35:5

OPODIS 2015

35:6

Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

flagged flagged flagged flagging flagged flagged flagged flagged flagged
N
e E LI Tl
Step 1: flagging Step 2: CAS z.nzt Step 3: CAS z.prv Step 4: unflagging

Figure 2 A delete operation.

flagged flagged flagged flagged flagged flagged flagged flagged flagged

LHad k£
o

Step 1: flagging Step 2: CAS z.nxt Step 3: CAS z.prv Step 4: unflagging

Figure 3 An insertBefore operation.

or marked (before the Node is removed). The info field is initially set to a dummy Info
object, dum. The info, nxt and prv fields of a Node are changed using CAS steps. We call
the steps that try to modify these three fields flag CAS, forward CAS and backward CAS
steps, respectively. To avoid special cases, we add sentinel Nodes head and tail, which do
not contain values, at the ends of the list. They are never changed and Cursors never move
to head or tail. The last Node before tail always contains the value EOL.

Info objects are used as our update operation descriptors. An Info object I has the
following fields. I.nodes|0..2] stores the three Nodes z, y, z to be flagged before changing the
list. I.oldInfol0..2] stores the expected values to be used by the flag CAS steps on z,y and z.
I.newNzt and I.newPrv store the new values for the forward and backward CAS steps on
z.nzt and z.prv. I.rmo indicates whether y should be removed from the list or replaced by a
new copy. I.status, indicates whether the update is inProgress (the initial value), committed
(after the update is completed) or aborted (after a Node is not flagged successfully). (One
exception is the dummy Info object dum whose status is initially aborted.) The status field
is the only field of I whose value might be changed after I's creation. A Node is flagged
for I if its info field is I and I.status = inProgress. Thus, setting I.status to committed or
aborted also has the effect of removing I’s flags. As with locks, successful flagging of the three
Nodes guarantees that the operation will be completed successfully without interference from
other operations. Unlike locks, if the process performing an update crashes after flagging,
other processes may complete its update using the information in 7.

4.1 Detailed Description of the Algorithms

Pseudo-code for our implementation is given in Fig. 4.

We say a Node v is reachable if there is a path of nat pointers from head to v. At all
times, the reachable Nodes correspond to the items in the list. So, each update is linearized
when its forward CAS succeeds (step 2 of Fig. 2 and 3). Just after this CAS, y becomes
unreachable. We prove that no process changes y.nzt or y.prv after that, so y.prv remains
equal to x. Since there is no ABA problem, z.nzt is never set back to y after y becomes
unreachable. Thus, the test y.prv.nazt # y tells us whether y has become unreachable (even
between the successful forward and backward CAS of the update that removed y). This test
is used in recovering the location of a Cursor whose node is removed from the list (line 77)
and also by moveLeft operations (line 47).

Since a Cursor c is a pointer in a process’s local memory, it becomes out of date if the
Node it points to is deleted or replaced by another process’s update. Thus, at the beginning of

NGO RWw MH

. Shafiei

type Cursor

Node node > location of Cursor
type Node > represent list item

Value val

Node nxt > next Node

Node prv > previous Node

Node copy > new copy of Node (if replaced)

Info info > descriptor of update

{copied, marked, ordinary} state > indicates if Node
is copied by an insertion or marked for deletion

type Info > Descriptor of an update
Node[3] nodes > Nodes to be flagged
Info[3] oldInfo > expected values of CASs that flag
Node newNxt > set nodes[0].nzt to this
Node newPrv > set nodes[2].prv to this
Boolean rmv > is I.nodes(1] being deleted?
{inProgress, committed, aborted} status

insertBefore(c: Cursor, v: Value):{true, invalidCursor}
while (true){
(y,yInfo,z, x, invDel,invIns)
updateCursor(c) D> recover c's location
if invDel or invIns then return invalidCursor
nodes + [z,y, 2]
oldI «+ [z.info,yInfo, z.info]
if checkInfo(nodes, oldI) then{ > no interference
new < new Node(v, null, z, null, dum, ordinary)
yCopy <+ new Node(y.val, z, new, null, dum,
ordinary)
new.nxt < yCopy
I < new Info(nodes, oldI, new, yCopy, false,
inProgress) > create descriptor
if help(I) then{ > if insert completed
c.node < yCopy > move c to new copy
return true }}}

. delete(c: Cursor):{true, false, invalidCursor}

while (true){
(y,yInfo,z,x,invDel, -) < updateCursor(c)
> recover ¢'s location
if invDel then return invalidCursor
nodes + [z, vy, 2]
oldI «+ [z.info,yInfo,z.info]
if checkInfo(nodes, oldI) then{ 1> no interference
if y.val = EOL then return false > c is at last item
I + new Info(nodes, oldlI, z, z, true, inProgress)
> create descriptor
> if delete completed
> move c¢ to next item

if help(I) then{
c.node < z
return true}}}

moveleft(c: Cursor):{true, false, invalidCursor}
(y, —, —, &, invDel, -) < updateCursor(c)
> recover ¢'s location
if invDel then return invalidCursor
if © = head then return false > y is the st item
if z.prv.nzt # « and z.nxt = y then{ > z not in list
if x.state = copied then > x is replaced
c.node < x.copy > move ¢ to new copy
else{ > z is deleted
w 4— x.prv > read the item before z
if w = head then return false > z was the 1st item
cnode < w}} > move c to the item before x
else c.node < x > move c to the item before y
return true

56.
57.

59.
60.
61.

62.
63.
64.

65.
66.

. resetCursor(c: Cursor):ack

69.
70.

73.
74.

75.

77.
78.
79.

82.
83.
84.
85.

35:7

moveRight(c: Cursor):{true, false, invalidCursor}
(y, —, 2, —,tnvDel, -) < updateCursor(c)
> recover c's location
if invDel then return invalidCursor
if y.val = EOL then return false > y is the last item
c.node z > move c to the item after y
return true

initializeCursor(c: Cursor):ack
c.node < head.nxt
return ack

destroyCursor(c: Cursor):ack
return ack

c.node < head.nxt > move c to the 1lst item

return ack

get(c: Cursor):{Value, invalidCursor}
(y, —, —, — invDel, -) + updateCursor(c)
if invDel then return invalidCursor
return y.val

updateCursor(c: Cursor):(Node, Info, Node, Node,
Boolean, Boolean)
invDel < false
invIns < false
while(c.node.prv.nzt # c.node){ > c.node not in list
if c.node.state = copied then{ > c.node replaced
invIns < true > make c invalid for insertion
c.node < c.node.copy} > move c to new copy
if c.node.state = marked then{ > c.node deleted
invDel < true > make c invalid for deletion
c.node < c.node.nxt}} > move c to the next item
info < c.node.info > read info before pointers
return (c.node, in fo, c.node.nxt, c.node.prv, invDel,
invins)

. checklInfo(nodes: Node[3], oldInfo: Info[3]):Boolean

fori <+ 0to 2{ > detect other updates in progress
if oldInfoli].status = inProgress then{
help(oldInfoli]) > help other update
return false}} > retry my update
for i < 0 to 2 > detect removed nodes
if nodes(i].state # ordinary then return false
fori<«1to2 > if flag of 2nd or 3rd node fail
if nodes(i].info # oldInfo[i] then return false
return true > no interference detected

96. help([: Info):Boolean

doPtrCAS <« true, i <0
while (i < 3 and doPtrC AS){
CAS(I.nodes[i].info, I.oldInfoli], I) > flag CAS
doPtrCAS « (I.nodesli].info =1I)
i< i+1}
if doPtrCAS then{ > flag CASs succeeded
if I.rmv then I.nodes[1].state <— marked
else{ > in case of insertion
I.nodes[1].copy < I.newPrv > set new copy
I.nodes[1].state < copied}
CAS(I.nodes|0].nzt, I.nodes[1], I.newNzt)
> forward CAS
CAS(I.nodes[2).prv, I.nodes[1], I.newPrv)
> backward CAS
I.status < committed} > unflag of successful update
else if I.status = inProgress then [.status < aborted
> unflag nodes for unsuccessful update
return (I.status = committed)

Figure 4 Pseudo-code for a non-blocking doubly-linked list.

OPODIS 2015

35:8

Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

an update, move or get operation called using ¢, updateCursor(c) is called to bring c.node
up to date. If c.node has been replaced with a new copy by an insertBefore, updateCursor
sets invIns to true (line 79) and follows the copy pointer (line 80). Similarly, if ¢.node has
been deleted, updateCursor sets invDel to true (line 82) and follows the nzt pointer (line 83),
which was the next Node at the time of deletion. UpdateCursor repeats the loop at line 77-83
until the test on line 77 indicates that c.node is in the list. At the end, updateCursor returns
c.node, its info, nat and pro field, invDel and invins (line 85).

After calling updateCursor, each update op calls checkInfo to see if any Node that op
wants to flag is flagged with an Info object I’ of another update. If so, checkInfo calls help(I”)
(line 89) to try completing the other update, and returns false to indicate op should retry.
Similarly, if checkInfo sees that another operation has already removed one of the Nodes
(line 92) or changed the info field of y or z (line 94), it returns false, causing op to retry. If
checkInfo returns true, op creates a new Info object I that describes the update op (line 27
or 39) and calls help(7) to try to complete the update (line 28 or 40).

The help(]) routine performs the real work of the update. First, it uses flag CAS steps
to store I in the info fields of the Nodes to be flagged (line 99). If help(I) sees a Node v is
not flagged successfully (line 100), help(I) checks if I status is inProgress (line 110). If so,
it follows that no helper of I succeeded in flagging all three Nodes; otherwise I’s flag on v
could not have been removed while I is inProgress. So, v was flagged by a different update
before help(I)’s flag CAS. Thus, I.status is set to aborted (line 110) and help(/) returns false
(line 111), causing op to retry.

If the Nodes x,y and z in I.nodes are all flagged successfully with I, y.state is set to
marked (line 103) for a deletion, or copied (line 106) for an insertion. In the latter case,
y.copy is first set to the new copy (line 105). Then, a forward CAS (line 107) changes z.nat
and a backward CAS (line 108) changes z.prv. Finally, help(I) sets I.status to committed
(line 109) and returns true (line 111). A CAS of I refers to a CAS step executed inside
help(I). We prove below that the first forward and first backward CAS of I among all calls
to help(I) succeed (and no others do).

Both the insertBefore(c,v) and delete(c) operations have the same structure. They
first call updateCursor(c) to bring the Cursor ¢ up to date, and return invalidCursor if
this routine indicates ¢ has been invalidated. Then, they call checkInfo to see if there is
interference by other updates. If not, they create an Info object I and call help(I) to complete
the update. If unsuccessful, they retry.

A moveRight(c) calls updateCursor(c) (line 57), which sets c.node to a Node y and
also returns a Node z read from y.nzt. We show there is a time during the move when y is
reachable and y.nxt = 2. If y.val = EOL, the operation returns false (line 59). Otherwise, it
sets c.node to z (line 60).

A moveLeft(c) is more complex because prv pointers are updated after an update’s
linearization point, so they are sometimes inconsistent with the true state of the list. A
moveLeft first calls updateCursor(c) (line 44), which updates c.node to some Node y and also
returns a Node z read from y.prv. If = is head, the operation cannot move ¢ to head and
returns false (line 46). If the test on line 47 indicates x is reachable, c.node is set to = (line 54).
This is also done if z.nxt # y; in this case, we can show that y became unreachable during
the move, but z.nxt pointed to y just before y became unreachable. Otherwise, x has become
unreachable and the test z.nat = y on line 47 ensures that « was the element before y when
it became unreachable. If x was replaced by an insertion, c.node is set to that replacement
Node (line 49). If = was removed by a deletion, we set c.node to x.prv (line 53), unless that
Node is head. We prove in Lemma 12, below, that whenever moveLeft updates c.node to
some value v, there is a time during the operation when v is reachable and v.nxzt = y.

N. Shafiei

5 Correctness Proof

The detailed proof of correctness (available in [19]) is about 50 pages long, so we give only
a brief sketch. An execution is a sequence of configurations, Cy, C4, ... such that, for each
1 >0, Ci41 follows from C; by a step of the implementation. For the proof, we assign each
Node v a positive real value, called its abstract value, denoted v.absVal. The absV al of head,
EOL and tail are 0, 1 and 2 respectively. When insertBefore creates the Nodes new and
yCopy (see Fig. 3), yCopy.absVal = y.absVal and new.absVal = (x.absVal + y.absVal) /2.
The following basic invariant is straightforward to prove.

» Invariant 1.
Any field that is read in the pseudo-code is non-null.
Cursors do not point to head or tail.
If v.nzt = tail, then v.val = EOL.
If v.onxt = w or w.prv = v, then v.absVal < w.absVal.

5.1 Part 1: Flagging

Part 1 proves v is flagged for an Info object I when the first forward CAS or first backward
CAS of I is applied to Node v. We first show there is no ABA problem on info fields.

» Lemma 2. The info field is never set to a value that has been stored there previously.

Proof Sketch. The old value used for I’s flag CAS on Node v was read from v.info before I is
created. So, every time v.info is changed from I’ to I, I is a newer Info object than I’. <«

By Lemma 2, only the first flag CAS of I on each Node in I.nodes can succeed since all
such CAS steps use the same expected value. We say I is successful if these three first flag
CAS steps all succeed.

» Lemma 3. After v.info is set to I, it remains equal to I until I.status # inProgress.

Proof Sketch. If v.info is changed from I to I’, the operation that created I’ at line 27 or 39
first called checkInfo on line 23 or 37 and that call returned true. Thus, that call to checkInfo
saw I.status # inProgress at line 88. <

» Observation 4. If a process executes line 103-109 inside help(I), I is already successful.
» Lemma 5. If I is successful, I.status is never aborted. FElse, I.status is never committed.

Proof Sketch. If I is not successful, the claim follows from Observation 4. If I is successful,
the first flag CAS on each Node in I.nodes succeeds. By Lemma 3, doPtrC AS is not set to
false on line 100 until I.status # inProgress. So, every call to help(I) evaluates the test on
line 102 to true until I.status # inProgress. So, no process reaches line 110 before I.status
is set to committed on line 109. |

» Lemma 6. For each of lines 103-109, when the first execution of that line among all calls
to help(I) occurs, all Nodes in I.nodes are flagged for I.

Proof Sketch. Suppose one of lines 103-109 is executed inside help(I). By Observation 4, a
flag CAS of I already succeeded on each Node in I.nodes. By Lemma 5, I.status is never
aborted. By Lemma 3, all three Nodes remain flagged for I until some help(1) sets I.status
to committed on line 109. <

35:9

OPODIS 2015

35:10

Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

P yr.info = old . yranfo=1
S1 2 S3 S5 S6 S7
read yr.info read yr.nzt read old.status read zy.state checkInfo return flag CAS changes the first forward
= old on line = zy on line # inProgress on = ordinary on true on line 23 yr.info from old CAS of I on line
84 85 line 88 line 92 or 37 to I on line 99 107

yr.nrt = zr

no forward CAS of old

Figure 5 Sequence of events used in proof of Lemma 8, Statement 3.

5.2 Part 2: Forward and Backward CAS Steps

Let (yr, —, z1,21,—, —) be the result updateCursor(c) returns on line 19 or 33 before creating
I on line 27 or 39. Part 2 of our proof shows that successful flagging ensures that xj, y; and
zy are three consecutive Nodes in the list just before the first forward CAS of I, and that
the first forward and the first backward CAS of I succeed (and no others do).

» Lemma 7. At all configurations after I becomes successful, yy.info = 1.

Proof sketch. To derive a contradiction, assume y;.info is changed from I to I’. Before
creating I’, the call to checkInfo returns true, so it sees I.status # inProgress at line 88 and
then yj.state = ordinary at line 92. This contradicts the fact that before I.status is set to
committed at line 109, y;.state is set to a non-ordinary value at line 103 or 106 (and no step
of the code can change it back to ordinary). |

» Lemma 8.

1. The first forward and the first backward CAS of I succeed and all other forward and
backward CAS steps of I fail.

2. The nxt or prv field of a Node is never set to a Node that has been stored there before.

3. At the configuration C' before the first forward CAS of I, xy, y; and z; are reachable,
rr.nxt =yr, yr.prv = xy, yr.nxt = zy and zy.prv = yy.

4. At all configurations after the first forward CAS of I, y;.prv =z and yr.nxt = zg.

Proof sketch. We use induction on the length of the execution.

Statement 1: By induction hypothesis 3, the first forward CAS of I succeeds, since
xr.nxt = yr just before it. By induction hypothesis 2, no other forward CAS of I succeeds. By
induction hypothesis 3, z;.prv was y; at some time before the first backward CAS of 1. All
backward CASes of I use y; as the expected value of z;.prv, so only the first can succeed (by
induction hypothesis 2). By Lemma 6, z;.info = I at the first forward and first backward CAS
of I, and hence at all times between, by Lemma 2. By Lemma 6, no backward CAS of any
other Info object changes zy.prv during this time. So, the first backward CAS of I succeeds.

Statement 2: Intuitively, when the nzt field changes from v to another value, v is thrown
away and never used again. (See Fig. 2 and 3). Suppose the first forward CAS of I sets x.nxt.
If I is created by an insertBefore, the CAS sets x;.nxt to a newly created Node. If I is created
by a delete, z;.info = I at the first forward CAS of I, by Lemma 6. No forward CAS of another
Info object I’ can change xr.nxt from 27 to another value earlier, since then zy.info would
have to be I’ at the first forward CAS of I, by Lemma 7. The proof for prv fields is symmetric.

Statement 3: First, we prove yr.nxt = z; at C. Before I can be created, the sequence of
steps S1,...,55 shown in Fig. 5 must occur. By Lemma 6, y;.info is set to I by some step
S6 and yy.info = I at S7. By Lemma 2, y;.info = old between S1 and S6 and yj.info = 1
between S6 and S7. So, by Lemma 6, only the first forward CAS of old can change y;.nxt

N. Shafiei

between S1 and S7. Before y;.nzt can be changed from z; to another value by help(old),
zr.state is set to marked or copied (and it can never be changed back to ordinary). So,
yr.nxt is still z; at S4. The first forward CAS of old does not occur after S3 since old.state
is already committed or aborted at S3. So, yy.nzt is still z; at C.

By a similar argument, y;.prv = z; and zj, y; and z; are reachable in C. The prv and
nxt field of two adjacent reachable Nodes might not be consistent at C only if C' is between
the first forward and first backward CAS of some Info object I’ and one of the two Nodes
is flagged for I’ (step 2 of Fig. 2 and 3). Since zy, yr and z; are flagged for I at C' (by
Lemma 6), zr.nxt = yr and zr.prv = yr at C.

Statement 4: By induction hypothesis 3, y;.prv = x; at the first forward CAS of I. By
Lemma 7, y;.info is always I after that. So, by Lemma 6, no backward CAS of another Info
object changes y;.prv after the first forward CAS of I. Similarly for y;.nxt = z;. <

Consider Fig. 2 and 3. By Lemma 8.3, just before the first forward CAS of I, the nxt and
pro field of xj, y; and z; are as shown in step 1. By Lemma 8.1, this CAS changes zj.nxzt
as shown in step 2 and the first backward CAS of I changes z;.prv as shown in step 3. The
next lemma follows easily.

» Lemma 9. A Node v # head that was reachable before is reachable now iff v.prv.nzt = v.

5.3 Part 3: Linearizability

Part 3 of our proof shows that operations are linearizable. The following four lemmas show
that there is a linearization point for each move operation. In the following four proofs,
{y, -, 2z, x, -, -) denotes the result updateCursor(c) returns on line 44 or 57. Let C77 be the
configuration before the last execution of line 77 inside that call to updateCursor.

» Lemma 10. If moveRight(c) changes c.node fromy to z at line 60, there is a configuration
during the move when y.nxt = z and y is reachable.

Proof Sketch. Invariant 1 and Lemma 9 imply that y # head is reachable in C77. (Some
reasoning is required to see this, since line 77 does two reads of shared memory.) If y is
reachable when y.nat = z on line 85, the claim holds. Otherwise, between C77 and line 85, a
forward CAS of some Info object I with I.nodes[1] = y made y unreachable. By Lemma 8.4,
y.nxt is always I.nodes|2] after the CAS. Since y.nxt = z on line 85, z = I.nodes[2| and, by
Lemma 8.3, the claim holds just before the CAS. <

» Lemma 11. If moveRight(c) returns false, there is a configuration during the move when
c.node.val = FOL and c.node is reachable.

Proof Sketch. Invariant 1 and Lemma 9 imply, in Cv7, y is reachable and the claim is
true. |

» Lemma 12. If moveLeft(c) changes c.node from y to v at line 49, 53 or 54, there is a
configuration during the move when v.nzt =y and v is reachable.

Proof Sketch. Consider line 53. Since the move does not return on line 46, x # head.

Lemma 9 implies z is unreachable after line 47. By Lemma 8.1, x became unreachable
by the first forward CAS of some Info object I with I.nodes[l] = z. Since x.state =
marked on line 48, a delete created I. By Lemma 8.4, x.nzt is always I.nodes[2] after the
forward CAS. Since z.nxt = y on line 47, y = I.nodes[2]. Since the read of y.prv returns x

35:11

OPODIS 2015

35:12

Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

on line 85, the first backward CAS of I did not occur before that read (step 2 of Fig. 2). So,
at some configuration C' during the move (step 2 of Fig. 2), I.nodes[0].nxt = I.nodes|2] =y
and I.nodes[0] is reachable. Since z.prv is always I.nodes[0] after the forward CAS of I,
the move sets w to I.nodes[0] on line 51 and then sets c.node to w. So, the claim holds at
C. The proofs for line 49 and 54 are similar to the case above and the proof of Lemma 10,
respectively. |

» Lemma 13. If moveLeft(c) returns false, c.node is head.nxt in a configuration during the
move.

Proof Sketch. If moveLeft returns on line 46, the proof is similar to Lemma 10, since
x = head and c.node = head.nxt at a configuration during the move. For line 52, the proof
is similar to Lemma 12, since w = head and c.node = head.nxt at a configuration during
the move. |

We now define linearization points. A move is linearized at the step after the configuration
defined by Lemma 10, 11, 12 or 13. If there is a forward CAS of an Info object created by
an update, the update is linearized at the first such CAS. InitializeCursor and resetCursor
are linearized when they read head.nzt. Each get, each delete that returns false and each
operation that returns invalidCursor is linearized at the first step of the last execution of
line 77 inside its last call to updateCursor. Let (L, $) be an auxiliary variable of type list.
When an operation is linearized, the same operation is atomically applied to (L, $) according
to the sequential specification. To prove our linearization is correct, we show in Lemma 14
how the auxiliary variable (L, 8) is accurately reflected in the state of the actual list, implying
each operation returns the same response as the corresponding operation on (L, S).

In Lemma 14, we use abstract values to construct a one-to-one correspondence between
Nodes in the list and items in L. The absVal of the EOL item is 1. If an item q is inserted
between items p and rin L, q.absVal = (p.absVal + r.absVal)/2. If q is inserted before the
first item , q.absVal = r.absVal/2. The cursor in $ corresponding to Cursor ¢ is denoted c.
After the linearization point of a successful operation op called with ¢, op might update
c.node, but ¢ is updated at the linearization point. To keep track of the value of ¢, we define
a prophecy variable c.updatedNode. If a configuration C' is after the linearization point of a
successful operation op called with ¢ but before op sets c.node, then c.updatedNode in C' is
the Node that op would set c.node to later. Otherwise, c.updated N ode = c.node. Since c is
a local variable, c.node might become out of date when other processes update c¢. The true
location of a cursor ¢ whose c.upatedNode is x is

realNode(x.copy) if x.state = copied and z is unreachable,
realNode(x) = < realNode(xz.nxt) if x.state = marked and « is unreachable,
T otherwise.

We say realNodePath(x) in configuration C' is the sequence of Nodes used to define real Node(x)
starting with x and ending at a reachable Node. An update is successful if it is linearized at
a forward CAS.

» Lemma 14.

1. If operation op is linearized at step S and terminates with result r, the corresponding
abstract operation applied to (L,8) atomically at S also returns .

2. The sequence of abstract values and values of Nodes that are reachable (excluding head
and tail) and of items in L are equal.

3. For each ¢ in 3, c.item.absVal = real Node(c.updatedNode).absV al.

N. Shafiei

4. c.invilns is true in configuration C iff (a) a Node x is on real NodePath(c.updated N ode)
in C such that is copied and unreachable, or (b) C is between the invocation of an
operation op called with ¢ and op’s linearization point and op’s local variable invIns is true.

5. c.invDel is true in configuration C iff (a) a Node x is on real NodePath(c.updated N ode)
in C such that © is marked and unreachable, or (b) C is between the invocation of an
operation op called with ¢ and op’s linearization point and op’s local variable invDel is true.

Proof Sketch. Suppose the lemma is true up to step S and C' is the configuration before S.
We show the lemma is true at the configuration C’ after S.
Statement 1: Suppose S is the linearization point of op called with c.

Case 1: op returns invalidCursor. S is the first step of the last execution of line 77 inside
op’s last call to updateCursor. In C| op’s invDel or invIns is true and c.invDel or c.inviIns is
true by induction hypothesis 4 and 5. So, the abstract operation also returns invalidCursor.

Case 2: op is a delete that returns false. S is the first step of the last execution of
line 77 inside op’s last call to updateCursor. By similar argument to Case 1, c.invDel
is false in C. We show c.item.value = EOL in C. In C, c.updatedNode = c.node. In-
variant 1 and Lemma 9 imply that c.node is reachable in C. In C, c.item.absVal =
real Node(c.updatedN ode).absVal = real Node(c.node).absVal = c.node.absVal (by induc-
tion hypothesis 3). By induction hypothesis 2, c.item.value = c.node.value = EOL in C.
So, c.item.value = EOL in C and the abstract deletion must also return false.

Case 3: op is a move, get or successful update. This case is handled similarly to Case 1 and 2.

Statement 2: By Statement 1, unsuccessful updates change neither L nor the reachable
Nodes. By Lemma 8.1, L and the reachable Nodes are changed only by the first forward CAS
of an Info object. Suppose S is the first forward CAS of an Info object I created by a delete(c).
(A similar argument applies to insertBefore.) Since c.updatedNode = c.node = y; is reachable
at C' (by Lemma 8.3), c.item.absVal = yy.absVal at C' (by induction hypothesis 3). Only
yr becomes unreachable at C’. Likewise, only c.item is removed from L at C".

Statement 3: Ouly linearization points of operations can change real Node(c.updated N ode)
or c.item. Suppose S is the linearization point of op. We consider different cases.

Case 1: op is an initializeCursor or resetCursor that terminates. Then, step S is a read
of head.nxt on line 63 or 68. By Statement 1, S sets c.item to the first item in L. Let
x be the value of head.nat in C’. The absVal of the first item in L is x.absVal in C' (by
Statement 2) and c.item.absVal = x.absVal in C’. Since op sets c.node to x on line 63
or 68, c.updatedNode = x in C'. In C’, c.item.absVal = x.absVal = real Node(x).absVal =
real Node(c.updatedN ode).absV al.

Case 2: op is called with ¢ and returns invalidCursor or op is a delete(c) that returns false
or op is a get(c) that terminates. Then, S is the first step of the last execution of line 77
inside op’s last call to UPDATECURSOR. By Statement 1, S does not change c.item. By
induction hypothesis 3, c.item.absVal = realNode(c.updatedNode).absVal in C. Since S
does not change real Node(c.updatedNode), the same equality holds in C”.

Case 3: op is a move or successful update. This case is handled similarly to Case 1.

Statement 4 and 5: We show Statement 4 is true. The proof of Statement 5 is symmetric.

It is easy to show that the only steps S that we must consider are linearization points of

operations, executions of line 79, 80 or 83 and invocations of an operation called with c.

Suppose S is the linearization point of an operation op called with c¢. In C’, ¢.invIns and
Statement 4.b are false. It is easy to show that, in C’, c.updatedNode is reachable and it is

35:13

OPODIS 2015

35:14

Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

the only Node on realNodePath(c.updatedNode). So, Statement 4.a is false. The rest of
cases are handled similarly. |

Linearizability of our implementation follows from Lemma 14.1.

6 Amortized Analysis

Our amortized analysis gives an upper bound on the total number of steps performed by
all operations in any finite execution. A Cursor is active if it has been initialized, but not
yet destroyed. Let ¢(op) be the maximum number of active Cursors at any configuration
during operation op. We prove that the amortized complexity of each update op is O(¢(op))
and each move is O(1). More precisely, for any finite execution «, the total number of steps
inais O3, is an update in o €(OP) 20y is & move in o 1)- 1t follows that the implementation
is non-blocking. The analysis (about 20 pages long in [19]) is quite complex, so we only
provide the intuition here. Parts of it are similar to the analysis of search trees in [6] but
the parts dealing with Cursors and moves are original. We simplified the analysis using the
potential method and show how to generalize the analysis of [6] to handle operations that
flag more than two nodes.

We first bound the number of iterations of line 77-83. Each update op deletes or replaces
at most one Node. Any Cursor ¢ whose true location (as defined in Sec. 5) is at that Node
when op is performed will have to perform one iteration of line 77-83 when updateCursor(c)
is next called to follow the nzt or copy pointer of the Node. Since there are at most
¢(op) such cursors, the total number of iterations of line 77-83 in the execution is at most
Zop is an update C(Op)

Fach iteration of line 18-30 or 3242 inside an update is called an attempt, which is
successful if it returns on line 20, 30, 34 or 42, or unsuccessful otherwise. Excluding calls to
updateCursor (which have already been accounted for), each attempt of an update takes
O(1) steps and, each move and each get operation take a total of O(1) steps. It follows that
the amortized complexity of a move and a get is O(1). It remains to prove that the total
number of unsuccessful attempts in the execution is O(3_,, i an update ¢(0P)). An attempt is
unsuccessful because one of the Nodes to be flagged is either (1) observed to be marked or
copied when checkInfo returns false on line 92 or (2) flagged by another update.

First, consider attempts that fail for reason (1). Consider a Cursor ¢ that is active when
an update op sets x.state to copied or marked. This causes at most two attempts of ¢’s
updates to fail: if an attempt of an update op’ fails when reading x.state at line 92, line 89
of the next attempt ensures op is completed and no subsequent attempt reaches xz. To pay
for these attempts, op stores 2¢(op) of potential when op sets z.state. There is one other
possibility: an operation op’ might be called with a Cursor that is created after op set x.state
to marked or copied. Again, at most two attempts of op’ might fail because of reading x.state
at line 92. To pay for these attempts, op’ stores 2¢(op’) of potential when it is invoked, since
there are at most ¢(op’) reachable Nodes that are marked or copied when op’ begins. Thus,
the total number of attempts that fail for reason (1) is O(3_,, is an update €(0P))-

Bounding the number of attempts that fail for reason (2) is the most intricate part of
the analysis. An attempt att of an update may fail because a Node it wishes to flag gets
flagged by an attempt att’ of another operation, causing att’s test at line 88 or 94 to fail or
att’s flag CAS on line 99 to fail. If att’ were guaranteed to succeed in this case, the analysis
would be simple. However, att’ itself may also fail because it is blocked by the attempt of
a third operation, and so on. Since a successful flag CAS might belong to an unsuccessful
attempt, such a step does not store any potential. However, O(¢(op)) of potential is stored

N. Shafiei

3.50E+08
3.00E+08

.l.
2.50E+08

y I /1\]' T
2.00E+08 /F_‘[\v -
1.50E+08 / e===our list

1.00E+08 —omsou

74
5.00E407 ;;YEI’D'Q‘D’D_O_H_D

0.00E+00
0 10 20 30 40 50 60

Number of Threads

Throughput (number of
operations per second)

Figure 6 Comparison of our list and the list in [21].

(a) when an update op is invoked, (b) when a forward or backward CAS step of op succeeds
and (c) when the status of an Info object created by op is set to committed. We prove that
this potential is sufficient to pay for any attempt that fails for reason (2). Thus, the total
number of attempts that fail for reason (2) is also O(>_ ¢(op)). It follows the
amortized complexity of an update op is O(¢(op)).

op is an update

7 Concluding Remarks

A correctness proof is essential for data structures such as ours since it is not possible to
test all possible executions. Writing detailed correctness proofs helped us to correct bugs in
earlier versions and then verify the correctness of our list. It also helped us to simplify the
pseudo-code and improve its complexity.

Our amortized bound of O(¢é(op)) for an update op is quite pessimistic: the worst case
happens only if concurrent updates are scheduled in a very particular way. We expect our
list would have even better performance in practice. Our experimental results suggest that
on an Intel Xeon multi-core machine, a Java implementation of our list scales well and also
outperforms the list in [21] (SDLL). We used our own Java implementations for both our
list and SDLL. Each data point in Figure 6 is the average of eight 4-second trials in which
each thread continuously performs on-average 100 move operations and then one update
operation on a list with 200 items. Our results show that the throughput of SDLL is not
improved when the number of threads is increased, which agrees with the empirical results
presented in [21].

In our approach, as in [3, 4, 5, 8, 18], updates create Info objects and duplicate Nodes,
which induces some overhead. Despite such overheads, empirical evaluations in [4, 5, 18] and
here confirm the practicality and scalability of this technique.

Though moves have constant amortized time, they are not wait-free. For example, if
cursors ¢ and ¢ point to the same node, a moveLeft(c) may never terminate if an infinite
sequence of insertions at ¢’ succeed, since the updateCursor of the move could run forever.

Future work includes designing shared cursors. Generalizing our coordination scheme
could provide a simpler way to design non-blocking data structures. Although the proof of
correctness and analysis is complex, it is modular, so it could be applied more generally. Our
help routine gives a general way of coordinating operations that make several changes to
a data structure. Parts 1 and 2 of the proof are primarily about this routine and could be
reused for other data structures. Detailed arguments about linearizability of the operations
(Part 3 of the proof) would likely depend more on the data structure being implemented.

35:15

OPODIS 2015

35:16

Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

Acknowledgements. I thank my supervisor, Eric Ruppert, for his great guidance and
advice, and the management, staff, and facilities of the Intel Manycore Testing Lab.!

—— References

1 Hagit Attiya and Eshcar Hillel. Built-in coloring for highly-concurrent doubly-linked lists.
Theory of Computing Systems, 52(4):729-762, 2013.

2 Greg Barnes. A method for implementing lock-free shared-data structures. In Proceedings
of the 5th ACM Symposium on Parallel Algorithms and Architectures, SPAA’93, pages
261-270, 1993.

3 Trevor Brown, Faith Ellen, and Eric Ruppert. Pragmatic primitives for non-blocking data
structures. In Proceedings of the 32nd ACM Symposium on Principles of Distributed Com-
puting, PODC’13, pages 13—22, 2013.

4 Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees.
In Proceedings of the 19th ACM Symposium on Principles and Practice of Parallel Pro-
gramming, PPOPP’14, pages 329-342, 2014.

5 Trevor Brown and Joanna Helga. Non-blocking k-ary search trees. In Proceedings In-
ternational Conference on Principles of Distributed Systems, OPODIS’11, pages 207221,
2011.

6 Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. The amortized com-
plexity of non-blocking binary search trees. In Proceedings of the 33rd ACM Symposium
on Principles of Distributed Computing, PODC’14, pages 332-340, 2014.

7 Faith Ellen, Panagiota Fatourou, Eleftherios Kosmas, Alessia Milani, and Corentin Travers.
Universal constructions that ensure disjoint-access parallelism and wait-freedom. In Pro-
ceedings of the 31st ACM Symposium on Principles of Distributed Computing, PODC’12,
pages 115-124, 2012.

8 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking
binary search trees. In Proceedings of the 29th ACM Symposium on Principles of Distributed
Computing, PODC’10, pages 131-140, 2010.

9 Zhixi Fang, Peiyi Tang, Pen-Chung Yew, and Chuan-Qi Zhu. Dynamic processor self-
scheduling for general parallel nested loops. IEEE Transactions on Computers, 39(7):919-
929, July 1990.

10 Michael Greenwald. Two-handed emulation: how to build non-blocking implementations
of complex data-structures using dcas. In Proceedings of the 21st Symposium on Principles
of Distributed Computing, PODC’02, pages 260-269, 2002.

11 Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd Edition. 2010.

12 Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word compare-and-swap
operation. In Proceedings of the 16th International Conference on Distributed Computing,
DISC’02, pages 265-279, 2002.

13 Klaus Havelund and Thomas Pressburger. Model checking Java programs using Java
PathFinder. Software Tools for Technology Transfer, 2(4):366-381, 2000. See http:
//babelfish.arc.nasa.gov/trac/jpf.

14 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for

concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463—
492, July 1990.

! http://www.intel.com/software/manycoretestinglab
http://www.intel.com/software.

http://babelfish.arc.nasa.gov/trac/jpf
http://babelfish.arc.nasa.gov/trac/jpf
http://www.intel.com/software/manycoretestinglab
http://www.intel.com/software

N. Shafiei

15

16

17

18

19

20

21

22

23

Jikuan Hu and Weiqing Wang. Algorithm research for vector-linked list sparse matrix
multiplication. In Proceedings of the 2010 Asia-Pacific Conference on Wearable Computing
Systems, APWCS’10, pages 118-121, 2010.

Victor Luchangco, Mark Moir, and Nir Shavit. Nonblocking k-compare-single-swap. In Pro-
ceedings of the 15th ACM Symposium on Parallel Algorithms and Architectures, SPAA’03,
pages 314-323, 2003.

Matthias Pfeffer, Theo Ungerer, Stephan Fuhrmann, Jochen Kreuzinger, and Uwe Brink-
schulte. Real-time garbage collection for a multithreaded Java microcontroller. Real-Time
Systems, 26(1):89-106, January 2004.

Niloufar Shafiei. Non-blocking Patricia tries with replace operations. In Proceedings of
the 33rd International Conference on Distributed Computing Systems, ICDCS’13, pages
216-225, 2013.

Niloufar Shafiei. Non-blocking data structures handling multiple changes atomically. PhD
thesis, Department of Electrical Engineering and Computer Science, York University,
Toronto, Canada, August 2015.

Hakan Sundell. Wait-free multi-word compare-and-swap using greedy helping and grabbing.
International Journal of Parallel Programming, 39(6):694-716, 2011.

Hakan Sundell and Philippas Tsigas. Lock-free deques and doubly linked lists. Journal of
Parallel and Distributed Computing, 68(7):1008-1020, 2008.

John Turek, Dennis Shasha, and Sundeep Prakash. Locking without blocking: Making lock
based concurrent data structure algorithms nonblocking. In Proceedings of the 11th ACM
Symposium on Principles of Database Systems, PODS’92, pages 212222, 1992.

John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of the 1/th
ACM Symposium on Principles of Distributed Computing, PODC’95, pages 214-222, 1995.

35:17

OPODIS 2015

	Introduction
	Related Work
	The Sequential Specification
	The Non-blocking Implementation
	Detailed Description of the Algorithms

	Correctness Proof
	Part 1: Flagging
	Part 2: Forward and Backward CAS Steps
	Part 3: Linearizability

	Amortized Analysis
	Concluding Remarks

