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Abstract
Two intimately related new classes of games are introduced and studied: entropy games (EGs)
and matrix multiplication games (MMGs). An EG is played on a finite arena by two-and-a-
half players: Despot, Tribune and the non-deterministic People. Despot wants to make the set
of possible People’s behaviors as small as possible, while Tribune wants to make it as large as
possible. An MMG is played by two players that alternately write matrices from some predefined
finite sets. One wants to maximize the growth rate of the product, and the other to minimize
it. We show that in general MMGs are undecidable in quite a strong sense. On the positive side,
EGs correspond to a subclass of MMGs, and we prove that such MMGs and EGs are determined,
and that the optimal strategies are simple. The complexity of solving such games is in NP∩coNP.
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1 Introduction

In recent years, some of us have been working on a new non-probabilistic quantitative
approach to classical models in computer science based on the notion of language entropy
(growth rate). This approach has produced new insights about timed automata and languages
[1] as well as temporal logics [2]. In this article, we apply it to game theory and obtain a new
natural class of games that we call entropy games (EGs). Such a game is played on a finite
arena in a turn-based way, in infinite time, by two-and-a-half1 players: Despot, Tribune and
the non-deterministic People. Whenever Despot and Tribune decide on their strategies σ
and τ , it leaves a set L(σ, τ) (an ω-language) of possible behaviors of People. Despot wants
L(σ, τ) to be as small as possible, while Tribune wants to make this language as large as
possible. Formally the payoff of the game is the entropy of L(σ, τ), with Despot minimizing
and Tribune maximizing this value.

∗ The support of Agence Nationale de la Recherche under the project EQINOCS (ANR-11-BS02-004)
is gratefully acknowledged. The results of Section 4 were obtained at the Institute for Information
Transmission Problems, Russian Academy of Science, by V. Kozyakin at the expense of the Russian
Science Foundation (project 14-50-00150).

1 Although this term is mostly used for stochastic games, it is also an appropriate description of EGs.
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Potentially these games can be used to model hidden channel capacity problems in
computer security, where the aim of the security policy (Despot) is to minimize the information
flow whatever the environment (Tribune) does. EGs can also be rephrased in terms of
population dynamics, where one player aims to maximize the population growth rate, while
the other minimizes it; applications of this setting to medicine, ecology, and computer security
(virus propagation) are still to be explored. On the theoretical side, well-known mean-payoff
games on finite graphs can be seen as a subclass of our EGs. However the purpose of
this paper is to explore the theoretical setting of EGs, we therefore leave applications and
identification of relevant subclasses of EGs for further work.

The second class of objects studied is that of matrix multiplication games (MMGs), which
came naturally when analyzing EGs and is, in our opinion, novel and interesting on its
own. In such a game, two players, Adam and Eve, each possess a set of matrices, A and E ,
respectively. The game is played in a turn-based way, in infinite time. At every turn, the
player writes a matrix from his or her set. Adam wants the norm of the product of matrices
A1E1A2E2 . . . obtained to be as small as possible (in the limit), while Eve wants it to be as
large as possible. Formally, the payoff is the growth rate of the norm of the product.

The main interest of MMGs comes from the observation that, in the case when one of the
two players is trivial (i.e. his or her set contains only the identity matrix), the game turns
into the classical, important, and difficult, problem of computing the joint spectral radius or
the joint spectral subradius of a set of matrices, see [22, 15]. Thus, MMGs is a game (or
alternating) generalization of this problem. It is thus unsurprising that, in the general case,
MMGs are even more difficult to analyze. We prove that several natural problems for MMGs
are undecidable, in particular it is impossible to distinguish between games with value 0 and
1 (and thus it is impossible to approximate the value of an MMG).

Fortunately, MMGs have tractable subclasses. We reduce EGs to a particular subclass
of MMGs (referred to as IMMGs), when the sets A and E are so-called independent row
uncertainty sets of non-negative matrices [5], and show that for this class the game can be
solved: it is determined, and for each player the optimal strategy is to write one and the
same matrix at every turn. This result is based on a new, quite technical, minimax theorem
on the spectral radius of products of the type AB where both A and B belong to sets of
matrices with independent row uncertainties. We deduce that EGs are determined, and that
the optimal strategies for Despot and Tribune are positional. A careful complexity analysis
of the games considered (EGs and IMMGs) allows to prove that comparing their value to a
rational constant can be done with complexity NP ∩ coNP.

The article is structured as follows. In Sect. 2 we recall useful notions from linear algebra
and language theory. In Sect. 3 we formally define the two games and show how they are
related, we also prove undecidability of general MMGs. In Sect. 4 we prove the key technical
minimax theorem for matrices. In Sect. 5 we prove the main properties of EGs and IMMGs:
determinacy, existence of simple strategies and complexity bounds. In Sect. 6 we relate the
EGs studied here to classical mean-payoff games and a new kind of population games. We
conclude with a discussion on the perspectives. Proofs of all lemmas can be found in [3].

2 Preliminaries

2.1 Some Linear Algebra
Given two vectors x, y ∈ RN , we write x > y, if xi > yi for each 1 6 i 6 N . Similar notation
will be applied to matrices. We denote by ‖ · ‖ the 1-norm of vectors and matrices. Note
that, for non-negative vectors and matrices, ‖x‖ =

∑
i xi.
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Let A be an (N ×N)-matrix. Its spectral radius is defined as the maximal modulus of its
eigenvalues and denoted by ρ(A). It characterizes the growth rate of An for n→∞: according
to Gelfand’s formula ρ(A) = limn→∞ ‖An‖1/n. The spectral radius depends continuously
on the matrix, and is monotone for non-negative matrices [14, Cor. 8.1.19]: ρ(A) 6 ρ(B)
when 0 6 A 6 B. If A > 0, i.e. all the elements of A are positive, then by the Perron-
Frobenius theorem, the number ρ(A) is a simple eigenvalue of the matrix A, and all the other
eigenvalues of A are strictly less than ρ(A) in modulus. The eigenvector v = (v1, v2, . . . , vN )T

corresponding to the eigenvalue ρ(A) (normalized, for example, by the equation
∑
vi = 1) is

uniquely determined and positive.
Following [5], given N sets of M -dimensional rows Ai we define the IRU-set (independent

row uncertainty set) A of (N × M)-matrices that consists of all matrices of the form
A = (aij)16i6N

16j6M

wherein each of the rows ai = [ai1, ai2, . . . , aiM ] belongs to the respective Ai.
We will need several simple properties of IRU-sets.

I Lemma 1. For an IRU-set A formed by sets of rows A1,A2, . . . ,AN the following
holds:
(i) for any matrix B the set A B = {AB

∣∣ A ∈ A } is IRU as well;
(ii) the convex hull conv(A ) is the IRU-set formed by the row sets conv(A1), . . . , conv(AN );
(iii) the set A is compact if and only if so are all the row sets A1,A2, . . . ,AN .

2.2 Joint Spectral Radius and Subradius
The joint spectral radius [19, 9, 10] of a bounded set A of (N ×N)-matrices characterizes the
maximal growth rate of products of nmatrices from the set and admits the following equivalent
definitions (where the identity between the upper and the lower formulas constitutes the
famous Berger-Wang Theorem [4]):

ρ̂(A ) = lim
n→∞

sup
{
‖A1 · · ·An‖1/n

∣∣∣ Ai ∈ A
}

= inf
n>1

sup
{
‖A1 · · ·An‖1/n

∣∣∣ Ai ∈ A
}

= lim
n→∞

sup
{
ρ(A1 · · ·An)1/n

∣∣∣ Ai ∈ A
}

= sup
n>1

sup
{
ρ(A1 · · ·An)1/n

∣∣∣ Ai ∈ A
}
. (1)

For a compact (closed and bounded) set A , the suprema in (1) may be replaced by maxima.
The joint spectral subradius [13], or lower spectral radius, corresponds to the minimal

growth rate of products of matrices:

ρ̌(A ) = lim
n→∞

inf
{
‖A1 · · ·An‖1/n

∣∣∣ Ai ∈ A
}

= inf
n>1

inf
{
‖A1 · · ·An‖1/n

∣∣∣ Ai ∈ A
}

= lim
n→∞

inf
{
ρ(A1 · · ·An)1/n

∣∣∣ Ai ∈ A
}

= inf
n>1

inf
{
ρ(A1 · · ·An)1/n

∣∣∣ Ai ∈ A
}
.

The equivalence of the characterizations based on norms and on spectral radii is established
in [13, Thm B1] for finite sets A , and in [21, Lemma 1.12] and [8, Thm 1] for arbitrary
sets A . Calculating the joint and lower spectral radii is a challenging problem, and only
in exceptional cases these characteristics may be found explicitly, see, e.g., [15, 16] and the
bibliography therein. The case of compact IRU-sets of non-negative matrices is such an
exception, for which ρ̂ and ρ̌ admit a simple characterization: as stated in [17, Thm 2], for
such a set A the following equalities hold:

ρ̂(A ) = max
A∈A

ρ(A), ρ̌(A ) = min
A∈A

ρ(A). (2)

STACS 2016
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Compact IRU-sets of non-negative matrices and their convex hulls have another useful
property: as is shown in [17, Cor. 1],

max
A∈A

ρ(A) = max
A∈conv(A )

ρ(A), min
A∈A

ρ(A) = min
A∈conv(A )

ρ(A), (3)

and hence ρ̂(A ) = ρ̂(conv(A )), ρ̌(A ) = ρ̌(conv(A )).

2.3 Entropy of an ω-Language
The notion of entropy of a language and methods for computing it in the case of regular
languages were introduced in [7] for finite words and in [20] for infinite ones. We will use the
latter definition. The entropy of an ω-language L ⊆ Σω is defined as

H(L) = lim sup
n→∞

log |prefn(L)|
n

(all the logarithms here are in base 2), where prefn(L) is the set of prefixes of length n of
infinite words in L. Intuitively, H(L) is the information content (“bandwidth”), measured in
bits per symbol, in typical words of the language. In particular, H(Σω) = log |Σ|.

For a regular L ⊆ Σω accepted by a given Büchi automaton, its entropy can be effectively
computed as follows: compute the (finite) automaton recognizing pref(L), determinize it,
and compute the entropy as the logarithm of the spectral radius of the adjacency matrix of
the automaton obtained.

3 The Two Games

3.1 Entropy Games
Consider the arena (D,T,Σ,∆) where D and T are disjoint finite sets of vertices (of two
players), Σ a finite alphabet of actions and ∆ ⊆ T ×Σ×D∪D×Σ×T is a transition relation.
Given such an arena, we define a game with two-and-a-half players: Despot, Tribune and
People. The latter plays non-deterministically and counts for half a player. People chooses
the initial state in D. When the game is in a state d of D, Despot plays an action a ∈ Σ and
the game changes to some t ∈ T (chosen by People) such that (d, a, t) ∈ ∆. Then, Tribune
plays an action b ∈ Σ and the game changes its state to d′ ∈ D, again chosen by People and
such that (t, b, d′) ∈ ∆. It is again Despot’s turn. The players must not block the game:
they always choose an action that has a corresponding transition (d, a, ·) ∈ ∆, or (t, b, ·) ∈ ∆,
respectively. We assume that the arena is non-blocking: at every state there is at least one
such transition. Figure 1 shows an example of such an arena, which we will use as a running
example in this paper.

A play of the EG is a finite or infinite sequence π ∈ (D · Σ · T · Σ)∞ compatible with
the transition relation ∆. Note that four letters in a row correspond to one turn of the
game. A strategy σ for Despot is a function (D · Σ · T · Σ)∗ ·D → Σ that, given any finite
play ending in a D state, outputs an action taken by Despot. The strategy is positional if
it only depends on the current state of the game, i.e. it can be expressed just as σ(d). A
strategy τ for Tribune is a function (D ·Σ · T ·Σ)∗ ·D ·Σ · T → Σ which, given any finite play
ending in a T state, outputs the action taken by Tribune. The strategy is positional if it
only depends on the current state of the game. In a natural way we define plays compatible
with a Despot’s strategy σ, or with a Tribune’s strategy τ . Then, given σ and τ , we have
an ω-language L(σ, τ) containing all the plays compatible with σ and τ . In other words,
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a

a

Figure 1 Left. Arena of our running example of an entropy game. Circles are states of the Despot
while squares are states of the Tribune. At each move, the player has to choose between actions a

and b, the outcome of which may sometimes be non-deterministic (e.g. when Despot plays a in state
d2, the next state may non-deterministically be either t1 or t3). Right. A finite play on this arena.
Despot plays ab (whatever his opponent does) while Tribune plays aa. We only give, for each step,
the number of words that end up in each state controlled by the active player.

L(σ, τ) is the set of runs that People can choose if Despot and Tribune commit themselves
to σ and τ . What makes EGs different from other games (parity/mean-payoff etc.) is that
the payoff does not depend on a single run of the game, but on the whole set of possible
runs. More precisely, the payoff (the amount that Despot pays to Tribune) is defined as
P (σ, τ) = lim supn→∞ |pref4n(L(σ, τ))|1/n, that is the growth rate (w.r.t. the number of
turns) of the number of plays available to the People under the strategies σ and τ . Note
that the payoff is a monotone function of the entropy of L(σ, τ), indeed P (σ, τ) = 24H(L(σ,τ)),
i.e. Despot tries to diminish the entropy while Tribune aims to augment it.

3.2 Matrix Multiplication Games
Let A be a set of M × N -matrices and E of N ×M -matrices. The MMG between two
players, Adam and Eve, is played as follows: in turn, for every i ∈ N, Adam writes a matrix
Ai ∈ A and then Eve writes a matrix Ei ∈ E . Formally, we define a play as an infinite
sequence A1E1A2E2 . . . AiEi . . . with Ai ∈ A and Ei ∈ E . A strategy for Adam is a function
σ : (A · E )∗ → A that maps any finite history (which is a sequence of matrices) to Adam’s
next move. Similarly, a strategy for Eve is a mapping τ : (A · E )∗ · A → E . A strategy
is called constant if it does not depend on the history, i.e. is given by just one matrix:
σ = A ∈ A or τ = E ∈ E . We define a play compatible with a strategy σ (or τ) in a natural
way. Note that, given a strategy σ for Adam and a strategy τ for Eve, there exists a unique
play π(σ, τ) compatible with both of them. The payoff of a play π = A1E1A2E2 . . . AiEi . . .

(that is, the amount that Adam pays to Eve) is the growth rate of the norm of the infinite

product of matrices: P (π) = P (σ, τ) = lim supk→∞
∥∥∥∏k

i=1AiEi

∥∥∥1/k
.

3.3 General Matrix Multiplication Games are Undecidable
The difficulty of general MMGs should be compared with results on the difficulty of JSR
(joint spectral radius) computation. Thus, as proved in [6, Thm 2], given a finite set E

of non-negative matrices with rational elements, it is undecidable whether ρ̂(E ) 6 1. The

STACS 2016



11:6 Entropy Games and Matrix Multiplication Games

decidability status of the problem ρ̂(E ) < 1 is unknown. Finally, it is immediate from the
characterization (1) that, given a precision ε > 0, it is possible to compute ε-approximation
of ρ̂(E ) (in other words ρ̂(E ) is computable as function of E in the sense of computable
analysis, see [24]).

I Theorem 2. Given a determined MMG with finite sets of non-negative matrices with
rational elements and α ∈ Q+, the decision problem for its value V 6 α is undecidable.

Proof. Let A = {Id} (Adam is trivial) and E be a finite set of non-negative matrices with
rational elements. The corresponding MMG is determined with value V = ρ̂(E ) and thus
the decision problem V 6 1 is undecidable due to [6, Thm 2], cited above. J

To prove stronger undecidability results for MMGs without direct counterparts for the JSR,
we need a couple of simulation lemmas: for arbitrary matrices and for non-negative ones.

I Lemma 3. Given a two-counter machine M , one can construct two finite sets of integer
matrices A and E such that the corresponding MMG is determined and its value V satisfies:
“if M halts (starting with counters containing 0) then V = 0, else V = 1.”

I Lemma 4. Given a two-counter machine M , one can construct two finite sets of non-
negative integer matrices A and E such that the corresponding MMG satisfies:
“if M halts then Adam can ensure payoff < 2, otherwise Eve can ensure payoff > 2.”

In both cases the construction, inspired by [11], follows the same principle: Eve tries to
simulate the machine M ; if she cheats, then Adam detects this and “resets” the product.
Since the halting problem is undecidable, we obtain immediately the following two theorems.

I Theorem 5. Given a determined MMG with finite sets of matrices with integer elements
its value V is not computable from the matrices;
it is not computable even knowing a priori that V ∈ {0, 1}.

Hence the MMG value cannot be approximated and is not computable (as function of A

and E ) in the sense of computable analysis.

I Theorem 6. Given an MMG with finite sets of non-negative matrices with integer elements,
it is undecidable whether the maximal payoff that Eve can ensure is < 2.

3.4 Relations Between the Two Kinds of Games
Fortunately, as will be shown below, the subclass of MMGs with IRU-sets of non-negative
matrices is much easier to solve. In this section, we relate EGs to such MMGs.

Let A = (D,T,Σ,∆) be an arena with D = {d1, . . . , dM} and T = {t1, . . . , tN}. We
define matrix sets A ,E as follows. For each Despot’s vertex di ∈ D, and action a ∈ Σ we
define the row cia = [cia,1, . . . , cia,N ] where cia,j = 1 if (di, a, tj) ∈ ∆ and cia,j = 0 otherwise.
Next we define the row set Ai = {cia 6= 0

∣∣ a ∈ Σ} (non-zero rows correspond to non-
blocking actions). Row sets A1, . . . ,AM determine an IRU-set of matrices A . The IRU-set
E corresponding to Tribune’s actions is defined similarly. In the running example in Figure 1,
for instance, the row sets are the following: A1 = {[1, 1, 0]} ,A2 = {[0, 1, 0] , [1, 0, 1]} ,A3 =
{[0, 1, 1]} ,E1 = {[0, 1, 0] , [1, 0, 0]} ,E2 = {[1, 1, 1]} ,E3 = {[0, 1, 0] , [0, 0, 1]}.

Note first that there is a natural bijection between the positional strategies of Despot
and the set A : any positional strategy σ : D → Σ corresponds to the matrix Aσ ∈ A with
i-th row ci,σ(di) for Adam. Similarly, a positional strategy of Tribune τ corresponds to Eve’s
matrix Eτ ∈ E . The following lemma generalizes this observation to any type of strategies:
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I Lemma 7. Let A be an arena and A ,E the corresponding IRU matrix sets. Then for
every pair of strategies (σ, τ) of Despot and Tribune in the EG on A there exists a pair of
strategies (ς, θ) of Adam and Eve in the MMG (conv(A ), conv(E )) with exactly the same
payoff. Moreover, if σ is positional, then ς is constant and permanently chooses Aσ. The
case of positional τ is similar.

Note that Lemma 7 provides a rather weak relation between two games and does not
mean, by itself, that the two games have the same value. However, we will show later
(cf. Lemma 15) that optimal constant strategies in the MMG that belong to A and E are
in bijection with optimal positional strategies in the EG.

4 Minimax Theorem for IRU-Sets of Matrices

In this section, we prove the key theorem of this article.

I Theorem 8. Let A be a compact IRU-set of non-negative (N ×M)-matrices and B be a
compact IRU-set of non-negative (M ×N)-matrices. Then

min
A∈A

max
B∈B

ρ(AB) = max
B∈B

min
A∈A

ρ(AB). (4)

In the rest of the article we will denote this minimax by mm(A ,B). The study of minimax
relations will be based on the following well-known fact:

I Lemma 9 (see [23, Sect. 13.4]). Let f(x, y) be a continuous function on the product of
compact spaces X × Y . Then minx maxy f(x, y) > maxy minx f(x, y). The exact equality
holds if and only if there exists a saddle point, i.e. a point (x0, y0) satisfying the inequalities
f(x0, y) 6 f(x0, y0) 6 f(x, y0) for all x ∈ X, y ∈ Y .

We will also use two lemmas on matrices. The first one provides spectral radius bounds
and is quite standard in Perron-Frobenius theory; as usual in this theory it relates global
characteristics of a non-negative matrix (such as spectral radius) with its behavior on one
non-negative vector.

I Lemma 10. Let A be a non-negative (N × N)-matrix; then the following properties
hold:
(i) if Au 6 ρu for some vector u > 0, then ρ > 0 and ρ(A) 6 ρ;
(ii) if furthermore A > 0 and Au 6= ρu, then ρ(A) < ρ;
(iii) if Au > ρu for some non-zero vector u > 0 and some number ρ > 0, then ρ(A) > ρ;
(iv) if furthermore Au 6= ρu, then ρ(A) > ρ.

The next lemma concerning IRU-sets of matrices is new and can be explained as follows.
For an IRU-set of matrices and two vectors u and v we imagine that the sets Bl = {x : x 6 v}
and Bu = {x : v 6 x} form the lower and upper bulbs of an hourglass with the neck at the
point v. The lemma asserts that either all the grains Au (for all matrices A in the set) fill one
of the bulbs, or there remains at least one grain in the other bulb. Clearly this alternative
does not hold for general sets of matrices.

I Lemma 11 (hourglass alternative). Let A be an IRU-set of (N ×M)-matrices and let
Ãu = v for some matrix Ã ∈ A and vectors u, v. Then the following holds:
(i) either Au > v for all A ∈ A or exists a matrix Ā ∈ A such that Āu 6 v and Āu 6= v;
(ii) either Au 6 v for all A ∈ A or exists a matrix Ā ∈ A such that Āu > v and Āu 6= v.

STACS 2016



11:8 Entropy Games and Matrix Multiplication Games

We are ready to prove the minimax theorem.

Proof of Thm 8. According to Lemma 9, the minimax equality (4) may occur if and only if
some matrices Ã ∈ A and B̃ ∈ B satisfy the inequalities

ρ(ÃB) 6 ρ(ÃB̃) for all B ∈ B; (5)
ρ(ÃB̃) 6 ρ(AB̃) for all A ∈ A . (6)

Consider first the case when all the matrices in A and B are positive. To construct the
matrices Ã ∈ A and B̃ ∈ B we proceed as follows. For each B ∈ B let AB ∈ A be a matrix
that minimizes (in A) the quantity ρ(AB). Such a matrix AB exists due to compactness of
the set A and continuity of the function ρ(AB) in A and B. Then, for each matrix B ∈ B,
the relations ρ(ABB) = minA∈A ρ(AB) 6 ρ(AB) hold for all A ∈ A . Let B̃ be the matrix
maximizing minA∈A ρ(AB) over the set B, and let Ã = AB̃ . In this case

max
B∈B

ρ(ABB) = max
B∈B

min
A∈A

ρ(AB) = min
A∈A

ρ(AB̃) = ρ(AB̃B̃) = ρ(ÃB̃), (7)

which implies inequality (6) for all A ∈ A , and it remains to prove (5) for all B ∈ B.
Let v = (v1, v2, . . . , vN )T be the positive eigenvector of the (N × N)-matrix ÃB̃ corre-

sponding to the eigenvalue ρ̃ = ρ(ÃB̃). By denoting w = B̃v ∈ RM we obtain that ρ̃v = Ãw.
Let us show that in this case

ρ̃v 6 Aw for all A ∈ A . (8)

Otherwise, by Lemma 11(i) there would exist a matrix Ā ∈ A such that ρ̃v > Āw and
ρ̃v 6= Āw, which implies, by the definition of the vector w, that ρ̃v > ĀB̃v and ρ̃v 6= ĀB̃v.
Then by Lemma 10 ρ(ĀB̃) < ρ̃ = ρ(ÃB̃), which contradicts (6). This contradiction completes
the proof of inequality (8). Similarly, now we show that

w > Bv for all B ∈ B. (9)

Again, assuming the contrary, by Lemma 11(ii) there exists a matrix B̄ ∈ B such that
w 6 B̄v and w 6= B̄v. This last inequality, together with (8) applied to the matrix AB̄,
yields ρ̃v 6 AB̄B̄v and ρ̃v 6= AB̄B̄v. Then by Lemma 10 ρ̃ < ρ(AB̄B̄), which contradicts (7)
asserting that ρ̃ = ρ(ÃB̃) is the maximum value of the function ρ(ABB) over all B ∈ B.
This contradiction completes the proof of inequality (9).

From ρ̃v = Ãw and (9) we obtain the inequality ρ̃v > ÃBv valid for all B ∈ B, which by
Lemma 10 implies the relations ρ(ÃB̃) = ρ̃ > ρ(ÃB) valid for all B ∈ B, or, which is the
same, inequality (5). The theorem is proved for positive matrices.

Consider now the general case of compact IRU-sets of non-negative matrices A and
B. If the set A is determined by some sets of M -rows Ai, i = 1, 2, . . . , N , then choose an
arbitrary ε > 0 and consider the sets of rows A

(ε)
i = {a(ε)

∣∣ a(ε) = a+ ε[1, 1, . . . , 1], a ∈ Ai},
where i = 1, 2, . . . , N . In this case the IRU-set of matrices A (ε) consists of positive matrices
A+ ε1, where A ∈ A and 1 is the matrix with all elements equal to 1. Define similarly the
IRU-set of matrices B(ε).

By the result just proved, for each ε > 0 the minimax equality holds for positive
matrices: minA∈A (ε) maxB∈B(ε) ρ(AB) = maxB∈B(ε) minA∈A (ε) ρ(AB), which by Lemma 9
is equivalent to the existence of Ãε ∈ A and B̃ε ∈ B such that

ρ((Ãε + ε1)(B + ε1)) 6 ρ((Ãε + ε1)(B̃ε + ε1)) 6 ρ((A+ ε1)(B̃ε + ε1))
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for all A ∈ A and B ∈ B. Taking here ε = εn, where {εn} is an arbitrary sequence of
positive numbers converging to zero, we get

ρ((Ãεn
+ εn1)(B + εn1)) 6 ρ((Ãεn

+ εn1)(B̃εn
+ εn1)) 6 ρ((A+ εn1)(B̃εn

+ εn1)) (10)

for all A ∈ A and B ∈ B. Without loss of generality, in view of the compactness of the
sets A and B, we may assume the existence of matrices Ã and B̃ such that Ãεn → Ã ∈ A

and B̃εn
→ B̃ ∈ B as n→∞. Then turning to the limit in (10), we obtain the inequalities

ρ(ÃB) 6 ρ(ÃB̃) 6 ρ(AB̃) for all A ∈ A and B ∈ B, which are equivalent to (5) and (6).
This concludes the proof. J

I Corollary 12. For IRU-sets A and B of non-negative matrices it holds that

mm(conv(A ), conv(B)) = mm(A ,B).

5 Solving the Games

5.1 Solving Matrix Multiplication Games for IRU-Sets
I Theorem 13. Let A and E be compact IRU-sets of non-negative matrices. Then the
corresponding MMG is determined, and moreover Adam and Eve possess constant optimal
strategies.

Proof. Let us apply Thm 8 to matrix sets A and E . Define V , E0 and A0 such that

min
E∈E

ρ(EA0) = max
A∈A

min
E∈E

ρ(EA) = min
E∈E

max
A∈A

ρ(EA) = max
A∈A

ρ(E0A) = V. (11)

Let Adam only play A0. Take any compatible play π = A0E1A0E2 · · · and put Ci = A0Ei.
Denote C = {EA0|E ∈ E }; it is an IRU-set by Lemma 1. The payoff P for π yields

P = lim sup
n→∞

‖A0C1 · · ·Cn−1En‖1/n 6 lim sup
n→∞

(‖A0‖ · ‖C1 · · ·Cn−1‖ · ‖En‖)1/n

6 lim
n→∞

K
2
n lim sup

n→∞
‖C1 · · ·Cn−1‖

1
n−1 6 ρ̂(C ) 1= max

C∈C
ρ(C) = max

E∈E
ρ(EA0) 2= V,

where the constant K is an upper bound for the norms of the matrices in A and E , equality
1 comes from the first equality (2) and equality 2 comes from (11).

Let Eve only play E0. Take any compatible play π′ = A1E0A2E0 · · · . Let us write
Di = AiE0. Denote D = {AE0, A ∈ A }; it is an IRU-set. The payoff P ′ for π′ is such that

P ′ = lim sup
n→∞

‖C1 · · ·Cn‖1/n > lim inf
n→∞

‖C1 · · ·Cn‖1/n

> ρ̌(D) 1= min
D∈D

ρ(D) = min
A∈A

ρ(AE0) 2= V,

where equality 1 comes from the second equality (2) and equality 2 from (11) using the
equality ρ(EA0) = ρ(A0E).

We have proved that Adam (by constantly playing A0) can ensure payoff 6 V whatever
Eve plays; and that Eve (by constantly playing E0) can ensure payoff > V whatever Adam
plays. This concludes the proof. J

I Corollary 14. Let A and E be compact IRU-sets of non-negative matrices. In the MMG
on conv(A ), conv(E ), the constant optimal strategies can be chosen from sets A and E .

This follows immediately from the proof of the theorem and Cor. 12.
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5.2 Solving Entropy Games
In this section, we consider an EG on an arena A and the corresponding matrix sets A and
E , as defined in Sect. 3.4.

I Lemma 15. Let (σ, τ) be two positional strategies in the EG. Then, if corresponding
constant strategies Aσ and Eτ are optimal for their respective players in the MMG with
matrix sets conv(A ) and conv(E ), then so are σ and τ .

I Theorem 16. Every EG is determined, and Despot and Tribune possess positional optimal
strategies.

Proof. From Thm 13, we know that for the MMG (conv(A ), conv(E )) both Adam and Eve
possess optimal strategies, which consist in constantly playing some matrices A and E. From
Cor. 14, the matrices A and E can be chosen from sets A and E , respectively. Then, there
exist positional strategies σ and τ on A such that A = Aσ and E = Eτ . By Lemma 15,
strategies σ and τ are optimal in the EG. J

Back to the running example. Here a quick exploration of the combinations of rows shows
that the matrices realizing the minimax over the two IRU-sets defined by row sets A1,A2,A3

and E1,E2,E3 are A =
[

1 1 0
1 0 1
0 1 1

]
for Adam/Despot and E =

[
1 0 0
1 1 1
0 0 1

]
for Eve/Tribune. These

matrices describe both the optimal constant strategy of the MMG and the optimal positional
strategy of the EG induced by this arena. The value of both games is the spectral radius
ρ(AE) = ρ

([
2 1 1
1 0 1
1 1 2

])
=
(√

17 + 3
)
/2 ' 3.562.

5.3 Complexity Issues
We will analyze the complexity of solving matrix multiplication (and hence entropy) game.
We start with necessary and sufficient conditions for inequalities on joint spectral radii and
subradii of IRU-sets (recall also (2) relating them to maximal and minimal spectral radii).

I Lemma 17. For any compact IRU-set of positive matrices A and α ∈ Q+ the following
equivalences hold:

ρ̂(A ) < α⇔ ∃v > 0 ∀A ∈ A (Av < αv); (12)
ρ̂(A ) 6 α⇔ ∃v > 0 ∀A ∈ A (Av 6 αv); (13)
ρ̌(A ) > α⇔ ∃v > 0 ∀A ∈ A (Av > αv); (14)
ρ̌(A ) > α⇔ ∃v > 0 ∀A ∈ A (Av > αv). (15)

If the matrices are only non-negative, the equivalences (12) above and (16) below hold:

ρ̌(A ) > α⇔ ∃(v > 0, v 6= 0)∀A ∈ A (Av > αv). (16)

The computational aspects of calculating the values ρ̂(A ) and ρ̌(A ) for IRU-sets of
non-negative matrices, based on relations (2), are discussed in [5, 17, 18]. These articles
provide polynomial algorithms for approximation of the minimal and maximal spectral radii,
as well as a variant of the simplex method for these problems. In the next theorem we prove
a complexity result in a form suitable for game analysis.

I Theorem 18. Given a finite IRU-set of nonnegative matrices A with rational elements
(represented by row sets A1, A2, . . . , AN), and a number α ∈ Q+, the decision problems
whether ρ̂(A ) < α and whether ρ̌(A ) > α belong to the complexity class P. Moreover, if the
matrices are positive, then the decision problems ρ̂(A ) 6 α and ρ̌(A ) > α are also in P.
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Proof. The polynomial algorithms are based on the previous lemma. Consider the problem
of deciding ρ̂(A ) < α, which can be rewritten using (12) as ∃v > 0∀A ∈ A (Av < αv).
We will not test all the matrices A ∈ A (there are exponentially many of them); instead,
we will treat each row separately. The condition ∀A ∈ A (Av < αv) can be rewritten as a
system of linear inequalities: for each i and for each row [c1, c2, . . . , cN ] ∈ Ai require that
c1v1 + c2v2 + · · ·+ cNvN < αvi. The condition v > 0 can be written as N inequalities vi > 0:
one for each coordinate. Using a polynomial algorithm for linear programming we can decide
whether a solution v satisfying all these linear inequalities exists.

All other decision procedures, based on (13)–(16), are similar. The condition v > 0, v 6= 0
can be represented as a disjunction of N linear systems vj > 0 ∧

∧N
i=1 vi > 0. J

I Theorem 19. Given two finite IRU-sets of nonnegative matrices A and B with rational
elements, and a number α ∈ Q+, the decision problem of whether mm(A ,B) < α belongs to
NP∩coNP. Moreover, if the matrices are positive, then the problem of whether mm(A ,B) 6 α

is also in NP ∩ coNP.

Proof. Consider the problem of deciding whether mm(A ,B) < α, which can be rewritten as
minA∈A maxB∈B ρ(BA) < α, or equivalently ∃A0 ∈ A (ρ̂(BA0) < α). The nondeterministic
polynomial algorithm proceeds as follows:

guess non-deterministically a matrix A0 ∈ A ;
compute the representation of BA0 as an IRU-set generated by the row sets C1,C2, . . . ,CN ;
check the inequality ρ̂(BA0) < α in polynomial time using Thm 18.

We conclude that the problem mm(A ,B) < α is in NP. The complementary problem
mm(A ,B) > α is also in NP, as it can be rewritten as maxB∈B minA∈A ρ(AB) > α, or equiv-
alently ∃B0 ∈ B(ρ̌(A B0) > α), and decided by a non-deterministic polynomial algorithm
similarly. We conclude that the two problems belong to NP ∩ coNP.

For positive matrices, the proof for the other decision problem based on the second
statement of Thm 18 is similar. J

Our main complexity result follows immediately.

I Theorem 20. Given an EG or an MMG with finite IRU-sets of non-negative matrices with
rational elements and α ∈ Q+, the decision problem for its value: V < α is in NP ∩ coNP.

6 Related Models

6.1 Weighted Entropy Games

Up to now we have considered entropy games with simple transitions, but it is straightforward
to add multiplicities (weights) to them. A weighted entropy game is played on a weighted
arena A = (D,T,Σ,∆, w) with a function w : ∆ → N+ assigning weights to transitions
(informally a weight is the number of ways in which a transition can be taken). Strategies
and plays are defined as in the unweighted case. Let L be some set of (infinite) plays. For
every u ∈ pref(L) we define its weight w(u) as the product of weights of all the transitions
taken along u. We define wn(L) =

∑
u∈pref4n(L) w(u), and finally the payoff corresponding

to strategies σ and τ of two players is defined as: P = lim supn→∞ (wn(L(σ, τ)))1/n
. Our

main results on EGs (Thms 16 and 20) extend straightforwardly to weighted EGs.
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6.2 Mean-Payoff Games
Well-known mean-payoff finite-state games (MPG) [12] can be considered as a deterministic
subclass of weighted entropy games. A (variant of) MPG is played on arena (D,T,∆, w)
with transition relation ∆ ⊆ D × T ∪ T × D and weight function w : ∆ → N. The
play starts in some state d0 ∈ D, and the two players choose transitions in turn. The
resulting play is an infinite word γd0 ∈ (D · T )ω. The mean-payoff corresponding to the
play γd0 = d0, t0, d1, t1, . . . is the limit of the average weight of transitions taken: mp(γd0) =
lim supn→∞ 1

n

∑n
i=1(w(di−1, ti−1) + w(ti−1, di)). Finally, player D wants to minimize and

player T to maximize the payoff maxd0∈D mp(γd0). As proved in [12], MPGs are determined
and their optimal strategies are positional. As for complexity, [25] shows that testing whether
the value of an MPG is smaller than a rational α is in NP ∩ coNP and becomes polynomial
for weights presented in the unary system.

An MPG A = (D,T,∆, w) can be transformed into a weighted EG A′ = (D,T,Σ,∆′, w′)
as follows. The states of both players are the same, Σ is large enough, and for each transition
(p, q) ∈ ∆ there is a corresponding transition (p, a, q) ∈ ∆′ with some a (occurring only
in this transition). Its weight is w′(p, a, q) = 2w(p,q). We notice that the EG obtained is
deterministic: due to unique transition labels for any strategies σ and τ , the language L(σ, τ)
contains one play for each initial state. Strategies and plays of both games A and A′ are
now in natural bijection and the payoff of A equals the logarithm of the payoff of A′.

This way, we obtain the classical results that MPGs are determined and both players have
optimal positional strategies. Due to the exponential encoding of payoffs, the complexity
obtained using our approach is, however, not as good as using direct algorithms, see [25].

6.3 Population Dynamics
Consider an EG with arena A = (D,T,Σ,∆). It can be interpreted as the following
population game between two players, Damien and Theo. Elements of D and T correspond
to species (forms of viruses, microorganisms, etc.). Initially there is one (or any non-zero
number of) organism(s) for each species in D. At his turn Damien chooses an action a ∈ Σ
and applies it to each organism. An organism of species d, when subject to action a, turns
into the set of organisms of species {t

∣∣ (d, a, t) ∈ ∆}. Theo plays similarly. The aim of
Damien is to minimize the growth rate of the population, while Theo wants to maximize it.
The value of the game and the optimal (positional) strategies are the same as for the EG.

7 Conclusions

We have introduced two (closely interrelated) families of games: entropy games played on
finite arenas (graphs), and matrix multiplication games. The main result is that entropy
games are determined and optimal strategies are positional in EG, while MMGs for IRU-sets
of non-negative matrices are determined and optimal strategies are constant. These results
are based on a new minimax theorem on spectral radii of products of IRU-sets of matrices.
The results obtained prove the existence of equilibria in zero-sum games with a new type
of limit payoffs, which is neither computed on a single play of the game nor probabilistic.
On the other hand, they rely upon and generalize important results on the computability of
joint spectral radii and subradii, an important problem in switching dynamic systems.

A presumably straightforward extension would be the “probabilization” of our game
models, in that both Despot and Tribune would be allowed to play randomized strategies.
The minimax theorem ensures the existence of optimal pure strategies for both players.
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However the entropy-based payoff of the game needs to be given a proper generalization
to this probabilistic setting. We may mention that such a generalization could be seen as
entropy games on stochastic branching processes, and provide interesting links with this
research domain. Finally, both our games are turn-based games with perfect information.
The first generalization to be considered is to go to concurrent games – where perhaps
some polynomial-size memory is needed, similarly to the classic case of concurrent games
played on graphs in infinite time. The more difficult case is that of games of imperfect
information: corresponding matrix games no longer have a simple structure (independent
row uncertainty), and we conjecture that analysis of such games is non-computable. Last
but not least, potential applications sketched in the introduction should be addressed.
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