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Abstract
[Schaefer and Štefankovič, Theory of Computing Systems, 2015 ] provided an explicit formulation
of ∃R as the class capturing the complexity of deciding the Existential Theory of the Reals, and
established that deciding, given a 3-player game, whether or not it has a Nash equilibrium with no
probability exceeding a given rational is ∃R-complete. Four more decision problems about Nash
equilibria for 3-player games were very recently shown ∃R-complete via a chain of individual,
problem-specific reductions in [Garg et al., Proceedings of ICALP 2015]; determining more such
∃R-complete problems was posed there as an open problem. In this work, we deliver an extensive
catalog of ∃R-complete decision problems about Nash equilibria in 3-player games, thus resolving
completely the open problem from [Garg et al., Proceedings of ICALP 2015]. Towards this end,
we present a single and very simple, unifying reduction from the ∃R-complete decision problem
from [Schaefer and Štefankovič, Theory of Computing Systems, 2015 ] to (almost) all the decision
problems about Nash equilibria that were before shown NP-complete for 2-player games in [Bilò
and Mavronicolas, Proceedings of SAGT 2012; Conitzer and Sandholm, Games and Economic
Behavior, 2008; Gilboa and Zemel, Games and Economic Behavior, 1989]. Encompassed in the
catalog are the four decision problems shown ∃R-complete in [Garg et al., Proceedings of ICALP
2015].
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1 Introduction

1.1 Framework, Motivation and Contribution
The Existential Theory of the Reals, denoted as ETR, is the set of existential first-order
sentences over the real numbers. In 1948, Alfred Tarski used his method of quantifier
elimination [18] to show that the entire First Order Theory of the Reals, encompassing ETR,
is decidable, albeit without an elementary bound on its complexity. To date the best known
upper bound to decide ETR is PSPACE , coming from the seminal work of Canny [4].Many
geometric, graph-drawing and topological problems have been recognized to have the same
complexity as ETR. Some of them concern recognizing intersection graphs of a certain type
– see, e.g., [15, 16]; others concern deciding the stretchability of pseudolines [11]: given a
family of plane curves, are they homeomorphic to a line arrangement? Based on these, the
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17:2 ∃R-Complete Decision Problems About Nash Equilibria

complexity class ∃R was defined by Schaefer and Štefankovič [17] as the set of problems with
a polynomial-time, many-to-one reduction to ETR. Decision variants of fixed-point problems,
including the Brouwer fixed-point problem and Nash equilibria, were shown ∃R-complete
in [17]; Nash equilibrium [12, 13] is undoubtedly the most influential solution concept in
Game Theory, representing a state of a game where no player could unilaterally switch her
strategy to improve her payoff. Both search and decision problems about Nash equilibria
have been studied extensively in Algorithmic Game Theory; by the seminal results in [5, 7],
their search problem is PPAD-complete [14] even for 2-player games.

More specifically, Schaefer and Štefankovič [17, Corollary 3.5] identified the first ∃R-
complete decision problem about Nash equilibria in multi-player games: this is ∃ NASH IN A
BALL, which asks, given an r-player game with r ≥ 3 and a rational %, whether or not it has
a Nash equilibrium with no probability exceeding %. The proof employed a reduction from
BROUWER, another decision problem shown ∃R-complete in [17], which asks whether or not
a function, represented by a given straight-line program, has a fixed point in a specified ball.
Very recently, Garg et al. [9] used a chain of problem-specific reductions, starting from ∃
NASH IN A BALL [17], to prove that four among the NP-complete problems for 2-player
games [1, 6, 10] are ∃R-complete for r-player games with r ≥ 3. Garg et al. [9, Appendix H]
posed as an open problem the enlargement of the class of such ∃R-complete problems.

A full story is known for decision problems about Nash equilibria for 2-player games; they
are NP-complete; see [1, 6, 10] for an extensive catalog. Their membership in NP is due
to the fact that the Nash equilibria for a 2-player game involve rational probabilities; this
allows, given the supports, polynomial time verification of the Nash equilibrium property.
This is no longer the case for r-player games with r ≥ 3, which may have Nash equilibria
with irrational probabilities. Hence, these decision problems are only known to be NP-hard
over r-player games with r ≥ 3, and their precise complexity characterization has remained
elusive. (Two notable exceptions are the problems of deciding the existence of a rational Nash
equilibrium [2] and a uniform Nash equilibrium [3], which belong to NP for r-player games
with r ≥ 3, and this finalizes their complexity classification.) In this work, we show that
they are (almost) all ∃R-complete, delivering an extended catalog of ∃R-complete decision
problems about Nash equilibria for r-player games with r ≥ 3 (Theorem 10).

1.2 Techniques and Significance
We employ a game reduction (Section 3) that maps, given an arbitrary number δ > 0, a pair
of 3-player games G̃ and Ĝ, called the subgames, to a 3-player game G with a larger set of
strategies for each player; both games G̃ (with δ added to each utility) are "embedded" in G
as subgames. The reduction guarantees certain correspondences between the Nash equilibria
for G̃ and Ĝ, respectively, and those for G. Specifically, a Nash equilibrium for G subsumes
either a Nash equilibrium for G̃ or one for Ĝ (Lemma 7); in the other direction, a Nash
equilibrium for Ĝ always induces one for G (Lemma 8); but a Nash equilibrium for G̃ induces
one for G if and only if none of its probabilities exceeds 1

2 (Lemma 9).
We proceed to embed the game reduction into a polynomial time many-to-one reduction

from ∃ NASH IN A BALL to a catalog of decision problems about Nash equilibria for r-player
games with r ≥ 3, thus establishing their ∃R-hardness (Section 4). We are given an instance
G̃ of ∃ NASH IN A BALL, called the inbox game. We construct a game Ĝ, called the gadget
game, which may depend on G̃. Finally, we apply the game reduction on G̃ and Ĝ to get
the game G. The correspondences between the Nash equilibria for G̃ and Ĝ, respectively,
and those for G are used to deduce the properties of the Nash equilibria for G, which are
found to depend on whether or not the inbox game G̃ is a positive instance for ∃ NASH IN A
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BALL. The established equivalence between G̃ being a positive instance for ∃ NASH IN A
BALL and the induced properties of G imply the ∃R-hardness of the properties. The single,
unifying reduction we employ to establish the ∃R-hardness of all decision problems in the
catalog (Sections 3 and 4) is extremely simple, as well as its corresponding proof; thus, it
simplifies tremendously the corresponding chain of (problem-specific) reductions in [9], which
had involved proofs but only yielded four ∃R-hard problems, which are encompassed in the
catalog we present. The catalog includes (almost) all the decision problems about Nash
equilibria for 2-player games shown NP-complete in [1, 6, 10].

2 Background and Preliminaries

2.1 The Class ∃R

The Existential Theory of the Reals, denoted as ETR, is the set of true sentences of the
form (∃x1, . . . , xn)(ϕ(x1, . . . , xn), where ϕ is a quantifier-free (∨,∧,¬)-boolean formula over
the signature (0, 1,+, ∗, <,≤,=) interpreted over the real numbers. ∃R is the complexity
class associated with ETR: A decision problem belongs to ∃R if there is a polynomial-time,
many-to-one reduction from it to ETR, and it is ∃R-hard if there is a polynomial-time
many-to-one reduction from each problem in ∃R to it; it is ∃R-complete if it belongs to
∃R and it is ∃R-hard. Since satisfiability of a propositional boolean formula (SAT) can be
expressed in ETR, NP ⊆ ∃R; so, ETR is for ∃R what SAT is for NP . Thus, an ∃R-complete
problem is decided in NP if and only if ETR in NP . By Canny’s result [4], ∃R ⊆ PSPACE .
We refer the reader to [17] for more background on the class ∃R.

2.2 Games and Nash Equilibria

A game is a triple G =
〈

[r], {Σi}i∈[r] , {Ui}i∈[r]

〉
, where (i) [r] = {1, . . . , r} is a finite set of

players with r ≥ 2, and (ii) for each player i ∈ [r], Σi is the set of strategies for player i, and Ui

is the payoff function Ui : ×k∈[r]Σk → R for player i. Denote as u(G) = mins∈Σ,i∈[r] {Ui(s)}
the minimum payoff for G. The game G is win-lose if for each player i ∈ [r], Ui is a
function Ui : ×k∈[r]Σk → {0, 1}. For each player i ∈ [r], denote Σ−i = ×k∈[r]\{i}Σk; denote
Σ = ×k∈[r]Σk. A profile is a tuple s ∈ Σ of r strategies, one per player. The vector
U(s) = 〈U1(s), . . . ,Ur(s)〉 is the payoff vector for s. A partial profile s−i is a tuple of r − 1
strategies, one for each player other than i; so s−i ∈ Σ−i. For a profile s and a strategy
t ∈ Σi, denote as s−i � t the profile obtained by substituting strategy t for si in s. The
game G has the positive payoff property [1] if for each player i ∈ [r] and each partial profile
s−i ∈ Σ−i, there is a strategy t = t(s−i) such that Ui(s−i � t) > 0.

A mixed strategy for player i ∈ [r] is a probability distribution σi on her strategy set
Σi: a function σi : Σi → [0, 1] such that

∑
s∈Σi

σi(s) = 1. Denote as Support(σi) the set of
strategies s ∈ Σi with σi(s) > 0. A mixed profile σ = {σi}i∈[r] is a tuple of mixed strategies,
one per player. So, a profile is the degenerate case of a mixed profile where all probabilities
are either 0 or 1. A partial mixed profile σ−i is a tuple of r − 1 mixed strategies, one per
player other than i. For a mixed profile σ and a mixed strategy τi of player i ∈ [r], denote
as σ−i � τi the mixed profile obtained by substituting τi for σi in the mixed profile σ.

A mixed profile σ induces a probability measure Pσ on Σ in the natural way; so, for
a profile s, Pσ(s) =

∏
k∈[r] σk(sk). Say that the profile s ∈ Σ is supported in the mixed

profile σ if Pσ(s) > 0. Under the mixed profile σ, the payoff of each player becomes
a random variable. So, associated with σ is the expected payoff for each player i ∈ [r],

STACS 2016



17:4 ∃R-Complete Decision Problems About Nash Equilibria

denoted as Ui(σ), which is the expectation according to Pσ of her payoff; so, clearly,
Ui(σ) =

∑
s∈Σ

(∏
k∈[r] σk(sk)

)
· Ui(s).

A pure Nash equilibrium is a profile s ∈ Σ such that for each player i ∈ [r] and for each
strategy t ∈ Σi, Ui (s) ≥ Ui (s−i � t). A mixed Nash equilibrium, or Nash equilibrium for
short, is a mixed profile σ such that for each player i ∈ [r] and for each mixed strategy
τi, Ui(σ) ≥ Ui(σ−i � τi). A Nash equilibrium σ is fully mixed if Support(σi) = Σi for each
player i ∈ [r]. Denote as NE(G) the set of Nash equilibria for G. We shall make extensive
use of the following characterization of Nash equilibria.

I Lemma 1. A mixed profile σ is a Nash equilibrium if and only if for each player i ∈ [r],
(1) for each strategy t ∈ Support(σi), Ui(σ) = Ui(σ−i � t), and (2) for each strategy t 6∈
Support(σi), Ui(σ) ≥ Ui(σ−i � t).

We also recall a simple technical fact from [1, Lemma 2.2].

I Lemma 2. Fix a win-lose game G with the positive payoff property. Then, in a Nash
equilibrium σ, for each player i ∈ [r], Ui(σ) > 0.

For an arbitrary number δ, we denote as G + δ the game obtained from G by adding δ to
each possible value of the payoff function. We recall a very simple, well-known fact:

I Lemma 3. Consider the r-player games G and Ĝ = G + δ, for some number δ. Then,
NE(G) = NE(Ĝ). Moreover, for every Nash equilibrium σ ∈ NE(Ĝ) and player i ∈ [r],
Ûi(σ) = Ui(σ) + δ.

2.3 Decision Problems about Nash Equilibria
Here are the formal statements of the decision problems we shall consider, in the style of
Garey and Johnson [8], where I. and Q. stand for Instance and Question, respectively.

∃ NASH IN A BALL
I.: A game G and a rational number k ∈ (0, 1).
Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], maxs∈Σi σi(s) ≤ k?

∃ SECOND NASH
I.: A game G.
Q.: Is there a second Nash equilibrium?

∃ NASH WITH LARGE PAYOFFS
I.: A game G and a number u.
Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], Ui(σ) ≥ u?

∃ NASH WITH SMALL PAYOFFS
I.: A game G and a number u.
Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], Ui(σ) ≤ u?

∃ NASH WITH LARGE TOTAL PAYOFF
I.: A game G and a number u.
Q.: Is there a Nash equilibrium σ such that

∑
i∈[r] Ui(σ) ≥ u?
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∃ NASH WITH SMALL TOTAL PAYOFF
I.: A game G and a number u.
Q.: Is there a Nash equilibrium σ such that

∑
i∈[r] Ui(σ) ≤ u?

∃ NASH WITH LARGE SUPPORTS
I.: A game G and an integer k ≥ 1.
Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], |Support(σi)| ≥ k?

∃ NASH WITH SMALL SUPPORTS
I.: A game G and an integer k ≥ 1.
Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], |Support(σi)| ≤ k?

∃ NASH WITH RESTRICTING SUPPORTS
I.: A game G and a subset of strategies Ti ⊆ Σi for each player i ∈ [r].
Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], Ti ⊆ Support(σi)?

∃ NASH WITH RESTRICTED SUPPORTS
I.: A game G and a subset of strategies Ti ⊆ Σi for each player i ∈ [r].
Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], Support(σi) ⊆ Ti?

Given two mixed profiles σ and σ̂, denote as Diff (σ, σ̂) := {i ∈ [r] : σi 6= σ̂i} the set
of players with different mixed strategies in σ and σ̂. A Nash equilibrium σ is Strongly
Pareto-Optimal if for each mixed profile σ̂ where there is player i ∈ [r] with Ui(σ̂) > Ui(σ)
for some player i ∈ [r], there is a player j ∈ Diff(σ, σ̂) such that Uj(σ̂) ≤ Uj(σ); so, there
is no other profile where at least one player is strictly better off and every player using a
different strategy is strictly better off. We have two additional decision problems.

∃ NON-PARETO-OPTIMAL NASH
I.: A game G.
Q.: Is there a Nash equilibrium which is not Pareto-Optimal?

∃ NON-STRONGLY PARETO-OPTIMAL NASH
I.: A game G.
Q.: Is there a Nash equilibrium which is not Strongly Pareto-Optimal?

Restricted to 2-player games with rational utilities, all these problems are NP-complete.
∃ NASH IN A BALL was the first problem shown ∃R-complete. The problems ∃ SECOND
NASH, ∃ NASH WITH LARGE PAYOFFS, ∃ NASH WITH RESTRICTING SUPPORTS and ∃
NASH WITH RESTRICTED SUPPORTS are ∃R-complete for r-player games with r ≥ 3 [9].

2.4 The Game Ĝ[m]

For an integer m ≥ 2, define the 3-player win-lose game Ĝ[m] as follows: For each player
i ∈ [3], Σ̂i = [m], and the strategy sets are cyclic so that strategy 0 coincides with strategy
m; the payoff functions are: (1) Û1(s) = 1 if and only if s1 = s2; (2) Û2(s) = 1 if and only if
s2 = s3 − 1; (3) Û3(s) = 1 if and only if s3 = s1 − 1. Note that Ĝ[m] has the positive payoff
property. We prove:

STACS 2016
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I Lemma 4. Fix an odd integer m ≥ 3. Then, Ĝ[m] has a unique Nash equilibrium σ, which
is fully mixed and has Ûi(σ) = 1

m for each player i ∈ [3].

Proof. Fix a Nash equilibrium σ for Ĝ[m]. To prove that σ is fully mixed, assume, by way
of contradiction, that for a strategy j ∈ [m], σ1(j) = 0. This implies that σ3(j − 1) = 0 since
otherwise (σ3(j−1) > 0), Lemma 1 (Condition (1)) implies that Û3(σ) = Û3(σ−3�(j−1)) = 0,
which contradicts Lemma 2. This implies that σ2(j − 2) = 0 since otherwise (σ2(j − 2) > 0),
Lemma 1 (Condition (1)) implies that Û2(σ) = Û2(σ−2 � (j − 2)) = 0, which contradicts
Lemma 2. This implies that σ1(j − 2) = 0 since otherwise (σ1(j − 2) > 0), Lemma 1
(Condition (1)) implies that Û1(σ) = Û1(σ−1 � (j − 2)) = 0, which contradicts Lemma 2.
Since m is odd, a repeated application of the implication yields that σ1(1) = . . . = σ1(m) = 0,
σ2(1) = . . . = σ2(m) = 0 and σ3(1) = . . . = σ3(m) = 0. A contradiction. Hence, for each
player i ∈ [3], for each strategy j ∈ [m], σi(j) > 0, or σ is fully mixed. By Lemma 1 (Condition
(1)), this implies that for each player i ∈ [3], for each strategy j ∈ [m], Ûi(σ) = Ûi(σ−i � j).
By the definition of the payoff functions, for each strategy j ∈ [m], Û1(σ−1 � j) = σ2(j).
Û2(σ−2 � j) = σ3(j + 1) and Û3(σ−3 � j) = σ1(j + 1). Hence, it follows that for each player
i ∈ [3] and for each strategy j ∈ [m], σi(j) is independent of j, which implies that σi(j) = 1

m ,
so that σ is unique with Ui(σ) = 1

m for each player i ∈ [3]. J

3 The Game Reduction

Fix an arbitrary number δ > 0. The game reduction takes as input a pair of games:
A 3-player game G̃ with Σi = [n] for each player i ∈ [3], the inbox game.
A 3-player game Ĝ with Σi = [m] for each player i ∈ [3], with m ≥ n, the gadget game.

The game reduction constructs a 3-player game G = G
(

G̃, Ĝ
)
; G̃ and Ĝ are the subgames.

3.1 Definition and Some Notation

Set φ∗ := min
{
u(G̃), u(Ĝ)

}
− 1 and φ := φ∗ − 1. We construct the game G as follows:

For each player i ∈ [r], Σi = [p], with p = n(n+ 1) +m; [p] is partitioned into n+ 2 blocks
B0,B1, . . . ,Bn+1, where for each index h with 0 ≤ h ≤ n, Bh := {hn+ 1, . . . , (h+ 1)n}
and Bn+1 := {n(n+ 1) + 1, . . . , n(n+ 1) +m}; thus, |Bn+1| = m, while |Bh| = n for
each index h with 0 ≤ h ≤ n. For each index h with 0 ≤ h ≤ n+ 1 and k ∈ [|Bh|], denote
as Bh(k) the order k strategy in Bh; thus, Bh(k) is the order (hn+ k) strategy in Σi.
The payoff functions for G are given in Figure 1.

Clearly, G is constructed in time polynomial in the sizes of G̃ and Ĝ. Note that by Case (1),
G̃ + δ is a subgame of G; by Case (2), Ĝ is a subgame of G. So, the blocks B0 and Bn+1
correspond to the input games G̃ and Ĝ, respectively.

For an n-dimensional vector x ∈ Rn, denote as −→x ∈ Rp the p-dimensional vector with
−→x j = xj for j ∈ [n] and −→x j = 0 for n < j ≤ p. Similarly, for an m-dimensional vector
x ∈ Rm, denote as ←−x ∈ Rp the p-dimensional vector with ←−x j = 0 for i ∈ [n(n + 1)] and
←−x j = xj for n(n + 1) < j ≤ p. Hence, for a mixed profile σ ∈ Σ̃, (−→σ1,

−→σ2,
−→σ3) ∈ Σ; for a

mixed profile σ ∈ Σ̂, (←−σ1,
←−σ2,
←−σ3) ∈ Σ. For a given multidimensional space, B% denote the

ball of radius %. For a mixed profile σ, we write σ ∈ B% when σi ∈ B% for each player i ∈ [3].
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Case Condition on the profile s Payoff vector U(s)

(1) si ∈ B0 for each player i ∈ [3]
〈

Ũ1(s) + δ, Ũ2(s) + δ, Ũ3(s) + δ
〉

(2) si ∈ Bn+1 for each player i ∈ [3]
〈

Û1(s), Û2(s), Û3(s)
〉

(3) si = Bn+1(k) with k ∈ [n] Ui(s) = Ui(s−i � k)
& sj ∈ B0 for j 6= i Uj(s) = φ for j 6= i

(4) si = Bh(k) with h, k ∈ [n] Ui(s) = Ũ1(s−i � k) + 2δ
& sj ∈ B0 for j 6= i with si+1 = h Uj(s) = φ for j 6= i

(5) si = Bh(k) with h, k ∈ [n] Ui(s) = Ũi(s−i � k)
& sj ∈ B0 for j 6= i with si+1 6= h Uj(s) = φ for j 6= i

(6) P(s) 6= ∅ & P(s) 6= [3], Ui(s) = φ∗ if i ∈ P(s)
with s not falling in Case (3) Ui(s) = φ, if i 6∈ P(s)

(7) None of the above 〈φ, φ, φ〉

Figure 1 The payoff functions for the game G. Here P(s) := {i ∈ [3] | si ∈ Bn+1}, the set of
players choosing strategies from the block Bn+1 in the profile s.

3.2 Correspondences Between Nash Equilibria
We now establish certain correspondences between the Nash equilibria for the subgames G̃
and Ĝ, respectively, and the Nash equilibria for the constructed game G.

3.2.1 Backward Correspondence: From the Game G to the Subgames
We shall prove that a Nash equilibrium for G is induced by a Nash equilibrium for either G̃
or Ĝ. We start with two technical claims about a Nash equilibrium for G (Lemmas 5 and 6).
We first prove that if some player is playing some strategy outside B0, then none of the other
two players is playing a strategy in B0.

I Lemma 5. Fix a Nash equilibrium σ ∈ NE(G) for which there is a player i′ such that
Support(σi′) \ B0 6= ∅. Then, for every player i 6= i′, Support(σi) ∩ B0 = ∅.

Proof. Assume, by way of contradiction, that there is a player i 6= i′ with Support(σi)∩B0 6= ∅.
Choose an arbitrary strategy k ∈ Support(σi) ∩ B0. Since k ∈ Support(σi), Lemma 1
(Condition (1)) implies that Ui(σ) =

∑
s−i∈Σ−i

Ui(s−i � k) · Pσ−i(s−i). Lemma 1 (Condition
(2)) implies that

Ui(σ−i � Bn+1(k)) =
∑

s−i∈Σ−i

Ui(s−i � Bn+1(k)) · Pσ−i
(s−i) ≤ Ui(σ) .

Fix a partial profile s−i ∈ Σ−i. There are six possible cases for the two players other than i.
1. Both players choose a strategy from B0. Then, s−i � k falls into Case (1) of the payoff

table, while s−i � Bn+1(k) falls into Case (3), so that Ui(s−i � k) = Ui(s−i � Bn+1(k)).
2. Both players choose a strategy from Bn+1. Then, s−i � k falls into Case (6) of the payoff

table with Ui(s−i �k) = φ, while s−i �Bn+1(k) falls into Case (2) with Ui(s−i �Bn+1(k)) ≥
u(Ĝ) > φ.

3. Both players choose a strategy outside B0 ∪ Bn+1. Then, s−i � k falls into Case (7) of
the payoff table with Ui(s−i � k) = φ, while s−i � Bn+1(k) falls into Case (6) with
Ui(s−i � Bn+1(k)) = φ∗ > φ.

4. One player chooses a strategy from B0 and the other chooses one from Bn+1.
Then, s−i�k falls into Case (3) of the payoff table with Ui(s−i�k) = φ, while s−i�Bn+1(k)
falls into Case (6) with Ui(s−i � Bn+1(k)) = φ∗ > φ.

STACS 2016
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5. One player chooses a strategy from B0 and the other chooses one outside B0 ∪ Bn+1.
Then, s−i � k falls into either Case (4) or (5) of the payoff table with Ui(s−i � k) = φ,
while s−i � Bn+1(k) falls into Case (6) with Ui(s−i � Bn+1(k)) = φ∗ > φ.

6. One player chooses a strategy from Bn+1 and the other chooses one outside B0 ∪ Bn+1.
Then, both s−i�k and s−i�Bn+1(k) fall into Case (6) of the payoff table with Ui(s−i�k) = φ

and Ui(s−i � Bn+1(k)) = φ∗ > φ.
Note that in the first of the six cases, player i has the same payoff for the two strategies k
and Bn+1(k), while in all other cases, player i improves her payoff when switching to Bn+1(k).
Hence, there is no profile supported in σ−i � Bn+1(k) in which player i has a smaller payoff.
The assumption implies that Support(σj) \ B0 6= ∅; it follows that there is at least one profile
supported in σ−i � Bn+1(k) for which player i has a larger payoff. A contradiction. J

We continue to prove that if some player is playing no strategy from B0, then the other two
players are playing only strategies from Bn+1.
I Lemma 6. Fix a Nash equilibrium σ ∈ NE(G) for which there is a player i′ with
Support(σi′) ∩ B0 = ∅. Then, for each player i 6= i′, Support(σi) \ Bn+1 = ∅.
Proof. Assume, by way of contradiction, that there is a player i 6= i′ with Support(σi)\Bn+1 6=
∅. Choose an arbitrary strategy k ∈ Support(σi) \ Bn+1 and an arbitrary strategy h ∈ Bn+1.
Since k ∈ Support(σi), Lemma 1 (Condition (1)) implies that Ui(σ) =

∑
s−i∈Σ−i

Ui(s−i � k) ·
Pσ−i

(s−i). Lemma 1 (Condition (2)) implies that

Ui(σ−i � h) =
∑

s−i∈Σ−i

Ui(s−i � h) · Pσ−i(s−i) ≤ Ui(σ) .

Fix now a profile s−i ∈ Σ−i. There are five possible cases for the two players other than i.
1. Both players play a strategy from Bn+1. Then, s−i � k falls into Case (6) of the payoff

table with Ui(s−i � k) = φ, while s−i � h falls into Case (2) with Ui(s−i � h) ≥ u(Ĝ) > φ.
2. Both players choose a strategy outside B0 ∪ Bn+1. Then, s−i � k falls into Case (7) of the

payoff table with Ui(s−i�k) = φ, while s−i�h falls into Case (6) with Ui(s−i�h) = φ∗ > φ.
3. One player chooses a strategy from B0 and the other chooses one from Bn+1.

Then, s−i � k falls into either Case (3) or (7) of the payoff table with Ui(s−i � k) = φ,
while s−i � h falls into Case (6) with Ui(s−i � h) = φ∗ > φ.

4. One player chooses a strategy from B0 and the other chooses one outside B0 ∪ Bn+1.
Then, s−i �k falls into either Case (4) or (5) or (7) of the payoff table with Ui(s−i �k) = φ,
while s−i � h falls into Case (6) with Ui(s−i � h) = φ∗ > φ.

5. One player chooses a strategy from Bn+1 and the other chooses one outside B0 ∪ Bn+1.
Then, both s−i �k and s−i �h fall into Case (6) of the payoff table, so that Ui(s−i �k) = φ

and Ui(s−i � h) = φ∗ > φ.

Thus, in all profiles supported in σ−i � Bn+1(k), player i improves her payoff by switching to
strategy h. A contradiction. J

We are now ready to prove:
I Lemma 7. Fix a Nash equilibrium σ ∈ NE(G). Then, there are only two possible cases:
σ = (−→τ1 ,

−→τ2 ,
−→τ3) for some Nash equilibrium τ ∈ NE(G̃).

σ = (←−τ1 ,
←−τ2 ,
←−τ3) for some Nash equilibrium τ ∈ NE(Ĝ).

Proof. By Lemmas 5 and 6, either (i) σ1 = −→τ1 , σ2 = −→τ2 and σ3 = −→τ3 for some mixed profile
τ ∈ Σ̃ or (ii) σ1 =←−τ1 , σ2 =←−τ2 , σ3 =←−τ3 for some mixed profile τ ∈ Σ̂. The two properties
that τ ∈ NE(G̃) and τ ∈ NE(Ĝ) follow from the facts that both G̃ + δ and Ĝ are subgames
of G, and from Lemma 3, by which G̃ and G̃ + δ have the same set of Nash equilibria. J
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3.2.2 Forward Correspondence: From the Subgames to the Game G
We now characterize the Nash equilibria for the two subgames G̃ and Ĝ that induce corres-
ponding Nash equilibria for G. Specifically, these are all the Nash equilibria for Ĝ (Lemma 8)
and every Nash equilibrium in B1/2 for G̃ (Lemma 9), respectively. We first prove:

I Lemma 8. Fix a Nash equilibrium σ ∈ NE(Ĝ). Then, (←−σ1,
←−σ2,
←−σ3) ∈ NE(G).

Proof. By Case (2) of the payoff table, for each player i ∈ [3], Ui (←−σ1,
←−σ2,
←−σ3) = Ûi(σ) ≥ u(Ĝ).

Since σ ∈ NE(Ĝ), no player could improve her payoff by deviating to a strategy from
Bn+1. A deviation to a strategy outside Bn+1 gives rise to a mixed profile for which only
profiles from Case (6) are supported, and the expected payoff of the deviating player is
φ < u(Ĝ). J

We continue to prove:

I Lemma 9. Fix a Nash equilibrium σ ∈ NE(G̃). Then, (−→σ1,
−→σ2,
−→σ3) ∈ NE(G) if and only if

σ ∈ B1/2.

Proof. Fix a player i ∈ [3]. By Lemma 1 (Condition (1)), for each strategy j ∈ Support(σi),

Ui (−→σ1,
−→σ2,
−→σ3) =

∑
s−i∈Σ−i

Ui (s−i � j) · Pσ−i
(s−i)

=
∑

s−i∈Σ̃−i

Ui(s−i � j) · Pσ−i
(s−i)

=
∑

s−i∈Σ̃−i

(
Ũi (s−i � j) + δ

)
· Pσ−i

(s−i)

= δ +
∑

s−i∈Σ̃−i

Ũi (s−i � j) · Pσ−i
(s−i)

> u(G̃) .

By Lemma 3, NE(G̃) = NE(G̃ + δ); thus, player i cannot improve her payoff by switching
to a strategy from B0. Also, by Case (3), player i cannot improve her payoff by switching
to any of the first n strategies in Bn+1; by Case (6), player i cannot improve her payoff by
switching to any of the last m − n strategies in Bn+1 since u(G̃) > φ∗. So, it remains to
consider deviations to strategies outside B0 ∪ Bn+1. We proceed by case analysis.
1. Assume first that σ /∈ B1/2. Hence, there is a player h = i + 1 with σh /∈ B1/2. (This

assumption is without loss of generality since i is arbitrary.) Consider the third player
h′ = i+ 2. Denote as k ∈ B0 the strategy with σh(k) > 1

2 . Consider player i switching to
the strategy Bk(j). By Cases (4) and (5) of the payoff table, her expected payoff is∑

s−i∈Σ−i

Ui (s−i � Bk(j)) · Pσ−i(s−i)

=
∑

s−i∈Σ̃−i

Ui (s−i � Bk(j)) · Pσ−i
(s−i)

=
∑

s−i∈Σ̃−i:sh=k

(
Ũi(s−i � j) + 2δ

)
Pσ−i(s−i) +

∑
s−i∈Σ̃−i:sh 6=k

Ũi(s−i � j)Pσ−i(s−i)

= 2δ
∑

s−i∈Σ̃−i:sh=k

Pσ−i
(s−i) +

∑
s−i∈Σ̃−i

Ũi(s−i � j)Pσ−i
(s−i)
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> δ +
∑

s−i∈Σ̃−i

Ũi(s−i � j)Pσ−i(s−i)

= Ui (−→σ1,
−→σ2,
−→σ3) ,

which implies that (−→σ1,
−→σ2,
−→σ3) /∈ NE(G).

2. Assume now that σ ∈ B1/2. Consider player i switching to an arbitrary strategy Bk(j)
outside B0 ∪ Bn+1. Set h := i+ 1 and h′ := i+ 2. By Cases (4) and (5), her expected
payoff is ∑

s−i∈Σ−i

Ui (s−i � Bk(j)) · Pσ−i
(s−i)

=
∑

s−i∈Σ̃−i

Ui (s−i � Bk(j)) · Pσ−i
(s−i)

=
∑

s−i∈Σ̃−i|sh=k

(
Ũi (s−i � j) + 2 δ

)
Pσ−i

(s−i) +
∑

s−i∈Σ̃−i|sh 6=k

Ũi (s−i � j) · Pσ−i
(s−i)

= 2 δ
∑

s−i∈Σ̃−i|sh=k

Pσ−i
(s−i) +

∑
s−i∈Σ̃−i

Ũi (s−i � j) · Pσ−i
(s−i)

≤ δ +
∑

s−i∈Σ̃−i

Ũi (s−i � j) · Pσ−i(s−i)

= Ui (−→σ1,
−→σ2,
−→σ3) ,

which implies that (−→σ1,
−→σ2,
−→σ3) ∈ NE(G).

The proof is now complete. J

4 The ∃R-Complete Decision Problems

We now present the ∃R-completeness results. We show:

I Theorem 10. Restricted to r-player games with r ≥ 3, the following decision problems are
∃R-complete:

Group I Group II
∃ SECOND NASH ∃ NASH WITH LARGE PAYOFFS
∃ NASH WITH SMALL PAYOFFS ∃ NASH WITH LARGE TOTAL PAYOFF
∃ NASH WITH SMALL TOTAL PAYOFF ∃ WITH SMALL SUPPORTS
∃ NASH WITH LARGE SUPPORTS
∃ NASH WITH RESTRICTING SUPPORTS
∃ NASH WITH RESTRICTED SUPPORTS
∃ NON-PARETO OPTIMAL NASH
∃ NON-STRONGLY-PARETO-OPTIMAL NASH

Membership of the decision problems (for r-player games with r ≥ 3) in ∃R is established
with standard techniques, employing simple formulas to define their properties (cf. [9]).

Proof. Assume first that r = 3. We use a polynomial time, many-to-one reduction from ∃
NASH IN A BALL. Consider an instance G̃ of ∃ NASH IN A BALL with % = 1

2, called the
inbox game. Assume, without loss of generality, that Σ̃i = [n] for each player i ∈ [3]. We
start with an outline of the proof. The reduction will be the composition of the construction
of a gadget game and the game reduction from Section 3. For each of Group I and Group
II, we shall employ a suitable game Ĝ, called the gadget game, which may be constructed
from the inbox game G̃. Then, we shall apply the game reduction from Section 3 with G̃
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Case Condition on the profile s Payoff vector Û(s)

(1) P(s) = [3] 〈u∗, u∗, u∗〉
(2) P(s) 6= ∅ ∧ P(s) 6= [3] Ûi(s) = u∗ if i ∈ P(s)

Ûi(s) = u∗ − 1 if i /∈ P(s)
(3) P(s) = ∅ 〈u∗ − 2, u∗ − 2, u∗2〉

Figure 2 The payoff functions for the game Ĝ. Here, P(s) := {i ∈ [3] | si = 1}, and u∗ := u(G̃)+1.

and Ĝ as the subgames to obtain the game G = G
〈

G̃, Ĝ
〉
; G is the instance of the decision

problem (from the corresponding Group) associated with some particular property of Nash
equilibria; to prove that the decision problem is ∃R-hard, we need to establish: The game G̃
has a Nash equilibrium in the ball B1/2 if and only if the game G has a Nash equilibrium
with the property (respectively, the set of Nash equilibria for G has the property, as for the
decision problem ∃ SECOND NASH).
We continue with the formal proof. We treat separately each of Group I and Group II.
Group I : Construct the 3-player gadget game Ĝ where for each player i ∈ [3], Σ̂i = [n]. The
payoff functions are given in Figure 2: Clearly, the gadget game Ĝ is constructed in time
polynomial in the size of the inbox game G̃. Note that Ĝ has a unique Nash equilibrium
which is the profile s = (1, 1, 1), in which each player has payoff u∗.
Apply now the game reduction from Section 3 to construct the game G from the subgames G̃
and Ĝ (and an arbitrary δ > 0). Since (i) G is constructed in time polynomial in the sizes of
G̃ and Ĝ, and (ii) Ĝ is constructed in time polynomial in the size of G̃, it follows that G is
constructed in time polynomial in the size of G̃. Lemmas 7, 8 and 9 immediately imply:

I Lemma 11. Assume that the inbox game G̃ has no Nash equilibrium in B1/2. Then, G has
a unique Nash equilibrium (←−σ1,

←−σ2,
←−σ3) with the following properties:

1. For each player i ∈ [3], Ui (←−σ1,
←−σ2,
←−σ3) = u∗.

2. For each player i ∈ [3], Support(←−σi) = {n(n+ 1) + 1}.
3. (←−σ1,

←−σ2,
←−σ3) is Pareto-Optimal.

4. (←−σ1,
←−σ2,
←−σ3) is Strongly-Pareto-Optimal.

On the other hand, Lemma 9 immediately implies:

I Lemma 12. Assume that the inbox game G̃ has a Nash equilibrium in B1/2. Then, G has
a Nash equilibrium τ with the following properties:
1. For each player i ∈ [3], Ui(τ ) ≤ u(G̃) < u∗.
2. For each player i ∈ [3], Support(τi) ∈ [n] with |Support(τi)| ≥ h for some integer h ≥ 2,
3. τ is not Pareto-Optimal.
4. τ is not Strongly Pareto-Optimal.

Now, combining the two families of properties in Lemmas 11 and 12 immediately yields the
∃R-hardness of the following decision problems:
∃ SECOND NASH;
∃ NASH WITH SMALL PAYOFFS, taking u with u(G̃) < u ≤ u∗;
∃ NASH WITH SMALL TOTAL PAYOFF, taking u with r · u(G̃) < u ≤ r · u∗;
∃ NASH WITH LARGE SUPPORTS, taking k with 2 ≤ k ≤ h;
∃ NASH WITH RESTRICTING SUPPORTS, taking a triple (T1,T2,T3) = ({i}, {j}, {k})
with arbitrary strategies i, j, k ∈ [n];
∃ NASH WITH RESTRICTED SUPPORTS, taking, for each player i ∈ [3], Ti such that
[n] ⊆ Ti ⊆ [p] \ {n(n+ 1) + 1};

STACS 2016
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∃ NON-PARETO-OPTIMAL NASH;
∃ NON-STRONGLY PARETO-OPTIMAL NASH.

Group II : Construct the 3-player gadget game Ĝ := G[m] + u(G̃)− 1, where m ≥ 3 is an odd
integer with size polynomial in the size of n, and G[m] is the gadget game from Section 2.4.
Clearly, the game Ĝ is constructed in time polynomial in the size of G̃. By Lemmas 3 and 4,
Ĝ has a unique Nash equilibrium σ which is fully mixed and has Ûi(σ) = u(G̃)− 1 + 1

m .
Apply now the game reduction from Section 3 to construct the game G from the subgames
G̃ and Ĝ. As in Group I, and using the fact that m has size polynomial in that of n, G is
constructed in time polynomial in the size of G̃. Lemmas 7, 8 and 9 immediately imply:

I Lemma 13. Assume that the inbox game G̃ has no Nash equilibria in B1/2. Then, G has a
unique Nash equilibrium (←−σ1,

←−σ2,
←−σ3) with the following properties:

1. For each player i ∈ [3], Ui (←−σ1,
←−σ2,
←−σ3) = u

(
G̃
)
− 1 + 1

m .
2. For each player i ∈ [3], |Support(←−σi)| = m.

On the other hand, Lemma 9, immediately implies:

I Lemma 14. Assume that the inbox game G̃ has a Nash equilibrium in B1/2. Then, G has
a Nash equilibrium τ with the following properties:
1. For each player i ∈ [3], Ui(τ ) ≥ u(G̃)− 1 + 1

m .
2. For each player i ∈ [3], |Support(τi)| ≤ n.

Now, combining the two families of properties in Lemmas 13 and 14 immediately yields the
∃R-hardness of the following decision problems:
∃ NASH WITH LARGE PAYOFFS, taking u with u(G̃)− 1 + 1

m < u ≤ u(G̃).
∃ NASH WITH LARGE TOTAL PAYOFF, taking u with r ·

(
u(G̃)− 1 + r

m,
)
< u ≤ r ·u(G̃).

∃ NASH WITH LARGE SUPPORTS, taking k with n ≤ k < m.
Each ∃R-hardness result can be extended to r-player games with r > 3 using a trivial
technique, also used in [9]. Specifically, to prove that a particular decision problem is
∃R-hard for r-player games with r > 3 given that it is ∃R-hard for 3-player games, we reduce
from 3-player games to r-player games: We add r − 3 dummy players; each comes with a
suitable payoff function so that the property associated with the decision problem is either
satisfied vacuously by the dummy players, or its satisfaction is not affected by the dummy
players. For example, for ∃ NASH WITH LARGE PAYOFFS, each dummy player comes with a
single strategy 1 and the payoff of each dummy player is always u no matter what the other
players choose; for ∃ NASH WITH RESTRICTED SUPPORTS, each dummy player comes with
a single strategy 1 and the set Ti for each dummy player i ∈ [r] \ [3] is taken as {1}. For ∃
NASH WITH LARGE SUPPORTS, each dummy player comes with k strategies, each yielding
the same payoff no matter what the other players choose; thus, a mixed profile where each
dummy player plays each of her k strategies with probability 1

k
is a Nash equilibrium when

restricted to the dummy players. This implies that there is a Nash equilibrium such that for
each player i ∈ [r], |Support(σi)| ≥ k if and only if there is a Nash equilibrium such that for
each non-dummy player i, |Support(σi)| ≥ k. Further details are omitted as trivial. J

5 Epilogue

The extensive catalog of ∃R-complete decision problems about Nash equilibria in r-player
games with r ≥ 3 we presented extends significantly the corresponding ∃R-completeness
results from [9, 17] and completes the picture for the complexity characterization of such
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problems. Deciding any of these problems in NP (for r-player games with r ≥ 3) is as
hard as deciding ETR in NP, which is considered very unlikely. The presented catalog
seconds the corresponding one of NP-complete decision problems about Nash equilibria in
2-player games from [1, 6, 10]. It remains open whether or not the established ∃R-hardness
survives the restriction to r-player win-lose games with r ≥ 3; we note that the corresponding
NP-hardness for 2-player games [6, 10] was extended to 2-player win-lose games in [1].
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