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—— Abstract

It has long been known, since the classical work of (Arora, Karger, Karpinski, JCSS 99), that
MAaX-CUT admits a PTAS on dense graphs, and more generally, MAX-k-CSP admits a PTAS on
“dense” instances with Q(n’“) constraints. In this paper we extend and generalize their exhaustive
sampling approach, presenting a framework for (1—e¢)-approximating any MAX-k-CSP problem in
sub-exponential time while significantly relaxing the denseness requirement on the input instance.

Specifically, we prove that for any constants § € (0,1] and € > 0, we can approximate MAX-
k-CSP problems with Q(n*~1+9) constraints within a factor of (1 — ) in time 20" " Inn/e®),
The framework is quite general and includes classical optimization problems, such as MAX-CUT,
MaX-DICUT, MAX-k-SAT, and (with a slight extension) k-DENSEST SUBGRAPH, as special cases.
For Max-CUT in particular (where k = 2), it gives an approximation scheme that runs in time
sub-exponential in n even for “almost-sparse” instances (graphs with n'*® edges).

We prove that our results are essentially best possible, assuming the ETH. First, the density
requirement, cannot be relaxed further: there exists a constant r < 1 such that for all § > 0,
Max-k-SAT instances with O(n*~1) clauses cannot be approximated within a ratio better than
7 in time 200*" ). Second, the running time of our algorithm is almost tight for all densities.
Even for MAX-CUT there exists 7 < 1 such that for all ' > § > 0, MAX-CUT instances with

n!t9 edges cannot be approximated within a ratio better than r in time o'
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1 Introduction

The complexity of Constraint Satisfaction Problems (CSPs) has long played a central role
in Theoretical Computer Science and it quickly became evident that almost all interesting
CSPs are NP-complete [27]. Thus, since approximation algorithms are one of the standard
tools for dealing with NP-hard problems, the question of approximating the corresponding
optimization problems (MAX-CSP) has attracted significant interest over the years [28].
Unfortunately, most CSPs typically resist this approach: not only are they APX-hard [23],
but quite often the best polynomial-time approximation ratio we can hope to achieve for
them is that guaranteed by a trivial random assignment [21]. This striking behavior is often
called approzimation resistance.

Approximation resistance and other APX-hardness results were originally formulated in
the context of polynomial-time approximation. It would therefore seem that one conceivable
way for working around such barriers could be to consider approximation algorithms running
in super-polynomial time, and indeed super-polynomial approximation for NP-hard problems
is a topic that has been gaining more attention in the literature recently [10, 7, 6, 11, 12, 13].
Unfortunately, the existence of quasi-linear PCPs with small soundness error, first given
in the work of Moshkovitz and Raz [24], established that approximation resistance is a
phenomenon that carries over even to sub-exponential time approximation, essentially “killing”
this approach for CSPs. For instance, we now know that if, for any € > 0, there exists
an algorithm for MAX-3-SAT with ratio 7/8 + € running in time 27" this would imply
the existence of a sub-exponential exact algorithm for 3-SAT, disproving the Exponential
Time Hypothesis (ETH). It therefore seems that sub-exponential time does not improve
the approximability of CSPs, or put another way, for many CSPs obtaining a very good
approximation ratio requires almost as much time as solving the problem exactly.

Despite this grim overall picture, many positive approximation results for CSPs have
appeared over the years, by taking advantage of the special structure of various classes
of instances. One notable line of research in this vein is the work on the approximability
of dense CSPs, initiated by Arora, Karger and Karpinski [4] and independently by de la
Vega [14]. The theme of this set of results is that the problem of maximizing the number
of satisfied constraints in a CSP instance with arity & (MAX-k-CSP) becomes significantly
easier if the instance contains Q(n*) constraints. More precisely, it was shown in [4] that
Max-k-CSP admits a polynomial-time approzimation scheme (PTAS) on dense instances,
that is, an algorithm which for any constant € > 0 can in time polynomial in n produce an
assignment that satisfies (1 — €)OPT constraints. Subsequent work produced a stream of
positive [16, 5, 2, 9, 8, 20, 3, 19, 22| (and some negative [15, 1]) results on approximating CSPs
which are in general APX-hard, showing that dense instances form an island of tractability
where many optimization problems which are normally APX-hard admit a PTAS.

Our contribution. The main goal of this paper is to use the additional power afforded by
sub-exponential time to extend this island of tractability as much as possible. To demonstrate
the main result, consider a concrete CSP such as MAX-3-SAT. As mentioned, we know that
sub-exponential time does not in general help us approximate this problem: the best ratio
achievable in, say, 2V™ time is still 7/8. On the other hand, this problem admits a PTAS
on instances with Q(n?) clauses. This density condition is, however, rather strict, so the
question we would like to answer is the following: Can we efficiently approximate a larger
(and more sparse) class of instances while using sub-exponential time?

In this paper we provide a positive answer to this question, not just for MAX-3-SAT, but
also for any MAX-k-CSP problem. Specifically, we show that for any constants § € (0, 1],
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e > 0 and integer k > 2, there is an algorithm which achieves a (1 — &) approximation of
MAX-k-CSP instances with Q(n*~1+9) constraints in time 20(n' " Inn/e*) A potable special
case of this result is for £ = 2, where the input instance can be described as a graph. For
this case, which contains classical problems such as MAX-CUT, our algorithm gives an
approximation scheme running in time 20(% »n/ ) for graphs with average degree A. In
other words, this is an approximation scheme that runs in time sub-exponential in n even
for almost sparse instances where the average degree is A = n® for some small § > 0. More
generally, our algorithm provides a trade-off between the time available and the density of
the instances we can handle. For graph problems (k = 2) this trade-off covers the whole
spectrum from dense to almost sparse instances, while for general MAX-k-CSP, it covers
instances where the number of constraints ranges from ©(n*) to ©(nk=1).

Techniques. The algorithms in this paper are an extension and generalization of the
exhaustive sampling technique given by Arora, Karger and Karpinski [4], who introduced a

framework of smooth polynomial integer programs to give a PTAS for dense MAX-k-CSP.

The basic idea of that work can most simply be summarized for MAX-CUT. This problem

can be recast as the problem of maximizing a quadratic function over n boolean variables.

This is of course a hard problem, but suppose that we could somehow “guess” for each vertex
how many of its neighbors belong in each side of the cut. This would make the quadratic
problem linear, and thus much easier. The main intuition now is that, if the graph is dense,

we can take a sample of O(logn) vertices and guess their partition in the optimal solution.

Because every non-sample vertex will have “many” neighbors in this sample, we can with

high confidence say that we can estimate the fraction of neighbors on each side for all vertices.

The work of de la Vega [14] uses exactly this algorithm for MAX-CUT, greedily deciding the
vertices outside the sample. The work of [4] on the other hand pushed this idea to its logical
conclusion, showing that it can be applied to degree-k polynomial optimization problems,
by recursively turning them into linear programs whose coefficients are estimated from the
sample. The linear programs are then relaxed to produce fractional solutions, which can be
rounded back into an integer solution to the original problem.

On a very high level, the approach we follow in this paper retraces the steps of [4]: we
formulate MAX-k-CSP as a degree-k polynomial maximization problem; we then recursively
decompose the degree-k polynomial problem into lower-degree polynomial optimization
problems, estimating the coefficients by using a sample of variables for which we try all
assignments; the result of this process is an integer linear program, for which we obtain a
fractional solution in polynomial time; we then perform randomized rounding to obtain an
integer solution that we can use for the original problem.

The first major difference between our approach and [4] is of course that we need to use
a larger sample. This becomes evident if one considers MAX-CUT on graphs with average
degree A. In order to get the sampling scheme to work we must be able to guarantee that
each vertex outside the sample has “many” neighbors inside the sample, so we can safely
estimate how many of them end up on each side of the cut. For this, we need a sample
of size at least nlogn/A. Indeed, we use a sample of roughly this size, and exhausting all
assignments to the sample is what dominates the running time of our algorithm. As we argue
later, not only is the sample size we use essentially tight, but more generally the running
time of our algorithm is essentially optimal (under the ETH).

Nevertheless, using a larger sample is not in itself sufficient to extend the scheme of [4]
to non-dense instances. As observed in [4] “to achieve a multiplicative approximation for
dense instances it suffices to achieve an additive approximation for the nonlinear integer
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programming problem”. In other words, one of the basic ingredients of the analysis of [4] is
that additive approximation errors of the order en* can be swept under the rug, because we
know that in a dense instance the optimal solution has value (n*). This is not true in our
case, and we are therefore forced to give a more refined analysis of the error of our scheme,
independently bounding the error introduced in the first step (coefficient estimation) and
the last (randomized rounding).

A further, more serious complication arises when considering Max-k-CSP for k > 2.
Indeed, the idea of using a larger sample size to handle non-dense instances of MAX-CUT
was already considered in [17], which for k£ = 2 gives an algorithm of similar performance
to the one we present in this paper. The main obstacle to extending such an algorithm to
the general case of k > 2 is that the scheme of [4] recursively decomposes dense instances
into lower-order polynomials which roughly retain the same “denseness”. This property
seems much harder to transfer to the non-dense case, because intuitively if we start from a
non-dense instance the decomposition could end up producing some dense and some sparse
sub-problems. Here we present a scheme that approximates MAX-k-CSP with Q(nF~1+9)

k=1 constraints. As

constraints, but does not seem to extend to instances with fewer than n
we will see, there seems to be a fundamental complexity-theoretic justification explaining

exactly why this decomposition method cannot be extended further.

Hardness. What makes the results of this paper more interesting is that we can establish
that in many ways they are essentially best possible, if one assumes the ETH. In particular,
there are at least two ways in which one may try to improve on these results further: one
would be to improve the running time of our algorithm, while another would be to extend
the algorithm to the range of densities it cannot currently handle. In Section 6 we show that
both of these approaches would face significant barriers. Our starting point is the fact that
(under ETH) it takes exponential time to approximate MAX-CUT arbitrarily well on sparse
instances, which is a consequence of the existence of quasi-linear PCPs. By manipulating
such MAX-CUT instances, we are able to show that for any average degree A = n® with § < 1
the time needed to approximate MAX-CUT arbitrarily well almost matches the performance
of our algorithm. Furthermore, starting from sparse MAX-CUT instances, we can produce
instances of MAX-k-SAT with O(n*~!) clauses while preserving hardness of approximation.
This gives a complexity-theoretic justification for our difficulties in decomposing M AX-k-CSP
k=1 constraints. We note that the hardness results we present here
refute (subject to the ETH) a conjecture made in [17] that a better time-density trade-off
can be achieved for Max-CUT.

instances with less than n

2 Notation and Preliminaries

An n-variate degree-d polynomial p(Z) is S-smooth [4], for some constant 8 > 1, if for
every ¢ € {0,...,d}, the absolute value of each coeflicient of each degree-¢ monomial in the
expansion of p(#) is at most fn=*
d-bounded, for some constant § € (0, 1], if for every ¢, the sum, over all degree-£ monomials in
p(&), of the absolute values of their coefficients is O(fn%~1+9). Therefore, for any n-variate
degree-d -smooth §-bounded polynomial p(#) and any Z € {0,1}", |p(Z)| = O(dfn?=1+9).

Our algorithms for MAX-CUT, MAX-k-SAT, and MAX-k-CSP are obtained by reducing
to the following problem: Given an n-variate d-degree -smooth d-bounded polynomial p(Z),
we seek a binary vector #* € {0,1}" that maximizes p.

. An n-variate degree-d -smooth polynomial p(Z) is

As in [4, Lemma 3.1], our general approach is motivated by the fact that any n-variate
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d-degree (-smooth polynomial p(Z) can be naturally decomposed into a collection of n

polynomials p;(Z). Each of them has degree d — 1 and at most n variables and is -smooth.

» Lemma 1 ([4]). Let p(Z) be any n-variate degree-d -smooth polynomial. Then, there exist

a constant ¢ and degree-(d—1) [3-smooth polynomials p;(Z) such that p(Z) = c+ Z?zl z;p; (Z).

Let G(V,E) be a (simple) graph with n vertices and m edges. For each vertex i € V,
N (%) denotes i’s neighborhood in G, i.e., N(i) = {j € V : {i,j} € E}. We let deg(i) = |N(i)|
be the degree of i in G and A = 2|E|/n denote the average degree of G. We say that a graph
G is d-almost sparse, for some constant & € (0,1], if m = Q(n'*?) (and thus, A = Q(n?)).

In MaXx-CUT, we seek a partitioning of the vertices of G into two sets Sy and S so
that the number of edges with endpoints in Sy and S; is maximized. If G has m edges, the
number of edges in the optimal cut is at least m/2.

In k-DENSEST SUBGRAPH, given an undirected graph G(V, E), we seek a subset C of k
vertices so that the induced subgraph G[C] has a maximum number of edges.

An instance of (boolean) MAX-k-CSP with n variables consists of m boolean constraints
fi,--+ fm, where each f; : {0,1}¥ — {0,1} depends on k variables and is satisfiable, i.e., f;
evaluates to 1 for some truth assignment. We seek a truth assignment to the variables that
maximizes the number of satisfied constraints. MAX-k-SAT is a special case of MAX-k-CSP
where each constraint f; is a disjunction of k literals. An averaging argument implies that
the optimal assignment of a MAX-k-CSP (resp. MaX-k-SAT) instance with m constraints
satisfies at least 27%m (resp. (1 —27%)m) of them. We say that an instance of MAX-k-CSP is

§-almost sparse, for some constant & € (0, 1], if the number of constraints is m = Q(n*~1+9).

Using standard arithmetization techniques (see e.g., [4, Sec. 4.3]), we can reduce any
instance of MAX-k-CSP with n variables to an n-variate degree-k polynomial p(Z) so that
the optimal truth assignment for MAX-k-CSP corresponds to a maximizer £* € {0,1} of
p(Z) and the value of the optimal MAX-k-CSP solution is equal to p(Z*). Such a polynomial
p(Z&) is B-smooth, for an appropriate constant S that may depend on k, and has at least m
and at most 4¥m monomials. Moreover, if the instance of MAX-k-CSP has m = ©(nF~1+9)
constraints, then p(f) is d-bounded and its maximizer #* has p(z*) = Q(nF~119).

Since each k-tuple of variables can appear in at most 2% different constraints, p(&) is
B-smooth, for 3 € [1,4%], and has at least m and at most 4*m monomials. Moreover, if the
instance of MAX-k-CSP has m = ©(n*~1%%) constraints, then p(¥) is d-bounded and its
maximizer #* has p(z*) = Q(nF~119).

An algorithm has approzimation ratio p € (0,1] (or is p-approzimate) if for all instances,
the value of its solution is at least p times the value of the optimal solution. For graphs with
n vertices or CSPs with n variables, we say that an event E happens with high probability
(or whp.), if E happens with probability at least 1 — 1/n°, for some constant ¢ > 1. For
brevity and clarity, we sometimes write a € (1 & €1)8 & €27, for some constants €, ea > 0, to
denote that (1 —€1)8 —eay < a < (1+€)8+ e2.

3 Approximating Max-CUT in Almost Sparse Graphs

In this section, we apply our approach to MAX-CUT, which serves as a convenient example
and allows us to present the intuition and the main ideas.

The MaX-CUT problem in a graph G(V, E) is equivalent to maximizing, over all binary
vectors & € {0,1}", the following n-variate degree-2 2-smooth polynomial

p@ = > (@il =) +2;(1 — ).

{ijteE
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Setting a variable x; to 0 indicates that the corresponding vertex i is assigned to the left
side of the cut, i.e., to Sy, and setting z; to 1 indicates that vertex i is assigned to the right
side of the cut, i.e., to S;. We assume that G is d-almost sparse and thus, has m = Q(n!*?)
edges and average degree A = Q(n?). Moreover, if m = ©(n'*?), p(Z) is §-bounded, since
for each edge {i,j} € E, the monomial z;x; appears with coefficient —2 in the expansion
of p, and for each vertex i € V, the monomial x; appears with coefficient deg(¢) in the
expansion of p. Therefore, for £ € {1,2}, the sum of the absolute values of the coefficients of
all monomials of degree £ is at most 2m = O(n!*?).

Next, we extend and generalize the approach of [4] and show how to (1 — ¢)-approximate
the optimal cut, for any constant € > 0, in time 20(*!n n/(As?)) (see Theorem 5). The running
time is subexponential in n, if G is d-almost sparse.

3.1 Outline and Main ldeas

Applying Lemma 1, we can write the smooth polynomial p(Z) as

p(@) =Y wj(deg(j) — p; (@), (1)

jev

where p;(Z) = ZieN(j)xi is a degree-1 1-smooth polynomial that indicates how many
neighbors of vertex j are in S; in the solution corresponding to #. The key observation, due
to [4], is that if we have a good estimation p; of the value of each p; at the optimal solution
Z*, then approximate maximization of p(Z) can be reduced to the solution of the following
Integer Linear Program:

max Y _y;(deg(j) — p;) (IP)
jev
s.t. (1 — 61)pj — A < Z Y < (1 + 61),0j + e A Vj eV
iEN(4)
Y; € {0, 1} VieV

The constants €1, €2 > 0 and the estimations p; > 0 are computed so that the optimal solution
Z* is a feasible solution to (IP). We always assume wlog. that 0 < ZieN(j) y; < deg(j),
ie.,, we let the lhs of the j-th constraint be max{(1 — €1)p; — €2A,0} and the rhs be
min{(1+e¢1)p; +e2A, deg(j)}. Clearly, if * is a feasible solution to (IP), it remains a feasible
solution after this modification. We let (LP) denote the Linear Programming relaxation of
(IP), where each y; € [0,1].

The first important observation is that for any €1,€es > 0, we can compute estimations
pj, by exhaustive sampling, so that &* is a feasible solution to (IP) with high probability
(see Lemma 2). The second important observation is that the objective value of any feasible
solution i to (LP) is close to p(%) (see Lemma 3). Namely, for any feasible solution %,
5 ey s (deg(i) — ;) ~ p(d)

Based on these observations, the approximation algorithm performs the following steps:
1. We guess a sequence of estimations p1, ..., pn, by exhaustive sampling, so that £* is a

feasible solution to the resulting (IP) (see Section 3.2 for the details).

2. We formulate (IP) and find an optimal fractional solution §* to (LP).

3. We obtain an integral solution 2z by applying randomized rounding to ¢* (and the method
of conditional probabilities, as in [26, 25]).
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To see that this procedure indeed provides a good approximation to p(Z*), we observe
that:

p(2) = Y zi(deg(h) — p;) ~ > yj(deg(j) — p;) = Y a5(deg(s) — ps) = p(&) . (2)

JEV JEV JjEV

The first approximation holds because 7 is an (almost) feasible solution to (IP) (see Lemma 4),
the second approximation holds because the objective value of 2" is a good approximation to
the objective value of ¢, due to randomized rounding, the inequality holds because z™* is a
feasible solution to (LP) and the final approximation holds because &* is a feasible solution
to (IP).

In Sections 3.3 and 3.4, we make the notion of approximation precise so that p(Z) >
(1—¢)p(2*). As for the running time, it is dominated by the time required for the exhaustive-
sampling step. Since we do not know Z*, we need to run the steps (2) and (3) above for
every sequence of estimations produced by exhaustive sampling. So, the outcome of the
approximation scheme is the best of the integral solutions Z' produced in step (3) over all
executions of the algorithm. In Section 3.2, we show that a sample of size O(nlnn/A)
suffices for the computation of estimations p; so that &* is a feasible solution to (IP) with
high probability. If G is d-almost sparse, the sample size is sublinear in n and the running
time is subexponential in n.

3.2 Obtaining Estimations p,; by Exhaustive Sampling

To obtain good estimations p; of the values p;(Z*) = ZieN(j) xf, i.e., of the number of j’s
neighbors in S; in the optimal cut, we take a random sample R C V of size ©O(nlnn/A) and
try exhaustively all possible assignments of the vertices in R to Sy and S1. If A = Q(n?), we
have 20(nInn/A) — 90(n'~"Inn) Jifferent assignments. For each assignment, described by a
0/1 vector & restricted to R, we compute an estimation p; = (n/|R|) >_;c n(j)nr i, for each
vertex j € V', and run the steps (2) and (3) of the algorithm above. Since we try all possible
assignments, one of them agrees with * on all vertices of R. So, for this assignment, the
estimations computed are p; = (n/|R[) 3_,c n(j)nr ;- The following shows that for these
estimations, we have that p;(Z*) ~ p; with high probability.

» Lemma 2. Let & be any binary vector. For all ay,as > 0, we let v = O(1/(aaz)) and
let R be a multiset of r = ynlnn/A vertices chosen uniformly at random with replacement
from V. For any vertex j, if p; = (n/r) ZieN(j)ﬁR x; and pj = ZieN(j) i, with probability
at least 1 —2/n3,

(I—a)p; = (1 —ar)aaA < pj < (14 a1)p; + (1 4+ ar)azA. (3)

We note that p; > 0 and always assume that p; < deg(j), since if p; satisfies (3),
min{p;,deg(j)} also satisfies (3). For all e1,e2 > 0, setting a; = 7~ and ap = €2 in
Lemma 2, and taking the union bound over all vertices, we obtain that for v = ©(1/(e3ez)),

with probability at least 1 — 2/n?, the following holds for all vertices j € V:

(I—e)pj—eA<p; < (1+e)p +eA. (4)

Therefore, with probability at least 1 —2/n2, the optimal cut #* is a feasible solution to (IP)
with the estimations p; obtained by restricting * to the vertices in R.
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3.3 The Cut Value of Feasible Solutions

We next show that the objective value of any feasible solution  to (LP) is close to p(i). There-
fore, assuming that @* is feasible, any good approximation to (IP) is a good approximation
to the optimal cut.

» Lemma 3. Let py,...,p, be non-negative numbers and § be any feasible solution to (LP).
Then,
p(§) € Y y;(deg(j) — pj) £ 2(e1 + e2)m. ()
jeV

3.4 Randomized Rounding of the Fractional Optimum

As a last step, we show how to round the fractional optimum ¢* = (y7,...,y5) of (LP) to an
integral solution Z' = (z1,...,z,) that almost satisfies the constraints of (IP).

To this end, we use randomized rounding, as in [26]. In particular, we set independently
each z; to 1, with probability y7, and to 0, with probability 1 —y7. By Chernoff bounds L
we obtain that with probability at least 1 — 2/n8, for each vertex j,

(1—e)pj — A —2/deg(Nm) < 3 2 < (1+e1)p; + A +2y/deg() (). (6)

iEN(F)

Specifically, the inequality above follows from the Chernoff bound in footnote 1, with
k = deg(j) and t = 24/deg(j) In(n), since E[3_,cn ;) 2] = Xien() ¥ € (1 £e1)p; + e2A.
By the union bound, (6) is satisfied with probability at least 1 — 2/n7 for all vertices j.

By linearity of expectation, E[} .. z;(deg(j) — pj)] = >_;cv yj (deg(j) — pj). Moreover,
since the probability that # does not satisfy (6) for some vertex j is at most 2/n” and since
the objective value of (IP) is at most n?, the expected value of a rounded solution 7 that
satisfies (6) for all vertices j is least >,y yj(deg(j) — pj) — 1 (assuming that n > 2). Using
the method of conditional expectations, as in [25], we can find in (deterministic) polynomial
time an integral solution 2 that satisfies (6) for all vertices j and has >, z;(deg(j) — p;) >
> jev ¥;(deg(j) — pj) — 1. Next, we sometimes abuse the notation and refer to such an
integral solution Z' (computed deterministically) as the integral solution obtained from ¢* by
randomized rounding.

The following is similar to Lemma 3 and shows that the objective value p(Z) of the
rounded solution Z is close to the optimal value of (LP).

» Lemma 4. Let §* be the optimal solution of (LP) and let Z be the integral solution obtained
from §* by randomized rounding (and the method of conditional expectations). Then,

p(2) € Y i (deg(j) — p;) £ 3(er + e2)m. (7)
jeV
3.5 Putting Everything Together

Therefore, for any € > 0, if G is 6-almost sparse and A = n’, the algorithm described
in Section 3.1, with sample size ©(nlnn/(e3A)), computes estimations p; such that the

1 We use the following standard Chernoff bound (see e.g., [18, Theorem 1.1]): Let Yi,..., Y} independent
random variables in [0, 1] and let Y = Zf:l Y;. Then for all t > 0, P[|Y — E[Y]| > t] < 2exp(—2t*/k).
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optimal cut Z* is a feasible solution to (IP) whp. Hence, by the analysis above, the algorithm
approximates the value of the optimal cut p(Z*) within an additive term of O(em). Specifically,
setting e; = e = /16, the value of the cut Z produced by the algorithm satisfies the following
with probability at least 1 —2/n?:
- " ) 3em N ) 3em
p(Z) =Y y;(deg(i)—pj)——5— = Y w;(deg(i)—p;) — ¢~
jev jev

> p(#) =5 = (1=p().

The first inequality follows from Lemma 4, the second inequality holds because §* is
the optimal solution to (LP) and Z* is feasible for (LP), the third inequality follows from
Lemma 3 and the fourth inequality holds because the optimal cut has at least m/2 edges.

» Theorem 5. Let G(V, E) be a 6-almost sparse graph with n vertices. Then, for any € > 0,
we can compute, in time 20(n' ™" Inn/e%) g with probability at least 1 —2/n?, a cut 7 of G
with value p(Z) > (1 — )p(T*), where T* is the optimal cut.

4 Approximate Maximization of Smooth Polynomials

Generalizing the ideas applied to MAX-CUT, we arrive at the main algorithmic result of
the paper: an algorithm to approximately optimize S-smooth d-bounded polynomials p(Z)
of degree d over all binary vectors Z € {0,1}". The intuition and the main ideas are quite
similar to those in Section 3, but the details are significantly more involved because we are

forced to recursively decompose degree d polynomials to eventually obtain a linear program.

» Theorem 6. Let p(Z) be an n-variate degree-d [B-smooth 6-bounded polynomial. Then, for
any € > 0, we can compute, in time 90(d"8n' = Inn/e%) 4 with probability at least 1 — 8/n?,

nd=1H where I is the mazximizer of p(I).

a binary vector Z so that p(Z) > p(&*) — e
Max-k-CSP. Using Theorem 6 it is a straightforward observation that for any MaX-k-CSP
problem (for constant k) we can obtain an algorithm which, given a MAX-k-CSP instance
with Q(n*~1*9) constraints for some § > 0, for any ¢ > 0 returns an assignment that
satisfies (1 —)OPT constraints in time 20(n'~"Inn/=") " This follows from Theorem 6 using
two observations: first, the standard arithmetization of MAX-k-CSP described in Section 2
produces a degree-k [-smooth d-bounded polynomial for 5 depending only on k. Second,
the optimal solution of such an instance satisfies at least Q(n*~!*%) constraints, therefore
the additive error given in Theorem 6 is O(¢OPT). This algorithm for MAX-k-CSP contains
as special cases algorithm for various standard problems such as MaX-CUT, Max-DICUT
and MAX-k-SAT.

5 Approximating the k-Densest Subgraph in Almost Sparse Graphs

In this section, we present an extension of the algorithms we have presented which can be
used to approximate k-DENSEST SUBGRAPH in d-almost sparse graphs. This is a problem
also handled in [4], but only for the case where k = Q(n). Smaller values of k cannot be
handled by the scheme of [4] for dense graphs because when k = o(n) the optimal solution
has objective value much smaller than the additive error of en? inherent in their scheme.
Here we obtain a sub-exponential time approximation scheme that works on graphs with
Q(n'*9) edges for all k by judiciously combining two approaches: when k is relatively large,
we use a sampling approach similar to MAX-CUT; when k is small, we can resort to the
naive algorithm that tries all (}) possible solutions. We select (with some foresight) the
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threshold between the two algorithms to be k = Q(n'~%/3), so that in the end we obtain an
approximation scheme with running time of 20(n'=*/%1n ") that is, slightly slower than the
approximation scheme for MAX-CUT. It is clear that the brute-force algorithm achieves this
running time for k = O(n'=%/3), so in the remainder we focus on the case of large k.

The k-DENSEST SUBGRAPH problem in a graph G(V, E) is equivalent to maximizing, over
all vectors & € {0,1}", the n-variate degree-2 1-smooth polynomial p(Z) = Z{m}eE Tz,
under the linear constraint jev j = k. Setting a variable z; to 1 indicates that the vertex
i is included in the set C' that induces a dense subgraph G[C] of k vertices. We assume that
G is d-almost sparse i.e. m = Q(n'*?%) edges. As usual, ¥ denotes the optimal solution.

The algorithm follows the same general approach and the same basic steps as the algorithm
for MAX-CUT in Section 3. In the following, we highlight only the differences.

Obtaining Estimations by Exhaustive Sampling. We first observe that if G is §-almost
sparse and k = Q(n'~%/3), a random subset of k vertices contains Q(n'*%/3) edges in
expectation. We thus assume that the optimal solution induces at least Q(n1+5/ 3) edges.
Working as in Section 3.2, we use exhaustive sampling and obtain for each vertex j € V,
an estimation p; of j’s neighbors in the optimal dense subgraph, i.e., p; is an estimation
of p; = ZZEN(J.) x;. For the analysis, we apply Lemma 2 with nd/3 instead of A, or in
other words, we use a sample of size @(nlﬂv 3Inn). The reason is that we can only tolerate
an additive error of en'*%/3_ by the lower bound on the optimal solution observed in the
previous paragraph. Then, the running time due to exhaustive sampling is 20(n!=*/*1nn)
By Lemma 2 and the discussion following it in Section 3.2, we obtain that for all €1, €5 > 0,
if we use a sample of the size ©(n'~%/3Inn/(3€y)), with probability at least 1 — 2/n?, the

following holds for all estimations p; and all vertices j € V:

(1= e)pj —ean®® < pj < (L4 e1)p; + en®? (8)

Linearizing the Polynomial. Applying Lemma 1, we can write the polynomial p(¥) as
p(Z) = ey 2jp;j (), where p;(Z) = EieN(j) x; is a degree-1 1-smooth polynomial that
indicates how many neighbors of vertex j are in C' in the solution corresponding to #. Then,
using the estimations p; of .. NG) x; , obtained by exhaustive sampling, we have that
approximate maximization of p(Z) can be reduced to the solution of the following ILP:

max Zyjpj (IP")

JeEV
s.t. (1 — El)pj — 62n6/3 < Z yi < (1 + 61)pj + 62715/3 VieV
1EN(J)
> vi=k
eV

By (8), if the sample size is |R| = O(n'~%/%Inn/(efes)), with probability at least 1—2/n?,
the densest subgraph Z* is a feasible solution to (IP’) with the estimations p; obtained
by restricting * to the vertices in R. In the following, we let (LP’) denote the Linear
Programming relaxation of (IP’), where each y; € [0, 1].

The Number of Edges in Feasible Solutions. We next show that the objective value of
any feasible solution ¢ to (LP’) is close to p(¢). Therefore, assuming that Z* is feasible, any
good approximation to (IP’) is a good approximation to the densest subgraph.
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» Lemma 7. Let py, ..., p, be non-negative numbers and § be any feasible solution to (LP’).
Then,
p(7) € (1£e) Z yipj £ eant T3, (9)
jev

Randomized Rounding of the Fractional Optimum. As a last step, we show how to round
the fractional optimum * = (y7,...,y%) of (LP’) to an integral solution z' = (z1,...,2,)
that almost satisfies the constraints of (IP’). We use randomized rounding, as for MAX-CUT.

» Lemma 8. Let §* be the optimal solution of (LP') and let Z' be the integral solution obtained
from §* by randomized rounding (and the method of conditional expectations). Then,

p(Z) e (1+e)? Z yip; £ 3ean /3 (10)
jev

We thus arrive to the main theorem of this section.

» Theorem 9. Let G(V, E) be a §-almost sparse graph with n vertices. Then, for any integer
k > 1 and for any € > 0, we can compute, in time 20! M mn/e®) o d with probability at
least 1 —2/n?, an induced subgraph Z of G with k vertices whose number of edges satisfies
p(2) = (1 —e)p(&*), where T* is the number of edges in the k-DENSEST SUBGRAPH of G.

6 Lower Bounds

We now give some lower bound arguments showing that the schemes we have presented are,
in some senses, likely to be almost optimal. Our complexity assumption will be the ETH,
which states that no algorithm can solve instances of 3-SAT of size n in time 2°(™).

There are two natural ways in which one may hope to improve or extend the algorithms
we have presented so far: relaxing the density requirement or decreasing the running time.
First, recall that the algorithm we have given for MAX-k-CSP works in the density range
between n* and n*~!. Here, we give a reduction establishing that it’s unlikely that this can
be improved. Our starting point is the following (known) inapproximability result.

» Theorem 10. There exist ¢, s € (0,1) with ¢ > s such that for all € > 0 we have: if there
exists an algorithm which, given an n-vertex 5-reqular instance of MAX-CUT, can distinguish
between the case where a solution cuts at least a ¢ fraction of the edges and the case where
all solutions cut at most an s fraction of the edges in time 27" then the ETH fails.

» Theorem 11. There exists v > 1 such that for all € > 0 and all (fized) integers k > 3
we have the following: if there exists an algorithm which r-approximates MAX-k-SAT on
instances with Q(n*=1) clauses in time 2" then the ETH fails.

Proof. We reduce a MAX-CUT instance from Theorem 10 to MAX-2-SAT: the set of variables
is the set of vertices; for each edge (u,v) we include the clauses (u V v) and (—u V —w). The
new instance has n variables and 5n clauses and there exist constants ¢, s such that either
some assignment satisfies 5cn clauses or all assignments satisfy at most 5sn of them.

Fix k and add to the instance (k—2)n new variables x(; ;),4 € {1,...,k—=2},j € {1,...,n}.

We perform the following transformation: for each clause (I3 V l3) and for each tuple
(i1,42,.--,ir—2) € {1,...,n}*"2 we construct 2¥=2 new clauses of size k. The first two
literals of these clauses are l1,l2. The rest consist of the variables @1 i), T(2,i5)s - - - > T(k,ix_s)>
but in each clause a different set of variables is negated. In other words, to construct a clause
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of the new instance we select a clause of the original instance, one variable from each of the
groups of n new variables, and a subset of these variables to be negated.

First, observe that the new instance has 5n*~12*% clauses and (k — 1)n variables, which
satisfies the density conditions. Consider an assignment of the original formula. Any satisfied
k=29k satisfied clauses, while for an unsatisfied clause any

assignment to the new variables satisfies exactly n*~2(2* — 1) clauses. Thus, for fixed F,

clause has now been replaced by n

there exist constants s’, ¢’ such that either a ¢’ fraction of the clauses of the new instance is
satisfiable or at most a s’ fraction is. If we had an approximation algorithm with ratio better
than ¢ /s’ running in time 2V °, where N is the number of variables of the new instance,
we could use it to decide the original instance in time that would disprove the ETH. <

A second possible avenue for improvement may be to consider potential speedups of our
algorithms. We give an almost tight answer to such questions via the following theorem.

» Theorem 12. There exists r > 1 such that for all ¢ > 0 we have the following: if there
exists an algorithm which, for some A = o(n), r-approximates MAX-CUT on n-vertex
A-regular graphs in time 20/ then the ETH fails.

Proof. Without loss of generality we prove the theorem for the case when the degree is
a multiple of 10. Consider an instance G(V, E) of MAX-CUT as given by Theorem 10.
Let n = |V| and suppose that the desired degree is d = 10A, where A is a function of n.
We construct a graph G’ as follows: for each vertex u € V we introduce A new vertices
uy,...,ua as well as 5A “consistency” vertices cf,...,ct,. For every edge (u,v) € E we
add all edges (u;,v;) for i,j € {1,...,A}. Also, for every u € V we add all edges (u;,c}),
forie {1,...,A} and j € {1,...,5A}. This completes the construction.

The graph we have constructed is 10A-regular and is made up of 6An vertices. Consider
an optimal cut and observe that, for a given u € V all the vertices ¢} can be assumed to
be on the same side of the cut, since they all have the same neighbors. Furthermore, for a
given u € V, all vertices u; can be assumed to be on the same side of the cut, namely on the
side opposite that of ¢}, since the vertices c;' are a majority of the neighborhood of each wu;.
With this observation it is easy to construct a one-to-one correspondence between cuts in G
and locally optimal cuts in G'.

Consider a cut that cuts ¢|E| edges of G. If we set all u; of G’ on the same side as u is in
G we cut c|E|A? edges of the form (u;,v;). Furthermore, by placing the ¢ on the opposite
side of u; we cut 5A%|V| edges. Thus the max cut of G’ is at least ¢|E|A% + 5A2|V|. Using
the observations on locally optimal cuts of G’ we can conclude that if G’ has a cut with
s|E|A% + 5A?|V| edges, then G has a cut with s|E| edges. Having 2|E| = 5|V| (since G is
5-regular) we get a constant ratio r between the size of the cut of G’ in the two cases.

Suppose now that we have an approximation algorithm with ratio better than r which,
given an N-vertex d-regular graph runs in time 2(V/ DN Giving our constructed instance
as input to this algorithm would allow to decide the original instance in time n' e |
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