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Abstract
We investigate the behavior of the periods and border lengths of random words over a fixed
alphabet. We show that the asymptotic probability that a random word has a given maximal
border length k is a constant, depending only on k and the alphabet size `. We give a recurrence
that allows us to determine these constants with any required precision. This also allows us to
evaluate the expected period of a random word. For the binary case, the expected period is
asymptotically about n− 1.641. We also give explicit formulas for the probability that a random
word is unbordered or has maximum border length one.
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1 Introduction and Notation

A word is a finite sequence of letter chosen from a finite alphabet Σ. The periodicity of
words is a classical and well-studied topic in both discrete mathematics and combinatorics
on words, starting with the classic paper of Fine and Wilf [4] and continuing with the works
of Guibas and Odlyzko [6, 7, 5]. For more recent work, see, for example, [8, 15, 12].

We say that a word w has period p if w[i] = w[i + p] for all i that make the equation
meaningful. (If |w| = n and one indexes beginning at position 1, this would be for 1 ≤ i ≤
n − p.) Trivially every word of length n has all periods of length ≥ n, so we restrict our
attention to periods ≤ n. The least period is sometimes called the period. For example, the
French word entente has periods 3, 6, and 7.

Empirically, one quickly discovers that a randomly chosen word typically has a least
period that is very close to its length. This readily follows from the fact that the number of
words over a given alphabet grows exponentially as the length increases. It can also be seen
as a particular case of the fact that most strings are not compressible.

In this paper, we quantify this basic observation and show that the expected least period
of a string of length n over an `-letter alphabet is n− α`(n), where α`(n) is O(1).

Another concept frequently studied in formal language theory is that of border of a word
[13, 3, 14]. A word x has border w if w is both a prefix and a suffix of x. Normally we do
not consider the trivial borders of length 0 or n = |w|. Thus, for example, the English word
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44:2 Periods and Borders of Random Words

ionization has one border: ion. Less trivially, the word alfalfa has two borders: a and
alfa. A word with no borders is unbordered.

There is an obvious connection between periods of a word and its borders: if w has a
period p, then it has a border of length |w| − p. For example, the English word abracadabra,
of length 11, has periods 7, 10, and 11, while it has borders of length 1 and 4.

Consequently, the least period of a word corresponds to the length of the longest border
(and an unbordered word corresponds to least period n, the length of the word). The reader
should be constantly aware of this duality, since it is often useful and more natural to think
about periods in terms of borders. This can be seen from the announced result: it is more
compact to speak directly about the expected maximum border length, which is α`(n).

If P is a set of integers, we shall write n − P for {n − p | p ∈ P}, and P − n for
{p− n | p ∈ P}.

By prefi(v), we mean the prefix of length i of the word v.

2 Multiperiodic Words and the Average Border Length

We shall obtain our results by counting words with a given length n and a given finite set
of periods P ⊆ {1, 2, . . . n}, or equivalently, with a given set of border lengths n− P . For
technical reasons, in order to be able to deal with unbordered words, we shall always suppose
that n ∈ P , that is, we shall say that every word has a border length zero.

There are two basic types of requirements. Let

G`(P, n) = {w ∈ Σn
` | for each p in P , p is a period of w} ,

and let G`(P, n) be the cardinality of G`(P, n). Similarly, let

F`(P, n) = {w ∈ G`(P, n) | minP is the least period of w} ,

and let F (P, n) be the cardinality of F`(P, n).
Words with many periods have been amply studied. In particular, there is a fast algorithm

constructing a word of length n with periods P and maximal possible number of letters.
Such a word, called an FW-word in the literature, is unique up to renaming of the letters.
Let c(P, n) denote the cardinality of the alphabet of the FW-word of length n and periods P .

I Example 1. Let P = {p, q} and d = gcd(p, q). The well-known periodicity lemma (often
called the Fine and Wilf theorem, which is the origin of the term FW-word) states that if a
word of length at least p+ q − d has periods p and q, then it also has period d. Moreover,
the bound p + q − d is sharp; for all p, q ≥ 1 there are words of length p + q − d − 1 with
period p and q but not period d. This can be stated, using the just-introduced terminology,
by the two assertions c({p, q}, p+ q − d) = d and c({p, q}, p+ q − d− 1) > d.

The number c(P, n) can be computed and the corresponding FW-word constructed using
the algorithm of Tijdeman and Zamboni [16] (see [17] for an alternative presentation). The
computation is summarized by the following formula:

c(P, n) =


1, if m = 1;
n, if m ≥ n;
c(Q,n−m), if 2m ≤ n;
c(Q,n−m) + 2m− n, if m < n < 2m;

where m = minP and Q = (P −m) \ {0} ∪ {m}.
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Since each word having the periods in P (and possibly others) results from a coding (a
letter-to-letter mapping) of the corresponding FW-word, we obtain

G`(P, n) = `c(P,n) ,

which is the starting point of our computation.
Note that F`({p}, n) is the set of words from Σn

` having least period p. Equivalently,
F`({n− r}, n) is the set of words with the longest border of length r. For 0 ≤ r < n, let

λ`(r, n) = F ({n− r}, n)
`n

denote the relative number of such words. Our goal is to compute

α`(n) =
n−1∑
r=0

r · λ`(r, n),

which is the expected maximum border length for words in Σn
` . We first show that this

quantity converges as n approaches infinity. This fact was recently independently proved in
[1, Appendix].

I Lemma 2. For each ` ≥ 2 and each 0 ≤ r < n,

|λ`(r, n+ 1)− λ`(r, n)| ≤ 1
`bn/2c .

Proof. Case 1: r ≥ bn/2c. Then

|λ`(r, n+ 1)− λ`(r, n)| =
∣∣∣∣F`({n+ 1− r}, n+ 1)

`n+1 − F`({n− r}, n)
`n

∣∣∣∣ .
Recall that F`({n+ 1− r}, n+ 1) (resp., F`({n− r}, n)) counts the words with longest border
length r from Σn+1

` (resp., Σn
` ). First, note that F`({p}, n) ≤ `p for any p and n. This

implies

|λ`(r, n+ 1)− λ`(r, n)| ≤ 1
`r

and we are done.

Case 2: r < bn/2c. There is a useful correspondence between Σn
` and Σn+1

` , given by the
insertion of a letter in the middle of the shorter word. The basic observation, already used
in [9, 11], is that this insertion does not influence borders of length at most bn/2c. Define

F = F`({n+ 1− r}, n+ 1),
B = {w1aw2 | a ∈ Σ`, |w1| = bn/2c , |w2| = dn/2e , w1w2 ∈ F`({n− r}, n)} .

Then |B| = ` ·F`({n− r}, n). Let w ∈ F \B and write w = w1aw2 with a ∈ Σ`, |w1| = bn/2c,
and |w2| = dn/2e. The words w and w1w2 have the same borders up to length bn/2c. Since
w1w2 /∈ F`({n− r}, n), we deduce that w1w2 has a border of length at least bn/2c+ 1, that
is, a period at most dn/2e − 1. This implies

|F \ B| ≤ ` ·
dn/2e−1∑

j=0
`j < `dn/2e+1. (1)

STACS 2016



44:4 Periods and Borders of Random Words

Similarly, a word w ∈ B \ F has period at most dn/2e, and so

|B \ F| ≤
dn/2e∑
j=0

`j < `dn/2e+1. (2)

We thus obtain

|λ`(r, n+ 1)− λ`(r, n)| = 1
`n+1

∣∣∣ |B \ F| − |F \ B| ∣∣∣ < 1
`bn/2c . J

I Theorem 3. For each ` ≥ 2 and r ≥ 0, the limits

α` := lim
n→∞

α`(n) and λ`(r) = lim
n→∞

λ`(r, n)

exist. Furthermore, the convergence is exponential.

Proof. Follows directly from the definition of α`(n) and Lemma 2. J

3 Recurrences

From the estimates of the previous section, we know that α`(n) and λ`(r, n) both converge
quickly to α` and λ`(r), respectively. Thus, they can be estimated to a few digits by explicit
enumeration (see [1, Appendix] for α2 and α3).

In order to evaluate α`(n) to dozens of decimal places, however, we need a more efficient
way to calculate F`({p}, n). This can be done using the recurrence formulas that we derive
below. They are reformulations and generalizations of formulas given by Harborth [9] for
sets of periods.

We first prove the following auxiliary claim.

I Lemma 4. Let a word w have a period p < |w| and let u be the prefix of w of length |w|−p.
Then w has a period q > p if and only if u has a period q − p.

Proof. Note that u is a border of w. The following conditions are easily seen to be equivalent:
w has a period q,
w has a border of length |w| − q,
u has a border of length |w| − q,
u has a period |u| − (|w| − q).

Since |u| − (|w| − q) = (|w| − p)− (|w| − q) = q − p, the proof is completed. J

I Theorem 5. Let P be a set of periods with m = minP and maxP < n. Then

F`(P, n) = G`(P, n)−
m−1∑

p=dm/2e

H`(P, p, n) , (3)

where

H`(P, p, n) :=

F`

(
(P − p) ∪ {p}, n− p

)
, if p < dn/2e;

`2p−n · F`(P − p, n− p), if p ≥ dn/2e .
(4)

Proof. From G`(P, n) we have to subtract the number of words from Σn
` that have periods

P but also a period smaller than m. We define, for each 1 ≤ p < m, the set

H`(P, p, n) = {w ∈ Σn
` | w has periods P ∪ {p}, and no period p′ with p < p′ < m} .
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If p < dm/2e then H`(P, p, n) is empty, since a word w ∈ H`(P, p, n) also has a period 2p,
and p < 2p < m contradicts the definition of H`(P, p, n). Moreover, the sets H`(P, p, n) are
pairwise disjoint, and

G`(P, n) \ F`(P, n) =
m−1⋃

p=dm/2e

H`(P, p, n) .

It remains to show thatH`(P, p, n) is the cardinality ofH`(P, p, n) for each dm/2e ≤ p < m−1.
Let p < dn/2e. We claim that w 7→ prefn−pw is a one-to-one mapping of H`(P, p, n)

to F`

(
(P − p) ∪ {p}, n − p

)
. Let w ∈ H`(P, p, n). By Lemma 4, the word prefn−pw

has periods P − p and no period p′ − p with p < p′ < m, that is, no period less than
m− p. Since m− p = min

(
(P − p) ∪ {p}

)
and since prefn−pw also has a period p, we have

prefn−pw ∈ F`

(
(P−p)∪{p}, n−p

)
. Similarly, one can verify that if v ∈ F`

(
(P−p)∪{p}, n−p

)
,

then wv := (prefpv)n/p ∈ H`(P, p, n) and prefn−pwv = v.
Let p ≥ dn/2e. Again, using Lemma 4, it is straightforward to verify that

H`(P, p, n) = {vuv | v ∈ F`(P − p, n− p), u ∈ Σ2p−n
` } . J

If minP is small, then we can formulate a more explicit formula that uses the Möbius
µ-function.

I Lemma 6. Let P be a set of periods with m = minP ≤ bn/2c+ 1. Then

F`(P, n) =
∑
d|m

µ
(m
d

)
G` (P ∪ {d} , n) . (5)

Proof. Let w be a word of length n with a period m and let p be the least period of w. Then,
by the periodicity lemma, we have that p divides m, since p < m implies p + m − 1 ≤ n.
Therefore, for each divisor p of m,

G` (P ∪ {p} , n) =
∑
d|p

F`(P ∪ {d} , n),

and the claim follows from Möbius inversion. J

4 Explicit Formulas

In this section we derive explicit formulas for λ`(0) and λ`(1), which are the asymptotic
probabilities that a random word is unbordered, or has longest border of length one, respect-
ively. These are two cases in which Theorem 5 yields a relatively simple expression, since
dm/2e ≥ bn/2c.

4.1 Unbordered Words
The number of unbordered words satisfies a well known recurrence formula (see, e.g., [9,
p. 143, Eq. (34)] for the binary case and [11] for the general case). The formula can be
verified using Theorem 5 but we shall give an elementary proof. In this section, let un denote
F`({n}, n), and let t(n) denote λ`(0, n).

STACS 2016



44:6 Periods and Borders of Random Words

I Theorem 7.

un =


`, if n = 1;
`(`− 1) if n = 2;
` · un−1, if n ≥ 3 is odd;
` · un−1 − un/2, if n ≥ 4 is even.

Proof. For k = 1, 2, the verification is straightforward. Let x and y be nonempty words with
|x| = |y| and consider words xy, xay and xaby where a and b are letters.

Since the shortest border of xay has length at most |x|, the word xy is unbordered if and
only if xay is. This proves un = ` · un−1 if n is odd.

On the other hand, xaby can have the shortest border of length |x|+ 1. Therefore, xaby
is unbordered if and only if (i) xy is unbordered and (ii) xa 6= by. Since the shortest border
is itself unbordered, we obtain un = `2 · un−2 − un/2 = ` · un−1 − un/2 if n is even. J

Theorem 7 directly yields, for each n ≥ 1,

t(2n+ 1) = t(2n) = t(2n− 1)− t(n)`−n .

Therefore

t(2n) = t(1) +
2n∑

i=2
(t(i)− t(i− 1)) = 1−

n∑
j=1

t(j)`−j .

Defining the generating function L0(x) =
∑

n≥1 t(n)xn, we get

lim
n→∞

λ`(0, n) = 1− L0

(
1
`

)
. (6)

The next step is to obtain a functional equation for L0(x):

L0(x)(1− x) = t(1)x+
∑
k≥2

(t(k)− t(k − 1))xk =

= t(1)x+
∑
j≥1

(t(2j)− t(2j − 1))x2j =

= t(1)x−
∑
j≥1

t(j)`−jx2j = x− L0(x2/`) .

Therefore

L0(x) = x

1− x −
L0(x2/`)

1− x .

Successively substituting x = 1/`, x = 1/`3, x = 1/`7, . . . , we get

L0

(
1
`

)
= 1
`− 1 −

(
1 + 1

`− 1

)
L0

(
1
`3

)
,

L0

(
1
`3

)
= 1
`3 − 1 −

(
1 + 1

`3 − 1

)
L0

(
1
`7

)
,

...

L0

(
1

`2i−1

)
= 1
`2i−1 − 1

−
(

1 + 1
`2i−1 − 1

)
L0

(
1

`2i+1−1

)
.
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Since it is easy to see that

lim
n→∞

1
`2n−1 − 1

n−1∏
i=1

(
1 + 1

`2i−1 − 1

)
L0

(
1

`2n−1

)
= 0 ,

we obtain

L0

(
1
`

)
=
∑
n≥1

(
(−1)n+1

`2n−1 − 1

n−1∏
i=1

(
1 + 1

`2i−1 − 1

))
.

A similar analysis was given previously by [2], although our analysis is slightly cleaner.

4.2 Words With Longest Border of Length One
There is also a relatively simple recurrence for F`({n − 1}, n), that is, for words with the
longest border of length 1. The particular case ` = 2 was previously given by Harborth [9, p.
143, Eq. (36)]. In this section, we let vn denote F`({n− 1}, n), and let s(n) denote λ`(1, n).

I Theorem 8.

vn =


0, if n = 1;
` if n = 2;
` · vn−1 − v(n+1)/2, if n ≥ 3 is odd;
` · vn−1 − (`− 1)vn/2, if n ≥ 4 is even.

Proof. Verify that v1 = 0 and v2 = `, and let x and y be nonempty words with |x| = |y|.
Consider words cxyc, cxayc and cxabyc where a, b, c are (not necessarily distinct) letters.

The letter c is the longest border of the word cxayc if and only if (i) c is the longest border
of cxyc and (ii) cxa 6= ayc. Moreover, (i’) c is the shortest border of cxyc, and (ii’) cxa = ayc

(= cxc) if and only if c is the shortest border of cxc. This implies vn = ` · vn−1 − v(n+1)/2 for
n ≥ 3 odd.

Similarly, c is the shortest border of cxabyc if and only if (i) c is the longest border of cxyc
and (ii) cxa 6= byc. As above, we have to subtract the number of words cxc with the longest
border c. It follows that vn = `2 · vn−2 − vn/2 = `vn−1 + (`− 1)vn/2 for n ≥ 4 even. J

From Theorem 8, we deduce

s(2n)− s(2n− 2) = −s(n)`−n, n ≥ 2, (7)
s(2n)− s(2n− 1) = (`− 1)s(n)`−n, n ≥ 2, (8)
s(2n+ 1)− s(2n) = −s(n+ 1)`−n, n ≥ 1 . (9)

Using (7), we obtain

s(2n) = s(2) +
n∑

r=j

(s(2j)− s(2j − 2)) = 1/`−
n∑

j=1
s(j)`−j .

Defining the generating function L1(x) =
∑

k≥1 s(k)xk, we then get

λ`(1) = 1
`
− L1

(
1
`

)
.

STACS 2016
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A functional equation for L1 is obtained as follows:

L1(x)(1− x) = s(1)x+
∑
k≥2

(s(k)− s(k − 1))xk =

= 1
`
x2 +

∑
i≥1

(s(2i+ 1)− s(2i))x2i+1 +
∑
i≥2

(s(2i)− s(2i− 1))x2i =

= 1
`
x2 −

∑
i≥1

s(i+ 1)`−ix2i+1 +
∑
i≥2

(`− 1)s(i)`−ix2i =

= 1
`
x2 − `

x
L1

(
x2

`

)
+ (`− 1)L1

(
x2

`

)
.

We have

L1(x) = x2

`(1− x) + `− 1− `/x
1− x L1

(
x2

`

)
,

and

L1

(
1

`2i−1

)
= 1
`2i(`2i−1 − 1)

− `2i−1 `
2i − `+ 1
`2i−1 − 1

L1

(
1

`2i+1−1

)
.

From here, we deduce

L1

(
1
`

)
=
∑
n≥1

(−1)n+1

`n+1

j∏
i=1

`2i−1 − `+ 1
`2i−1 − 1

.

We do not know how to obtain similar expressions for other border lengths.

5 Particular Values

Theorem 5, as well as explicit formulas from the previous section allow fast computer
evaluation of α`(n) and λ`(r, n) for large n, and therefore also evaluation of λ`(r) and α`

with high precision. We list some rounded values in the following tables.

` α`

2 1.64116491178296695613
3 0.68587617299708343978
4 0.42195659003603599699
5 0.30201601806282253073

y 10 0.12233344445364555354
50 0.02081648979722449000

r λ2(r)
0 0.26778684021788911238
1 0.30042007151830329926
2 0.19891874779036456415
3 0.11216079483159432642
5 0.03044609816129782975
10 0.00097577734413168807

And some values of λ`(r) rounded to four decimal digits:

λ`(r) ` = 3 ` = 4 ` = 5 ` = 10
r = 0 0.55698 0.68775 0.76006 0.89000
r = 1 0.28270 0.23024 0.19034 0.09890
r = 2 0.10547 0.06126 0.03961 0.00999
r = 3 0.03641 0.01555 0.00798 0.00100

For example, we see that a long binary word chosen randomly has about 27% chance to be
unbordered. A bit more probable, at 30%, is that such a word will have its longest border of



Š. Holub and J. Shallit 44:9
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Figure 1 Distribution of lengths of shortest period for binary words of length 18.

length one. Over a five-letter alphabet, more than three words out of four are unbordered,
on average.

Figure 1 shows the distribution of lengths of the shortest period for binary words of
length n = 18.

Our original motivation was a question about the average period of a binary word. The
answer is, that the border of a binary word has asymptotically constant expected length,
namely

α2
.= 1.64116491178296695612774416940082554065953687825771543 . . . .

6 Final Remarks

Recently there has been some interest in computing the expected value of the largest
unbordered factor of a word [10]. This is a related, but seemingly much harder, problem.
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