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Abstract
Hardcore and Ising models are two most important families of two state spin systems in statistic
physics. Partition function of spin systems is the center concept in statistic physics which connects
microscopic particles and their interactions with their macroscopic and statistical properties of
materials such as energy, entropy, ferromagnetism, etc. If each local interaction of the system
involves only two particles, the system can be described by a graph. In this case, fully polynomial-
time approximation scheme (FPTAS) for computing the partition function of both hardcore and
anti-ferromagnetic Ising model was designed up to the uniqueness condition of the system. These
result are the best possible since approximately computing the partition function beyond this
threshold is NP-hard. In this paper, we generalize these results to general physics systems,
where each local interaction may involves multiple particles. Such systems are described by
hypergraphs. For hardcore model, we also provide FPTAS up to the uniqueness condition, and
for anti-ferromagnetic Ising model, we obtain FPTAS under a slightly stronger condition.
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1 Introduction

In recent couple of years, there are remarkable progress on designing approximate counting
algorithms based on correlation decay approach [26, 1, 7, 22, 13, 23, 14, 20, 15, 19, 18, 17, 16].
Unlike the previous major approximate counting approach that based on random sampling
such as Markov Chain Monte Carlo (MCMC) (see for examples [11, 10, 12, 8, 3, 9, 25, 4, 5, 21]),
correlation decay based approach provides deterministic fully polynomial-time approximation
scheme (FPTAS). New FPTASes were designed for a number of interesting combinatorial
counting problems and computing partition functions for statistic physics systems, where
partition function is a weighted counting function from the computational point of view. One
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most successful example is the algorithm for anti-ferromagnetic two-spin systems [13, 23, 14],
including counting independent sets [26]. The correlation decay based FPTAS is beyond the
best known MCMC based FPRAS and achieves the boundary of approximability [24, 6].

In this paper, we generalize these results of anti-ferromagnetic two-spin systems to
hypergraphs. For physics point of view, this corresponds to spin systems with higher order
interactions, where each local interaction involves more than two particles. There are two
main ingredients for the original algorithms and analysis on normal graphs (we will use the
term normal graph for a graph to emphasize that it is not hypergraphs): (1) the construction
of the self-avoiding walk tree by Weitz [26], which transform a general graph to a tree; (2)
correlation decay proof for the tree, which enables one to truncate the tree to get a good
approximation in polynomial time. However, the construction of the self-avoiding walk tree
cannot be extended to hypergraphs, which is the main obstacle for the generalization.

The most related previous work is counting independent sets for hypergraphs by Liu and
Lu [17]. They established a computation tree with a two-layers recursive function instead of
the self-avoiding walk tree and provided a FPTAS to count the number of independent sets
for hypergraphs with maximum degree of 5, extending the algorithm for normal graph with
the same degree bound. Their proof was significantly more complicated than the previous
one due to the complication of the two-layers recursive function. In particular, the “right"
degree bound for the problem is a real number between 5 and 6 if one allow fraction degree
in some sense. This integer gap provides some room of flexibility and enables them to do
some case-by-case numerical argument to complete the proof. However, the parameters for
the anti-ferromagnetic two-spin systems on hypergraphs are real numbers. To get a sharp
threshold, we do not have any room for numerical approximation.

1.1 Our Results
We study two most important anti-ferromagnetic two-spin systems on hypergraphs: the
hardcore model and the anti-ferromagnetic Ising model. The formal definitions of these two
models can be found in Section 2.

Our first result is an FPTAS to compute the partition function of hypergraph hardcore
model.

I Theorem 1. For hardcore model with a constant activity parameter of λ, there is an
FPTAS to compute the partition function for hypergraphs with maximum degree ∆ ≥ 2 if
λ < (∆−1)∆−1

(∆−2)∆ .

This bound is exactly the uniqueness threshold for the hardcore on normal graphs. Thus,
it is tight since normal graphs are special cases of hypergraphs. To approximately compute
the partition function beyond this threshold is NP-hard. In particular, The FPTAS in [17]
for counting the number of independent sets for hypergraphs with maximum degree of 5 can
be viewed as a special case of our result with parameters ∆ = 5, λ = 1, which satisfies the
above uniqueness condition. Another interesting special case is when ∆ = 2. This is not
an interesting case for normal graphs since a normal graph with maximum degree of 2 is
simply a disjoint union of paths and cycles, whose partition function can be computed exactly.
However, the problem becomes more complicated on hypergraphs: it can be interpreted as
counting weighted edge covers on normal graphs by viewing vertices of degree two as edges
and hyperedges as vertices. The exact counting of this problem is known to be #P-complete
and an FPTAS was found recently [18]. In our model, the uniqueness bound (∆−1)∆−1

(∆−2)∆ is
infinite for ∆ = 2 and as a result we give an FPTAS for counting weighted edge covers for
any constant edge weight λ. This gives an alternative proof for the main result in [18].
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Our second result is on computing the partition function of anti-ferromagnetic Ising
model.

I Theorem 2. For Ising model with interaction parameter 0 < β < 1 and external field λ,
there is an FPTAS to compute the partition function for hypergraphs with maximum degree
∆ if β ≥ 1− 2

2e−1/2∆+3 .

The tight uniqueness bound for anti-ferromagnetic Ising model on normal graphs is
β ≥ 1− 2

∆ . So, our bound is in the same asymptotic order but a bit worse in the constant
coefficient as 2e−1/2 ≈ 1.213 > 1. Moreover, our result can apply beyond Ising model to a
larger family of anti-ferromagnetic two-spin systems on hypergraphs.

1.2 Our Techniques
We also use the correlation decay approach. Although the framework of this method is
standard, in many work along this line of research, new tools and techniques are developed
to make this relatively new approach more powerful and widely applicable. This is indeed
the case for the current paper as well. We summarize the new techniques we introduced here.

For hardcore model, we replace the numerical case-by-case analysis by a monotone
argument with respect to the edge size of the hypergraph which shows that the normal
graphs with edge size of 2 is indeed the worst cases. This gives a tight bound for hardcore
model.

To handle hypergraph with unbounded edge sizes, we need to prove that the decay rate is
much smaller for edges of larger size. Such effect is called computationally efficient correlation
decay, which has been used in many previous works to obtain FPTASes for systems with
unbounded degrees or edge sizes. In all those works, one sets a threshold for the parameter
and proves different types of bounds for large and small ones separately. Such artificial
separation gets a discontinuous bound which adds some complications in the proof and
usually ends with a case-by-case discussion. In particular, this separation is not compatible
with the above monotone argument. To overcome this, we propose a new uniform and smooth
treatment for this by modifying the decay rate by a polynomial function of the edge size.
After this modification, we only need to prove one single bound which automatically provides
computationally efficient correlation. We believe that this idea is important and may find
applications in other related problems.

For the Ising model, the main difficulty is to get a computation tree as a replacement of
the self-avoiding walk tree. We proposed one, which also works for general anti-ferromagnetic
two-spin systems on hypergraphs. However, unlike the case of the hardcore model, the
computation tree is not of perfect efficiency and this is the main reason that the bound we
achieve in Theorem 2 is not tight. To get the computationally efficient correlation decay,
we also use the above mentioned uniform and smooth treatment. We also extend our result
beyond Ising to a family of anti-ferromagnetic two-spin systems on hypergraphs.

1.3 Discussion and Open Problems
One obvious open question is to close the gap for Ising model, or more generally extend
our work to anti-ferromagnetic two-spin systems on hypergraphs with better parameters.
However, it seems that it is impossible to obtain a tight result in these models using the
computation tree proposed in this paper, due to its imperfectness. How to overcome this is
an important open question.

STACS 2016
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Even for the hardcore model, our result is tight only for the family of all hypergraphs
since the normal graphs are special cases. From both physics and combinatorics point of
view, it would be very interesting to study the family of w-uniform hypergraphs where each
hyperedge is of the same size w. By our monotone argument, it is plausible to conjecture
that one can get better bound for larger w. In particular, MCMC based approach does
show that larger edge size helps: for hypergraph independent set with maximum degree of
∆ and minimum edge size w, an FPRAS for w ≥ 2∆ + 1 was shown in [2]. However, their
result is not tight. Can we get a tight bounds in terms of ∆ and w by correlation decay
approach? The high level idea sounds promising, but there is an obstacle to prove such result
by our computation tree. To construct the computation tree, we need to construct modified
instances. In these modified instances, the size of a hyperedge may decrease to as low as 2.
Therefore, even if we start with w-uniform hypergraphs or hypergraphs with minimum edge
size of w, we may need to handle the worst case of normal graphs during the analysis. How
to avoid this effect is a major open question whose solution may have applications in many
other problems.

The fact that larger hyperedge size only makes the problem easier is not universally true
for approximation counting. One interesting example is counting hypergraph matchings.
FPTAS for counting 3D matchings of hypergraphs with maximum degree 4 is given in [17],
and extension to weighted setting are studied in [27]. In particular, a uniqueness condition
in this setting is defined in [27], and it is a very interesting open question whether this
uniqueness condition is also the transition boundary for approximability.

2 Preliminaries

A hypergraph G(V, E) consists of a vertex set V and a set of hyperedges E ⊆ 2V . For every
hyperedge e ∈ E and vertex v ∈ V , we use e− v to denote e \ {v} and use e+ v to denote
e ∪ {v}.

2.1 Hypergraph Hardcore Model
The hardcore model is parameterized by the activity parameter λ > 0. Let G(V, E) be
a hypergraph. An independent set of G is a vertex set I ⊆ V such that e 6⊆ I for every
hyperedge e ∈ E . We use I(G) to denote the set of independent sets of G. The weight of an
independent set I is defined as w(I) , λ|I|. We let Z(G) denote the partition function of
G(V, E) in the hardcore model, which is defined as

Z(G) ,
∑

I∈I(G)

w(I).

The weight of independent sets induces a Gibbs measure on G. For every I ∈ I, we use

PrG [I] , w(I)
Z(G)

to denote the probability of obtaining I if we sample according to the Gibbs measure. For
every v ∈ V , we use

PrG [v ∈ I] ,
∑

I∈I(G)
v∈I

PrG [I]

to denote the marginal probability of v.
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2.2 Hypergraph Two State Spin Model
Now we give a formal definition to hypergraph two state spin systems. This model is
parameterized by the external field λ > 0. An instance of the model is a labeled hypergraph
G(V, E , (β,γ)) where β,γ : E → R are two labeling functions that assign each edge e ∈ E
two reals β(e),γ(e). A configuration on G is an assignment σ : V → {0, 1} whose weight
w(σ) is defined as

w(σ) ,
∏
e∈E

w(e, σ)
∏
v∈V

w(v, σ)

where for a hyperedge e = {v1, . . . , vw}

w(e, σ) ,


β(e) if σ(v1) = σ(v2) = · · · = σ(vw) = 0
γ(e) if σ(v1) = σ(v2) = · · · = σ(vw) = 1
1 otherwise

and for a vertex v,

w(v, σ) ,
{
λ if σ(v) = 1
1 otherwise.

The partition function of the instance is given by

Z(G) =
∑

σ∈{0,1}V
w(σ).

Similarly, the weight of configurations induces a Gibbs measure on G. For every σ ∈ {0, 1}V ,
we use

PrG [σ] , w(I)
Z(G)

to denote the probability of σ in the measure. For every v ∈ V , we use

PrG [σ(v) = 1] ,
∑

σ∈{0,1}V
σ(v)=1

PrG [σ]

to denote the marginal probability of v.
The anti-ferromagnetic Ising model is the special case that β , β(e) = γ(e) ≤ 1 for all

e ∈ E . In this model, we call β the interaction parameter of the model. The hardcore model
introduced in previous section is the special case that β(e) = 1 and γ(e) = 0 for all e ∈ E .

The whole proof of Theorem 2 can be found in the full version of the paper. More
precisely, we design an FPTAS for the more general two state spin system and establish the
following theorem:

I Theorem 3. Consider a class of two state spin system with external field λ such that each
instance G(V, E , (β,γ)) in the class satisfies 1− 2

2e−1/2∆+3 ≤ β(e),γ(e) ≤ 1 where ∆ is the
maximum degree of G. There exists an FPTAS to compute the partition function for every
instance in the class.

Theorem 2 then follows since it is a special case of Theorem 3.
Actually, the main idea of FPTAS design and proof for this model is similar to the idea

we use to solve hypergraph hardcore model. However, the details of recursion function design
and techniques for proof of correlation decay property are pretty different from that in
hypergraph hardcore model, see the full version of the paper for details.
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3 Hypergraph Hardcore Model

3.1 Recursion for Computing Marginal Probability
We first fix some notations on graph modification specific to hypergraph independent set.
Let G(V, E) be a hypergraph.

For every v ∈ V , we denote G− v , (V \ {v} , E ′) where E ′ , {e \ {v} | e ∈ E}.
For every e ∈ E , we denote G− e , (V, E \ {e}).
Let x be a vertex or an edge and y be a vertex or an edge, we denote G−x−y , (G−x)−y.
Let S = {v1, . . . , vk} ⊆ V , we denote G− S , G− v1 − v2 · · · − vk.
Let F = {e1, . . . , ek} ⊆ E , we denote G−F , G− e1 − e2 · · · − ek.

Let G(V, E) be a hypergraph and v ∈ V be an arbitrary vertex with degree d. Let
{e1, . . . , ed} be the set of hyperedges incident to v and for every i ∈ [d], ei = {v} ∪
{vij | j ∈ [wi]} consists of wi + 1 vertices.

We first define a hypergraph G′(V ′, E ′), which is the graph obtained from G by replacing v
by d copies of itself and each ei contains a distinct copy. Formally, V ′ , (V \{v})∪{v1, . . . , vd},
E ′ , {e ∈ E | v 6∈ e} ∪ {ei − v + vi | i ∈ [d]}.

For every i ∈ [d] and j ∈ [wi], we define a hypergraph Gij(Vij , Eij):

Gij , G′ − {vk | i ≤ k ≤ d} − {ek | 1 ≤ k ≤ i} − {vik | 1 ≤ k < j} .

Let Rv = PrG[v∈I]
PrG[v 6∈I] and Rij = PrGij [vij∈I]

PrGij [vij 6∈I] . We can compute Rv by following recursion:

I Lemma 4.

Rv = λ

d∏
i=1

1−
wi∏
j=1

Rij
1 +Rij

 . (1)

Proof. By the definition of Rv, we have

Rv = PrG [v ∈ I]
PrG [v 6∈ I] = λ ·

PrG′
[∧d

i=1 vi ∈ I
]

PrG′
[∧d

i=1 vi 6∈ I
]

= λ ·
d∏
i=1

PrG′
[
vi ∈ I ∧

∧i−1
j=1 vj 6∈ I ∧

∧d
j=i+1 vj ∈ I

]
PrG′

[
vi 6∈ I ∧

∧i−1
j=1 vj 6∈ I ∧

∧d
j=i+1 vj ∈ I

]
For every i ∈ [d], define Gi , G′ − {vk | i < k ≤ d} − {ek | 1 ≤ k < i}, we have

PrG′
[
vi ∈ I ∧

∧i−1
j=1 vi 6∈ I ∧

∧d
j=i+1 vj ∈ I

]
PrG′

[
vi 6∈ I ∧

∧i−1
j=1 vj 6∈ I ∧

∧d
j=i+1 vj ∈ I

] =
PrG′

[
vi ∈ I

∣∣∣ ∧i−1
j=1 vj 6∈ I ∧

∧d
j=i+1 vj ∈ I

]
PrG′

[
vi 6∈ I

∣∣∣ ∧i−1
j=1 vj 6∈ I ∧

∧d
j=i+1 vj ∈ I

]
= PrGi [vi ∈ I]

PrGi [vi 6∈ I] .

This is because fixing vj ∈ I is equivalent to removing vj from the graph and fixing vj 6∈ I is
equivalent to removing all edges incident to vj from the graph.

Since ei is the unique hyperedge in Gi that contains vi, we have

PrGi [vi ∈ I]
PrGi [vi 6∈ I] = 1−PrGi−vi−ei

 wi∧
j=1

vij ∈ I

 = 1−
wi∏
j=1

PrGij [vij ∈ I] = 1−
wi∏
j=1

Rij
1 +Rij

.

J
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The Uniqueness Condition

Let the underlying graph be an infinite d-ary tree, then the recursion (1) becomes

fλ,d(x) = λ

(
1

1 + x

)d
.

Let x̂ be the positive fixed-point of fλ,d(x), i.e., x̂ > 0 and fλ,d(x̂) = x̂. The condition on λ
for the uniqueness of the Gibbs measure is that

∣∣∣f ′λ,d(x̂)
∣∣∣ < 1. The following proposition is

well-known.

I Proposition 5. Let λc = dd

(d−1)d+1 , then
∣∣∣f ′λc,d(x̂)

∣∣∣ = 1 and for every 0 < λ < λc, it holds

that
∣∣∣f ′λ,d(x̂)

∣∣∣ < 1.

3.2 The Algorithm to Compute Marginal Probability
Let G(V, E) be a hypergraph with maximum degree ∆ and v ∈ V be an arbitrary vertex
with degree d. Define Gij , Rv, Rij as in Section 3.1. Then the recursion (1) gives a way to
compute the marginal probability PrG [v ∈ I] exactly. However, an exact evaluation of the
recursion requires a computation tree with exponential size. Thus we introduce the following
truncated version of the recursion, with respect to constants c > 0 and 0 < α < 1.

R(G, v, L) =


λ
∏d
i=1

(
1−

∏wi
j=1

R(Gij ,vij ,L)
1+R(Gij ,vij ,L)

)
if d = ∆

λ
∏d
i=1

(
1−

∏wi
j=1

R(Gij ,vij ,L−b1+c log1/α wic)
1+R(Gij ,vij ,L−b1+c log1/α wic)

)
if d < ∆ and L > 0

λ otherwise.

The recursion can be directly used to compute R(G, v, L) for any given L and it induces
a truncated computation tree (with height L in some special metric). It is worth noting
that, the case that d = ∆ can only happen at the root of the computation tree, since in each
smaller instance, the degree of vij is decreased by at least one.

We claim that R(G, v, L) is a good estimate of Rv with a suitable choice of c and α, for
those (λ,∆) in the uniqueness region.

I Lemma 6. Let G(V, E) be a hypergraph with maximum degree ∆ ≥ 2. Let v ∈ V be a vertex
with degree d and let λ < λc = (∆−1)∆−1

(∆−2)∆ be the activity parameter. There exist constants
C > 0 (more precisely, C = 6λ

√
1 + λ) and α ∈ (0, 1) such that

|R(G, v, L)−Rv| ≤ C · αmax{0,L}

for every L.

The whole proof of this lemma is postponed to the next section. Now we can prove
Theorem 1 via using this lemma.

Proof of Theorem 1. The input of the FPTAS is an instance G(V, E) and an accuracy
parameter 0 < ε < 1/2. Assume V = {v1, . . . , vn}. Note that I = ∅ is an independent set of
G with w(I) = 1. Therefore

Z(G) = 1/PrG [I] =
(

PrG

[
n∧
i=1

vi 6∈ I

])−1

=

 n∏
i=1

PrG

vi 6∈ I
∣∣∣∣∣∣
i−1∧
j=1

vj 6∈ I

−1

.

For every 1 ≤ i ≤ n, we define a graph Gi(Vi, Ei):

STACS 2016
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G1 , G;
For every i ≥ 2, Gi , Gi−1 − vi−1 −E ′ where E ′ , {e ∈ Ei−1 | vi−1 ∈ e} consists of edges
in Gi−1 incident to vi.

It is straightforward to verify that PrG
[
vi 6∈ I

∣∣∣ ∧i−1
j=1 vj 6∈ I

]
= PrGi [vi 6∈ I] for every

1 ≤ i ≤ n. Thus,

Z(G) =
n∏
i=1

(PrGi [vi 6∈ I])−1 =
n∏
i=1

(1 +Ri) ,

where Ri ,
PrGi [vi∈I]
PrGi [vi 6∈I]

. Let C and α be constants in Lemma 6. We compute R(Gi, vi, L)

with L = log(2Cnε−1)
logα−1 for every 1 ≤ i ≤ n, then |Ri −R(Gi, vi, L)| ≤ ε

2n . This implies

1− ε

2n ≤
1 +Ri

1 +R(G, vi, L) ≤ 1 + ε

2n.

Let Ẑ =
∏n
i=1 (1 +R(Gi, vi, L))−1 be our estimate of the partition function, then it holds

that

e−ε ≤ Z(G)
Ẑ
≤ eε.

It remains to bound the running time of our algorithm. Let T (L) denote the maximum
running time of computing R(G, v, L) (over all choices of d ≤ ∆ and arbitrary wi). Then by
the definition of R(G, v, L), for every L > 0,

T (L) ≤
d∑
i=1

wi∑
j=1

T (L− b1 + c log1/α wic) +O(n).

It is easy to verify that T (L) = n∆O(L) =
(
n
ε

)O(log ∆) for our choice of L. Thus our algorithm
is an FPTAS for computing Z(G). J

3.3 Correlation Decay
In this section, we establish Lemma 6. We first prove some technical lemmas.

Suppose f : Dd → R is a d-ary function where D ⊆ R is a convex set, let φ : R → R
be an increasing differentiable function and Φ(x) , φ′(x). The following proposition is a
consequence of the mean value theorem:

I Proposition 7. For every x = (x1, . . . , xd), x̂ = (x̂1, . . . , x̂d) ∈ Dd, it holds that
1. |f(x)− f(x̂)| = 1

Φ(x̃) |φ(f(x))− φ(f(x̂))| for some x̃ ∈ D;

2. |φ(f(x))− φ(f(x̂))| ≤
∑d
i=1

Φ(f)
Φ(x̃i)

∣∣∣∂f(x̃)
∂xi

∣∣∣·|φ(xi)− φ(x̂i)| for some x̃ = (x̃1, . . . , x̃d) ∈ Dd.

I Lemma 8. Let ∆ ≥ 2 be a constant integer and λ < λc = (∆−1)∆−1

(∆−2)∆ be a constant real. Let

d < ∆ and w1, . . . , wd > 0 be integers and f = λ
∏d
i=1

(
1−

∏wi
j=1

xij
1+xij

)
be a

(∑d
i=1 wi

)
-ary

function. Let Φ(x) = 1√
x(1+x)

. Let c < min
{

log(1+λ)−logλ
2+4λ , 2λ+1

2 log
( 1+λ

λ

)
− 1
}
be a positive

number. There exists a constant α < 1 depending on λ and d (but not depending on wi for
all i ∈ [d]) such that

d∑
a=1

wca

wa∑
b=1

Φ(f)
Φ(xab)

∣∣∣∣∂f(x)
∂xab

∣∣∣∣ ≤ α < 1

for every x = (xij)i∈[d],j∈[wi] where each xij ∈ [0, λ]
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The lemma bounds the amortized decay rate, which is the key to the proof of correlation
decay. In previous works, the amortized decay rate is defined as

d∑
a=1

wa∑
b=1

Φ(f)
Φ(xab)

∣∣∣∣∂f(x)
∂xab

∣∣∣∣ ,
without the wca factor. Then one need to give a constant α < 1 bound for small wa and a
sub constant bound for large wa. With this modification, we only need to prove a single
bound as above.

Notice that we require c to be a positive constant, so it is necessary to verify that
2λ+1

2 log
( 1+λ

λ

)
− 1 > 0 for every λ > 0. To see this, let h(λ) , 2λ+1

2 log
( 1+λ

λ

)
− 1, then we

can compute that

h′(λ) = log
(

1 + λ

λ

)
− 1 + 2λ

2λ+ 2λ2 ,

h′′(λ) = 1
2λ2(1 + λ)2 .

Since h′′(λ) > 0 for every λ, h′(λ) is increasing. Along with the fact that limλ→∞ h′(λ) = 0,
we have h′(λ) < 0 for every λ > 0. This implies that h(λ) is decreasing. Also note that

lim
λ→∞

h(λ) = lim
λ→∞

log
((

1 + 1
λ

)λ(
1 + 1

λ

)1/2
)
− 1 = 0.

It holds that h(λ) > 0 for every λ > 0. Thus a positive c satisfying c < h(λ) exists for every
λ > 0.

Proof of Lemma 8. To simplify the notation, we first let tij = xij
1+xij , then for every i ∈ [d]

and j ∈ [wi], it holds that tij ∈
[
0, λ

1+λ

]
and

f = λ

d∏
i=1

1−
wi∏
j=1

tij

 .

For every a ∈ [d] and b ∈ [wi], we have∣∣∣∣ ∂f∂xab

∣∣∣∣ = λ(1− tab)2
∏

j∈[wa]
j 6=b

taj ·
∏
i∈[d]
i 6=a

1−
wi∏
j=1

tij

 = f · (1− tab)2

tab
·
∏wa
j=1 taj

1−
∏wa
j=1 taj

.

Thus
d∑
a=1

wca

wa∑
b=1

Φ(f)
Φ(xab)

∣∣∣∣ ∂f∂xab

∣∣∣∣ =

√
f

1 + f

d∑
a=1

wca
∏wa
j=1 taj

1−
∏wa
j=1 taj

wa∑
b=1

1− tab√
tab

.

Let t = (tij)i∈[d],j∈[wi], define

h(t) ,

√
f

1 + f

d∑
a=1

wca
∏wa
j=1 taj

1−
∏wa
j taj

wa∑
b=1

1− tab√
tab

=

√√√√√ λ
∏d
i=1

(
1−

∏wi
j=1 tij

)
1 + λ

∏d
i=1

(
1−

∏wi
j=1 tij

) d∑
a=1

wca
∏wa
j=1 taj

1−
∏wa
j taj

wa∑
b=1

1− tab√
tab

.
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For every t = (tij)i∈[d],j∈[wi] where each tij ∈ [0, λ
1+λ ], define a tuple t̂ = (t̂ij)i∈[d],j∈wi such

that for every i ∈ [d],

t̂ij =
{( 1+λ

λ

)wi−1∏wi
k=1 tik if j = 1

λ
1+λ otherwise.

We claim that h(t) ≤ h(̂t). To see this, first note that for every i ∈ [d],
∏wi
j=1 tij =

∏wi
j=1 t̂ij ,

it is sufficient to prove that for every i ∈ [d],
∑wi
j=1

1−tij√
tij
≤
∑wi
j=1

1−t̂ij√
t̂ij
. This is a consequence

of the Karamata’s inequality by noticing that the function 1−ex√
ex

is convex.
We rename t̂i1 to ti and it is sufficient to upper bound

g(t,w) ,

√√√√√√√
λ
∏d
i=1

(
1−

(
λ

1+λ

)wi−1
ti

)
1 + λ

∏d
i=1

(
1−

(
λ

1+λ

)wi−1
ti

) · d∑
i=1

wci

(
λ

1+λ

)wi−1
ti

1−
(

λ
1+λ

)wi−1
ti

·
(

1− ti√
ti

+ (wi − 1)√
λ+ λ2

)

(2)

where ti ∈
[
0, λ

1+λ

]
and wi ∈ Z+ for every i ∈ [d].

The argument so far is similar to the proof in [17]. In the following, we prove a monotonicity
property of each wi and thus avoid the heavy numerical analysis in [17] and allow us to
obtain a tight result.

For every i ∈ [d], we let zi , 1−
(

λ
1+λ

)wi−1
ti and thus equivalently ti = (1−zi)

( 1+λ
λ

)wi−1.
For every fixed z = (z1, . . . , zd), we can write (2) as

gz(w) =

√√√√ λ
∏d
i=1 zi

1 + λ
∏d
i=1 zi

d∑
i=1

1− zi
zi

(
1− ti√
ti

+ wi − 1√
λ+ λ2

)
wci . (3)

We show that gz(w) is monotonically decreasing with wi for every i ∈ [d].
Denote Ti , 1−ti√

ti
+ (wi−1)√

λ+λ2 , then

∂gz(w)
∂wi

=

√√√√ λ
∏d
i=1 zi

1 + λ
∏d
i=1 zi

· 1− zi
zi

(
∂Ti
∂wi

wci + cwc−1
i Ti

)
. (4)

The partial derivative (4) is negative for a suitable choice of c:

1− zi
zi

·
(
∂Ti
∂zi

wci + cwc−1
i Ti

)
= 1− zi

zi
·
((
−1

2 t
′
i(t
−1/2
i + t

−3/2
i ) + 1√

λ+ λ2

)
wci + cwc−1

i

(
1− ti√
ti

+ (wi − 1)√
λ+ λ2

))
= 1− zi

zi
· wc−1

i

((
−1

2 log
(

1 + λ

λ

)
(t1/2i + t

−1/2
i ) + 1√

λ+ λ2

)
wi

+c
(
t
−1/2
i − t1/2i + (wi − 1)√

λ+ λ2

))
= 1− zi

zi
· wc−1

i

(
(c+ 1)wi − c√

λ+ λ2
−(

t
1/2
i

(
1
2wi log

(
1 + λ

λ

)
+ c

)
+ t
−1/2
i

(
1
2wi log

(
1 + λ

λ

)
− c
)))
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Denote

p(t, w) , (c+ 1)w − c√
λ+ λ2

−
(
t1/2

(
1
2w log

(
1 + λ

λ

)
+ c

)
+ t−1/2

(
1
2w log

(
1 + λ

λ

)
− c
))

Since c ≤ log(1+λ)−logλ
2+4λ , the term

t1/2
(

1
2w log

(
1 + λ

λ

)
+ c

)
+ t−1/2

(
1
2w log

(
1 + λ

λ

)
− c
)

achieves its minimum at t = λ
1+λ . Thus

p(t, w) ≤ p
(

λ

1 + λ
,w

)
=
(

λ

1 + λ

)1/2(
c+ 1
λ
− 2λ+ 1

2λ log
(

1 + λ

λ

))
w.

Moreover, c < 2λ+1
2 log

( 1+λ
λ

)
− 1 implies that c+1

λ < 2λ+1
2λ log

( 1+λ
λ

)
holds, which con-

sequently leads to p
(

λ
1+λ , 1

)
< 0.

In all, we choose a positive constant c < min
{

log(1+λ)−logλ
2+4λ , 2λ+1

2 log
( 1+λ

λ

)
− 1
}
, and

this results in p
(

λ
1+λ , w

)
≤ p

(
λ

1+λ , 1
)
< 0.

In light of the monotonicity of wi’s, for every fixed z, gz(w) achieves its maximum when
w = 1. Thus

max
t∈[0, λ

1+λ ]d
g(t,w) = max

z=(z1,...,zd)
∀i∈[d],zi∈

[
1−( λ

1+λ )wi−1
,1
] gz(w)

≤ max
z=(z1,...,zd)

∀i∈[d],zi∈
[
1−( λ

1+λ )wi−1
,1
] gz(1) ≤ max

z∈[0,1]d
gz(1).

Actually, the case that all wi’s are 1 corresponds to counting weighted independent sets
on normal graphs and arguments to bound gz(1) can be found in [14]. For the sake of
completeness, we give a proof of gz(1) ≤ α < 1 (Lemma 9) below. J

I Lemma 9. Let ∆ > 1, be a constant. Assume λ < λc = (∆−1)∆−1

(∆−2)∆ be a constant and
d < ∆. Then for some constant α < 1, gz(1) ≤ α < 1 where z = (z1, . . . , zd) ∈ [0, 1]d.

Proof. Let λ′c , dd

(d−1)d+1 be the uniqueness threshold for the d-ary tree. Then λ < λc ≤ λ′c.
Plugging w = 1 into (3), we have

gz(1) =

√√√√ λ
∏d
i=1 zi

1 + λ
∏d
i=1 zi

·
d∑
i=1

√
1− zi.

Let z =
(∏d

i=1 zi

) 1
d , it follows from Jensen’s inequality that

g(t,1) ≤ d

√
λzd(1− z)

1 + λzd
< d

√
λ′cz

d(1− z)
1 + λ′cz

d
(5)

Recall that fλ,d(x) = λ
(

1
1+x

)d
. Let x̂ be the positive fixed-point of fλ′c,d(x) and ẑ = 1

1+x̂ .

We show that d
√

λ′cz
d(1−z)

1+λ′czd
achieves its maximum when z = ẑ. The derivative of λ

′
cz
d(1−z)

1+λ′czd
with respect to z is(

λ′cz
d(1− z)

1 + λ′cz
d

)′
= − λ′cz

d−1

(1 + λ′cz
d)2

(
z + λ′cz

d+1 − d(1− z)
)
.
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Since λ′c = dd

(d−1)d+1 , the above achieves maximum at z̃ = d−1
d . If we let x̃ = 1−z̃

z̃ , then it
is easy to verify that fλ′c,d(x̃) = x̃, which implies ẑ = z̃ because of the uniqueness of the
positive fixed-point.

Therefore, we have for some α < 1,

gz(1) ≤ α < d

√
λ′cẑ

d(1− ẑ)
1 + λ′cẑ

d
=
∣∣∣f ′λ′c,d(x̂)

∣∣∣ = 1. J

We are now ready to prove the main lemma.

Proof of Lemma 6. Let Φ(x) = 1√
x(1+x)

and φ(x) =
∫

Φ(x) dx = 2 sinh−1(
√
x). We first

apply induction on ` , max {0, L} to show that, if d < ∆, then |φ(Rv)− φ(R(G, v, L))| ≤
2
√
λαL for some constant α < 1.
If ` = 0, note that Rv ∈ [0, λ], thus |φ(R(G, v, L))− φ(Rv)| ≤ 2

√
λ. We now assume

L = ` > 0 and the lemma holds for smaller `. For every i ∈ [d] and j ∈ [wi], we
denote xij = Rij and x̂ij = R(Gij , vij , L − b1 + c log1/α wic). Let x = (xij)i∈[d],j∈[wi],
x̂ = (x̂ij)i∈[d],j∈[wi]. Let f = λ

∏d
i=1

(
1−

∏wi
j=1

xij
1−xij

)
, then it follows from Proposition 7

that for some x̃ = (x̃ij)i∈[d],j∈[wi] with each x̃ij ∈ [0, λ]

|φ(Rv)− φ(R(G, v, L))| ≤
d∑
i=1

wi∑
j=1

Φ(f)
Φ(x̃ij)

∣∣∣∣∂f(x̃)
∂xij

∣∣∣∣ · |φ(xij)− φ(x̂ij)|

(♠)
≤ 2
√
λ

d∑
i=1

wi∑
j=1

Φ(f)
Φ(x̃ij)

∣∣∣∣∂f(x̃)
∂xij

∣∣∣∣αL−b1+c log1/α wic

(♥)
≤ 2
√
λαL.

(♠) follows from the induction hypothesis and (♥) is due to Lemma 8.
The case that d = ∆ can only happen at the root of our computational tree. Following

the arguments in the proofs of 8, 9 and the bound in (5), it is easy to see that a universal
constant upper bound for the error contraction exists, i.e.,

∆∑
i=1

wi∑
j=1

Φ(f)
Φ(x̃ij)

∣∣∣∣∂f(x̃)
∂xij

∣∣∣∣ < max
z∈[0,1]

√
∆2(∆− 1)∆−1z∆(1− z)

(∆− 2)∆ + (∆− 1)∆−1z∆ < 3.

Thus |φ(Rv)− φ(R(G, v, L))| ≤ 6
√
λαL for every v.

Then the lemma follows from Proposition 7, since

|Rv −R(G, v, L)| = 1
Φ(x̃) · |φ(Rv)− φ(R(G, v, L))| for some x̃ ∈ [0, λ]

≤ 6λ
√

1 + λ · αL J
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