
Airports and Railways: Facility Location Meets
Network Design∗

Anna Adamaszek1, Antonios Antoniadis2, and Tobias Mömke3

1 University of Copenhagen, Denmark
anad@di.ku.dk

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
aantonia@mpi-inf.mpg.de

3 Saarland University, Germany
moemke@cs.uni-saarland.de

Abstract
We introduce a new framework of Airport and Railway Problems, which combines capacitated
facility location with network design. In this framework we are given a graph with weights on
the vertices and on the edges, together with a parameter k. The vertices of the graph represent
cities, and weights denote respectively the costs of opening airports in the cities and building
railways that connect pairs of cities. The parameter k can be thought of as the capacity of an
airport. The goal is to construct a minimum cost network of airports and railways connecting
the cities, where each connected component in the network spans at most k vertices, contains an
open airport, and the network satisfies some additional requirements specific to the problem in
the framework.

We consider two problems in this framework. In the ARF problem there are no additional
requirements for the network. This problem is related to capacitated facility location. In the
ARP problem, we require each component to be a path with airports at both endpoints. ARP is
a relaxation of the capacitated vehicle routing problem (CVRP).

We consider the problems in the two-dimensional Euclidean setting. We show that both
ARF and ARP are NP-hard, even for uniform vertex weights (i. e., when the cost of building an
airport is the same for all cities). On the positive side, we provide polynomial time approximation
schemes for ARF and ARP when vertex weights are uniform. We also investigate ARF and ARP
for k =∞. In this setting we present an exact polynomial time algorithm for ARF with general
vertex costs, which also works for general edge costs. In contrast to ARF, ARP remains NP-hard
when k =∞, and we present a polynomial time approximation scheme for general vertex weights.

We believe that our PTAS for ARP with uniform vertex weights and arbitrary k brings us
closer towards a PTAS for Euclidean CVRP, for which the main difficulty is to deal with paths
of length at most k.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases approximation algorithms, geometric approximation, facility location,
network design, PTAS

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.6

∗ Partially supported by the Danish Council for Independent Research DFF-MOBILEX mobility grant,
and by Deutsche Forschungsgemeinschaft grant BL511/10-1 and MO 2889/1-1.

© Anna Adamaszek, Antonios Antoniadis, and Tobias Mömke;
licensed under Creative Commons License CC-BY

33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016).
Editors: Nicolas Ollinger and Heribert Vollmer; Article No. 6; pp. 6:1–6:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Airports and Railways: Facility Location Meets Network Design

1 Introduction

We introduce a new framework of Airport and Railway Problems, which combines capacitated
facility location with network design. In this framework, an input instance (G, a, r, k) consists
of a complete n-vertex graph G = (V,E) with vertex costs a : V (G) → R and edge costs
r : E(G) → R≥0, and a parameter k. The goal is to compute a minimum cost network of
airports A ⊆ V (G) and railways R ⊆ E(G) connecting all the cities (i. e., each vertex in V
is connected with some vertex from A via a path of edges from R), where each connected
component of the network contains at most k vertices. Problems from this framework can
have additional constraints on the network, e. g., requiring a fixed number κ of connected
components, or enforcing special structure of the connected components. Unless stated
differently, we assume that r specifies distances in the two-dimensional Euclidean space.

Paths. We define ARP as an airport and railway problem with an additional property that
each connected component is a path with airports at the endpoints. Formally, we want to
find subsets A ⊆ V (G) and R ⊆ E(G) of minimum total cost a(A) + r(R)1 such that (i)
each connected component of the graph (V,R) is a path of length at most k, and (ii) for
each v ∈ V we have v ∈ A if and only if v is an endpoint of a path in R. For consistency
we assume that each path contains two airports, i. e., when accounting for the cost of A, we
consider each vertex that forms a singleton path twice.2 For a solution H to ARP, we define
ã(H) =

∑
v∈A a(v), where A is the multiset of all endpoints of the paths of H.

The ARP problem relaxes the capacitated vehicle routing problem (CVRP), which is a
fundamental vehicle routing problem (cf. Dantzig and Ramser [8]). The input to CVRP
is an edge-weighted graph with a special vertex called the depot, and a parameter k, the
capacity. The goal is to find a minimum cost tour that (i) starts and ends at the depot, (ii)
visits all vertices, and (iii) visits at most k vertices between any two consecutive visits to the
depot. CVRP is a special case of ARP, where for each vertex v ∈ V the cost a(v) equals the
distance between v and the depot. The existence of a PTAS for Euclidean CVRP remains
an important open problem.

Notice that in some applications where goods need to be distributed or a service has to
be provided to the customers, unlike in CVRP, the cost of moving the salesmen to and from
the depot is not proportional to the distance from the depot. For example, a salesman can
move to and from the depot using public transport, and then a(v) will denote the cost of the
public transport ticket. These applications motivate a model where the airport costs a(v)
are uniform (which we later denote by 1ARP), as well as the general ARP model.

Trees. We define ARF as a basic airport and railway problem, with no additional properties
of the network. Formally, we want to find subsets A ⊆ V (G) and R ⊆ E(G) of minimum
total cost a(A) + r(R) such that each connected component of the graph (V,R) has at most k
vertices, and contains one vertex from A (i. e., one open airport).3 We remark that since r is
nonnegative, any optimal solution to ARF is always a forest, and that it opens the cheapest
airport in each component. As for paths, for a solution H we define ã(H) =

∑
v∈A a(v), but

here A is the set that contains the vertex with the cheapest airport of each component.

1 We write a(A) and r(R) as shorthands for
∑

v∈A
a(v) and

∑
e∈R

r(e), respectively.
2 We remark that our results can be easily adapted for the case where we count the cost of an airport at

a singleton vertex once instead of twice.
3 We restrict the number of airports per component for technical reasons. It is straightforward to adapt

our algorithms to allow multiple airports per component.

A. Adamaszek, A. Antoniadis, and T. Mömke 6:3

ARF is related to the well known capacitated facility location problem, where instead
of connecting each client directly to an open facility we construct a network which jointly
connects all clients to a facility, which seems more appropriate for some applications. Another
interesting interpretation of ARF is that each subset U of at most k vertices forms a hyperedge.
The cost of each such hyperedge is r(H) + ã(H), where H is a minimum spanning tree on U ,
and the goal is to find a perfect hyper-matching of minimum cost.

1.1 Our Results
We consider the ARP and ARF problems in the two-dimensional Euclidean setting. For both
ARP and ARF we consider the uniform airport cost case, i. e., the case where a(v) = a(w) for
all v, w ∈ V , and the unrestricted airport capacity case, when k =∞. We call the resulting
problems 1ARP, 1ARF and ARP

∞, ARF
∞.

Using a reduction from the Euclidean TSP path problem, i.e., the problem of finding a
minimum cost Hamiltonian path in a given graph, we can prove the following result.

I Theorem 1. The ARP problem is NP-hard, even in Euclidean graphs with unit airport
costs and k =∞.

In a similar manner, the APX-hardness of metric-TSP [14] implies that ARP is APX-hard in
metric graphs. The hardness result holds even when we have unit airport costs and k =∞.

Theorem 1 implies in particular that both 1ARP and ARP
∞ are NP-hard. On the positive

side we develop polynomial time approximation schemes for these two problems. In fact, for
ARP

∞ we present a stronger result: we may specify the exact number of paths κ required by
the solution. We denote the corresponding instance by (G, a, r, k, κ).

I Theorem 2. For any κ ∈ N there is a PTAS for the two-dimensional Euclidean ARP
∞

problem, when we require both the optimal and the algorithmic solution to have exactly κ
connected components.

Our technique for proving Theorem 2 is an intricate extension of the well known PTAS of
Arora [4] for the Euclidean TSP. One obstacle is that unlike in Arora’s result, in ARP

∞ one
cannot in general restrict the bounding box to be of linear size. We cope with this by scaling
the instance with a carefully chosen scaling parameter and afterwards dissecting it into a
collection of separate instances. A further difficulty is caused by crossings in the solution.
We prove that paths can be uncrossed without an increase in the cost of the solution. After
this preparation, we are able to extend Arora’s dynamic program to be applicable for our
setting. Theorem 2 is discussed in Section 3.2.

We can prove that the 1ARF problem is NP-hard, which in particular implies NP-hardness
of the general ARF.

I Theorem 3. The ARF problem is NP-hard, even in Euclidean graphs with unit airport
costs.

The proof of the theorem consists of a reduction from the NP-hard planar monotone
cubic One-in-Three Satisfiability problem (PMC-1-in-3-SAT). Notice that, in contrast to
Theorem 1, this hardness result requires a bound on the airport capacity k.

We show that the ARF
∞ problem, unlike ARP

∞, can be solved exactly in polynomial
time, even when we require that the solution has exactly κ connected components.

I Theorem 4. For an arbitrary κ ∈ N and edge-cost function r : E → R≥0, there is an exact
polynomial-time algorithm for the ARF

∞ problem when we require both the optimal and the
algorithmic solution to have exactly κ connected components.

STACS 2016

6:4 Airports and Railways: Facility Location Meets Network Design

To prove Theorem 4, we augment the input graph by a special vertex corresponding to
the airports, and then we reduce the problem to the matroid intersection problem. Notice
that here r is not required to be a metric. We discuss Theorem 4 in detail in Section 3.1.

We will use our algorithms for ARP
∞ and ARF

∞ with a requirement of κ on the number
of connected components to obtain a PTAS for 1ARF and 1ARP, which is the main result of
this paper.

I Theorem 5. There is a PTAS for the two-dimensional Euclidean 1ARP and 1ARF problem.

We note that a generalization of the above result for ARP from uniform airport costs to a
constant range of airport costs would yield a PTAS for Euclidean CVRP, using a result of
Adamaszek et al. [1].

In order to prove Theorem 5, we first partition the problem instance into a collection of
independent subinstances. The partitioning borrows ideas from the random shift method
used by Arora in his PTAS for Euclidean TSP. However, we obtain a collection of independent
subinstances where each subinstance has a bounding box of constant size, instead of linear
as Arora’s random shift would give. We distinguish two types of subinstances: sparse and
dense ones, depending on the number of connected components in an optimal solution for the
instance. We obtain a PTAS for the sparse instances by again slightly adapting the PTAS by
Arora. In contrast, developing an algorithm for dense instances is much more involved. We
first obtain an initial solution by running our algorithms for ARP

∞ (ARF
∞, respectively).

This solution can be infeasible for 1ARP (1ARF, respectively), and we proceed by dissecting
each connected component into smaller pieces of similar size. Finally, we show how these
smaller pieces can be reassembled into a feasible solution which has cost not much greater
than the cost of an optimal solution. Theorem 5 is discussed in Section 4.

We believe that our technique of dissecting a cheap but infeasible solution and reassembling
the pieces to form a cheap feasible solution can be applied to other geometric graph problems,
including Euclidean CVRP.

1.2 Related Work
Our new framework of Airport and Railway Problems combines capacitated facility location
with network design. In the capacitated facility location (CFL) problem we are given a
complete graph G = (V,E) on n vertices v1, . . . , vn, with edge costs d : E(G) → R≥0 and
vertex costs c : V (G)→ R≥0, together with a capacity parameter k. Here d(vi, vj) denotes
the distance between vertices vi and vj , and c(vi) denotes the cost of opening a facility at vi.
A solution to the problem consists of a set of facilities F ⊆ V to be opened, and an assignment
of each vertex vi to some open facility f(vi) such that each facility has at most k vertices
assigned to it. The goal is to find a solution minimizing the total cost of opening the facilities
and connecting all vertices to the assigned facilities, i.e.,

∑
v∈V :v∈F c(v) +

∑
v∈V d(v, f(v)).

Here all vertices are connected to the open facilities by direct links.
In the network design problems we are given a graph with weights on the edges and

possibly also on the vertices, and the goal is to find a minimum cost set of edges satisfying
some given constraints, e.g., connectivity constraints. That might be for example constructing
a network that allows routing flow from all the vertices to a specified set of sinks. Our
framework combines the two settings above.

The ARF problem is related to the problems of capacitated facility location and capacitated
minimum spanning tree (CMST). In CMST the goal is to construct a minimum cost collection
of trees, each spanning at most k vertices and connected to a single pre-specified root, covering
all the input vertices. Jothi and Raghavachari [13] give a 3.15-approximation algorithm for

A. Adamaszek, A. Antoniadis, and T. Mömke 6:5

CMST instances in the Euclidean plane, allowing demands on the vertices. Other problems
(more remotely) related to ARF can be found in [15, 10] and [17].

The ARP problem relaxes the capacitated vehicle routing problem (CVRP), which has
been introduced by Dantzig and Ramser [8] in 1959, and has been studied extensively by the
Computer Science and Operations Research communities. When the underlying graph G
resembles a metric, CVRP is known to be APX-hard [6]. However, Arora [4] conjectured that
when G resembles the Euclidean metric, then CVRP admits a PTAS. Das and Mathieu [9]
developed a quasi-polynomial time approximation scheme (QPTAS) for Euclidean CVRP,
which gives raise to expect the existence of a PTAS for this setting. There have been several
results in this direction. There is a PTAS for the cases of very large capacity k = Ω(n) [6], and
small capacity k ≤ 2logo(1) n [1]. Despite these efforts, the exact approximability of CVRP in
the Euclidean metric remains an open question. As Arora [4] and Das and Mathieu [9] point
out, the main difficultly in adapting Arora’s algorithm to CVRP with arbitrary parameter k
lies in controlling the interface of the dynamic program. In particular, one cannot recombine
different tours arbitrarily since an “uncrossing” may transform two tours of length at most k
into one longer tour and one shorter tour. A second difficulty is due to the cost associated
with returning to the depot. In the problems considered in this paper we were able to
circumvent these obstacles, and we believe that our results could provide a step towards
obtaining a PTAS for CVRP with an arbitrary parameter k.

Finally, the capacitated location routing problem (CLR, see [12]) and the k-location
capacitated vehicle routing (k-LocVRP, see [11]) can be seen as problems in our framework,
although they have been studied for general graphs and allow demands on the vertices. CLR
is a generalization of multiple depot CVRP, with costs of opening the depots. k-LocVRP is
also related to multiple depot CVRP, where we can choose k depots to be opened, one per
vehicle. Harks et al. [12] and Gørtz and Nagarajan [11] provide constant-factor approximation
algorithms for CLR and k-LocVRP, respectively. Another related problem is capacitated
geometric network design (CGND) where the goal is to create a network of capacitated links
which allows sending flow from all the vertices to the sink. CGND resembles ARF, when
instead of a bound on the airport capacity we have a bound on the railroad capacity. In
CGND the sink is pre-specified, and the optimal network can be more complicated than a
tree. Adamaszek et al. [2] provide a PTAS for the two-dimensional Euclidean CGND for link
capacities k ≤ 2O(

√
logn), where the network can use Steiner vertices anywhere in the plane.

2 Preliminaries: Arora’s Scheme

Some of our results build on Arora’s PTAS for Euclidean TSP [3]. Therefore we provide a
short reminder of the main steps of the algorithm.

Step 1 (Perturbation): Perturb the instance such that it becomes “well rounded”, i. e., (i) all
nodes are at integer coordinates, and (ii) the maximum inter-node distance is Oε(n).
Such an operation can be performed because the cost of an optimal TSP solution is at
least as large as the maximum inter-node distance.

Step 2 (Shifted Quadtree): Starting from a square that contains all nodes of the instance,
we recurse over a logarithmic number of levels, each time subdividing the square into
four smaller subsquares. That gives us a quadtree of logarithmic depth, where the root
corresponds to the square containing all nodes of the instance, and all other nodes of
the tree correspond to the subsquares of the dissection. The leaves correspond to unit
squares.

STACS 2016

6:6 Airports and Railways: Facility Location Meets Network Design

We introduce randomness and shift the quadtree in the following way. Choose two integers
a, b ∈ [0, L) uniformly at random, where L is the length of the bounding box side. Shift
the basic quadtree by a units in the horizontal and b units in the vertical direction and
wrap around the boundaries. Note that this does not affect the position of the nodes.

Step 3 (Dynamic Programming): Fix m = Oε(logn) and r = Oε(1). We introduce portals
on the plane in the following way. For the quadtree constructed in the previous step,
for each side of each dissection square, we create m equidistant portals along the side.
We call a TSP solution (m, r)-light if (i) it is portal-respecting (i.e., it enters and exits
dissection squares only at the portals), and (ii) any edge of a dissection square is crossed
at most r times by the solution. Arora showed that with respect to the random shift of
Step 2, an optimal (m, r)-light TSP tour has an expected cost not much greater than the
optimal TSP tour.
We can find an optimal (m, r)-light TSP tour using dynamic programming (DP). There
is a DP cell for each combination of (i) a dissection square of the quadtree, and (ii) the
description of pairs of portals used by the tour to enter and exit the square.

In the remaining document, when referring to Steps 1–3 of Arora’s algorithm, we refer to the
above steps.

3 Unrestricted Airport Capacity

In this section we will consider the problems ARF
∞ and ARP

∞.
In general, given some algorithm Alg, we denote by alg the cost of the solution computed

by Alg. Similarly, an optimal solution Opt has a cost of opt.

3.1 An Exact Algorithm for ARF
∞ and Theorem 4

We first introduce a simple algorithm MST-ARF for the ARF
∞ problem, for any edge-cost

function r : E → R≥0, and without the restriction on the number of connected components κ.
The algorithm is a slight extension of finding a minimum spanning tree, and for any instance
(G, a, r, k =∞) of ARF

∞ it performs the following operations.
1. Construct a minimum spanning tree instance (G′, r′) by augmenting (G, r) by an auxiliary

vertex v′, and an edge (v′, v) with weight a(v) for each v ∈ V (G).
2. Compute a minimum spanning tree MST ′ of G′.
3. Output A = {v ∈ V : {v, v′} ∈ E(MST ′)}, R = {{v1, v2} ∈ E(MST ′) : v1, v2 6= v′}.

It is easy to see that for each solution for the ARF
∞ instance there is a corresponding

spanning tree of G′ with the same cost, and vice versa. That gives us the following result.

I Corollary 6. MST-ARF is an exact polynomial time algorithm for ARF
∞, for any edge-cost

function r : E → R≥0.

If we enforce a given number of connected components in the solution, as required by
Theorem 4, the algorithm becomes more involved. It uses the augmented graph (G′, r′) and
matroid intersection.

Proof of Theorem 4. The theorem follows from matroid intersection. Let (E′, I1) be the
set system with E′ = E(G′) and I1 the collection of the edge sets of all forests in G′, where
G′ is the graph constructed in step one of MST-ARF. Then (E′, I1) is the cycle matroid of
G′ and its bases are the spanning trees of G′, of size |V (G′)− 1|. To define a second matroid,
let E′′ ⊂ E′ be the set of all edges incident to v′. Then we define the second set system

A. Adamaszek, A. Antoniadis, and T. Mömke 6:7

(E′, I2) where a set I ⊆ E′ is in I2 if (i) |E′′∩I| ≤ κ and (ii) |(E′ \E′′)∩I| ≤ |V (G′)|−1−κ.
Clearly, (E′, I2) is the union of two uniform matroids and therefore a matroid itself. The
bases of (E′, I2) are edge sets of size |V (G′)− 1| with exactly κ edges incident to v′.

The common bases of (E′, I1) and (E′, I2) are all spanning trees in G′ with exactly κ
edges from E′′: they are spanning trees due to (E′, I1), and the κ edges incident to v′ are
ensured by (E′, I2). We can find a minimum cost common base in strongly polynomial time
(see, for instance, Theorem 41.8 in Schrijver’s book [16]). J

3.2 A PTAS for ARP
∞ and Theorem 2

The ARP
∞ problem is a generalization of the s, t-path TSP problem. To transform an

s, t-path TSP instance to an instance of ARP
∞, we set the airport costs of s and t to zero,

and all other airport costs to infinity. This already implies NP-hardness of ARP
∞, but in

Theorem 1 we show that the problem is NP-hard even with unit airport costs. We extend
Arora’s scheme for Euclidean TSP to obtain a PTAS for the more general setting of ARP

∞.

Perturbation. First, we need to obtain a well-rounded instance. We cannot immediately
use the bounding box of Step 1 in Arora’s algorithm for TSP, because there may be large gaps
between distinct connected components of an optimal solution, and the length of the sides
of the bounding box can be arbitrarily large with respect to opt. A similar problem occurs
for example when trying to apply Arora’s algorithm to the Euclidean k-median problem.
Arora et al. [5] obtain a PTAS for the Euclidean k-median, where for the perturbation step
they apply a min-max clustering algorithm of Bern and Eppstein [7]. Unlike in the case of
k-median, we do not have such an algorithm. For ARP

∞, we can prove the following result.

I Lemma 7. For an arbitrary ε > 0 and an instance (G, a, r, k =∞, κ) of ARP
∞ requiring

κ connected components, one can compute in polynomial time a collection of independent
subproblems (Gi, ai, ri, k =∞, κi) such that (i) for each subproblem all vertices have integer
coordinates and the maximum inter-node distance is bounded by Oε(n2), and (ii) if we know
(1 + ε)-approximate solutions for all the subproblems we can compute in polynomial time a
(1 +O(ε))-approximate solution for the original problem instance.

The main idea of the proof of Lemma 7 is to guess the longest edge e of an optimal
solution (by trying all possibilities). Then r(e) is a lower bound on opt. Using this lower
bound and after an appropriate scaling of the costs, we can move all vertices to the nearest
integer coordinates. We can also cluster the vertices such that the maximum inter-node
distance in each cluster is Oε(n2), and the distance between any two vertices from different
clusters is at least 2r(e). This ensures that we do not split any connected components of
Opt between multiple clusters. That gives us independent problem instances, and from their
solutions we can restore a solution for the original instance.

Random shift. We perform a random shift of the quadtree, as in Step 2 of Arora’s algorithm.
Let α, β be the random variables describing the offsets of the random shift. Note that in the
quadtree, there is a new vertex at each portal. We refer to these vertices as portal vertices.
Unlike all other vertices, the portal vertices are not required to be contained in the solution.

Uncrossing and (m, r)-thin solutions. Two paths P, P ′ are intersecting, if P ∩P ′ 6= ∅. We
have to consider a technical detail here: there may be several vertices located at the same
position, as well as pairs of edges whose intersection is an interval. We call an intersection

STACS 2016

6:8 Airports and Railways: Facility Location Meets Network Design

of two paths (i.e., a connected component of P ∩ P ′) a crossing if the intersection cannot
be avoided by moving the vertices of the paths by infinitesimal distances. Similarly, a
self-intersection of a single path that cannot be avoided in this way is also called a crossing.

We create m equidistant portals on each side of each dissection square, the same way as
in the Arora scheme. We call a solution (m, r)-thin if it is portal-respecting, and each portal
is crossed at most r times by the paths of the solution. Note that this is different from the
notion of (m, r)-light, where each side of a square of the quadtree is entered at most r times.

The following lemma shows that there is a near-optimal solution which is (m, r)-thin
with some good parameters m, r, and which has no crossings.

I Lemma 8. Let (G, a, r, k = ∞, κ) be a well-rounded instance of ARP
∞ with an optimal

solution Opt. Then, for an arbitrary ε > 0, there is an m = Oε(logn) such that an optimal
(m, 2)-thin solution Opt′ to this instance which has no crossings has expected cost of at most
(1 + ε)opt.

Dynamic program. With this preparation we are ready to construct a dynamic program
which computes a near-optimal solution for an instance of the ARP

∞ problem.

I Lemma 9. Let (G, a, r, k = ∞, κ) be a well-rounded instance of ARP
∞, and Opt′ an

optimal (m, 2)-thin solution for this instance which has no crossings. There is a dynamic
program which computes in polynomial time a feasible solution for the problem with cost at
most opt′.

The idea of the dynamic program is as follows. We specify the DP cells by the following
parameters for each square S of the quadtree, where Π denotes the set of portals of S.
1. A number κ′ of paths entirely contained in S.
2. For each portal π ∈ Π, a number ηπ of paths within S which use π and have one endpoint

inside S.
3. A multiset P of pairs (π, π′) of portals such that there is a path within S connecting π

and π′, and such that the portal pairs do not generate crossings within S.

The DP extends Arora’s DP by adding the parameters κ′ and ηπ. The parameter κ′ is
needed in order to control the total number of paths in the solution. The parameters ηπ
are essential since they enable building airports within the squares of the quadtree. For
each dynamic program cell DP(S, κ′, (ηπ)π∈Π, P), corresponding to a dissection square S
and parameters κ′, (ηπ)π∈Π and P , the DP computes the value of a minimum cost solution
for S which is consistent with the above parameters.

Proof of Theorem 2. Using Lemma 7 we can reduce our problem instance to a collection
of well-rounded instances. By Lemma 8, each such instance I has an (m, 2)-thin solution
without crossings with an expected cost of at most (1 + ε)optI . By Lemma 9, there is a
dynamic program which computes a solution for each I with an expected cost of at most
(1 + ε)optI . That gives us a PTAS for ARP with k =∞, where additionally we can enforce
the required number κ of connected components. J

4 ARP and ARF with Uniform Airport Costs

For simplifying the presentation, in this section we assume that there is only one airport
required per component (even for ARP). Note that this is without the loss of generality, since
all the airport costs are identical and we can just scale the ARP instance down by a factor of
2. In this section we describe how to subdivide any given instance in the two-dimensional

A. Adamaszek, A. Antoniadis, and T. Mömke 6:9

Euclidean space into two classes of independent subinstances, and how to derive a PTAS for
each of these classes. We assume without loss of generality that all airports have unit cost:
for positive cost we can achieve this by scaling both the railway and airport costs by the
same factor; otherwise we obtain an optimal solution by opening airports at all the vertices.

4.1 Preprocessing: Subdividing the Instance
The goal of this subsection is to simplify the input instance. We will describe how any
given instance can be partitioned into a collection of smaller subinstances, such that each
subinstance Ii can be bounded by an `i × `i bounding box, with `i ≤ 1/ε. Furthermore, we
will show that it suffices to solve each such subinstance independently. We will introduce
a shifted main grid with cells of width 1/ε, and cut the instance along this main grid. We
show that one can find shifting offsets such that it suffices to consider each cell of the main
grid as a separate instance.

Let the original instance be inside an L× L bounding box, and let the point (0, 0) be at
the bottom left corner of the box. We divide the instance into subinstances, each bounded
by a square of size 1/ε× 1/ε, as follows. Let 0 ≤ α, β < 1/ε be real numbers. We introduce
horizontal lines with a y-coordinate of β + i · 1/ε and vertical lines with an x-coordinate
of α + i · 1/ε, where i = 0, . . . , ε · bLc. We say that this creates a main grid with a shift
(α, β). This main grid splits the bounding box into squares of size at most 1/ε× 1/ε. The
following lemma implies that, for the case of unit airport costs, it suffices to consider each of
these squares separately. In other words, in contrast to Arora’s scheme for the Euclidean
TSP where the bounding box has sides of length L = Oε(n), for us it is enough to consider
subinstances where the bounding box has sides of length 1/ε = Oε(1).

I Lemma 10. Let S be a solution of cost s to an instance I of either 1ARF or 1ARP. Then
there exists a shift (α, β) of the main grid defined above, and a solution S′ of cost s′ to I,
obtained from S by removing some edges and adding new airports to maintain feasibility,
such that (i) s′ ≤ (1 + 2ε)s, and (ii) S′ does not cross any line of the shifted main grid.

Furthermore, we can compute in polynomial time a collection of shifts (αi, βi) such that
at least one of them satisfies the above conditions.

For the rest of the section we may restrict our discussion to instances I that are within
an `× ` bounding square, with ` ≤ 1/ε.

4.2 A PTAS for Sparse Subinstances
When dividing the original instance into subinstances, some subinstances may have optimal
solutions with only a small number of components (at most 1

ε7). This kind of instances can
be handled with a slight adaption of Arora’s scheme, as has already been observed by Asano
et al. [6] for the capacitated vehicle routing problem. It can be easily seen that the adaptions
of Arora’s PTAS performed by Asano et al. [6] for CVRP can also be applied in our case.

4.3 A PTAS for Dense Subinstances
This subsection copes with the subinstances that are not covered above, i. e., for which any
optimal solution has a large number of connected components (more than 1

ε7). The idea
is to start with a solution for ARF

∞ (ARP
∞, respectively), and appropriately divide each

connected component of the solution into chunks/subpaths, of roughly εk points each. We
show that there exists a solution, not much more expensive than the optimal one, that

STACS 2016

6:10 Airports and Railways: Facility Location Meets Network Design

contains all the edges within chunks/subpaths. Since in each such solution the number
of edges between different chunks/subpaths is a small constant for each component, and
each component has a total cost of at least 1 (due to the airport cost), we can connect the
chunks/subpaths in a way that keeps the increase in cost within the limits.

Our algorithm for handling the dense subinstances consists of the following steps.

Step 1: Creating a grid. We partition the ` × ` bounding box into cells, by creating an
ε2-grid. Note that by Lemma 10 we have ` ≤ 1/ε, and therefore the total number of cells
is bounded from above by 1/ε6.

Step 2: Splitting components. In this step we construct a solution Opt′ which is not
necessarily feasible, but which will be needed for Step 3. The construction of Opt′

assumes that we know the exact number X of components in Opt. This is without the
loss of generality, as we can run the algorithm for all choices of X (from 1 to n) and
output the minimum cost solution obtained.
ARF: We run an exact algorithm for ARF

∞ (see Theorem 4) with κ = X. This procedure
returns a forest F = {T1, T2, . . . , TX}.
ARP: We run a PTAS for ARP

∞ (see Theorem 2) with κ = X. This procedure returns a
collection of X paths.
Note that in both cases opt′ ≤ (1 + ε)opt, by Theorems 2 and 4.

Step 3: Cutting into chunks/subpaths.
ARF: For each tree Ti ∈ F , we partition it into chunks by calling a procedure called
GetChunks(Ti), described below. As we will see in Lemma 11, each of the returned
chunks will span least εk and at most 6εk vertices, except perhaps one smaller chunk per
tree.
ARP: For each path of the solution returned by the PTAS used in Step 2, we split the
path into subpaths of εk points each, except perhaps one shorter subpath per component.

Step 4: Associate chunks with cells.
ARF: We associate each chunk ci with a cell, denoted by cell(ci). We do this by selecting
an arbitrary vertex p ∈ ci, and associating ci with the cell in which p lies.
ARP: We associate each of the two endpoints of each subpath with the cell that contains
it.

Step 5: Assembling chunks/subpaths into a solution.
ARF: For each cell c we repeatedly collect arbitrary chunks associated with c to create a
single connected component, until we obtain a component of size between (1− 6ε)k and
k, or until we run out of chunks. We connect these chunks into one connected component
by adding edges within c, connecting any two vertices of the different chunks.
ARP: We start with a cell that contains an endpoint of a not yet considered subpath,
follow the subpath to its other endpoint v and connect it to an endpoint v′ of some other
unconsidered subpath that is associated with cell(v) (if such a v′ exists). We do this until
either there is no other subpath starting at cell(v), or the current component has between
(1 − ε)k and k many vertices. We repeat the above as long as there are unconsidered
subpaths in the instance.

We now describe the algorithm GetChunks(T) (Algorithm 1) that splits a tree T into
chunks. The height h(v) of a vertex v is defined as the minimum number of edges on a path
between v and a leaf (if v is a leaf then h(v) = 0). For some vertex v, let subtree(v, T) be
the (downward) subtree of T rooted at v, and let childOf(v, T) be the set of children of v in
T . Processing the vertices of the tree bottom-up, the algorithm identifies an internal vertex
v such that the subtree of T rooted at v contains at least εk and at most 6εk vertices. In

A. Adamaszek, A. Antoniadis, and T. Mömke 6:11

Algorithm 1: GetChunks(T)
Input: A tree T rooted at r
Output: A set of chunks

comprising T
CH := ∅;
while T 6= ∅ do

chunk := Cut-A-Chunk(T);
CH := CH ∪ {chunk};
T := T \ chunk;

end
return CH

Algorithm 2: Cut-A-Chunk(T)
Input: A tree T rooted at r
Output: A subtree of T
for every vertex v of T do

value(v) := 1
end
i := 0;
while |T | > 6εk do

if there exists a vertex v with h(v) = i

and value(v) ≥ εk then
return subtree(v, T)

else
for every vertex v with h(v) = i+ 1
do
value(v) :=∑

v′∈childOf(v,T) value(v′) + 1
end

end
i := i+ 1;

end
return T

Lemma 11 we will show that such a vertex v always exists (its existence can be derived by
the fact that kissing number in the Euclidean plane is 6). The corresponding subtree rooted
at v is then removed from T and the whole process is repeated. The algorithm ends when
the whole tree T contains at most 6εk vertices, and this last chunk may contain less than εk
many vertices.
We show the following property of the solutions output by the algorithm GetChunks(T).

I Lemma 11. The algorithm GetChunks(T) outputs a partition of the tree T into chunks
of size in the interval [εk, 6εk], and possibly one smaller chunk.

We are now ready to prove the following result.

I Lemma 12. The algorithm presented in Steps 1-5 above is a PTAS for dense instances of
1ARF and 1ARP.

Proof. We first observe that all the steps of the algorithm run in polynomial time.
Denote by OptF (OptP) an optimal solution for a given instance of 1ARF (1ARP,

respectively). Let AlgF (AlgP) be the solutions output by the algorithm, and Alg′F
(Alg′P) the intermediate, and possibly infeasible, solutions constructed in Step 2 of the
algorithm for 1ARF (1ARP, respectively). When a statement applies to both ARP and
ARF then we skip the subscript P and F . Recall that ã(S) and r(S) refer to the airport
cost (which is equal to the number of connected components of S), and the edge cost of a
solution S.

First, consider Step 2 of the algorithm and the respective solutions Alg′F and Alg′P . As
OptF (OptP) is a feasible solution for the ARF

∞ (ARF
∞, respectively) problem, and in

Step 2 the algorithm outputs an exact solution for ARF
∞ (a (1 + ε)-approximate solution for

STACS 2016

6:12 Airports and Railways: Facility Location Meets Network Design

ARP
∞, respectively), we obtain alg′ ≤ (1 + ε)opt. As we assumed that Alg′ has the same

number of connected components as Opt (i.e., ã(Alg′) = ã(Opt)), we get

r(Alg′) ≤ (1 + ε)r(Opt) + εã(Opt) . (1)

In Step 3 the algorithm removes some edges from the solution Alg′, splitting the connected
components into chunks (subpaths). We now turn our attention to Step 5 of the algorithm,
i.e., reassembling the chunks (subpaths) into a solution for 1ARF (1ARP). In this step we
repeatedly merge arbitrary chunks (subpaths) until we end up with a connected component
of size between (1− 6ε)k and k ((1− ε)k and k, respectively), or until we run out of chunks
(subpaths) in the current cell c. Since we can only run out of chunks (subpaths) once per
cell, we know that we can have at most 1/ε6 components with a size less than (1− 6ε)k in
the final solution. As we are in the unit airport cost setting and we consider a dense problem
instance, we have ã(Opt) > 1/ε7, which gives us

ã(Alg) ≤ (1 +O(ε))ã(Opt) . (2)

By Lemma 11 and Step 5 of the algorithm, no component in the resulting solutions for ARF
and ARP has size more than k. This, along with the structure of the constructed solutions
(the assembled chunks form a tree, and the assembled subpaths form a path), implies the
feasibility of the solution output by the algorithm.

The assembling in Step 5 is performed by adding at most one new edge per each chunk
(subpath), and each added edge has cost of at most

√
2ε2. As each connected component of

Alg′ has been split into at most 1/ε chunks (subpaths), that gives us

r(Alg) ≤ r(Alg′) + ε
√

2ã(Alg′) = r(Alg′) + ε
√

2ã(Opt) . (3)

The above inequalities imply the lemma, because

alg = ã(Alg) + r(Alg) ≤ (1 +O(ε))ã(Opt) + r(Alg)
≤ (1 + O(ε))ã(Opt) + r(Alg′) ≤ (1 + O(ε))opt.

J

4.4 A PTAS for 1ARF and 1ARP

We will now show how the above results can be combined in order to prove Theorem 5.

Proof of Theorem 5. Given an arbitrary instance of 1ARF or 1ARP we first apply the
preprocessing step (see Lemma 10). The problem instance is split into a collection of
independent subinstances, such that each subinstance I is contained in a bounding box of size
1/ε× 1/ε. Each instance is either sparse or dense. Since we do not know which subinstances
are sparse and which are dense (as this definition depends on the structure of an optimal
solution for I), we will run both the algorithm for sparse instances (i.e., the PTAS from
Section 4.2) and the algorithm for dense instances (i.e., the PTAS from Section 4.3) on each
subinstance, and return the solution with lower cost for each subinstance. That will yield a
PTAS for the original input instance. J

5 Open Problems

Two-dimensional Euclidean setting. In this paper we resolved the complexity of the
ARP

∞,ARF
∞, 1ARF and 1ARP problems in the two-dimensional Euclidean setting. It

A. Adamaszek, A. Antoniadis, and T. Mömke 6:13

would be interesting to know how well the general ARP and ARF problems can be approxi-
mated in this setting. Another open problem is generalizing the PTAS for 1ARF and 1ARP
to work for more general families of airport costs. In particular, as stated earlier in this
paper, a generalization of the PTAS for 1ARP to a constant range of airport costs would
yield a PTAS for Euclidean CVRP, which is an important open problem.

Other metrics. Another interesting question is getting positive and negative approximability
results for the ARP and ARF problems in other metrics, for example for planar graphs,
H-minor free graphs, or for metric graphs.

Other problems in the Airport and Railway framework. Another open question is to
investigate other problems in the Airport and Railway framework introduced in our paper.
It is not difficult to come up with several different specific requirements on the connected
components, that model natural scenarios.

Acknowledgment. We could like to thank the anonymous reviewers for suggesting the use
of an auxiliary vertex which simplified the proof of Theorem 4.

References
1 Anna Adamaszek, Artur Czumaj, and Andrzej Lingas. PTAS for k-tour cover prob-

lem on the plane for moderately large values of k. Int. J. Found. Comput. Sci.,
21(6):893–904, 2010. URL: http://dx.doi.org/10.1142/S0129054110007623, doi:10.
1142/S0129054110007623.

2 Anna Adamaszek, Artur Czumaj, Andrzej Lingas, and Jakub Onufry Wojtaszczyk. Ap-
proximation schemes for capacitated geometric network design. In Automata, Languages
and Programming – 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July
4-8, 2011, Proceedings, Part I, pages 25–36, 2011. URL: http://dx.doi.org/10.1007/
978-3-642-22006-7_3, doi:10.1007/978-3-642-22006-7_3.

3 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman
and other geometric problems. Journal of the ACM, 45(5):753–782, 1998.

4 Sanjeev Arora. Approximation schemes for NP-hard geometric optimization problems: a
survey. Math. Program., 97(1–2):43–69, 2003.

5 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Eu-
clidean k-medians and related problems. In Proceedings of the Thirtieth Annual ACM Sym-
posium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 106–
113, 1998. URL: http://doi.acm.org/10.1145/276698.276718, doi:10.1145/276698.
276718.

6 Tetsuo Asano, Naoki Katoh, Hisao Tamaki, and Takeshi Tokuyama. Covering points in
the plane by k-tours: Towards a polynomial time approximation scheme for general k. In
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El
Paso, Texas, USA, May 4-6, 1997, pages 275–283, 1997. URL: http://doi.acm.org/10.
1145/258533.258602, doi:10.1145/258533.258602.

7 Marshall Wayne Bern and David Eppstein. Approximation algorithms for geometric prob-
lems. In Dorit Hochbaum, editor, Approximation Algorithms for NP-hard Problems, chap-
ter 8, pages 296–345. PWS Publishing, 1996.

8 G.B. Dantzig and Ramser J.H. The truck dispatching problem. Management Science,
6(1):80–91, 1959.

STACS 2016

http://dx.doi.org/10.1142/S0129054110007623
http://dx.doi.org/10.1142/S0129054110007623
http://dx.doi.org/10.1142/S0129054110007623
http://dx.doi.org/10.1007/978-3-642-22006-7_3
http://dx.doi.org/10.1007/978-3-642-22006-7_3
http://dx.doi.org/10.1007/978-3-642-22006-7_3
http://doi.acm.org/10.1145/276698.276718
http://dx.doi.org/10.1145/276698.276718
http://dx.doi.org/10.1145/276698.276718
http://doi.acm.org/10.1145/258533.258602
http://doi.acm.org/10.1145/258533.258602
http://dx.doi.org/10.1145/258533.258602

6:14 Airports and Railways: Facility Location Meets Network Design

9 Aparna Das and Claire Mathieu. A quasipolynomial time approximation scheme for
euclidean capacitated vehicle routing. Algorithmica, 73(1):115–142, 2015. URL: http:
//dx.doi.org/10.1007/s00453-014-9906-4, doi:10.1007/s00453-014-9906-4.

10 Friedrich Eisenbrand, Fabrizio Grandoni, Thomas Rothvoß, and Guido Schäfer. Connected
facility location via random facility sampling and core detouring. J. Comput. Syst. Sci.,
76(8):709–726, 2010. URL: http://dx.doi.org/10.1016/j.jcss.2010.02.001, doi:10.
1016/j.jcss.2010.02.001.

11 Inge Li Gørtz and Viswanath Nagarajan. Locating depots for capacitated vehicle rout-
ing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques – 14th International Workshop, APPROX 2011, and 15th International Work-
shop, RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011. Proceedings, pages 230–
241, 2011. URL: http://dx.doi.org/10.1007/978-3-642-22935-0_20, doi:10.1007/
978-3-642-22935-0_20.

12 Tobias Harks, Felix G. König, and Jannik Matuschke. Approximation algorithms for
capacitated location routing. Transportation Science, 47(1):3–22, 2013. URL: http:
//dx.doi.org/10.1287/trsc.1120.0423, doi:10.1287/trsc.1120.0423.

13 Raja Jothi and Balaji Raghavachari. Approximation algorithms for the capacitated min-
imum spanning tree problem and its variants in network design. ACM Transactions on
Algorithms (TALG), 1(2):265–282, 2005.

14 Christos H Papadimitriou and Mihalis Yannakakis. The traveling salesman problem with
distances one and two. Mathematics of Operations Research, 18(1):1–11, 1993.

15 R. Ravi and Amitabh Sinha. Approximation algorithms for problems combining facility
location and network design. Operations Research, 54(1):73–81, 2006. URL: http://dx.
doi.org/10.1287/opre.1050.0228, doi:10.1287/opre.1050.0228.

16 Alexander Schrijver. Combinatorial Optimization. Springer, 2003.
17 Chaitanya Swamy and Amit Kumar. Primal-dual algorithms for connected facility loca-

tion problems. Algorithmica, 40(4):245–269, 2004. URL: http://dx.doi.org/10.1007/
s00453-004-1112-3, doi:10.1007/s00453-004-1112-3.

http://dx.doi.org/10.1007/s00453-014-9906-4
http://dx.doi.org/10.1007/s00453-014-9906-4
http://dx.doi.org/10.1007/s00453-014-9906-4
http://dx.doi.org/10.1016/j.jcss.2010.02.001
http://dx.doi.org/10.1016/j.jcss.2010.02.001
http://dx.doi.org/10.1016/j.jcss.2010.02.001
http://dx.doi.org/10.1007/978-3-642-22935-0_20
http://dx.doi.org/10.1007/978-3-642-22935-0_20
http://dx.doi.org/10.1007/978-3-642-22935-0_20
http://dx.doi.org/10.1287/trsc.1120.0423
http://dx.doi.org/10.1287/trsc.1120.0423
http://dx.doi.org/10.1287/trsc.1120.0423
http://dx.doi.org/10.1287/opre.1050.0228
http://dx.doi.org/10.1287/opre.1050.0228
http://dx.doi.org/10.1287/opre.1050.0228
http://dx.doi.org/10.1007/s00453-004-1112-3
http://dx.doi.org/10.1007/s00453-004-1112-3
http://dx.doi.org/10.1007/s00453-004-1112-3

	Introduction
	Our Results
	Related Work

	Preliminaries: Arora's Scheme
	Unrestricted Airport Capacity
	An Exact Algorithm for ARF and Theorem 4
	A PTAS for ARP and Theorem 2

	ARP and ARF with Uniform Airport Costs
	Preprocessing: Subdividing the Instance
	A PTAS for Sparse Subinstances
	A PTAS for Dense Subinstances
	A PTAS for 1ARF and 1ARP

	Open Problems

