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Abstract
Filtering a set of items, based on a set of properties that can be verified by humans, is a common
application of CrowdSourcing. When the workers are error-prone, each item is presented to
multiple users, to limit the probability of misclassification. Since the Crowd is a relatively
expensive resource, minimizing the number of questions per item may naturally result in big
savings. Several algorithms to address this minimization problem have been presented in the
CrowdScreen framework by Parameswaran et al. However, those algorithms do not scale well and
therefore cannot be used in scenarios where high accuracy is required in spite of high user error
rates. The goal of this paper is thus to devise algorithms that can cope with such situations. To
achieve this, we provide new theoretical insights to the problem, then use them to develop a new
efficient algorithm. We also propose novel optimizations for the algorithms of CrowdScreen that
improve their scalability. We complement our theoretical study by an experimental evaluation of
the algorithms on a large set of synthetic parameters as well as real-life crowdsourcing scenarios,
demonstrating the advantages of our solution.
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1 Introduction

CrowdSourcing for Filtering

Building upon a flourishing ecosystem of CrowdSourcing platforms, a new kind of database
systems such as CrowdDB and Qurk endeavors to exploit human inputs to extract or process
information [20, 8]. Queries in these systems rely on a small set of basic operators to elicit
missing information from the crowd. This triggered a new line of research devoted to the
optimization of such basic operations as Joins, Ordering, Aggregates, Selection, etc., in a
CrowdSourcing environment [19, 18]. In this paper we focus on the Selection operation, i.e.,
using the crowd to filter the items satisfying some specific property.

As an example, assume we are sensitive to gluten and would like to know which food
items, out of a given list or a menu, may be problematic for us. Scanning food recipes and
labels could give information on each individual item, but this is a time consuming job, and
the results may be incorrect, e.g. due to some ignored factors such as cross-contamination
issues. Asking the Crowd about their knowledge/experience with the product may provide an
alternative solution to the problem. However, contributors will sometimes provide erroneous
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answers, so that multiple answers must be gathered in order to ascertain that a product is
gluten-free. But how many people need to be asked? Let us assume that (1) the probability
that each category of food contains the ingredients, and (2) the error rates among the answers
(false positives and false negatives rates) are prior knowledge – we will briefly discuss this
assumption later. For example, suppose that some category of dishes, e.g. cereal, contains
gluten with probability 0.5, and suppose the probability of false positives and false negatives
are both 0.4. How can we decide with an average precision of 90% whether or not a given
cereal contains some gluten, and how many answers will be required for that?

A simple solution is to fix in advance some budget m for answers, and then decide that
our dish contains (resp. does not contain) gluten as soon as we get more than m/2 positive
(negative) answers. For our parameters, one can easily check that a budget of m = 41 answers
is required to obtain 90% precision with this strategy. Naturally, we do not always have
to use the full budget – as soon as 21 positive (or negative) answers are obtained we can
stop and make a decision with the required precision. We will thus ask between 21 and
41 questions and, on average, about 34 questions (we omit the exact computation). Note
however that a smaller average number of questions can be used if we employ a more efficient
strategy, known in the literature as a sequential test [23], and adapt dynamically the budget
as answers are received. We can for instance show that on average only 23 answers are
sufficient to reach a decision if we use the following strategy which also guarantees an average
precision of 90%:

claim there is gluten as soon as the number of positive answers exceeds the number of
negative answers by 6
claim there is none when negative answers exceed positive answers by 6
use majority vote in the absence of conclusion after 51 questions

More generally, the challenge that we try to address in this paper is devising tests that
minimize the expected number of answers required from the crowd for deciding whether a
given object satisfies a selection criteria, while guaranteeing that the average error stays
below the required threshold.

The CrowdScreen Framework

The problem of minimizing the number of questions needed to classify items accurately clearly
predates CrowdSourcing and we discuss related work in the conclusion. Yet, CrowdSourcing
scenarios may be particular in the sense that errors on specific items are typically tolerated
as long as a good accuracy is guaranteed on average over the whole set of items [22].

To study the optimization of filtering, we adopt in this paper a simple and general model
by Parameswaran et al. [22], whose purpose is to compute optimal querying strategies. They
define a (deterministic) strategy as a function mapping the number of positive and negative
answers received from the users to a decision in {Pass, Fail, Cont}. A Pass (resp. Fail)
decision signifies we stop asking questions and accept the object in question as satisfying
the filter (resp. reject the object), and Cont stands for asking additional questions. They
also consider probabilistic strategies that map each point to both a probability to stop
asking questions and the decision (Pass or Fail) in case the strategy terminates at this
point. Questions to the Crowd are considered expensive and therefore the maximal number
of questions allotted to the strategy is bounded by some fixed budget. The selectivity of
the filter and the error rates of the answers, as previously mentioned, are considered prior
knowledge in the model. A problem instance thus consists of a budget bound, a maximal
bound on the expected error authorized for the strategy, and those prior probabilities.
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Several algorithms and heuristics have been introduced in [22] to compute deterministic
and probabilistic strategies. While these algorithms are efficient for very small budgets
(up to 14 questions per item), larger sample sizes were hardly considered. In fact, the
presented algorithms are not a good fit for larger budget as they either have high complexity
(exponential, or polynomial but with high degree), or suffer from numeric instability, hence
do not always return a strategy meeting the error constraint.

The restriction to small budgets may be justified by the assumption that CrowdSourcing
applications typically use little redundancy. Yet 14 questions are not sufficient to filter items
with a high precision when the error rates are high: our motivating example for instance
requires more than 40 questions, and the original works about sequential tests in statistical
testing [23, 2] generally consider budgets featuring hundreds or thousands of answers. The
goal of this paper is thus to devise algorithms that scale well for large budgets.

Contributions

Our contributions are three-fold. First, we provide new theoretical insights to the problem.
We then devise efficient algorithms based on these insights. We also propose optimizations
of algorithms in [22] to improve their scalability.

Specifically, we first show, in Section 2, that key properties of the problem derive from
well-known results on the likelihood ratio (to be formally defined). We exploit these in
Section 3 to devise a scalable algorithm: AdaptSprt inspired from the popular SPRT [23].
We then revisit, in Section 4, the heuristics from [22]. In particular, we show that their
method that enumerates all (ladder-shaped) strategies has complexity O(22m), and we present
optimizations extending the range of budgets for which this enumeration is tractable by a
factor u 1.5. We similarly show that the shrink heuristic from [22], which computes slightly
suboptimal deterministic strategies, can be optimized to run in O(m4) instead of O(m5), and
further establish, in Section 5, connections between deterministic and probabilistic strategies.
In particular we show that an optimal probabilistic strategy can be computed through a
minor modification to the shrink strategy, as an alternative to the linear programming
approach that was considered there (and which we show to suffer from numeric instability).
For space constraints we defer some of the proofs to the technical report [11]. Finally, to
complement our theoretical study we briefly illustrate (with more details in the technical
report) the practical advantages and limitations of our solutions by a set of experiments on
(1) a large set of synthetic parameters and (2) a small real-life scenario.

2 Preliminaries

We first list definitions and notations, as well as general properties we use to devise efficient
strategies. The formal introduction below follows [22] and we diverge afterwards.

2.1 Definitions
We wish to harness the wisdom of the crowd to determine, for each object O of a large
dataset D, whether the object has property V (V = 1) or not (V = 0). We thus ask users in
the crowd if they believe the object has the property. To compensate for possible mistakes,
we query multiple users until we have gathered enough evidence to reach a pass/fail decision
about O. The selectivity ratio s (percentage of objects in D having property V ) and the
users’ error rates are assumed prior knowledge. We thus define the error rates e0 and e1 < 0.5
as the probability of a user error, given that V = 0 and V = 1 respectively. We briefly discuss
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in the conclusion how these values can be estimated. Finally, we consider that each question
has a unit cost, and specify a budget constraint m; the maximal number of questions we are
allowed to ask before reaching a decision on item O.

Strategies

The sequence of answers received when classifying an item can be visualized as a walk on a
discrete 2-dimensional grid where the x and y axes represent the number of negative and
positive answers received. The current state of the sequence is the point (x, y) matching the
number of positive and negative answers received. The transitions between states match
the answers provided by the users: if a negative answer is received in state (x, y), the state
moves to (x + 1, y). If a positive answer is received instead, the state moves to (x, y + 1).
For each point on the grid we define Pstop(x, y) as the probability that the walk terminates
upon reaching point (x, y). When terminating, a claim on the value of V is returned: Pass
(V = 1) or Fail (V = 0).

A strategy is defined by the function Pstop(x, y) mapping each point to the probability of
terminating when reaching point (x, y). In a probabilistic strategy Pstop(x, y) is taken over
the interval [0, 1], whereas in a deterministic strategy Pstop(x, y) must be either 0 or 1. Point
(x, y) is a continuing point if Pstop(x, y) = 0, a terminating point if Pstop(x, y) = 1, and a
probabilistic point otherwise. An optimal choice betweeb Pass or Fail in case we stop can
easily be computed from x, y and the input parameters, using a well-known property of the
likelihood ratio recalled in Section 2.2 (the choice does not depend on the strategy). A point
in which the decision is Pass is an accepting point and a point in which the decision is Fail
is a rejecting point. The cost of a given strategy is the expected number of answers needed in
order to reach a decision, while the error of the strategy is the probability that the strategy
reaches a wrong decision. We formalize this next.

Strategy and Grid characteristics

We compute the cost and error of a strategy as mentioned in [22]. Intuitively, our equations
first count paths leading to (x, y) according to the strategy, then multiply the result (Path)
by the probability (S0, S1) that answers follow any single such path. Let Si(x, y) be the
probability that by the time we have asked x+ y queries we receive (in any specific order) x
negative answers and y positive answers and have V = i. We then have:

S0(x, y) = (1− s)× (1− e0)x × ey0 (1)
S1(x, y) = s× ex1 × (1− e1)y (2)

Let Path(x, y) denote the weighted number of paths (i.e., sequences of answers) that
consist of y positive and x negative answers, each path being weighted by (1−p) where p is the
probability (depending on the path and the strategy) to stop along the path before reaching
point (x, y). We partition these paths into two groups: Path(x, y) = tPath(x, y) +cPath(x, y)
with tPath(x, y) = Pstop(x, y) × Path(x, y). Thus, tPath(x, y) and cPath(x, y) respectively
count the paths that terminate and continue after reaching point (x, y). We observe that the
strategy Pstop uniquely determines the values of tPath and cPath, and reciprocally. A point
(x, y) is reachable if Path(x, y) > 0.

I Example 1. The running example illustrates the definitions along the paper with error
rates e0 = .25 and e1 = .2, threshold τ = .0075, budget m = 15, and selectivity s = .8.
Figure 1 pictures the strategies returned for those parameters by the algorithms investigated
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SPRT 6.94 0.008
AdaptSprt 7.748 0.00741
ladder 7.59 0.00749
shrink 7.73 0.00748
linear 7.56 0.0075

Figure 1 Strategies returned for e0 = .25, e1 = .2, τ = .0075, m = 15, and s = .8.

in this paper: unreachable, accepting, rejecting, and continuing points are represented as
white, blue (with a checkmark), red (with cross), and green squares respectively. Probabilistic
points are circles, with similar colors (and marks). Other signs in the figure will be discussed
later on.

We further define gi(x, y) as the probability that V = i and the point (x, y) is ever
reached for i = 0, 1. This value is computed as: gi(x, y) = Path(x, y)×Si(x, y). Let Err(x, y)
denote the probability of error when making a decision at point (x, y) (we detail in the next
section how to calculate Err(x, y)). The probability that we reach (x, y) and stop there is∑

(x,y)(g0(x, y) + g1(x, y))× Pstop(x, y). The cost of a strategy is therefore:

C =
∑
(x,y)

(g0(x, y) + g1(x, y))× Pstop(x, y)× (x+ y)

and the error of the strategy is:

E =
∑
(x,y)

(g0(x, y) + g1(x, y))× Pstop(x, y)× Err(x, y)

The Problem Definition

The error threshold τ fixes the maximal error a strategy is allowed. A strategy is feasible if it
satisfies the budget and error constraints m and τ , and optimal if it has minimal cost among
feasible strategies. Our objective is to find the optimal strategy, given the priors e0, e1, s and
the constraints m and τ .

Optimal Stopping Problem
Input: selectivity s, error threshold τ , error rates e0, e1 and budget m
Question: find a feasible strategy that minimizes C

The strategies (and grids) that we consider satisfy certain constraints, enumerated below.
The objective is to minimize the cost C under the following constraints:
1. There is exactly one path going through the origin : cPath(0, 0) + tPath(0, 0) = 1
2. Conservation of paths: the weighted number of paths reaching point (x, y) is equal to

the number of paths that continue through its predecessors (x − 1, y) and (x, y − 1):
Path(x, y) = cPath(x− 1, y) + cPath(x, y − 1)

3. All strategies are limited to m queries: ∀(x, y), x+ y = m =⇒ cPath(x, y) = 0
4. The error rate of the strategy is at most τ :

E =
∑

(x,y):x+y≤m

tPath(x, y)×min(S0(x, y), S1(x, y)) ≤ τ

Up till now, the introduction followed the definitions and equations of [22], but the
remainder of this section presents useful properties of strategies from a different perspective.
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2.2 General Framework
The probability that V = i given that (x, y) has been reached is given by: gi(x, y)/(g0(x, y) +
g1(x, y)) = 1/(1 + (g(1−i)(x, y)/gi(x, y))), where gi(x, y), as previously defined, is the prob-
ability that V = i and point (x,y) is reached for i = 0, 1. The error committed when making
a decision at (x, y) is therefore:

Err(x, y) =
{

1
1+g1(x,y)/g0(x,y) if the decision at (x, y) is Pass

1
1+g0(x,y)/g1(x,y) if the decision at (x, y) is Fail

(3)

To minimize error, a strategy should therefore opt for Pass if g1(x, y)/g0(x, y) > 1, and
Fail if g1(x, y)/g0(x, y) < 1. The decision has no impact on error when g1(x, y) = g0(x, y).
We henceforth assume that all strategies adopt this decision rule since it minimizes error
and has no impact on the cost. The decision to accept or reject thus only depends on the
value of the likelihood ratio g1(x, y)/g0(x, y), which can be computed from x, y, and the
parameters independently from the strategy. The following equation further details the
location of accepting and rejecting points, and as such refines the property presented as the
path principle in [22]:

log g1(x, y)
g0(x, y) = log

(
s

1− s ×
(

e1

1− e0

)x
×
(

1− e1

e0

)y)
= log s

1− s + x log
(

e1

1− e0

)
+ y log

(
1− e1

e0

)
I Remark. The contour lines for the likelihood ratio (i.e., the set of points with likelihood
ratio g1(x, y)/g0(x, y) = c for some constant c) form a straight line on the grid, and all
contour lines are parallel. Furthermore e0, e1 < 1/2 so the ratio increases strictly with y and
decreases with x.
We call the line (g1(x, y)/g0(x, y)) = 1 the decision line. Points above this line satisfy
1 < g1(x, y)/g0(x, y) and are therefore accepting, while points below the line are rejecting.

I Example 2. For the running example with e0 = .25, e1 = .2, τ = .0075, m = 15 and
s = .8, the decision line has equation: y = − log(.2/.75)

log(.8/.25)x−
log(4)

log(.8/.25) u 1.11× x− 2. This line
is depicted in grey on all the grids in Figure 1.

2.3 Simple Optimizations
Before presenting the algorithms we describe three basic optimizations that they all employ.
The first is borrowed from [22] and the other two are new.

Ladder Strategies

Parameswaran et al. [22] prove that under reasonable assumptions, all optimal strategies
have a particular shape. They define a ladder strategy as a strategy whose terminating points
can be partitioned into two converging sequences: the upper ladder and the lower ladder.
The points of an upper ladder are given by a non-decreasing mapping from x to y whereas
the lower ladder is a non-decreasing mapping from y to x. Furthermore, the points of the
upper ladder stay above the decision line, whereas those of the lower ladder stay below. For
example, all deterministic strategies represented in Figure 1 (i.e., a,b,c, and d) are ladder
strategies. It has been conjectured in [22] that any optimal strategy is a ladder strategy. We
adopt this conjecture and focus in this paper on ladder strategies.
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Pruning the Grid

Let (xdec, ydec) denote the point at which the decision line and x+ y = m+ 1 intersect, i.e.,
the unique point such that x+ y = m+ 1, (x− 1, y) is accepting and (x, y− 1) rejecting. All
points with x = xdec or y = ydec are terminating in any optimal strategy, since all points
reachable from (x, y) return the same decision (e.g., Pass) so that continuing asking questions
from (x, y) is pointless.
I Example 3. In the running example, the budget bounds x+ y by 15, so that (xdec, ydec) =
(8, 8). All strategies presented in Figure 1 are therefore restricted to x, y ≤ 8.

Deciding Feasibility

A problem instance admits a feasible strategy (strategy meeting the error and budget
constraints) if and only if the rectangular strategy σrect(xdec, ydec) with terminating points
only along x = xdec and y = ydec is feasible. Point (xdec, ydec) is obtained in constant time
as the intersection of two lines: the decision line and the line x + y = m. The error of
σrect(xdec, ydec) can thus be computed as B(e0; ydec, xdec)+B(e1;xdec, ydec), where B denotes
the incomplete beta function [7], incorporated in standard numeric libraries. One can thus
decide feasibility in constant time for all practical purposes, and we therefore only consider
feasible problems from now on.

3 Likelihood Ratio Test

The first solution we introduce is based on the Sequential Probability Ratio Test (SPRT),
defined by Wald [23] in the context of quality control. As it may return strategies with
unbounded budgets, we also consider its truncated variant which limits the budget but may
exceed the error constraint. We finally propose an adapted version of SPRT to accommodate
both budget and error constraints.

3.1 SPRT: Definition and Boundaries
General SPRT: Infinite Budget

The SPRT strategy defined by Wald [23] is the strategy that continues asking questions until
the likelihood ratio (defined in Section 2.2) leaves interval ]α, β[, where α and β depend on
the error we are willing to tolerate under V = 0 and V = 1. To continue asking questions
until reaching a point with Err(x, y) ≤ τ , we thus set α = τ

1−τ , β = 1−τ
τ . The error in each

decision point (hence the overall error of the strategy) is bounded by τ . As a corollary of
Remark 2.2, grid points where Err(x, y) > τ are bound by two parallel lines, so the continuing
points of the SPRT strategy are the points located between these SPRT lines, characterized
in the following Proposition:
I Proposition 4. A point (x, y) satisfies Err(x, y) ≤ τ if and only if g1(x, y)/g0(x, y) /∈
] 1−τ
τ , τ

1−τ [. Furthermore, the points with Err(x, y) ≤ τ are either the points above the line:
log
( 1−τ

τ ×
1−s
s

)
≤ x log

(
e1

1−e0

)
+y log

(
1−e1
e0

)
(accepting points) or the points below the line:

log
(

τ
1−τ ×

1−s
s

)
≥ x log

(
e1

1−e0

)
+ y log

(
1−e1
e0

)
(rejecting points). We note that both lines

have identical slopes and are therefore parallel.
I Example 5. In the running example, the equations of the SPRT lines are approximately
1.11× x− 2± 4.2. To facilitate the comparison of strategies, the SPRT lines are represented
in blue and red on every plot of Figure 1.
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As shown by Wald [23], this property allows to approximate in constant time the expected
cost of the SPRT. Even though an arbitrary number of questions may be needed to reach a
decision, the expected cost is typically small [23].

Limitations

Although SPRT is optimal when the budget for questions is unlimited [23], it yields unbounded
strategies which may issue an arbitrary (possibly infinite) number of questions, and is thereby
not suitable for our limited budget.

Truncated SPRT

To limit the maximum number of questions, Wald also introduces the truncated SPRT,
similar to SPRT, except that all points with x + y = m are terminating to guarantee a
decision is reached after at most m questions. Obviously, we then prune the strategy along
the lines y = ydec and x = xdec as detailed in Section 2.3.

I Example 6. Figure 1(a) represents the truncated SPRT strategy for the running example
with brown dots around the truncation points. Its error; 0.008, exceeds τ , because the
truncation includes some decision points with Err(x, y) > τ . To compensate for this
additional error, any feasible strategy must therefore include points further from the SPRT
lines.

The truncated SPRT provides a strategy within constant time, since one only needs to
compute the likelihood ratio r of the current point (x, y) to decide whether to continue
r ∈] τ

1−τ ,
1−τ
τ [, accept (r ≥ 1−τ

τ ) or reject (r ≤ τ
1−τ ]).

But the error of the strategy may be larger than τ since the truncation points have error
larger than τ . In some instances, the truncated SPRT still returns a feasible strategy, e.g.
when some decision points along the SPRT lines have an error slightly less than τ , thus
compensating for the additional error caused by the truncation. But feasibility is not always
guaranteed, and therefore the truncated SPRT cannot be trusted to solve our problem.

3.2 Adapting the SPRT Threshold
As SPRT cannot be trusted to provide feasible strategies, we propose a new adaptation of
the SPRT strategy, called AdaptSprt, which preserves the simplicity of the SPRT approach
but always returns a feasible solution.

Intuitively, the AdaptSprt algorithm computes the best strategy whose terminating points
form two lines, parallel and equidistant to the decision line, plus truncation points along
x = xdec and y = ydec. In other words, AdaptSprt starts from initial strategy σrect(xdec, ydec)
and turns the points further from the decision line into terminating points, as long as the
error of the strategy remains below the authorized threshold. This guarantees that a feasible
strategy will always be returned when there is one. For efficiency, we use binary search to
determine which points can be turned into terminating points.

Algorithm AdaptSprt can be defined more formally in terms of the likelihood ratio. For
all η > 0 let ση be the strategy that continues asking questions on all points (x, y), x ≤
xdec, y ≤ ydec where the likelihood ratio belongs to ]1/η, η[. AdaptSprt computes the maximal
threshold η for which ση is feasible. Algorithm 1 details the steps in AdaptSprt. We first build
in O(m2 logm) a list of all points (x, y) with x < xdec and y < ydec, ordered by increasing
likelihood ratio r (lines 1,2 of Algorithm 1). The continuing points of the AdaptSprt strategy
will be the first i points from the list, for some index i. As the error (resp. the cost) increases
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Algorithm 1: AdaptSprt (e0, e1, τ,m, s)
1 for all x, y, compute r(x, y) = g1(x, y)/g0(x, y)
2 L← points (x, y) ordered by increasing r(x, y)
3 Compute i0 = min{i | EvalErr(i, L) < τ}
4 return r(L(i0))

procedure EvalErr(i : int, L : point list)
5 for j in {0, . . . , i− 1}
6 Pstop(L(j))← 0
7 for j in {i+ 1, . . . }
8 Pstop(L(j))← 1
9 Compute and return the error of strategy Pstop

(resp. decreases) with i, the optimal strategy of this form is obtained by computing the
minimal i that gives a feasible strategy. The strategy corresponding to index i is evaluated
by procedure EvalErr in O(m2), and we can use binary search to compute the minimal
index within log(m2) iterations. Hence an overall complexity of O(m2 log(m)).

To represent the AdaptSprt strategy, the value r of the likelihood ratio of the ith point
is sufficient: when asking queries we can calculate in constant time whether a point has
likelihood ratio between 1/r and r, and thus reconstruct the grid on the fly. We can also
compute the strategy Pstop from the list and the index i, as shown in procedure EvalErr
from Algorithm 1 if a grid representation is preferred.

I Proposition 7. The (time) complexity of AdaptSprt is O(m2 log(m)).

I Example 8. Figure 1(b) presents the AdaptSprt strategy for the running example, with
termination lines represented as dashed lines. The truncation of the SPRT raises the error
substantially above τ , so that AdaptSprt must adopt a likelihood ratio threshold η much
larger than (1− τ)/τ to compensate for the truncation. The dashed lines are thus almost
one question beyond those of SPRT.

4 Deterministic Algorithms

We next investigate the scalability of algorithms proposed by Parameswaran et al. [22] for
computing strategies. Specifically, we analyze the complexity of these algorithms and present
optimizations that drastically reduce the running time of the algorithms compared to the
more naïve versions presented in [22], thereby allowing to support larger budgets.

4.1 Enumeration of Ladder Strategies
The most naïve approach to compute an optimal strategy is to enumerate and evaluate
all possible strategies. This naïve approach has complexity O(m2 × 2m2/2) and is thus
intractable.1 Parameswaran et al. [22] therefore proposed the ladder algorithm which limits
the search to ladder strategies, as explained in Section 2.3. They report running times that
are reasonable for small values of m (m ≤ 14), but grow exponentially and become unfeasible

1 A bound of m2 × 2m was improperly claimed in [22] for the naïve enumeration of grids but it is clear
from their proof that the actual bound is O(m2 × 2m2/2)[21]
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as m gets larger. We first establish a tight exponential bound for the complexity of ladder,
and then introduce optimizations offering much shorter running time in practice, in spite of
a similar worse case exponential complexity.

Asymptotic Analysis

We prove that the complexity of ladder is essentially O(22m). Our exponential bound bears
witness to the efficiency of the ladder algorithm relative to the enumeration of all possible
(not necessarily ladder-shaped) strategies. For this we can easily show the following lower
bound:

I Lemma 9. The number of possible upper and lower ladders can be roughly bounded by
O(2m/

√
m). Hence, there are O(22m/m) deterministic ladder strategies.

This is an overapproximation, yet a fairly accurate one: we show in the technical report [11]
that for s = 0.5, e0 = e1, the number of ladder strategies is Ω(22m/m3).

Enumeration with Incremental Evaluation

We detail in Algorithm 2 an optimized implementation that computes the cost and error of
every ladder strategy incrementally, in overall O(22m). We first discuss our representation of
a ladder strategy and then explain our optimizations.

As mentioned in Section 2.3, a ladder strategy consists of two distinct sequences of points:
the upper ladder and the lower ladder. Each ladder is represented as an array with size xdec

storing integers from −1 up to ydec. Array up and down represent respectively the upper and
lower ladder: down(i) and up(i) record respectively the lowest and highest reachable points
on column i according to the strategy.

I Example 10. Figure 1(c) represents the optimal ladder strategy for our input parameters:
up = [5, 5, 6, 7, 8, 8, 8, 8] and down = [−1, . . . ,−1, 0, 1]. None of the other algorithms depicted
returns the optimal strategy on that instance, although the performances are quite similar.

We adapt an old technique (see [14, Algorithm P]) to iterate over all upper ladders in
increasing lexicographic order, and enumerate for each one the lower ladders in decreasing
order. As a result, arrays representing successive strategies generally differ on the last few
columns only, which reduces the amount of work required to evaluate a strategy.

Two simple optimizations allow us to speedup the enumeration: (1) we evaluate in-
crementally the cost and error of strategies, and (2) we skip some strategies that cannot
contribute an optimal solution. For this, we store two arrays errorTill and costTill, where
errorTill(i) records the partial sum of E restricted to the points with x ≤ i, and similarly
with costTill for C. We update errorTill, costTill, and Path from one strategy to the
next (line 7 of Algorithm 2). The iterator down.next() returns (−1, []) if down is already
the minimal ladder, and otherwise returns the greatest possible ladder down′ smaller than
down, together with the smallest index i in which down and down′ differ. To skip hopeless
candidates, we set down(j) to down(i) for all j > i when the error up to column i exceeds
the threshold, or the cost up to column i exceeds the cost of the best strategy encountered
so far (line 13 in Algorithm 2).

I Example 11. When experimenting on the running example, more than half the strategies
were skipped in line 13, and the average index i was 5.5. Some 16 points were visited per
strategy, on average, when updating arrays and matrix in line 7, instead of u 56 without
incremental evaluation.
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Algorithm 2: ladder (e0, e1, τ,m, s)
1 errorTill, costTill← [0, 0, . . . , 0]
2 BestCost← m+ 1
3 BestStrategy← Null
4 for up in upperladders
5 down← maximal lowerladder; i← 0
6 while i ≥ 0
7 Update errorTill, costTill, Path
8 if (errorTill[m] < τ and
9 costTill[m] < BestCost[m] )

10 BestCost← costTill[m]
11 BestStrategy← (up, down)
12 if (errorTill[i] > τ)
13 skip ladders until down(i) is modified
14 else (i, down)← down.next()
15 return BestStrategy

We show in the technical report [11] that the average number of cells updated on line 7
is m. As a consequence, Algorithm 2 has complexity O(22m/m)×O(m).

I Proposition 12. Algorithm 2 runs in O(22m).

We have thus proved that an optimal ladder can be obtained in O(22m), and the number
of possible ladders strategies is exponential. This does not preclude the existence of faster
algorithms, and we leave lower bounds on the complexity of the problem for future research.

4.2 Shrink
Another interesting heuristic-based algorithm introduced by Parameswaran et al. [22] is
shrink. The strategies returned by this heuristic are not necessarily optimal, but are hardly
worse than the optimal ladder strategy in practice, while the running time is much improved.
A naïve implementation following [22] has complexity O(m5) and therefore, does not scale
well for large values of m. We next show how shrink can be run in O(m4).

We recall the shrink heuristic from [22] in Algorithm 3. This algorithm starts with
the initial strategy σtriangle(m) having terminating points along the line x + y = m. At
each iteration, for each terminating point (x, y) on the grid, we check if the solution would
remain feasible if we were to turn one of the neighboring points (x− 1, y), (x, y − 1) into a
terminating point. For all feasible point we calculate the change in cost ∆C and error ∆E
that would result from shrinking the point. We then shrink the point with the largest ratio
−∆C

∆E and repeat this step until no more points can be shrunk. We thus use ratio −∆C
∆E in

order to maximize the cost removed from the strategy while minimizing the additional error.

I Example 13. In Figure 1(d), we shade points that were turned into terminating points
along the successive iterations of shrink, with darker points corresponding to later iterations2.
The first point is thus (0, 7), followed by (1, 7), (0, 6), . . . , (6, 1), and (5, 0).

2 Terminating points with x = 8 or y = 8 are particular in that they were not shrinked but were
terminating from the beginning. We color them in dark red and blue.
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Algorithm 3: shrink (e0, e1, τ,m, s)
1 Compute S0, S1, xdec, ydec

2 for all x, y:

Pstop(x, y)←
{

1 if x+ y = m,

0 otherwise
3 Compute Path, ∆Cost and ∆Err
4 Error← ∆Err(0, 0)
5 S ← {(x,y) along the boundary |

Error+Path(x, y)×∆Err(x, y) < τ}
6 while S 6= ∅
7 (x0, y0)← point of S maximizing −∆Cost(x,y)

∆Err(x,y)
8 Pstop(x0, y0)← 1
9 for all x, y: update Path, ∆Cost, ∆Err

10 update S
11 return Pstop

Algorithm shrink from [22] is polynomial, but still pretty slow. We next present new
equations for the ratios together with a pruning optimization, that make it run faster.

4.2.1 Computing Cost/Error Ratios Efficiently
A major source of inefficiency in the above shrink implementation is the calculation of
the Cost/Error ratio in each iteration. The naïve implementation of shrink computes the
Cost/Error ratio separately for each terminating point on the grid, by evaluating the cost
and error of the shrunken strategy. As there are Ω(m) terminating points this requires Ω(m3)
operations per iteration. We introduce new equations that help compute ∆Cost(x, y) and
∆Err(x, y) for all points (x, y), with overall complexity O(m2). Algorithm shrink was initially
designed to compute deterministic strategies, but in Section 5 we extend it to probabilistic
strategies, so we present all equations in a general probabilistic setting.

Impact of Modifying the Probability to Stop

Let us denote by CostImpact(x, y) and ErrorImpact(x, y) the average contributions to cost
and error of one single path through (x, y) (and possibly stopping at (x, y)). We then have:

CostImpact(x, y) = Pstop(x, y) ∗X + (1− Pstop(x, y)) ∗ Y
ErrorImpact(x, y) = Pstop(x, y) ∗ Z + (1− Pstop(x, y)) ∗ T

where X, Y , Z and T are defined as

X = (S0(x, y) + S1(x, y)) ∗ (x+ y) Y = CostImpact(x+ 1, y) + CostImpact(x, y + 1)
Z = min(S0(x, y), S1(x, y)) T = ErrorImpact(x+ 1, y) + ErrorImpact(x, y + 1)

Intuitively, X and Z are the contribution to the overall cost and error from any sequence
of x negative answers and y positive answers, whereas Y and T are inductively defined as
the contribution to cost and error of a path traversing the node. To compute the impact of
modifying the strategy at (x, y) in terms of these expressions, let E, E′ and C, C ′ denote
the cost and error of the strategy before and after adding δ ∈ [−1, 1] to Pstop(x, y). Then
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E′ − E = δ × Path(x, y)×∆Err and C ′ − C = δ × Path(x, y)×∆Cost where

∆Cost = X − Y and ∆Err = Z − T (4)

We observe in these equations that the Cost/Error ratio is independent of δ and Path(x, y),
and is given by γ(x, y) = (T −Z)/(X −Y ). CostImpact and ErrorImpact can be computed
recursively in O(m2) over the whole grid, starting from point (xdec, ydec). We have thus proved
that ∆Err and ∆Cost can be computed at all points in overall O(m2) according to Equations 4.
Furthermore, Path can also be computed in O(m2) according to the preliminaries, so that
each iteration of shrink takes time O(m2). In addition, there are at most O(m2) such
iterations, since the number of iterations is at most the number of squares on the grid.
Therefore, our implementation of shrink runs in O(m4).

I Proposition 14. With our optimizations, the shrink algorithm runs in O(m4).

Note however that the actual number of iterations is proportional to the number of points
removed from the grid so the running time is quadratic when few points are removed.

4.2.2 Minimizing Shrink Iterations

To further speed up the computation we show how the pruning optimization described in
subsection 2.3 can spare about half the iterations. Specifically, we prune the initial strategy
σtriangle(m) into σrect(xdec, ydec). To justify this move, we show in the technical report [11]
that the points that are pruned are anyway the first points eliminated by shrink.

I Proposition 15. The first iterations of shrink from the initial strategy σtriangle(m) elim-
inate the points with x > xdec or y > ydec until the strategy σrect(xdec, ydec) is considered.
Consequently the solutions returned by shrink from initial strategy σtriangle(m) and from
σrect(xdec, ydec) are identical.

I Remark. Another heuristic, symmetric to shrink, was introduced in [22]. This growth
heuristic starts with the initial strategy asking 0 questions: all points are initially terminating,
and then iteratively turns terminating points into continuing points. Heuristic growth did
not always return a feasible strategy, but we show in the technical report [11] that adopting
a better initial strategy wipes off the problem. The performances of growth and shrink are
fairly similar, so we do not detail the heuristic further in this paper.

5 Randomized strategies

Previous sections focus on deterministic strategies, for which we have no optimal scalable
algorithm. But if we search instead for probabilistic strategies, our optimization problem
becomes continuous, and the constraints presented in Section 2.1 are all linear. We can
thus use linear programming to compute an optimal solution in Ptime [22]. How are the
probabilistic and deterministic strategies related? In particular, can we compute reasonably
good deterministic strategies from probabilistic ones?

In this section we first prove that an optimal probabilistic strategy has essentially a single
probabilistic point (point where Pstop differs from 0 and 1). Continuing at this point thus
provides a deterministic strategy. Conversely, we show that a minor modification to the
shrink algorithm allows to compute an optimal probabilistic strategy.
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5.1 Randomization is Limited
We prove in the technical report [11] that in any optimal strategy the Cost/Error ratio
is the same in all probabilistic points, and this ratio is not greater than the ratio of any
terminating point nor smaller than the ratio of any continuing point. We also prove that the
probability of terminating can be transferred from a point to any point with higher ratio
without increasing error and cost, and exploit this property to prove the following result:

I Proposition 16. There exists an optimal probabilistic strategy with a single probabilistic
point. Furthermore, in any optimal strategy the probabilistic points maximize the ratio γ
among non-terminating points.

By turning the unique probabilistic point of such a strategy into a continuing point, one thus
obtains a deterministic strategy with error less than τ and with slightly larger cost.

I Example 17. Figure 1(e) represents an optimal probabilistic strategy, with a single
probabilistic point, at (0, 4), where the probability of terminating is Pstop(0, 4) u 0.623. If
we set Pstop(0, 4) to 0, the cost rises to u 7.789.

The linear programming techniques mentioned above are very efficient for small values of
m, and have polynomial complexity in theory. In practice, however, our experiments with
common linear solvers show that they may be rather slow or inaccurate, returning poor
strategies even for moderately large budgets. We therefore propose an alternative efficient
algorithm based on shrink to compute optimal probabilistic strategies.

5.2 Shrink for Randomized Strategies
Algorithm shrink as defined in [22] returns a deterministic, not necessarily optimal, strategy,
but it can easily be adapted to compute an optimal randomized strategy by replacing lines 5,
6, and 8 with respectively:

line 5: S ← {(x, y) | (x,y) is reachable}
line 6: while S 6= ∅ and Error < τ

line 8: Pstop(x0, y0)← min(1, τ−Error
Path(x,y)×∆Err(x,y) )

This new algorithm shrinkp still computes the point with the maximal ratio, but adapts
the probability of terminating at this point so as not to exceed error τ , instead of restricting
the maximum to points on which one can terminate without exceeding error τ . It turns out
that shrinkp returns an optimal strategy (we leave the proof for the technical report [11]):

I Proposition 18. The probabilistic strategy returned by shrinkp is optimal, and has a
single probabilistic point.

This result sheds a new light on the shrink algorithm, but it can also be used to leverage
the running time of shrink and the linear program, since shrink and shrinkp coincide at
any step until the last iteration of shrink as we discuss in the technical report [11].

6 Experimental evaluation

Synthetic and real-crowd experiments: quality of the strategies

To complement the theoretical study we conducted experiments on a large set of synthetic
parameters. Due to space constraints we only present a small sample of our experiments
here and leave details for the technical report [11]. Those experiments show that some linear
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question s e0 e1

Q1 photos from Australia .18 .25 .36
Q2 photos from Greece or Cyprus .26 .27 .32
Q3 dishes containing dairy .17 .11 .27
Q4 dishes containing onions .54 .38 .27
Q5 dishes containing garlic .62 .44 .48
Q6 dishes containing eggs .19 .22 .57 0

5

cost

Q1 Q2 Q3 Q4

: AdaptSprt
: ladder: linear : shrink : rect

: expected value

Figure 2 Question parameters(left) and average cost per item (right, with m = 12, τ = .1).
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Figure 3 For e0 = .2, e1 = .25, τ= .05, s= .6: cost, and sensitivity (only for shrink with m=15).

program solvers become unreliable for budgets beyond m = 30 questions, while ladder
times out around m = 20 and shrink and AdaptSprt manage hundreds of questions. The
expected cost of strategies matches theoretical expectations with AdaptSprt slightly worse
than shrink and ladder, themselves a bit more expensive than the optimal probabilistic
strategies. The experiments on a real crowd with budgets up to m = 40 exhibit similar
patterns. Figure 2 depicts the quality of strategies obtained when asking the crowd to
detect (a) the presence of an ingredient in some recipe or (b) the location of a photograph.
Experiments were run with a pool of 100 workers on the AskIt [4] crowdsourcing game
platform, developed in our lab.

The error rates, summarized in Figure 2, are relatively high because answers were rarely
obvious. For question 6 in particular, e1 was above .5 which means the users more often
than not missed the presence of eggs in the dishes. We focus our analysis on questions with
reasonable error rates (Q1 to Q4).

Sensitivity of the model

Applying our algorithms on a real crowd raised new issues such as the adequacy of the model
considered. Our algorithms indeed assume the crowd behaves as a random oracle according
to error parameters known beforehand. Our synthetic experiment in Figure 3 measures the
sensitivity of a strategy computed by shrink to input parameters: it shows the expected
error and cost when the strategy is executed on an oracle with error parameters diverging
from their assumed values. A related issue is the relevance of approximating workers as
a random oracle with uniform error over tasks: a threshold effect appears when we try to
request arbitrarily high accuracy: when τ is set to a very small values, adding workers did
not always provide in practice additional information to complete the most difficult tasks
with enough accuracy.

7 Conclusion and Related work

This paper investigates the optimization of queries that filter data using humans. We provided
new theoretical insights into the problem, and so designed two novel algorithms – AdaptSprt
and shrinkp – that overcome the scalability issues of previous proposals. We also optimized
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algorithms ladder and shrink from [22], and evaluated thoroughly all algorithms. Our
results show that AdaptSprt is the only algorithm which performs well for all budgets, while
ladder performs marginally better for small budgets, but is still extremely slow with larger
ones (even when optimized), whereas for moderate budgets our optimized shrink works well.
With regard to probabilistic strategies, the results show shrinkp to have superior reliability,
compared to the previous proposals that rely on linear solvers. In summary, our results show
that AdaptSprt and shrinkp both scale well for large budgets. Although cost wise shrinkp
is optimal, the actual difference of cost is negligible while the running time of AdaptSprt is
superior.

We already discussed extensively the CrowdScreen framework [22] revisited in this paper.
Parameswaran et al. have reviewed in [22] the connections with the related fields in machine
learning and statistics, and we thus do not repeat this here and only briefly survey two
directions of related work: sequential testing, and classifying with the Crowd.

Sequential tests have been used in numerous fields since their introduction by Wald [23]:
quality control, clinical research, acoustic detection, econometrics, etc. Numerous variants
have been considered for computing efficient tests, depending on the number of categories
tested to which an object may belong; the cost function to be optimized; the form of the
strategy boundary [2] and budget constraint [9]; or on whether questions are issued one at a
time or in batches [15]. To the best of our knowledge, however, the problem of efficiently
computing the optimal test, in the sense studied here, has not yet been addressed. Closest
to our work is the system of [10] considering the profit/penalty of correct/wrong answers in
a multi-question scenario. Extending our work into such settings is left for future work.

The optimal strategy depends on the query selectivity and the estimated users error.
Experiments in [17] stress that classifier performance improves a lot with a proper choice of
prior error rates. In practice, the nature of error can be estimated by asking questions to the
crowd on a small test set for which the correct answer is already known. Online methods to
calculate error rates are discussed in [16], [5], [25] where the error rates are tuned based on
comparison of the strategy’s decision and the users’ answers. One goal of our framework is to
avoid any kind of computation online by fixing the filtering strategies beforehand. Adapting
strategies according to online error computation is left for further research.

Classification problems with heterogeneous workers and data have been considered in
particular in the machine learning literature, exploiting a wide range of techniques from multi-
armed bandit problems [1] to singular value decomposition [13], Bayesian learning [24] and
variational inference in graphical models [17]. Users and tasks with diverging characteristics
raise the challenge of selecting tasks and users to make the most of the budget. For example,
Karger et al. [13] propose an algorithm to assign questions to heterogeneous workers with
optimal tradeoff between redundancy and accuracy. Empirical models have also been proposed
to improve the accuracy of classification by identifying annotation patterns (inherent difficulty
of images, groups of users with similar behaviors) [24, 17]. Incorporating some of these ideas
in our work is a challenging future work.

Our results focus on binary filters that classify items in two disjoint sets, but can easily
be adapted to classify items among n classes, though complexity increases exponentially
with n. Devising optimizations to improve performance in this setting is thus a future
challenge. Furthermore, processing several filters simultaneously may allow to exploit
correlations between filters, or to select dynamically the questions that would be most
informative [4, 6, 12].

Finally, empirical studies show that batching tasks may have positive impact on Crowd-
Sourcing efficiency [19]. Similarly, pre-recruiting schemes [3], that allow to obtain answers
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from the workers within seconds, may help to exploit the full benefit of sequential testing
without increasing latency. Devising optimization strategies with batches is challenging.
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