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Abstract
We study streaming algorithms for partitioning integer sequences and trees. In the case of trees,
we suppose that the input tree is provided by a stream consisting of a depth-first-traversal of the
input tree. This captures the problem of partitioning XML streams, among other problems.

We show that both problems admit deterministic (1+ε)-approximation streaming algorithms,
where a single pass is sufficient for integer sequences and two passes are required for trees. The
space complexity for partitioning integer sequences is O( 1

ε p log(nm)) and for partitioning trees
is O( 1

ε p
2 log(nm)), where n is the length of the input stream, m is the maximal weight of an

element in the stream, and p is the number of partitions to be created.
Furthermore, for the problem of partitioning integer sequences, we show that computing an

optimal solution in one pass requires Ω(n) space, and computing a (1 + ε)-approximation in one
pass requires Ω( 1

ε logn) space, rendering our algorithm tight for instances with p,m ∈ O(1).
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1 Introduction

Partitioning Massive Data Sets. Data partitioning is a widely employed technique for
processing massive data sets. The input data is partitioned into (not necessarily disjoint)
subsets of much smaller sizes which are then distributed to different computational units.
Parallel or distributed algorithms are then executed on the partitioned data.

The data partitioning step can be a difficult task in itself, especially if the data sets
considered are massive. Some partitioning problems are NP-hard (some are even hard to
approximate [3]), while others are more amenable. However, in the context of massive data
sets, it is not clear whether even the more amenable problems can be solved efficiently.

In this paper, we are therefore interested in how well big data sets can be partitioned
by massive data set algorithms. We focus on streaming algorithms, and we consider the
problems of partitioning integer sequences and partitioning trees. Streaming algorithms use
a small random access memory which is usually only of poly-logarithmic size in the input.
They scan the entire data from left to right sequentially in passes and therefore make optimal
use of data locality.

Partitioning Integer Sequences. Let X ∈ {0, . . . ,m}n be a sequence of integers of length
n, for an integer m. Given an integer parameter p, the goal is to partition X into p contiguous
blocks so as to minimize the maximum weight (sum of elements) of a block. In other words,
we have to find p−1 separators s1, . . . , sp−1 with 1 = s0 ≤ s1 ≤ · · · ≤ sp−1 ≤ sp = n+1 such
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13:2 Streaming Partitioning of Sequences and Trees

Figure 1 Left: A weighted tree t. The small numbers next to the nodes denote their IDs. The
trace of a depth-first-traversal of t is 241223314122113312, where we ambiguously write w for (‘d’, w)
and w for (‘u’, w). Right: Partitioning of t into three parts with bottleneck value 7. A streaming
algorithm should output the IDs of the root nodes of the created partitions. Here, these are 1, 3, 6.

that max
{∑sj+1−1

i=sj Xi

∣∣∣ j ∈ {0, . . . , p− 1}
}

is minimized. We will abbreviate this problem
as Part.

This partitioning problem appears in many applications, especially in the context of load
balancing, and has been extensively studied both from a theoretical [6, 9, 11, 20, 21, 13, 10]
and a practical perspective [22, 25]. One example application is the decomposition of large
computational meshes along space-filling curves [26, 15, 4] in parallel scientific computing,
where multi-dimensional grid elements are ordered with respect to a traversal along a space-
filling curve, giving rise to the one-dimensional problem of partitioning integer sequences. Very
efficient exact algorithms for this problem exist, for example the O(n logn) time algorithm of
Khanna et al. [13], the O(n+ p1+ε) time algorithm of Han et al. [10], and a highly non-trivial
optimal O(n) time algorithm of Frederickson [9].

Partitioning Trees. The problem of partitioning integer sequences is extended to trees as
follows: Given a rooted unranked node-weighted tree t with weights taken from the set
U = {0, . . . ,m} for an integer m, and an integer p, the goal is to partition t into p subtrees
t1, . . . , tp by removing p− 1 edges so as to minimize the maximum weight of a subtree. If
we are allowed random access to the input, this problem can also be solved optimally by
an O(n) time algorithm by Frederickson [9]. Classical applications of this problem include
paging and overlaying [24]. More importantly, this problem also captures the problem of
partitioning XML documents (see further below), which is the main motivation of this work.

In the case of integer sequences, we assume that the input stream for our streaming
algorithm is the integer sequence X itself. In the case of trees, since we target XML
documents, we assume that the input stream constitutes the trace of a depth-first-traversal of
the input tree t. More precisely, the input stream is the following trace X ∈ ({‘d’, ‘u’}×U)2n

of a depth-first-traversal of t (‘d’ stands for down-step and ‘u’ stands for up-step): If a
node with weight w ∈ U is visited top-down (bottom-up) at step i then Xi = (‘d’, w) (resp.
Xi = (‘u’, w)). We also say that a node v of the input tree t has ID i if it is the ith node
that is visited by the depth-first-traversal. The trace X is fed into our streaming algorithm,
and we require that the algorithm outputs the IDs of the root nodes of the p partitions (or
subtrees). We will denote this problem by Tree. In Figure 1, we give an example tree
illustrating the trace of a depth-first-traversal as well as a partitioning of the example tree.

Partitioning XML Documents and Other Applications. The traces of depth-first-traversals
of trees constitute a Dyck language, and, vice versa, every word of a Dyck language can
be seen as the concatenation of traces obtained from depth-first-traversals of the trees of a
forest. Dyck languages are languages of well-parenthesized expressions, and algorithms that
process Dyck languages such as [29, 19] and our work therefore have potential applications
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in all areas where those types of expressions appear. These include arithmetic expressions,
the sequence of CALL and RETURN instructions of the traces of program executions, and XML
documents, which are probably the most relevant application for the database community.
An XML document can be seen as the trace of a depth-first-traversal of its underlying
document tree.

Partitioning XML documents is for instance widely used in the area of parallel XML
databases and for the parallel evaluation of queries such as XPath, where the term XML frag-
mentation is usually employed [7]. In this context, additional constraints on the partitioning
other than load balancing are often imposed in order to avoid data dependencies between
different partitions, however, achieving good load balancing is crucial for any performant
solution. Kim and Kang [14] study the setting where an XML document is fragmented
and the resulting partitions are streamed to mobile client devices, which then distributively
evaluate a query. They underline the importance of small partitions by pointing out that:
“No matter how efficient a fragmentation method is, it is useless and impractical unless the
size of every resulting fragment is less than that of the buffer allocated for receiving the
fragments at the client devices.” Thus, our work can be seen as a first step towards streaming
XML fragmentation. Further potential applications of the tree partitioning problem include
the parallel validation of XML documents with respect to local validity schemata such as
DTDs [16] and similar problems that require only local knowledge of an XML document.

Starting Point: Parametric Search. Many previous works tackle Part and Tree using
parametric search [9, 10, 13]. For both problems, given a value B, there is an algorithm that
computes a partitioning in linear time with bottleneck value at most B if such a partitioning
exists. If there is no such partitioning, then the algorithm fails. Such an algorithm can be
regarded as a feasibility tester: Given a value B, it checks whether the bottleneck value of
an optimal partitioning B∗ is larger than B (B is not feasible) or smaller than/equal to B
(B is feasible). A trivial range for B∗ is {0, 1, . . . ,mn}1 since the input consists of n integers
or tree nodes of maximal weight m. Thus, via a binary search, running the feasibility tester
O(log(mn)) times, an exact algorithm with runtime O(n log(mn)) can be obtained.

For an integer sequence X, a value B can be tested by traversing X from left to right,
setting up partitions of maximal sizes at most B. If at most p partitions are created, then
B passes the test, otherwise it fails. This tester, denoted Probe in the literature, can be
implemented as a one-pass streaming algorithm with O(p log(n) + log(mn)) space2. Hence,
using the previous binary search, a O(log(mn)) passes, O(p log(n) + log(mn)) space exact
streaming algorithm for Part can be obtained. For Tree, a linear time feasibility tester
also exists [9], however, it appears impossible to implement it space efficiently as a one-pass
streaming algorithm.

Probe can also be used to obtain a one-pass streaming algorithm with approximation
factor (1 + ε) (meaning that a partitioning with bottleneck value at most by a factor (1 + ε)
larger than the optimal bottleneck value is computed): In one pass, we run multiple copies of
Probe testing values (1+ ε)i, for all integers i with 0 ≤ i ≤ log(mn)

log(1+ε) = O( log(mn)
ε ), in parallel,

and we return the partitioning with the smallest feasible bottleneck value. We observe that
only O( log p

ε ) copies of Probe are active at any moment during the processing of the stream:

1 A slightly better upper bound for B∗ is dmnp e+ m, however, this does not change our arguments and
only complicates the presentation.

2 O(p log(n)) for storing p− 1 partition boundaries, and O(log(mn)) for accumulating the weight of the
current partition.

ICDT 2016



13:4 Streaming Partitioning of Sequences and Trees

Let B′ be the smallest bottleneck value that has not yet been declared infeasible by a copy
of Probe. Then, the total weight of the prefix of the stream seen so far is at most pB′,
and hence the copies of Probe testing values larger than pB′ have not yet set their first
partition boundaries. Thus, it is not necessary to explicitly execute them yet. Using this
observation, the following result can be obtained:

I Fact 1. There is a one-pass (1 + ε)-approximation streaming algorithm for Part with
space O( log p

ε · (p log(n) + log(mn))).

We regard this algorithm as a baseline against which we will compare our results. Its
main weakness is its update time 3: Since Θ( log p

ε ) copies of Probe have to be updated, the
worst-case and amortized update time is Θ( log p

ε ). Furthermore, the log p factor in the space
complexity of the algorithm seems unnatural. In this paper, we will show that, using a very
different technique, both weaknesses can be overcome.

Results and Techniques. In many areas of computer science, a common technique for
dealing with large objects is to replace them with smaller ones that capture important prop-
erties of the initial object sufficiently well. Examples include kernelization [18], approximate
distance oracles [27, 23], and graph sparsification [5]. In recent years, this technique has
proved useful for data streaming algorithms, e.g., [8, 1, 2, 12], and we follow this line here.

Our algorithms for Part and Tree compute much smaller instances from the problem
instance described in the input stream, so that a (1 + ε)-approximate partitioning can be
deduced from an exact partitioning of the small instances. Our contribution is two-fold:
First, we identify the right properties that guarantee that the smaller objects still capture
(1 + ε)-approximate partitionings of the original instance. In the case of Part, we prove that
a small instance of size O(pε ) is sufficient, and for Tree, an instance of size O(p

2

ε ) suffices.
Note that, in both cases, the size is independent of n. Second, we prove that the small
objects with the right properties can be computed space efficiently in the streaming model.
Then, in a post-processing step, we use exact algorithms for partitioning the small instances.

This technique leads to the following algorithmic results:
A deterministic one-pass (1 + ε)-approximation streaming algorithm for Part with
space O(p log(mn)/ε), worst case update time O(1), and post-processing time O(p/ε)
(Theorem 7).
A deterministic two-pass (1 + ε)-approximation streaming algorithm for Tree with
space O(p2 log(mn)/ε), worst case update time O(1) and post-processing time O(p2/ε)
(Theorem 15).

Note that our algorithm for Part improves on the space complexity and the update time of
the algorithm described in Fact 1. Last, we complement our algorithms with lower bounds
for Part obtained through results in communication complexity:

Via a reduction to the one-way two-party communication problem Index, we show that
computing an exact solution for Part in one pass requires Ω(n) space (Theorem 18).
Via a more involved combinatorial argument, we show that algorithms that compute a
(1 + ε)-approximation for Part require space Ω(log(n)/ε) (Theorem 20).

The latter lower bound shows that our algorithm for Part is best possible for p,m ∈ O(1),
and, in particular, that the 1

ε factor in the space complexity is unavoidable for one-pass
algorithms.

3 The time between two consecutive read operations on the stream
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Outline. We consider Part in Sec. 3 and Tree in Sec. 4. Our lower bounds are given
in Sec. 5, and we conclude in Sec. 6. Due to space restrictions, the proofs of lemmas and
theorems marked by (*) are omitted.

2 Notations and Definitions

Streaming Algorithms. Generally, we denote the input stream for our streaming algorithms
by X = X[1], X[2], . . . . In the case of integer sequences, the length of X is n, and in the
case of trees, the length is 2n, since each of the n nodes of the input tree is visited twice
by a depth-first-traversal. A streaming algorithm that processes X reads the elements of X
sequentially one-by-one in passes. Streaming algorithms are defined as follows:

I Definition 1 (Streaming algorithm). An algorithm A is a p(n)-pass deterministic/random-
ized streaming algorithm with memory s(n), update time t(n), amortized update time a(n),
and post-processing time t′(n), if for every input stream X of length n:
1. A performs at most p(n) passes over the input stream X,
2. A maintains a random access memory of size s(n),
3. A has worst case running time t(n) between two consecutive read operations,
4. A has average running time a(n) between two consecutive read operations,
5. A has running time t′(n) between the last read operation and the output of the result.
If A is randomized then A has access to an infinite number of independent random coin
flips, and it outputs a correct solution with probability at least 2/3.

The algorithms presented in this paper are deterministic, however, we include randomized
algorithms in Definition 1 since our lower bounds also hold for randomized algorithms.
Furthermore, we suppose that reading an element from the input stream takes O(1) time.

Notations for Sequences. For an array X, we denote the ith element by either X[i] or Xi.
For i ≤ j, the array consisting of X[i], X[i+ 1], . . . , X[j] is denoted by X[i, j].

Notations for Trees. Let t be an unranked rooted tree on n nodes. We denote by rt(t) the
root of t. For any node v ∈ t, we denote by street(v) the subtree of t rooted at v. For two
nodes x, y ∈ t, let lcat(x, y) denote the lowest common ancestor of x and y in t, and for a
subset of nodes U ⊆ t, let lcat(U) denote the lowest common ancestor of all nodes of U in
t (if U = {u} then lcat(U) = u). Given a node v ∈ t, we denote its ID, i.e., the position
of v with respect to a depth-first-traversal of t, by Idt(v). Given an ID i, we denote its
corresponding node in t by nodet(i). With this notation, we have nodet(Idt(v)) = v.

3 Algorithm For Partitioning Sequences

The main idea of our algorithm is the computation of a coarse version Y of the input stream
X. Intuitively, a coarse version is obtained from X by repeatedly merging subsequent integers
into a single element whose weight is the sum of the merged elements. If the coarse version
Y fulfills certain properties, it can be shown that, from an optimal partitioning of Y , a
(1 + ε)-approximation to the optimal partitioning of X can be obtained.

In Subsec. 3.1, we define coarse versions. Then, in Subsec. 3.2, we show how an appropriate
coarse version Y can be computed in one pass. In a post-processing step, the coarse version
Y is partitioned optimally, giving a (1 + ε)-approximation to the optimal partitioning of X.

ICDT 2016



13:6 Streaming Partitioning of Sequences and Trees

3.1 Coarse Version
We now define a c-coarse version of X, and we prove that an optimal partitioning of Y
provides an approximate partitioning of X.

I Definition 2 (c-coarse version). Let m,m′, n, n′ ∈ N. Let X ∈ {0, . . . ,m}n and Y ∈
{0, . . . ,m′}n′ be integer sequences. Then Y is a c-coarse version of X if n′ ≤ n and there is
a mapping f : {1, . . . , n} → {1, . . . , n′}, denoted the coarsening function, such that:
1. f is surjective and increasing,
2. For every 1 ≤ i′ ≤ n′ :

∑
i∈f−1(i′) X[i] = Y [i′],

3. For every 1 ≤ i′ ≤ n′ : Y [i′] ≤ X[min f−1(i′)] + c.
Suppose that X = 1 3 2 1 1 5. Then, 4 4 5 is a 3-coarse version of X where the grouping of the
elements of X has been done as follows: 1 3 |2 1 1 |5. In order to fulfill Item 3 of the previous
definition, the bold elements of the previous grouping have to be mapped to elements in the
3-coarse version that are larger by at most 3.

Lemma 3 shows that an optimal partitioning of a c-coarse version has a bottleneck
value that is at most by the additive term c larger than the bottleneck value of an optimal
partitioning of the initial sequence.

I Lemma 3. Let m,m′, n, n′ ∈ N. Let X ∈ {0, . . . ,m}n be an integer sequence and let
Y ∈ {0, . . . ,m′}n′ be a c-coarse version of X with coarsening function f , for a parameter c.
Let B∗ be the bottleneck value of an optimal partitioning of X into p parts. Let s′0, s′1, . . . , s′p
be the separators of an optimal partitioning of Y into p parts and let B′∗ be the bottleneck
value. Then:
1. The separators s0, s1, . . . , sp−1, n+ 1 with si = min f−1(s′i) for i = 0, . . . , p− 1 induce a

partitioning of X with bottleneck value B′∗,
2. B′∗ ≤ B∗ + c.

Proof. Concerning Item 1, it follows from Item 2 of Definition 2 that the weight of the
partition induced by separators s′i and s′i+1 in Y equals the weight of the partition induced
by separators si and si+1 in X, for every i. Therefore, the bottleneck value is also the same.

Concerning Item 2, consider an optimal partitioning of X into p parts with bottleneck
value B∗, and let s∗0, . . . , s∗p denote the separators of this partitioning. We will argue that,
given the s∗i , we can compute a partitioning of Y with separators s̃i with bottleneck value at
most B∗ + c. Since the optimal partitioning of Y with separators s′0, s′1, . . . , s′p is at least as
good, the result follows.

We define s̃p = n′ + 1, and for i = 0, . . . p − 1, let s̃i = min {j : min f−1(j) ≥ s∗i }, i.e.,
partition i in Y starts with the first element whose pre-image starts in partition i in X.

Now we argue that for any i, the weight of partition i in Y is at most the weight of
partition i in X plus c. This then proves Item 2, as this property also holds for the bottleneck
partition. We have:

s̃i+1−1∑
j=s̃i

Y [j] =

s̃i+1−2∑
j=s̃i

Y [j]

+ Y [s̃i+1 − 1] ≤

max f−1(s̃i+1−2)∑
j=min f−1(s̃i)

X[j]

+

+
(
X[min f−1(s̃i+1 − 1)] + c

)
=

min f−1(s̃i+1−1)∑
j=min f−1(s̃i)

X[j]

+ c ≤

s∗i+1−1∑
j=s∗

i

X[j]

+ c.

For the first inequality, we used Item 2 of Definition 2 to rewrite the sum, and Item 3 of
Definition 2 in order to bound Y [s̃i+1 − 1]. For the second inequality, we extended the
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Algorithm 1 Computation of coarse version
Require: Number of partitions p, parameter ε for (1 + ε)-approximation
1: s← 4dpε e {Size of array Y }
2: Y ← (Yi1, Yi2)i array of integer tuples of length s, initially all tuples are (0, 0)
3: while input stream not empty do
4: k ← (arg min1≤i≤s{Yi1 = 0})− 1
5: x1 . . . xs−k ← next s− k integers from input stream, if fewer than s− k integers are

left then interpret the missing ones as 0s
6: ∀i ∈ {1, . . . , s− k} : Y [k + i]← (xi, 0) {Append the xi to Y }
7: S ←

∑s
i=1 Yi1 + Yi2 {Weight of Y , equals weight of input stream seen so far}

8: Y ← CProbe(Y, bSε/pc)
9: end while
10: Y ′ ← integer array of length s with ∀1 ≤ i ≤ s : Y ′[i] = Yi1 + Yi2
11: return Y ′

Algorithm 2 CProbe(Y, c)
Require: Y = (Yi1, Yi2)i array of integer tuples of length s, integer c
1: Z ← (Zi1, Zi2)i array of integer tuples of length s
2: j ← 1 {current element in Z}
3: Zj ← Y1
4: for i = 2 . . . s do
5: if Zj2 + Yi1 + Yi2 ≤ c then
6: Zj2 ← Zj2 + Yi1 + Yi2
7: else
8: j ← j + 1, Zj ← Yi
9: end if
10: end for
11: return Z

sum using the observations s∗i ≤ min f−1(s̃i), and s∗i+1 − 1 ≥ min f−1(s̃i+1 − 1). These
observations follow from the definition of s̃i. J

We conclude that in order to obtain a (1 + ε)-approximation, a (Sε/p)-coarse version of X
with S =

∑n
i=1 X[i] is required.

I Corollary 4. Let Y be a (Sε/p)-coarse version of X where S =
∑n
i=1 X[i], for some ε > 0.

An optimal partitioning of Y allows us to obtain a (1 + ε)-approximation to Part on X.

Proof. Let B∗ be the bottleneck value of an optimal partitioning of X. Clearly, B∗ ≥ S/p.
By Lemma 3, we obtain the approximation factor: B∗+Sε/p

B∗ = 1+ Sε/p
B∗ ≤ 1+ Sε/p

S/p = 1+ε. J

3.2 Computing Coarse Versions
Algorithm. Our algorithm for computing a (Sε/p)-coarse version of the input stream X with
S =

∑n
i=1 X[i] is depicted in Algorithm 1. It uses the subroutine CProbe (CoarseProbe)

which is depicted in Algorithm 2. CProbe is similar in spirit to the Probe algorithm
mentioned in the introduction and hence carries a similar name.

Representation of the Coarse Version. Algorithm 1 operates on an array Y = (Yi1, Yi2)i of
length s = 4dpε e consisting of tuples of integers. Throughout the algorithm, Y will represent

ICDT 2016



13:8 Streaming Partitioning of Sequences and Trees

a (Sε/p)-coarse version of the already seen prefix of the input integer sequence X, where S
is the total weight of the already seen prefix. The coarse version can be explicitly computed
from Y as in Line 10 of the algorithm: Replace every tuple (Yi1, Yi2) by the sum Yi1 + Yi2.

The first element Yi1 of every non-zero tuple (Yi1, Yi2) will always equal a value X[j], for
some j, and Yi2 will always equal

∑j′

l=j+1 X[l], for some j′ ≥ j. Such a tuple corresponds
to the merging of the elements X[j], . . . , X[j′] into a single element in the coarse version.
We store the first element X[j] and the remaining elements

∑j′

l=j+1 X[l] separately as Yi1
and Yi2 in order to be able to guarantee that the crucial Item 3 of Definition 2 of a c-coarse
version is fulfilled, namely, Yi2 ≤ c, for some c.

Description of the Algorithm. In the first iteration of the while-loop, Y is filled with
the first s integers of the input stream so that Y = (X1, 0), (X2, 0), . . . , (Xs, 0). CProbe
is then invoked on Y and parameter bSε/pc, where S is the current total weight of Y ,
i.e., S =

∑s
i=1 Yi1 + Yi2 (or, equivalently, the weight of the prefix of the input stream

seen so far). CProbe(Y, c) computes an array of tuples Z = (Zi1, Zi2)i representing a
c-coarse version of Y . It greedily merges adjacent tuples (Yi1, Yi2), . . . , (Yj1, Yj2) into a tuple
(Zk1, Zk2) = (Yi1, Yi2 +

∑j
l=i+1 Yl1 + Yl2) for some k, where j is the largest value such that

Zk2 does not exceed c. Note that the first parameter Zk1 takes the value of Yi1 unaltered.
This guarantees that, throughout the algorithm, the first parameter of any non-zero tuple
(Yi1, Yi2) always equals a value of the input stream X[j], for some j.

We will prove in Lemma 5 that the length of the output sequence Z of CProbe is at most
3p/ε+1. Since Y is of length 4dp/εe, in the next iteration of the while-loop of Algorithm 1, at
least p/ε− 1 new elements from the input stream are added to Y , which guarantees progress
in every iteration of the while-loop. The process continues until the entire input stream has
been processed.

Analysis. In the following, we will denote the input stream by X ∈ {1, . . . ,m}n. For
simplicity, we assume that X[i]  0, for all i, which is not a restriction since 0s in the input
stream could simply be skipped by the algorithm.

I Lemma 5. Consider the state of variable Y of Algorithm 1 at the beginning of iteration w
of the while-loop, for any w ≥ 1. Suppose that the prefix X[1, q] of the input stream has been
processed up until this point. Furthermore, let k be the largest j such that Y [j] 6= (0, 0), and
let S =

∑
i Yi1 + Yi2. Then:

1. k ≤ 3p
ε + 1,

2. Yi2 ≤ Sε/p for every 1 ≤ i ≤ s,
3. If w ≥ 2, then there are integers 1 = t1 < t2 < · · · < tk < tk+1 = q + 1 so that

Y [1, k] =
(
X[t1],

t2−1∑
l=t1+1

X[l]
)
,

(
X[t2],

t3−1∑
l=t2+1

X[l]
)
, . . . ,

(
X[tk],

tk+1−1∑
l=tk+1

X[l]
)
.

Proof. We prove the statement by induction. Consider the first iteration. Then, all tuples
of Y are (0, 0) and X[1, q] is an empty sequence, and the lemma is trivially true.

Now, suppose that the lemma is true in iteration w ≥ 1. We will prove that it also holds
in iteration w + 1.

Let q′ = q + (s− k − 1). Then, Y [k + 1, s] = X[q + 1, q′] after Line 6 of the algorithm
(if q′ > n then suppose that a sequence of 0s follows the input stream). Let S′ be the
total weight of Y after the execution of Line 6 of the algorithm. Clearly, Item 3 is still
fulfilled after appending elements of X to Y in Line 6. The left-to-right processing of Y
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in CProbe guarantees that only consecutive elements are merged and that the order of
Y stays intact. Furthermore, the first parameters of the tuples are copied (in Lines 3 and
8) and are therefore never changed, proving Item 3. The if-statement in Line 5 guarantees
that merged elements do not exceed the value of c = bS′ε/pc, thus ensuring Item 2. Let
k′ be the largest index such that Y [k′] 6= (0, 0), after the run of CProbe. To prove
Item 1, notice that after the run of CProbe, for any (Yi1, Yi2), (Yi+1,1, Yi+1,2), we have
Yi2 + Yi+1,1 + Yi+1,2 > bS′ε/pc, since otherwise (Yi+1,1, Yi+1,2) would have been added to
Yi2 in the algorithm. Thus, S′ =

∑k′

i=1 Yi1 + Yi2 >
k′−1

2 · bS′ε/pc, which implies

k′ < 1 + 2S′p
S′ε− p

= 1 + 2p
ε

+ 2p2

ε(S′ε− p) ≤ 1 + 2p
ε

+ 2p2

ε(d4pε eε− p)
< 1 + 3p

ε
,

where we used S′ ≥ 4dpε e, since this quantity equals the length of Y , and all first elements of
the tuples of Y are at least 1. J

I Lemma 6. Algorithm 1 is a deterministic one-pass streaming algorithm that computes
a (Sε/p)-coarse version of the input stream X ∈ {1, . . . ,m}n using space O(p log(mn)/ε),
where S =

∑
iX[i]. It can be implemented with worst case update time O(1).

Proof. The structural properties (2) and (3) of Lemma 5 guarantee that the returned
integer sequence Y ′ is a (Sε/p)-coarse version of the input stream X and thus establish
correctness of the algorithm. Property 1 ensures that the algorithm makes progress in every
iteration: Since at most 3p

ε + 1 tuples of Y are different from (0, 0), in every iteration at least
s− ( 3p

ε + 1) ≥ p
ε − 1 integers from the input sequence are consumed.

Note that the algorithm as it is implemented in Algorithm 1 has amortized update time
O(1). Indeed, in every iteration of the while-loop, Θ(pε ) integers from the input stream are
consumed, and the runtime of one iteration is O(pε ). Using the following standard trick, we
go from amortized update time to worst case update time: While executing the algorithm,
we simultaneously read integers from the input stream into a buffer of size Θ(s) one at a
time every O(1) operations. Then, instead of consuming integers from the input stream in
Line 5 of the algorithm, we consume the integers from the buffer. J

Using Lemma 6, we compute a (Sε/p)-coarse version of the input stream, and we split it
optimally in a post-processing step. This yields our main result of this section.

I Theorem 7. There is a deterministic one-pass (1 + ε)-approximation streaming algorithm
for Part with space O(p log(mn)/ε), worst case update time O(1), and O(p/ε) post-processing
time.

Proof. First, we will use Algorithm 1 in order to compute a coarse version of the input
stream X. Let Y be the generated output which, according to Lemma 6, is a (Sε/p)-coarse
version of X. Then, we partition Y optimally using the exact linear time algorithm of
Frederickson [9]. Following Lemma 3, we compute a (1 + ε)-approximation to an optimal
partitioning of X.

Note that in order to deduce a partitioning of X from a partitioning of Y , it is required
that every Y [j] know the value min f−1(j), where f is the coarsening function. This can be
ensured by annotating the elements of the stream X[i] by its position in the stream i, and
forwarding those annotations to Y . J
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u1 u1

u3 u3

u4 u4

u2 u5 u2 u5

Figure 2 Left: An example tree. The highlighted nodes constitute set U of Definition 8. Set L of
Definition 8 consists of the nodes within boxes. Note that the root node u1 is by definition in B,
however, it is also in L since lcat(u3, u4) = u1. Right: The structure tree ST(U).

4 Algorithm for Partitioning Trees

We now present our algorithm for Tree. Our algorithm computes a coarse structure tree,
i.e., a tree with much fewer nodes than the input tree t that captures the structure of t
well enough so that an optimal partitioning of the structure tree allows us to obtain a
(1 + ε)-approximation for Tree on t. In Subsec. 4.1, we define structure trees and we
prove that an optimal partitioning of an appropriate structure tree approximates an optimal
partitioning of t within a factor of 1 + ε. This result is the most technical contribution of this
paper. Then, in Subsec. 4.2, we argue that an appropriate structure tree can be computed
with O(p

2

ε log(mn)) space in the streaming model.

4.1 Structure Trees
Let t denote the weighted input tree that is described by the input stream X. Let the weight
function of t be ω so that ω(v) denotes the weight of node v ∈ t, and let ω(t′) :=

∑
v∈t′ ω(v),

for a subtree t′ ⊆ t. Our definition of structure trees is as follows:

I Definition 8 (Structure Tree). Let U = {u1, . . . , uk} ⊆ t be a set of breakpoints (nodes)
ordered with respect to a depth-first-traversal of t, and suppose that rt(t) ∈ U (which implies
that u1 = rt(t)). Let L = {lcat(ui, ui+1) | 1 ≤ i ≤ k − 1}. Then the structure tree ST(U) of t
with respect to U is a weighted tree with weight function ω′ on vertex set U ∪ L such that
there is an edge between x, y ∈ U ∪ L iff among the nodes U ∪ L, y is the lowest ancestor of
x in t. For a node x ∈ U ∪ L, let D(x) ⊆ t denote the set of nodes such that x is the lowest
ancestor among the nodes U ∪ L. Then, we define ω′(x) =

∑
y∈D(x) ω(y).

Definition 8 is illustrated in Figure 2. An immediate consequence of the definition of a
structure tree is that for every node v ∈ ST(U), the weight of the subtree rooted at v in
ST(U) is the same as the weight of the subtree rooted at v in t. Consider a partitioning
S of ST(U) (i.e., the roots of the subtrees induced by the partitioning). Since the weight
of streeST(U)(v) of any node v ∈ ST(U) is the same in tree t, clearly the bottleneck value
of a partitioning S of ST(U) equals the bottleneck value of the partitioning S applied on t.
This observation is similar to Item 1 of Lemma 3 for sequences, and is summarized in the
following fact.

I Fact 2. Let S be a partitioning of ST(U) with bottleneck value B. Then, S is also a
partitioning of t with bottleneck value B.

Choosing Good Breakpoints. The set of breakpoints U on which the structure tree ST(U)
is built determines how well ST(U) represents the input tree t and thus how well a partitioning
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of ST(U) approximates a partitioning of t. We will choose set U according to the following
definition, which establishes a bridge between trees and integer sequences:

I Definition 9 (c-coarse Structure Tree). Let V = {v1, . . . , vn} denote the nodes of the input
tree t ordered with respect to a depth-first-traversal of t. Let X ′[i] = ω(vi). For U ⊆ V we
say that ST(U) is a c-coarse structure tree of t if there exists a c-coarse version Y of X ′ of
length n′ ≤ n and coarsening function f such that vi ∈ U iff ∃1 ≤ i′ ≤ n′ : min f−1(i′) = i.

Consider the example tree in Figure 2. Then, we have X ′ = 2 4 1 2 3 2 3 2 1 2 1 3 2 3. A 5-coarse
version of X ′ is 7 7 6 7 3 where X ′ has been grouped as follows: 2 4 1 |2 3 2 |3 2 1 2 |1 3 2 |3.
The numbers in bold are the first nodes of each block, and they correspond to the weights of
those nodes of t that are put into set U . The structure tree in Figure 2 is built on this set U
and is therefore a 5-coarse structure tree.

In the case of integer sequences, we showed that a coarse version of the input stream of size
O(p/ε) is sufficient to obtain a (1 + ε)-approximation. We will see that the more complicated
structure of trees requires a coarse version of size Θ(p2/ε) for a (1 + ε)-approximation.
Intuitively, this is due to the fact that, in the case of integer sequences, a partition is only
adjacent to two other partitions. In the case of trees, a partition may be adjacent to p− 1
other partitions. Hence, partition boundaries must be chosen more carefully, and a better
resolution for our coarse object is required.

The main result of this Subsec., Lemma 10, states that, given a c-coarse structure tree
ST(U), an optimal partitioning of ST(U) provides a partitioning of the original tree t such
that the size of a partition increases at most by the additive term 2(p− 1)c. This is similar
to Item 2 of Lemma 3 for integer sequences.

I Lemma 10. Let U be such that ST(U) is a c-coarse structure tree of t. Consider an
optimal partitioning S′ of ST(U) into p parts. Consider the partitioning of t induced by S′
and let B′ denote the bottleneck value. Furthermore, let B∗ denote the bottleneck value of an
optimal partitioning of t. Then: B′ ≤ B∗ + 2(p− 1)c.

Proof. Let S∗ denote an optimal partitioning of t with bottleneck value B∗, let t1, . . . , tp
denote the subtrees produced by S∗, and suppose that S∗ is such that none of the subtrees
ti are empty (it is easy to see that there always is such a partitioning). Then, S∗ =
{rt(t1), . . . , rt(tp)}. Denote by Ui ⊆ U the subset of nodes of U that are also contained in
ti. Given S∗, we construct a partitioning S̃ = {s̃1, . . . , s̃p} of ST(B) with bottleneck value
B̃ ≤ B∗ + 2(p− 1)c. Since the optimal partitioning S′ of ST(B) is at least as good, Fact 2
then implies the result.

Definition of S̃. For each partition ti, we define a vertex s̃i of the partitioning S̃. Ideally,
for every i, we would like to set s̃i = rt(ti), however, we can only do that if rt(ti) ∈ ST(U).
If this is not the case, we select a nearby node contained in ti that is also included in ST (U),
or, if the weight of ti is not significant enough, we do not select any node, giving an empty
partition. The definition of s̃i is as follows:
1. If rt(ti) ∈ ST(U) : Let s̃i = rt(ti).
2. If rt(ti) /∈ ST(U) and ω(ti) ≤ 2c : Let s̃i = ⊥ (indicating that s̃i is unused).
3. If rt(ti) /∈ ST(U) and w(ti) > 2c : We define s̃i = lcat(Bi).

For this to be a valid assignment, we will show in Lemma 12 that Bi is non-empty and in
Lemma 13 that lcat(Bi) ∈ ST(B). We will prove in Lemma 14 that s̃i = lcat(Bi) is in a
sense close to rt(ti) by showing the following inequality on which we base our analysis:
ω(street(s̃i)) ≥ ω(street(rt(ti)))− 2c.
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Bounding B̃. We will now prove that the bottleneck value B̃ of the partitioning given
by S̃ is at most B∗ + 2(p − 1)c. To see this, let t̃1, . . . , t̃p denote the subtrees induced by
the partitioning S̃ such that rt(t̃i) = s̃i (if s̃i = ⊥ then let t̃i = ⊥). We will prove that
w(t̃i) ≤ ω(ti) + 2(p− 1)c, for every t̃i 6= ⊥, which then implies the result.

Now consider one partition t̃i with t̃i 6= ⊥. Let

J = {j : rt(tj) is connected to a leaf of ti in t},

and let J⊥ ⊆ J be those indices j such that s̃j = ⊥. Then:

ω(ti) = ω(street(rt(ti)))−
∑
j∈J

ω(street(rt(tj)))

≥ ω(street(s̃i)))−
∑
j∈J⊥

ω(street(rt(tj)))−
∑

j∈J\J⊥

ω(street(rt(tj))), (1)

where we used ω(street(rt(ti))) ≥ ω(street(s̃i))) since s̃i is contained in ti. Then, due to
Item 2 of the previous case distinction, we have ω(street(rt(tj))) ≤ 2c for every j ∈ J⊥,
and, for every j ∈ J \ J⊥, according to Items 1 and 3 of our case distinction, we have
street(rt(tj))− street(s̃j) ≤ 2c. Thus:

ω(ti) ≥ . . . ≥ ω(street(s̃i)))− |J⊥|2c−
∑

j∈J\J⊥

(ω(street(s̃j)) + 2c)

= ω(street(s̃i)))−

 ∑
j∈J\J⊥

ω(street(s̃j))

− |J⊥|2c− |J \ J⊥|2c
≥ ω(t̃i)− |J |2c ≥ ω(t̃i)− (p− 1)2c,

where we used ω(t̃i) ≤ ω(street(s̃i)))−
(∑

j∈J\J⊥ ω(street(s̃j))
)
and |J | ≤ p− 1. The result

follows. J

I Corollary 11. Let U be such that ST(U) is a Sε/(2p2)-coarse structure tree where S = ω(t)
for some ε > 0. Then, an optimal partitioning of ST(U) into p parts provides a (1 + ε)-
approximation to Tree on t.

Proof. Let B′ be the bottleneck value of an optimal partitioning P ′ of ST(U), and let B∗
be the bottleneck value of an optimal partitioning of t. Then, by Fact 2, P ′ induces a
partitioning of t with bottleneck value B′. Next, by Lemma 10, we have B′ ≤ B∗+ 2(p− 1)c,
where c = ε/(2p2). Furthermore, notice that B∗ ≥ S/p. Thus, we obtain the approximation
ratio: B′

B ≤
B∗+2(p−1)·Sε/(2p2)

B∗ < 1 + Sε
pB∗ ≤ 1 + ε. J

Auxiliary Lemmas Used in the Proof of Lemma 10. We now present the technical lemmas
that have been used in the proof of Lemma 10.

In Lemma 12, we show that for every subtree street(v) of weight at least c, for some node
v, at least one node of street(v) is contained in every c-coarse structure tree.

I Lemma 12 (*). Let U be such that ST(U) is a c-coarse structure tree of t. Let v ∈ t be
any node so that ω(street(v)) > c. Then, U ∩ street(v) 6= ∅.

Lemma 13 is a simple structural property of trees.

I Lemma 13. Let U = {u1, u2 . . . } ⊆ t be a subset of nodes of a tree of size at least two,
ordered with respect to a depth-first-traversal. Then, there is an index 1 ≤ i ≤ |U | − 1 such
that lca(ui, ui+1) = lca(U).
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Proof. Let Ui = {u1, . . . , ui}. We prove by induction on i that the statement is true for all
sets Ui. Suppose that i = 2. Then trivially lca(u1, u2) = lca(U2). Now suppose that the
statement is true for i and let x denote the lca(uj , uj+1) for the value of j with 1 ≤ j ≤ i− 1
so that x = lca(Ui). If ui+1 ∈ street(x) then clearly x is also the lowest-common-ancestor of
Ui+1. Suppose now that ui+1 /∈ street(x). Let y = lca(ui, ui+1). Then clearly x ∈ street(y)
and hence Ui ⊆ street(y). Therefore, y is an ancestor of every node of Ui+1. It is also the
lowest-common-ancestor of all nodes Ui+1 as it is defined as lca(ui, ui+1). J

Given a subtree street(v) of weight at least c, for some node v, we show in Lemma 14
that the lowest-common-ancestor x of the nodes U ′ = U ∩ street(v) of a c-coarse structure
tree ST(U) is in a sense close to v, i.e., ω(street(x)) + 2c ≥ ω(street(v)).

I Lemma 14 (*). Let U be so that ST(U) is a c-coarse structure tree of t. Let v ∈ t be any
node such that ω(street(v)) > c, and let U ′ = U ∩ street(v). Furthermore, let x = lca(U ′).
Then: ω(street(x)) + 2c ≥ ω(street(v)).

4.2 Computing Structure Trees
Algorithm. We use the first and the second pass to compute the IDs of the nodes B ∪ L
with B = {b1, . . . , bk} (we assume that they are ordered w.r.t. a depth-first-traversal of t) so
that ST(B) is a Sε/(2p2)-coarse structure tree of t and L = {lca(bi, bi+1) | 1 ≤ i ≤ k − 1}.
Then, in the third pass, we establish ST(B).

1st pass. Consider the subsequence of down-steps Xd of the input stream X and let X ′
denote the sequence of weights that constitute the second parameters of the tuples of Xd.
Compute a ( Sε2p2 )-coarse version of X ′ by running the algorithm for partitioning integer
sequences on X ′4. Annotate every breakpoint of B created by the algorithm with the ID of
the node that lead to its creation. This guarantees access to the IDs of the nodes B.

2nd pass. Concerning the nodes in L, we make use of the following observation: Let bi, bi+1
be two nodes for which breakpoints are stored and bi+1 /∈ street(bi). Let di be the minimal
depth of a down-step between the down-step describing bi and the down-step describing bi+1.
Then x = lcat(bi, bi+1) has depth di − 1. In the first pass, while simultaneously running
the algorithm for partitioning integer sequences, we compute this depth (by keeping track
of the minimal depth between any two nodes stored as first elements of two consecutive
tuples in variable Y in Algorithm 1). Then, the down-step of node x, and hence the ID of x,
can be identified in a second pass as the down-step at depth di − 1 that appears before the
down-step of bi, but is closest to the down-step bi in the input stream.

3rd pass. Let I = {i1, i2, . . . } be the IDs of the nodes B ∪L and suppose that ij ≤ ij+1 for
every 1 ≤ j < |I|. We describe how to build the structure tree inductively. Suppose that it is
correctly built up to the node with ID ij , that is, it is the correct structure tree of the subtree
of t induced by all nodes with ID at most ij . The substream Xj = (’d’, wj), . . . , (’d’, wj+1),
where wj and wj+1 are the weights of the nodes nodet(ij) and nodet(ij+1), respectively,
allows us to determine the relationship between nodet(ij) and nodet(ij+1). If nodet(ij+1)

4 Algorithm 1 computes a (Sεp )-coarse version. In order to compute a ( Sε2p2 )-coarse version instead,
CProbe has to be invoked with parameter b Sε2p2 c in Line 8, and s should be set to 8d p

2

ε e in Line 1.
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is in the subtree of nodet(ij), then we add an edge from nodet(ij) to nodet(ij+1) in ST(B).
Otherwise, we consider the minimum depth dj of a down-step in the substream Xj . We
deduce that x = lcat(nodet(ij), nodet(ij+1)) is at depth dj − 1. Node x has already been
added to ST(B), and, by its depth, we can identify it and connect it to nodet(ij+1) in ST(B).
Concerning updating the weights ω′, for every down-step (‘d’, w) in the stream, we add the
weight w to the closest ancestor c in the current ST(B) of the node that is described by the
current down-step.

Post-processing. We can therefore establish ST(B) in three passes. As a post-processing
step, we use an optimal linear time partitioning algorithm by Frederickson [9] in order to
partition ST(B). From the resulting partitioning, according to Corollary 11, we deduce a
(1 + ε)-approximation to the partitioning of t. All steps other from running the algorithm of
Theorem 7 can be implemented with O(1) update time.

Furthermore, it can be seen that the second and the third passes can be merged into a
single pass (not explicitly described here), leading to a two-pass algorithm.

I Theorem 15. There is a det. two-pass (1+ε)-approximation streaming algorithm for Tree
with space O(p

2

ε log(mn)), worst case update time O(1), and post-processing time O(p2/ε).

5 Lower Bounds for Partitioning Integer Sequences

5.1 A Linear Space Lower Bound for Exact Algorithms
In this section, we show that any possibly randomized exact streaming algorithm for Part
that performs one pass over the input requires Ω(n) space. We show this by a reduction
from the Index problem in one-way two-party communication complexity.

I Definition 16 (Index Problem). Let S = (S1, . . . , SN ) where S ∈ {0, 1}N , and let
I ∈ {1, . . . , N}. Alice is given S, Bob is given I. Alice sends message M to Bob and, upon
reception, Bob outputs SI .

We consider a version of Index where the index I is chosen from the set {dN/2e, . . . , N}
uniformly at random. It is well-known [17] that the one-way randomized communication
complexity of Index is Ω(N), and the modification in the input distribution restricting
the index I to be chosen from the set {dN/2e, . . . , N} clearly changes the communication
complexity only by a constant factor.

I Lemma 17 (Hardness of the Index Problem). If S is chosen uniformly at random from
{0, 1}N , I is chosen uniformly at random from the set {dN/2e, . . . , N}, and the failure
probability of the protocol is at most 1/3, then ES |M | = Ω(N).

Reduction. Given a streaming algorithm ALG that solves Part on a stream of length at
most 3n using space s, we specify a protocol for an arbitrary instance (S, I) of Index with
|S| = n, such that the message size is at most s.

Remember that Alice holds S ∈ {0, 1}N and Bob holds I ≥ dN/2e. Our protocol is the
following: Alice generates the sequence Y ∈ {1, 3}2N such that Yi = 2 · Si/2 + 1 for even i,
and Yi = 4− Yi+1 for odd i. Bob generates the sequence Z = 4 . . . 4︸ ︷︷ ︸

2I−N−1

2.

Alice runs ALG on sequence Y with number of partitions p = 2. Once Y is entirely
processed, she sends the resulting memory state of ALG to Bob. Bob continues running
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ALG on Alice’s final memory state and feeds the sequence Z into ALG. The message size of
the protocol equals the space usage of ALG after processing Y . Note that ALG outputs the
separator s1 that separates the two partitions. If s1 is even then Bob outputs 0, and if s1 is
odd then Bob outputs 1.

We prove that the above protocol is correct, which immediately yields the result.

I Theorem 18. Any possibly randomized one-pass streaming algorithm for Part with error
probability at most 1/3 requires space Ω(n).

Proof. First observe that
∑
i Yi+

∑
i Zi = 4 ·N + (2I−N −1) ·4 + 2 = 8I−2. Let s∗1 denote

the optimal split position. Suppose that a perfect balancing is achieved and the optimal
bottleneck value is 4I − 1. Since for all i = 1, . . . , N we have Y2i−1 + Y2i = 4, this can only
be achieved if s∗1 is even and Ys∗1 = 1 which implies that Ss∗1/2 = SI = 1. Suppose now that
a perfect balancing cannot be achieved. This can only happen if s∗1 is odd and Ys∗1−1 = 3
which implies that S(s∗1−1)/2 = SI = 3. Thus, the protocol is correct in both cases, and ALG
can be used to solve Index. Lemma 17 implies the result. J

5.2 Ω(1
ε

logn) Space Lower Bound for Approximation Algorithms

We prove now an Ω( 1
ε logn) space lower bound for one-pass algorithms for Part that compute

a (1 + ε)-approximation. We prove this lower bound in the one-way two-party communication
setting for instances of Part with m = 1 and p = 2. Alice is given a sequence Y ∈ {0, 1}n
and Bob is given a sequence Z ∈ {0, 1}n, and they have to split the sequence X = Y ◦Z into
two parts. Alice sends a message to Bob, and, upon reception, Bob outputs the separator.

Input Distribution. Let t be an integer that is to be determined later. Alice’s input and
Bob’s input are independent from each other and they are constructed as follows:

Alice’s input Y is a sequence of length n with 2(t−1) leading 1s, followed by an arbitrary
sequence of length n− 3t+ 2 with elements from {0, 11} (11 is a pair of ones), where the
number of 11s is exactly t. Denote by Y the set of all such sequences. Then Y is chosen
uniformly at random from Y. Clearly, the weight of Y is 4t− 2, and |Y| =

(
n−3t+2

t

)
.

Bob’s input Z is a sequence of length n with the first 4(i − 1) elements 1, and the
remaining elements 0, for some i ∈ {1, 2, . . . , t}. Denote all such sequences as Z. Then Z
is chosen uniformly at random from Z. Observe that the weight of Z varies from 0 to
4(t− 1), and |Z| = t.

Note that an optimal partitioning of any Y ◦Z instance splits one of the 11s in the second
part of Alice’s input.

Example: Let t = 2, n = 10, and p = 2. Suppose that Alice holds Y = 11 00110110.
Bob’s possible inputs are Z1 = 0000000000 and Z2 = 1111000000 of weight 0 and 4,
respectively. The optimal partitioning of Y ◦ Z1 is 11 001 | 10110 0 . . . 0 and of Y ◦ Z2 is
11 001101 | 10 11110 . . . 0.

We give a lower bound on the communication complexity of any possibly randomized
communication protocol that solves instances of Y × Z exactly.

I Lemma 19. Any randomized one-way two-party protocol with error at most δ > 0 that

solves Part on instances of Y × Z has communication complexity at least log
(

(n−3t+2
t )

8( t
4δt)n4δt

)
.
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Proof. Let P be a randomized protocol as in the statement of the lemma. Then, by Yao’s
Lemma [28], there is a deterministic protocol Q with distributional error at most δ that
has the same communication complexity. We prove a lower bound on the communication
complexity of Q.

Denote by M1, . . . ,Mk the possible messages from Alice to Bob, and let Yi ⊆ Y
denote the set of inputs that Alice maps to message Mi. Note that for a fixed in-
put for Bob, the protocol Q outputs the same result for all inputs in Yi. Let pi =
PrY←Yi,Z←Z [Q errs on (Y,Z)]. Since the distributional error of the protocol is δ, or, in

other words, PrY←Y,Z←Z [Q errs on (Y, Z)] ≤ δ, we obtain
∑

i
pi|Yi|
|Y| ≤ δ. Let i ∈ {1, . . . , l}

be the indices for which pi ≤ 2δ. Then by the Markov Inequality,
∑l
i=1 |Yi| ≥

1
2 |Y|.

We bound |Yi| from above for all i ∈ {1, . . . , l}. First, note that for a particular input
Z ∈ Z, the output of Q on (Y, Z) is the same for all Y ∈ Yi. Denote by Yji the subset of Yi
such that for each Y j ∈ Yji : PrZ←Z [Q errs on (Y j , Z)] = j

t , or, in other words, there are
j inputs of Bob such that the protocol fails on Y j , and, for the remaining t − j inputs of
Bob, the protocol succeeds. Consider the set Y0

i , i.e., for each Y ∈ Y0
i , the protocol succeeds

on any input of Bob. This determines all positions of the pairs of 1s in Alice’s input, and,
therefore, there is only a single such element and we obtain |Y0

i | ≤ 1. Similarly, we obtain
|Yji | ≤

(
t
j

)
nj , since the protocol errs on at most j inputs of Bob, therefore the position of

t− j pairs of 1s is fixed and only j pairs of 1s may differ (we allow them to have an arbitrary
position in Y which is a very rough but sufficient estimate).

We apply the Markov Inequality again: For at least half of the elements of Yi, the
protocol errs with probability at most 4δ. Therefore, 1

2 |Yi| ≤
∑
j≤4δt |Y

j
i | ≤

∑
j≤4δt

(
t
j

)
nj ≤

2
(
t

4δt
)
n4δt, and thus |Yi| ≤ 4

(
t

4δt
)
n4δt. This then implies l ≥ |Y|

8( t
4δt)n4δt = (n−3t+2

t )
8( t

4δt)n4δt . Since the
protocol sends at least l different messages, the communication complexity of the protocol is
at least log(l), which implies the result. J

We make t small enough so that a solution to any instance of Y × Z that is a (1 + ε)-
approximation actually solves the instance exactly. This idea leads to the following theorem:

I Theorem 20. Any randomized one-way two-party communication protocol with error at
most δ > 0 (δ sufficiently small) that computes a (1+ ε)-approximation ( 1

ε = O(n1−γ) for any
γ > 0) to Part on instances of Y × Z has communication complexity at least Ω

( 1
ε logn

)
.

Proof. We choose t small enough that a solution to any instance of Y × Z that is a (1 + ε)-
approximation actually solves the instance exactly. Remark again that the weight of Y is
4t − 2 and the weight of Z is 4(i − 1). Since the total weight is even, there is always a
partitioning with weight 2t− 1 + 2(i− 1). Therefore, any partitioning that does not achieve
an optimal balancing has an approximation factor of at least 2t−1+2(i−1)+1

2t−1+2(i−1) , and we wish to
choose t such that this approximation factor is worse than a (1+ ε) approximation. Therefore,
we have to choose t small enough such that for any i ∈ {1, 2, . . . , t}: 1

2t−1+2(i−1) > ε, which
implies that t < 1

4ε + 3
4 . We choose t = 1

4ε and plug this value into the communication lower
bound from Lemma 19. Using standard bounds on binomial coefficients:

Ω
(

log
( (

n−3t+2
t

)
8
(
t

4δt
)
n4δt

))
= Ω

log

(4ε(n− 3
4ε + 2)

) 1
4ε

8nδ/ε
(
e

4δ
)δ/ε


= Ω

(
1
4ε log(4εn− 3 + 8ε)− δ

ε
log(ne4δ )

)
= Ω

(
1
4ε log(4εn)− δ

ε
log(ne4δ )

)
= Ω(

(
1
ε

logn
)
,

for a sufficiently small but constant δ, and ε = O(n1−γ) for any γ > 0. The result follows. J
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6 Conclusion

In this paper, we initiated the study of the problems of partitioning integer sequences
and partitioning trees in the streaming model. We showed that, for both problems, smaller
versions of the input instances can be computed in a streaming fashion and still capture (1+ε)-
approximate partitionings of the original instances. For integer sequences, the small instances
are of size O(pε ), and for trees, the small instances are of size O(p

2

ε ), both independent of the
length of the input stream. Furthermore, for the problem of partitioning integer sequences,
we provided space lower bounds obtained through communication complexity.

It remains to be investigated whether the sizes of the small instances for trees can be
reduced to O(pε ). Furthermore, we conjecture that the number of passes of our algorithm for
Tree can be reduced from two to one.

Acknowledgements. The author thanks László Kozma for many valuable ideas and helpful
discussions, and an anonymous reviewer for improving the baseline algorithm stated in Fact 1.
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