
Query Stability in Monotonic Data-Aware
Business Processes
Ognjen Savković1, Elisa Marengo2, and Werner Nutt3

1 Free University of Bozen-Bolzano, Bolzano, Italy
ognjen.savkovic@unibz.it

2 Free University of Bozen-Bolzano, Bolzano, Italy
elisa.marengo@unibz.it

3 Free University of Bozen-Bolzano, Bolzano, Italy
werner.nutt@unibz.it

Abstract
Organizations continuously accumulate data, often according to some business processes. If one
poses a query over such data for decision support, it is important to know whether the query
is stable, that is, whether the answers will stay the same or may change in the future because
business processes may add further data. We investigate query stability for conjunctive queries.
To this end, we define a formalism that combines an explicit representation of the control flow
of a process with a specification of how data is read and inserted into the database. We consider
different restrictions of the process model and the state of the system, such as negation in
conditions, cyclic executions, read access to written data, presence of pending process instances,
and the possibility to start fresh process instances. We identify for which restriction combinations
stability of conjunctive queries is decidable and provide encodings into variants of Datalog that
are optimal with respect to the worst-case complexity of the problem.

1998 ACM Subject Classification H.2.4 [Systems]: Relational databases

Keywords and phrases Business Processes, Query Stability

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.16

1 Introduction

Data quality focuses on understanding how much data is fit for its intended use. This problem
has been investigated in database theory, considering aspects such as consistency, currency,
and completeness [8, 13, 23]. A question that these approaches consider only marginally is
where data originates and how it evolves.

Although in general a database may evolve in arbitrary ways, often data are generated
according to some business process, implemented in an information system that accesses the
DB. We believe that analyzing how business processes generate data allows one to gather
additional information on their fitness for use. In this work, we focus on a particular aspect
of data quality, that is the problem whether a business process that reads from and writes
into a database can affect the answer of a query or whether the answer will not change as a
result of the process. We refer to this problem as query stability.

For example, consider a student registration process at a university. The university
maintains a relation Active (course) with all active courses and a table Registered (student,
course) that records which students have been registered for which course. Suppose we have
a process model that does not allow processes to write into Active and which states that
before a student is registered for a course, there must be a check that the course is active.

© Ognjen Savković, Elisa Marengo, and Werner Nutt;
licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Query Stability in Monotonic Data-Aware Business Processes

Consider the query Qagro that asks for all students registered for the MSc in Agronomics
(mscAgro). If mscAgro does not occur in Active, then no student can be registered and the
query is stable. Consider next the query Qcourses that asks for all courses for which some
student is registered. If for each active course there is at least one student registered, then
again the query is stable, otherwise, it is not stable because some student could register for a
so far empty active course.

In general, query results can be affected by the activities of processes in several ways.
Processes may store data from outside in the database, e.g., the application details submitted
by students are stored in the database. Processes may not proceed because data does not
satisfy a required condition, e.g., an applicant cannot register because his degree is not among
the recognized degrees. Processes may copy data from one part of a database to another one,
e.g., students who passed all exams are automatically registered for the next year. Processes
may interact with each other in that one process writes data that is read by another one,
e.g., the grades of entry exams stored by the student office are used by academic admission
committees. Finally, some activities depend on deadlines so that data cannot change before
or after a deadline.

Approach. Assessing query stability by leveraging on processes gives rise to several research
questions.
1. What is a good model to represent processes, data and the interplay among the two?
2. How can one reason on query stability in such a model and how feasible is that?
3. What characteristics of the model may complicate reasoning?

(1) Monotonic Data-Aware Business Process Model. Business processes are often spe-
cified in standardized languages, such as BPMN [22], and organizations rely on engines that
can run those processes (e.g., Bonita [7], Bizagi [16]). However, in these systems how the
data is manipulated by the process is implicit in the code. Current theory approaches either
focus on process modeling, representing the data in a limited way (like in Petri Nets [18]), or
adopt a data perspective, leaving the representation of the process flow implicit [6, 4, 11].
We introduce a formalism called Monotonic Data-aware Business Processes (MDBPs). In
MDBPs the process is represented as a graph. The interactions with an underlying database
are expressed by annotating the graph with information on which data is read from the
database and which is written into it. In MDBPs it is possible that several process instances
execute the process. New information (fresh data) can be brought into the process by starting
a fresh process instance (Section 2). MDBPs are monotonic in that data can only be inserted,
but not deleted or updated.

(2) Datalog Encodings. Existing approaches aim at the verification of general (e.g. tem-
poral) properties, for which reasoning is typically intractable [4, 10, 11]. In contrast, we
study a specific property, namely stability of conjunctive queries (Section 3), over processes
that only insert data. This allows us to map the problem to the one of query answering in
Datalog. The encoding generates all maximal representative extensions of the database that
can be produced in the process executions and checks if any new query answer is produced.
We prove that our approach is optimal w.r.t. worst case complexity in the size of the data,
query, process model and in the size of the entire input.

(3) MDBP Variants. When modeling processes and data, checking properties often becomes
highly complex or undecidable. While other approaches in database theory aim at exploring

O. Savković, E. Marengo, and W. Nutt 16:3

the frontiers of decidability by restricting the possibility to introduce fresh data, we adopt
a more bottom-up approach and focus on a simpler problem that can be approached by
established database techniques. To understand the sources of complexity of our reasoning
problem, we identify five restrictions of MDBPs:
(i) negation is (is not) allowed in process conditions;
(ii) the process can (cannot) start with pending instances;
(iii) a process can (cannot) have cycles;
(iv) a process can (cannot) read from relations that it can write;
(v) new instances can (cannot) start at any moment.
We investigate the stability problem for each combination of the restrictions above, called
variants (Sections 3–9).

Related work and conclusions end the paper (Sections 10, 11). A technical report, with
complete encodings and proofs can be found in [24].

A preliminary version of this paper was presented at the AMW workshop [21].

2 Monotonic Data-Aware Business Processes

Monotonic Data-aware Business Processes (MDBPs) are the formalism by which we represent
business processes and the way they manipulate data. We rely on this formalism to perform
reasoning on query stability.

Notation. We adopt standard notation from databases. In particular, we assume an infinite
set of relation symbols, an infinite set of constants dom as the domain of values, and the
positive rationals Q+ as the domain of timestamps. A schema is a finite set of relation
symbols. A database instance is a finite set of ground atoms, called facts, over a schema
and the domain domQ+ = dom ∪Q+.We use upper-case letters for variables, lower-case for
constants, and overline for tuples, e.g., c̄.

An MDBP is a pair B = 〈P, C〉, consisting of a process model P and a configuration C.
The process model defines how and under which conditions actions change data stored in the
configuration. The configuration is dynamic, consisting of
(i) a database,and
(ii) the process instances.

Process Model. The process model is a pair P = 〈N,L〉, comprising a directed multi-
graph N , the process net, and a labeling function L, defined on the edges of N .

The net N = 〈P, T 〉 consists of a set of vertices P , the places, and a multiset of edges
T , the transitions. A process instance traverses the net, starting from the distinguished
place start. The transitions emanating from a place represent alternative developments of an
instance.

A process instance has input data associated with it, which are represented by a fact
In(c̄, τ), where In is distinguished relation symbol, c̄ is a tuple of constants from domQ+ , and
τ ∈ Q+ is a time stamp that records when the process instance was started. We denote with
ΣB,In and ΣB the schemas of B with and without In, respectively.

The labeling function L assigns to every transition t ∈ T a pair L(t) = (Et,Wt). Here,
Et, the execution condition, is a Boolean query over ΣB,In and Wt, the writing rule, is a rule
R(ū)← Bt(ū) whose head is a relation of ΣB and whose body is a ΣB,In-query that has the
same arity as the head relation. Evaluating Wt over a ΣB,In-instance D results in the set of
facts Wt(D) = {R(c̄) | c̄ ∈ Bt(D)}. Intuitively, Et specifies in which state of the database

ICDT 2016

16:4 Query Stability in Monotonic Data-Aware Business Processes

which process instance can perform the transition t, and Wt specifies which new information
is (or can be) written into the database when performing t. In this paper we assume that Et

and Bt are conjunctive queries, possibly with negated atoms and inequality atoms with “<”
and “≤” involving timestamps. We assume inequalities to consist of one constant and one
variable, like X < 1st Sep. We introduce these restricted inequalities so that we can model
deadlines, without introducing an additional source of complexity for reasoning.

Configuration. This component models the dynamics of an MDBP. Formally, a configura-
tion is a triple 〈I,D, τ〉, consisting of a part I that captures the process instances, a database
instance D over ΣB, and a timestamp τ , the current time. The instance part, again, is a
triple I = 〈O,MIn,MP 〉, where O = {o1, ..., ok} is a set of objects, called process instances,
and MIn, MP are mappings, associating each o ∈ O with a fact MIn(o) = In(c̄, τ), its input
record, and a place MP (o) ∈ P , its current, respectively.

The input record is created when the instance starts and cannot be changed later on.
While the data of the input record may be different from the constants in the database,
they can be copied into the database by writing rules. A process instance can see the entire
database, but only its own input record.

For convenience, we also use the notation B = 〈P, I,D, τ〉, B = 〈P, I,D〉 (when τ is not
relevant), or B = 〈P,D〉 (for a process that is initially without running instances).

Execution of an MDBP. Let B = 〈P, C〉 be an MDBP, with current configuration C = 〈I,
D, τ〉. There are two kinds of atomic execution steps of an MDBP:
(i) the traversal of a transition by an instance and
(ii) the start of a new instance.

(i) Traversal of a transition. Consider an instance o ∈ O with record MIn(o) = In(c̄, τ ′),
currently at place MP (o) = q. Let t be a transition from q to p, with execution condition
Et. Then t is enabled for o, i.e., o can traverse t, if Et evaluates to true over the database
D∪{In(c̄, τ ′)}. LetWt : R(ū)← Bt(ū) be the writing rule of t. Then the effect of o traversing
t is the transition from C = 〈I,D, τ〉 to a new configuration C′ = 〈I ′,D′, τ〉, such that
(i) the set of instances O and the current time τ are the same;
(ii) the new database instance is D′ = D ∪Wt(D ∪ {In(c̄, τ ′)}), and
(iii) I = 〈O,MIn,MP 〉 is updated to I ′ = 〈O,MIn,M

′
P 〉 reflecting the change of place for

the instance o, that is M ′P (o) = p and M ′P (o′) = MP (o′) for all other instances o′.

(ii) Start of a new instance. Let o′ be a fresh instance and let In(c̄′, τ ′) be an In-fact
with τ ′ ≥ τ , the current time of C. The result of starting o′ with info c̄′ at time τ ′ is the
configuration C′ = 〈I ′,D, τ ′〉 where I ′ = 〈O′,M ′In,M

′
P 〉 such that

(i) the database instance is the same as in C,
(ii) the set of instances O′ = O ∪ {o′} is augmented by o′, and
(iii) the mappings M ′In and M ′P are extensions of MIn and MP , resp., obtained by defining

M ′In(o′) = In(c̄′, τ ′) and M ′P (o′) = start.
An execution Υ of B = 〈P, C〉 is a finite sequence of configurations C1, . . . , Cn

(i) starting with C (= C1), where
(ii) each Ci+1 is obtained from Ci by an atomic execution step.
We denote Υ also with C1 · · · Cn. We say that the execution Υ produces the facts
A1, . . . , An if the database of the last configuration Cn in Υ contains A1, . . . , An. Since at
each step a new instance can start, or an instance can write new data,

O. Savković, E. Marengo, and W. Nutt 16:5

Table 1 Computational complexity of query stability in MDBPs. The results in a row hold
for the class of MDBPs satisfying the defining restrictions and for the subclasses satisfying one or
more of the optional restrictions. The results for all decidable variants indicate matching lower and
upper bounds (except for AC0). The ∗ indicates that the results for rowo hold for all non-trivial
combinations of restrictions. All results for data, process, query and combined complexity of the
decidable variants hold already for singleton MDBPs. †Note that, in all fresh variants instance
complexity can be trivially decided in constant time (omitted in the table).

Defining
Restrictions

Optional
Restrictions Data Instance Process Query Combined Sect.

— fresh†,acyclic Undec. Undec. Undec. Undec. Undec. 4

closed — co-NP co-NP co-NExpTime ΠP
2 co-NExpTime 6

positive closed PTime co-NP ExpTime ΠP
2 ExpTime 5, 8

positive fresh†, acyclic PTime co-NP ExpTime ΠP
2 ExpTime 8

closed, acyclic positive in AC0 co-NP PSpace ΠP
2 PSpace 7

rowo ∗† in AC0 in AC0 co-NP ΠP
2 ΠP

2 9

(i) there are infinitely many possible executions, and
(ii) the database may grow in an unbounded way over time.

3 The Query Stability Problem

In this section, we define the problem of query stability in MDBPs with its variants.

I Definition 1 (Query Stability). Given B = 〈P, C〉 with database instance D, a query Q,
and a timestamp τ , we say that Q is stable in B until τ , if for every execution C · · · C′
in B, where C′ has database D′ and timestamp τ ′ such that τ ′ < τ , it holds that

Q(D) = Q(D′).

If the query Q is stable until time point ∞, we say it is globally stable, or simply, stable.

The interesting question from an application view is: Given an MDBP B, a query Q, and
a timestamp τ , is Q stable in B until τ? Stability until a time-point τ can be reduced to
global stability. One can modify a given MDBP by adding a new start place and connecting
it to the old start place via a transition that is enabled only for instances with timestamp
smaller than τ . Then a query Q is globally stable in the resulting MDBP iff in the original
MDBP it is stable until τ .

To investigate sources of complexity and provide suitable encodings into Datalog, we
identify five restrictions on MDBPs.

I Definition 2 (Restriction on MDBPs and MDBP Executions). Let B be an MDBP.

Positive: B is positive if execution conditions and writing rules contain only positive atoms;
Fresh: B is fresh if its configuration does not contain any running instances;
Acyclic: B is acyclic if the process net is cycle-free;
Rowo: B is rowo (= read-only-write-only) if the schema Σ of B can be split into two

disjoint schemas: the reading schema Σr and the writing schema Σw, such that execution
conditions and queries in the writing rules range over Σr while the heads range over Σw;

ICDT 2016

16:6 Query Stability in Monotonic Data-Aware Business Processes

Closed: an execution of B is closed if it contains only transition traversals and no new
instances are started.

We will develop methods for stability checking in MDBPs for all combinations of those
five restrictions. For convenience, we will say that an MDBP B is closed if we consider only
closed executions of B. A singleton MDBP is a closed MDBP with a single instance in the
initial configuration.

Complexity Measures. The input for our decision problem are an MDBP B = 〈P, I,D〉,
consisting of a process model P , an instance part I, a database D and a timestamp τ , and a
query Q. The question is: Is Q globally stable in 〈P, I,D, τ〉? We refer to process, instance,
data, and query complexity if all parameters are fixed, except the process model, the instance
part, the database, or the query, respectively.

Roadmap. As a summary of our results, Table 1 presents the complexity of the possible
variants of query stability. Each section of the sequel will cover one row.

Datalog Notation. We assume familiarity with Datalog concepts such as least fixpoint and
stable model semantics, and query answering over Datalog programs under both semantics.
We consider Datalog programs that are recursive, non-recursive, positive, semipositive, with
negation, or with stratified negation [9]. We write Π ∪ D to denote a program where Π is a
set of rules and D is a set of facts.

4 Undecidable MDBPs

With negation in execution conditions and writing rules, we can create MDBPs that simulate
Turing machines (TMs). Consequently, in the general variant query stability is undecidable.

Due to lack of space we only provide an intuition. To show undecidability in data
complexity, we define a database schema that allows us to store a TM and we construct a
process model that simulates the executions of the stored TM. MDBPs cannot update facts
in the database. However, we can augment relations with an additional version argument
and simulate updates by adding new versions of facts. Exploiting negation in conditions
and rules we can then refer to the last version of a fact. To simulate the TM execution, the
process model uses fresh constants to model (i) an unbounded number of updates of the
TM configurations (= number of execution steps in the TM), and (ii) a potentially infinite
tape. The TM halts iff the process produces the predicate dummy. Undecidability in process
complexity follows from undecidability in data complexity, since a process can first write the
encoding of the TM into an initially empty database. Similarly, we obtain undecidability in
instance complexity using instances that write the encoding of the TM at the beginning. To
obtain undecidability in query complexity we extend the encoding for data complexity such
that the database encodes a universal TM and an input of the TM is encoded in the query.

I Theorem 3 (Undecidability). Query stability in MDBPs is undecidable in data, process
and query complexity. It is also undecidable in instance complexity except for fresh variants
for which it is constant. Undecidability already holds for acyclic MDBPs.

In our reduction it is the unbounded number of fresh instances that are causing writing
rules to be executed an unbounded number of times, so that neither cycles nor existing
instances are contributing to undecidability. In the sequel we study MDBPs that are positive,
closed, or rowo, and show that in all three variants stability is decidable.

O. Savković, E. Marengo, and W. Nutt 16:7

5 Positive Closed MDBPs

In cyclic positive MDBPs, executions can be arbitrarily long. Still, in the absence of fresh
instances, it is enough to consider executions of bounded length to check stability. Consider a
positive MDBP B = 〈P, C〉, possibly with cycles and disallowing fresh instances to start, with
c different constants, r relations, k running instances, m transitions and a as the maximal
arity of a relation in P. We observe:
(i) For each relation R in P there are up to carity(R) new R-facts that B can produce. Thus,
B can produce up to rca new facts in total.

(ii) It is sufficient to consider executions that produce at least one new fact each mk steps.
An execution that produces no new facts in mk steps has at least one instance that in
those mk steps visits the same place twice without producing a new fact; those steps
can be canceled without affecting the facts that are produced.

(iii) Hence, it is sufficient to consider executions of maximal length mkrca.

Among these finitely many executions, it is enough to consider those that produce a
maximal set of new facts. Since a process instance may have the choice among several
transitions, there may be several such maximal sets. We identify a class of executions in
positive closed MDBPs, called greedy executions, that produce all maximal sets.

Greedy Executions. Intuitively, in a greedy execution instances traverse all cycles in the
net in all possible ways and produce all that can be produced before leaving the cycle. To
formalize this idea we identify two kinds of execution steps: safe steps and critical steps.
A safe step is an execution step of an instance after which, given the current state of the
database, the instance can return to its original place. A critical step is an execution step
that is not safe. Based on this, we define greedy sequences and greedy executions. A greedy
sequence is a sequence of safe steps that produces the largest number of new facts possible.
A greedy execution is an execution where greedy sequences and critical steps alternate.

Let Υ be a greedy execution with i alternations of greedy sequences and critical steps.
In the following, we characterize which are the transitions that instances traverse in the
i + 1-th greedy sequence and then in the i + 1-th critical step. For a process instance o
and the database DΥ produced after Υ we define the enabled graph NΥ,o as the multigraph
whose vertices are the places of N (i.e., the process net of B) and edges those transitions
of N that are enabled for o given database DΥ. Let SCC (NΥ,o) denote the set of strongly
connected components (SCCs) of NΥ,o. Note that two different instances may have different
enabled graphs and thus different SCCs. For a place p, let Np

Υ,o be the SCC in SCC (NΥ,o)
that contains p. Suppose that o is at place p after Υ. Then in the next greedy sequence,
each instance o traverses the component Np

Υ,o in all possible ways until no new facts can be
produced, meaning that all instances traverse in an arbitrary order. Conversely, the next
critical step is an execution step where an instance o traverses a transition that is not part of
Np

Υ,o, and thus it leaves the current SCC. We observe that when performing safe transitions
new facts may be written and new transitions may become executable. This can make SCCs
of NΥ,o to grow and merge, enabling new safe steps. With slight abuse of notation we denote
such maximally expanded SCCs with NΥ,o, and with Np

Υ,o the maximal component that
contains p.

Properties of Greedy Executions. We identify three main properties of greedy executions.
A greedy execution is characterized by its critical steps, because an instance may have to
choose one among several possible critical steps. In contrast, how safe steps compose a

ICDT 2016

16:8 Query Stability in Monotonic Data-Aware Business Processes

greedy sequence is not important for stability because all greedy sequences produce the
same (maximal) set of facts.
A greedy execution in an MDBP with m transitions and k instances can have at most
mk critical steps. The reason is that an execution step can be critical only the first time
it is executed, and any time after that it will be a safe step.
Each execution can be transformed into a greedy execution such that if a query is instable
in the original version then it is instable also in the greedy version. In fact, an arbitrary
execution has at most mk critical steps. One can construct a greedy version starting
from those critical steps, such that the other steps are part of the greedy sequences.

I Lemma 4. For each closed execution Υ in a positive MDBP B that produces the set of
ground atoms W , there exists a greedy execution Υ′ in B that also produces W .

Therefore, to check stability it is enough to check stability over greedy executions. In the
following we define Datalog rules that compute facts produced by greedy executions.

Encoding into Datalog. Let B = 〈P, I,D〉 be a positive MDBP with m transitions and k
instances. Since critical steps uniquely characterize a greedy execution, we use a tuple of size
up to mk to encode them. For example, if in a greedy execution Υ at the first critical step
instance ol1 traverses transition th1 , in the second ol2 traverses th2 , and so on up to step i,
we encode this with the tuple

ω̄ = 〈ol1 , th1 , . . . , oli
, thi
〉.

Next, we define the relations used in the encoding.
(i) For each relation R in P we introduce relations Ri (for i up to mk) to store all R-facts

produced by an execution with i critical steps. Let Υ be the execution from above and
let 〈ol1 , th1 , . . . , oli , thi〉 be the tuple representing it. Then, a fact of relation Ri has the
form Ri(ol1 , th1 , . . . , oli

, thi
; s̄), and it holds iff Υ produces the fact R(s̄). Later on we

use ω̄ to represent the tuple 〈ol1 , th1 , . . . 〉. Facts of Ri are then represented as Ri(ω̄; s̄).
For convenience, we use a semicolon (;) instead of a comma (,) to separate encodings of
different types in the arguments.

(ii) To record the positions of instances after each critical step we introduce relations Statei

such that Statei(ω̄; p1, . . . , pk) encodes that after Υ is executed, instance o1 is at p1, o2
is at p2, and so on.

(iii) To store the SCCs of the enabled graph we introduce relations SCC i such that for a
process instance o and a place p, the transition t belongs to Np

Υ,o iff SCC i(ω̄; o, p, t) is
true.

(iv) To compute the relations SCCi, we first need to compute which places are reachable by
an instance o from place p. For that we introduce auxiliary relations Reachi such that in
the enabled graph NΥ,o instance o can reach place p′ from p iff Reachi(ω̄; o, p, p′) is true.

(v) Additionally, we introduce the auxiliary relation In0 that associates instances with their
In-records, that is In0(o; s̄) is true iff the instance o has input record In(s̄). With slight
abuse of notation, we use ω̄ to denote also the corresponding greedy closed execution Υ.
In the following we define a Datalog program that computes the predicates introduced

above for all possible greedy executions. The program uses stratified negation.

Initialization. For each relation R in P we introduce the initialization rule R0(X)← R(X)
to store what holds before any critical step is made. Then we add the fact rule State0(p1,

. . . , pk)← true if in the initial configuration o1 is at place p1, o2 at p2, and so on.

O. Savković, E. Marengo, and W. Nutt 16:9

Greedy Sequence: Traversal Rules. Next, we introduce rules that compute enabled graphs.
The relation Reachi contains the transitive closure of the enabled graph Nω̄,o for each o

and ω̄, encoding a greedy execution of length i. First, a transition t from q to be p gives rise
to an edge in the enabled graph Nω̄,o if instance o can traverse that t:

Reachi(W ;O, q, p)← Ei
t(W ;O).

Here, Ei
t(W ;O) is a shorthand for the condition obtained from Et by replacing In(s̄) with

In0(O; s̄) and by replacing each atom R(v̄) with Ri(W ; v̄). The tuple W consists of 2i many
distinct variables to match every critical execution with i steps. It ensures that only facts
produced by W are considered. The transitive closure is computed with the following rule:

Reachi(W ;O,P1, P3)← Reachi(W ;O,P1, P2),Reachi(W ;O,P2, P3).

Based on Reachi, SCC i is computed by including every transition t from q to p that an
instance can reach, traverse, and from where it can return to the current place:

SCC i(W ;O,P, t)← Reachi(W ;O,P, q), Ei
t(W ;O),Reachi(W ;O, p, P).

Critical Steps: Traversal Rules. We now want to record how an instance makes a critical
step. An instance oj can traverse transition t from q to p at the critical step i+ 1 if
(i) oj is at some place in Nq

ω̄,oj
at step i,

(ii) it satisfies the execution condition Et,
(iii) and by traversing t it leaves the current SCC.
The following traversal rule captures this:

Statei+1(W, oj , t;P1, . . . , Pj−1, p, Pj+1, . . . , Pk)←
Statei(W ;P1, . . . , Pj−1, P, Pj+1, . . . , Pk),Reachi(W ; oj , P, q),Reachi(W ; oj , q, P), (1)
Ei

t(W ; oj),¬SCC i(W ; oj , P, t). (2)

Here, the condition (i) is encoded in line (1), and (ii) and (iii) are encoded in line (2).

Generation Rules. A fact in Ri+1 may hold because
(i) it has been produced by the current greedy sequence or by the last critical step, or
(ii) by some of the previous sequences or steps.
Facts produced by previous sequences or steps are propagated with the copy rule: Ri+1(W,

O, T ;X) ← Statei+1(W,O, T ;), Ri(W ;X), copying facts R(X) holding after W to all
extensions of W .

Then we compute the facts produced by the next greedy sequence. For each instance oj ,
being at some place pj after the last critical step in ω̄, and for each transition t that is in
N

pj

ω̄,oj
, with writing rule R(ū)← Bt(ū), we introduce the following greedy generation rule:

Ri(W ; ū)← Statei(W ; , . . . , , Pj , , . . . ,),SCC i(W ; oj , Pj , t), Bi
t(W ; oj ; ū),

where condition Bi
t(W ;O; ū) is obtained similarly as Ei

t(W ;O). In other words, all transitions
t that are in Npj

ω̄,oj
are fired simultaneously, and this is done for all instances.

The facts produced at the next critical step by traversing t, which has the writing
rule R(ū) ← Bt(ū), are generated with the critical generation rule: Ri+1(W,O, t; ū) ←
Statei+1(W,O, t;), Bi

t(W ;O; ū).
Let Πpo,cl

P,I be the program encoding the positive closed B = 〈P, I,D〉 as described above.

I Lemma 5. Let ω̄ be a greedy execution in the positive closed B = 〈P, I,D〉 of length i and
R(s̄) be a fact. Then R(s̄) is produced by ω̄ iff Πpo,cl

P,I ∪ D |= Ri(ω̄; s̄).

ICDT 2016

16:10 Query Stability in Monotonic Data-Aware Business Processes

Test Program. We want to test the stability of Q(X)← R1(ū1), . . . , Rn(ūn). We collect
all potential Q-answers using the relation Q′. A new query answer may be produced by
an execution of any size i up to mk. Thus, for each execution of a size i from 0 to mk we
introduce the Q′-rule

Q′(X)← Ri
1(W ; ū1), . . . , Ri

n(W ; ūn). (3)

Then, if there is a new query answer, the test rule “Instable← Q′(X),¬Q(X)” fires the fact
Instable. Let Πtest

P,I,Q be the test program that contains Q, the Q′-rules, and the test rule.

I Theorem 6. Q is instable in the positive closed B iff Πpo,cl
P,I ∪ D ∪Πtest

P,I,Q |= Instable.

Data and Process Complexity. Since Πpo,cl
P,I ∪D∪Πtest

P,I,Q is a Datalog program with stratified
negation, for which reasoning is as complex as for positive Datalog, we obtain as upper
bounds ExpTime for process and combined complexity, and PTime for data complexity [9].
We show that these are also lower bounds, even for singleton MDBPs. This reduction can
also be adapted for acyclic fresh MDBPs, which we study in Section 8.

I Lemma 7. Stability is ExpTime-hard in process and PTime-hard in data complexity
for
(a) positive singleton MDBPs under closed executions, and
(b) positive acyclic fresh MDBPs.

Proof Sketch.
(a) We encode query answering over a Datalog program Π ∪ D into stability checking. Let

A be a fact. We construct a positive singleton MDBP 〈Ppo,cl
Π,A , I0,D〉, where there is a

transition for each rule and the single process cycles to produce the least fixed point
(LFP) of the program. In addition, the MDBP inserts the fact dummy if A is in the
LFP. Then test query Qtest ← dummy is stable in 〈Ppo,cl

Π,A , I0,D〉 iff Π ∪ D 6|= A.
(b) Analogous, letting fresh instances play the role of the cycling singleton instance.

J

Instance Complexity. Instance complexity turns out to be higher than data complexity.
Already for acyclic positive closed MDBPs it is co-NP-hard because
(i) process instances may non-deterministically choose a transition, which creates exponen-

tially many combinations, even in the acyclic variant; and
(ii) instances may interact by reading data written by other instances.

I Lemma 8. There exist a positive acyclic process model P0, a database D0, and a test query
Qtest with the following property: for every graph G one can construct an instance part IG

such that G is not 3-colorable iff Qtest is stable in 〈P0, IG,D0〉 under closed executions.

Clearly, Lemma 8 implies that checking stability for closed MDBPs is co-NP-hard in
instance complexity. According to Theorem 11 (Section 6), instance complexity is co-NP
for all closed MDBPs, which implies co-NP-completeness even for the acyclic variant.

Query Complexity. To analyze query complexity we first show how difficult it is to check
whether a query returns the same answer over a database and an extension of that database.

I Lemma 9 (Answer Difference). For every two fixed databases D ⊆ D′, checking whether a
given conjunctive query Q satisfies Q(D) = Q(D′) is in ΠP

2 in the query size. Conversely, there
exist databases D0 ⊆ D′0 such that checking for a conjunctive query Q whether Q(D0) = Q(D′0)
is ΠP

2 -hard in the query size.

O. Savković, E. Marengo, and W. Nutt 16:11

Proof Idea. The first claim holds since one can check Q(D) $ Q(D′) in NP using an
NP oracle. We show the second by reducing the 3-coloring extension problem for graphs [2].

J

Building upon Lemma 9, we can define an MDBP that starting from D0 produces D′0. In
fact, for such an MDBP it is enough to consider the simplest variants of rowo.
I Proposition 10. Checking stability is ΠP

2 -hard for
(a) positive fresh acyclic rowo MDBPs, and
(b) positive closed acyclic rowo singleton MDBPs.

Given B = 〈P, I,D〉, there are finitely many maximal extensions D′ of D that can be
produced by B. We can check stability of a query Q by finitely many checks whether
Q(D) = Q(D′). Since each such check is in ΠP

2 , according to Lemma 9, the entire check is in
ΠP

2 . Thus, stability is ΠP
2 -complete in query complexity.

6 Closed MDBPs

In the presence of negation, inserting new facts may disable transitions. During an execution, a
transition may switch many times between being enabled and disabled, and greedy executions
could have exponentially many critical steps. An encoding along the ideas of Section 5
would lead to a program of exponential size. This would give us an upper bound of double
exponential time for combined complexity. Instead, we establish a correspondence between
stability and brave query answering for Datalog with (unstratified) negation under stable
model semantics (SMS) [9]. Due to lack of space we only state the results.
I Theorem 11. For every closed MDBP B = 〈P, I,D〉 and every query Q one can construct
a Datalog program with negation Πcl

P , based on P, a database DI , based on D and I, and a
test program Πtest

Q , based on Q, such that the following holds:
Q is instable in B = 〈P, I,D〉 iff Πcl

P ∪ DI ∪Πtest
Q |=brave Instable.

Proof Idea. For the same reason as in the positive variant, it is sufficient to consider
executions of maximal length mkrca. Program Πcl

P contains two parts:
(i) a program that generates a linear order of size mkrca (with parameters m, k, r, c, a

defined as in Section 5), starting from an exponentially smaller order, that is used to
enumerate execution steps, and

(ii) a program that “guesses” an execution of size up to mkrca by selecting for each execution
step one instance and one transition, and that produces the facts that would be produced
by the guessed execution. Then each execution corresponds to one stable model. The
test program Πtest

Q checks if any of the guessed executions yields a new query answer.
J

In Theorem 11, the process is encoded in the program rules while data and instances are
encoded as facts. Since brave reasoning under SMS is NExpTime in program size and NP
in data size [9], we have that process and combined complexity are in co-NExpTime, and
data and instance complexity are in co-NP. From this and Lemma 8 it follows that instance
complexity is co-NP-complete. To show that stability is co-NExpTime-complete in process
and co-NP-complete in data complexity we encode brave reasoning into stability. Query
complexity is ΠP

2 -complete for the same reasons as in the positive variant.
I Theorem 12. For every Datalog program Π ∪ D, possibly with negation, and fact A, one
can construct a singleton MDBP 〈PΠ,A, I0,D〉 such that for the query Qtest ← dummy we
have: Π ∪D |=brave A iff Qtest is stable in 〈PΠ,A, I0,D〉 under closed executions.

ICDT 2016

16:12 Query Stability in Monotonic Data-Aware Business Processes

7 Acyclic Closed MDBPs

If a process net is cycle-free, all closed executions have finite length. More specifically, in
an acyclic MDBP with m transitions and k running instances, the maximal length of an
execution is mk. Based on this observation, we modify the encoding for the positive closed
variant in Section 5 so that it can cope with negation and exploit the absence of cycles.

For an acyclic MDBP, there cannot exist any greedy steps, which would stay in a strongly
connected component of the net. Therefore, we drop the encodings of greedy traversals and
the greedy generation rules. We keep the rules for critical steps, but drop the atoms of
relations Reachi and SCC i. In contrast to the positive closed variant, we may have negation
in the conditions Et and Bt. However, the modified Datalog program is non-recursive, since
each relation Ri and Statei is defined in terms of Rj ’s and Statej ’s where j < i.

Let Πac,cl
P,I be the program encoding an acyclic B = 〈P, I,D〉 as described above and let

Πtest
P,I,Q be the test program as in the cyclic variant.

I Theorem 13. Q is instable in the closed acyclic B iff Πac,cl
P,I ∪ D ∪Πtest

P,I,Q |= Instable.

Complexity. As upper bounds for combined and data complexity, the encoding gives us the
analogous bounds for non-recursive Datalog¬ programs, that is, PSpace in combined and
AC0 in data complexity [9]. Already in the positive variant, we inherit PSpace-hardness of
process complexity (and therefore also of combined complexity) from the program complexity
of non-recursive Datalog. We obtain matching lower bounds by a reverse encoding.

I Lemma 14. For every non-recursive Datalog program Π and every fact A, one can construct
a singleton acyclic positive MDBP 〈PΠ,A, C0〉 such that for the query Qtest ← dummy we
have: Π 6|= A iff Qtest is stable in 〈PΠ,A, C0〉 under closed executions.

We observe that for closed executions, the cycles increase the complexity, and moreover,
cause a split between variants with and without negation. Lemma 8 and Theorem 11 together
imply that instance complexity is co-NP-complete. Query complexity is ΠP

2 -complete for
the same reasons as in other closed variants.

8 Positive Fresh MDBPs

All decidable variants of MDBPs that we investigated until now were so because we allowed
only closed executions. In this and the next section we show that decidability can also be
guaranteed if conditions and rules are positive, or if relations are divided into read and write
relations (rowo). We look first at the case where initially there are no running instances.

When fresh instances start, their input can bring an arbitrary number of new constants
into the database. Thus, processes can produce arbitrarily many new facts. First we show
how infinitely many executions of a positive or rowo MDBP can be faithfully abstracted to
finitely many over a simplified process such that a query is stable over the original process iff
it is stable over the simplified one. For such simplified positive MDBPs, we show how to
encode stability checking into query answering in Datalog.

Abstraction Principle. Let B = 〈P, I,D, τB〉 be a positive or rowo MDBP and let Q be
a query that we want to check for stability. Based on B and Q we construct an MDBP
B′ = 〈P ′, I,D, τB〉 that has the same impact on the stability of Q but uses at most linearly
many fresh values from the domain.

O. Savković, E. Marengo, and W. Nutt 16:13

Let adom be the active domain of B and Q, that is the set of all constants appearing
in B and Q. Let τ1, . . . , τn be all timestamps including τB that appear in comparisons in
B such that τi < τi+1. We introduce n+ 1 many fresh timestamps τ ′0, . . . , τ ′n 6∈ adom such
that τ ′0 < τ1 < τ ′1 < · · · < τn < τ ′n. If there are no comparisons in B we introduce one fresh
timestamp τ ′0. Further, let a be a fresh value such that a 6∈ adom. Let adom∗ = adom ∪ {τ ′0,
. . . , τ ′n} ∪ {a} be the extended active domain.

Then, we introduce the discretization function δB : domQ+ → domQ+ that based on adom∗

“discretizes” domQ+ as follows: for each τ ∈ Q+

(i) δB(τ) = τ if τ = τi for some i;
(ii) δB(τ) = τ ′i if τi < τ < τi+1 for some i;
(iii) δB(τ) = τ ′0 if τ < τ1;
(iv) and δB(τ) = τ ′n if τn < τ ;
(v) and for c ∈ dom if c ∈ adom∗ then δB(c) = c; otherwise δB(c) = a.
If B has no comparisons then δB(τ) = τ ′0 for each τ . We extend δB to all syntactic objects
containing constants, including executions. Now, we define P ′ to be as P, except that we
add conditions on each outing transition from start such that only instances with values
from adom∗ can traverse, and instances with the timestamps greater or equal than τB.

I Proposition 15 (Abstraction). Let Υ = C C1 · · · Cm be an execution in B that
produces a set of facts W , and let Υ′ = δBΥ = δBC δBC1 · · · δBCm. Further, let Υ′′
be an execution in B′. Then the following holds:
(a) Υ′ is an execution in B′ that produces δBW ;
(b) Q(D) 6= Q(D ∪W) iff Q(D) 6= Q(D ∪ δBW);
(c) Υ′′ is an execution in B.

In other words, each execution in B can be δB-abstracted and it will be an execution
in B′, and more importantly, an execution in B produces a new query answer if and only if
the δB-abstracted version produces a new query answer in B′.

Encoding into Datalog. Since B′ allows only finitely many new values in fresh instances,
there is a bound on the maximal extensions of D that can be produced. Moreover, since there
is no bound on the number of fresh instances that can start, there is only a single maximal
extension of D, say D′, that can result from B′. We now define the program Πpo,fr

P,Q ∪D whose
least fixpoint is exactly this D′.

First, we introduce the relations that we use in the encoding. To record which fresh
instances can reach a place p in P , we introduce for each p a relation Inp with the same arity
as In. That is, Inp(s̄) evaluates to true in the program iff an instance with the input record
In(s̄) can reach p. As in the closed variant, we use a primed version R′ for each relation R
to store R-facts produced by the process.

Now we define the rules. Initially, all relevant fresh instances (those with constants
from adom∗) sit at the start place. We encode this by the introduction rule: Instart(X1, . . . ,

Xn)← adom∗(X1), . . . , adom∗(Xn). Here, with slight abuse of notation, adom∗ represents a
unary relation that we initially instantiate with the constants from adom∗. Also initially, we
make a primed copy of each database fact, that is, for each relation R in P we define the
copy rule: R′(X)← R(X).

Then we encode instance traversals. For every transition t that goes from a place q to a
place p, we introduce a traversal rule that mimics how instances having reached q move on to
p, provided their input record satisfies the execution condition for t. Let Et = In(s̄), R1(s̄1),
. . . , Rl(s̄l), Gt be the execution condition for t, where Gt comprises the comparisons. We

ICDT 2016

16:14 Query Stability in Monotonic Data-Aware Business Processes

define the condition E′t(s̄) as Inq(s̄), R′1(s̄1), . . . , R′l(s̄l), Gt, obtained from Et by renaming the
In-atom and priming all database relations. Then, the traversal rule for t is: Inp(s̄)← E′t(s̄).
Here, E′t(s̄) is defined over the primed signature since a disabled transition may become
enabled as new facts are produced.

Which facts are produced by traversing t is captured by a generation rule. Let Wt :
R(ū)← Bt(ū) be the writing rule for t, with the query Bt(ū)← In(s̄′), R1(s̄′1), . . . , Rn(s̄′n),
Mt, whereMt comprises the comparisons. Define B′t(s̄′, ū)← Inq(s̄′), R′1(s̄′1), . . . , R′n(s̄′n),Mt.
The corresponding generation rule is R′(ū) ← E′t(s̄), B′t(s̄′, ū), s̄ = s̄′, which combines the
constraints on the instance record from Et and Wt.

Let Πpo,fr
P,Q be the program defined above, encoding the positive fresh B′ obtained from B.

The program is constructed in such a way that it computes exactly the atoms that are in the
maximal extension D′ of D produced by B′. Let R′(v̄) be a fact.

I Lemma 16. There is an execution in the positive fresh B producing R(v̄) iff
Πpo,fr
P,Q ∪ D |= R′(v̄).

Let Πtest
Q be defined like Πtest

P,I,Q in Section 5, except that there is only one rule for Q′,
obtained from (3) by replacing Ri

j with R′j . Then Proposition 15 and Lemma 16 imply:

I Theorem 17. Q is instable the positive fresh B iff Πpo,fr
P,Q ∪ D ∪Πtest

Q |= Instable.

Complexity. Since Πpo,fr
P,Q ∪D∪Πtest

Q is a program with stratified negation, stability checking
over positive fresh MDBPs is in ExpTime for process and combined complexity, and in
PTime for data complexity [9]. From Lemma 7 we know that these are also lower bounds for
the respective complexity measures. Query complexity is ΠP

2 -complete as usual, and instance
complexity is trivial for fresh processes.

Positive MDBPs. To reason about arbitrary positive MDBPs, we can combine the encoding
for the fresh variant (Πpo,fr

P,Q) from this section and the one for the closed variant from Section 5
(Πpo,cl
P,I). The main idea is that to obtain maximal extensions, each greedy execution sequence

is augmented by also flooding the process with fresh instances. The complexities for the full
positive variant are inherited from the closed variant.

9 Read-Only-Write-Only MDBPs

In general MDBPs, processes can perform recursive inferences by writing into relations from
which they have read. It turns out that if relations are divided into read-only and write-only,
the complexity of stability reasoning drops significantly.

The main simplifications in this case are that
(i) one traversal per instance and transition suffices, since no additional fact can be produced

by a second traversal;
(ii) instead of analyzing entire executions, it is enough to record which paths an individual

process instance can take and which facts it produces, since instances cannot influence
each other.

As a consequence, the encoding program can be non-recursive and it is independent of the
instances in the process configuration. A complication arises, however, since the maximal
extensions of the original database D by the MDBP B are not explicitly represented by this
approach. They consist of unions of maximal extensions by each instance and are encoded
into the test query, which is part of the program.

O. Savković, E. Marengo, and W. Nutt 16:15

I Theorem 18. For every rowo MDBP B = 〈P, I,D〉 and query Q one can construct a
nonrecursive Datalog program Πro

P,Q, based on P and Q, and a database instance DI , based
on D and I, such that: Q is instable in B iff Πro

P,Q ∪ DI |= Instable.

From the theorem it follows that data and instance complexities are in AC0, except for
instance complexity in fresh variants, for which it is constant.

Process, Query and Combined Complexity. Since CQ evaluation can be encoded into an
execution condition, this gives us co-NP-hardness of stability in process complexity. We
also show that it is in co-NP. First we note that due to the absence of recursion, one can
check in NP whether a set of atoms is produced by a process instance.

I Proposition 19. Let B be a singleton rowo MDBP. One can decide in NP, whether for
given facts A1, . . . , Am, there is an execution in B that produces A1, . . . , Am.

Next, suppose that I, D and Q(v̄)← B1, . . . , Bm are a fixed instance part, database and
query. Given a process model P, we want to check that Q is instable in BP = 〈P, I,D〉.
Making use of the abstraction principle for fresh constants, we can guess in polynomial time
an instantiation B′1, . . . , B′n of the body of Q that returns an answer not in Q(D). Then we
verify that B′1, . . . , B′n are produced by BP . Such a verification is possible in NP according
to Proposition 19. We guess a partition of the set of facts B′1, . . . , B′n, guess one instance,
possibly fresh, for each component set of the partition, and verify that the component set is
produced by the instance. Since all verification steps were in NP, the whole check is in NP.

Query complexity is ΠP
2 -complete for the same reasons as in the general variant, and one

can show that this is also the upper-bound for the combined complexity.

10 Related Work

Traditional approaches for business process modeling focus on the set of activities to be
performed and the flow of their execution. These approaches are known as activity-centric. A
different perspective, mainly investigated in the context of databases, consists in identifying
the set of data (entities) to be represented and describes processes in terms of their possible
evolutions. These approaches are known as data-centric.

In the context of activity-centric processes, Petri Nets (PNs) have been used for the
representation, validation and verification of formal properties, such as absence of deadlock,
boundedness and reachability [26, 27]. In PNs and their variants, a token carries a limited
amount of information, which can be represented by associating to the token a set of variables,
like in colored PNs [18]. No database is considered in PNs.

Among data-centric approaches, Transducers [1, 25] were among the first formalisms
ascribing a central role to the data and how they are manipulated. These have been extended
to data driven web systems [11] to model the interaction of a user with a web site, which
are then extended in [10]. These frameworks express insertion and deletion rules using FO
formulas. The authors verify properties expressed as FO variants of LTL, CTL and CTL*
temporal formulas. The verification of these formulas results to be undecidable in the general
case. Decidability is obtained under certain restrictions on the input, yielding to ExpSpace
complexity for checking LTL formulas and co-NExpTime and ExpSpace for CTL and
CTL* resp., in the propositional case.

Data-Centric Dynamic Systems (DCDSs) [4] describe processes in terms of guarded FO
rules that evolve the database. The authors study the verification of temporal properties

ICDT 2016

16:16 Query Stability in Monotonic Data-Aware Business Processes

expressed in variants of µ-calculus (that subsumes CTL*-FO). They identify several undecid-
able classes and isolate decidable variants by assuming a bound on the size of the database
at each step or a bound on the number of constants at each run. In these cases verification
is ExpTime-complete in data complexity.

Overall, both frameworks are more general than MDBPs, since deletions and updates
of facts are also allowed. This is done by rebuilding the database after each execution step.
Further, our stability problem can be encoded as FO-CTL formula. However, our decidability
results for positive MDBPs are not captured by the decidable fragments of those approaches.
In addition, the authors of the work above investigate the borders of decidability, while we
focus on a simpler problem and study the sources of complexity. Concerning the process
representation, both approaches adopt a rule-based specification. This makes the control
flow more difficult to grasp, in contrast to activity-centric approaches where the control flow
has an explicit representation.

Artifact-centric approaches [17] use artifacts to model business relevant entities. In [6,
14, 15] the authors investigate the verification of properties of artifact-based processes such
as reachability, temporal constraints, and the existence of dead-end paths. However, none
of these approaches explicitly models an underlying database. Also, the authors focus on
finding suitable restrictions to achieve decidability, without a fine-grained complexity analysis
as in our case.

Approaches in [3] and [5], investigate the challenge of combining processes and data,
however, focusing on the problem of data provenance and of querying the process structure.

In [12, 20] the authors study the problem of determining if a query over views is inde-
pendent from a set of updates over the database. The authors do not consider a database
instance nor a process. Decidability in rowo MDBPs can be seen as a special case of those.

In summary, our approach to process modeling is closer to the activity-centric one but we
model manipulation of data like in the data-centric approaches. Also, having process instances
and MDBPs restrictions gives finer granularity compared to data-centric approaches.

11 Discussion and Conclusion

Discussion. An interesting question is how complex stability becomes if MDBPs are not
monotonic, i.e., if updates or deletions are allowed. In particular, for positive MDBPs we can
show the following. In acyclic positive closed MDBPs updates and deletions can be modeled
using negation in the rules, thus stability stays PSpace-complete. For the cyclic positive
closed variant, allowing updates or deletions is more powerful than allowing negation, and
stability jumps to ExpSpace-completeness. For positive MDBPs with updates or deletions
stability is undecidable.

In case the initial database is not known, our techniques can be still applied since an
arbitrary database can be produced by fresh instances starting from an empty database.

Contributions. Reasoning about data and processes can be relevant in decision support to
understand how processes affect query answers.
1. To model processes that manipulate data we adopt an explicit representation of the control

flow as in standard BP languages (e.g., BPMN). We specify how data is manipulated as
annotations on top of the control flow.

2. Our reasoning on stability can be offered as a reasoning service on top of the query
answering that reports on the reliability of an answer. Ideally, reasoning on stability
should not bring a significant overhead on query answering in practical scenarios. Existing

O. Savković, E. Marengo, and W. Nutt 16:17

work on processes and data [4] shows that verification of general temporal properties is
typically intractable already measured in the size of the data.

3. In order to identify tractable cases and sources of complexity we investigated different
variants of our problem, by considering negation in conditions, cyclic executions, read
access to written data, presence of pending process instances, and the possibility to start
fresh process instances.

4. Our aim is to deploy reasoning on stability to existing query answering platforms such as
SQL and ASP [19]. For this reason we established different encodings into suitable variants
of Datalog, that are needed to capture the different characteristics of the problem. For
each of them we showed that our encoding is optimal. In contrast to existing approaches,
which rely on model checking to verify properties, in our work we rely on established
database query languages.

Open Questions. In our present framework we cannot yet model process instances with
activities that are running in parallel. Currently, we are able to deal with it only in case
instances do not interact (like in rowo). Also, we do not know yet how to reason about
expressive queries, such as conjunctive queries with negated atoms, and first-order queries.
From an application point of view, stability of aggregate queries and aggregates in the process
rules are relevant. A further question is how to quantify instability, that is, in case a query
is not stable, how to compute the minimal/maximal number of possible new answers.

Acknowledgments. This work was partially supported by the research projects MAGIC,
funded by the province of Bozen-Bolzano, and CANDy and PARCIS, funded by the Free
University of Bozen-Bolzano.

References
1 S. Abiteboul, V. Vianu, B.S. Fordham, and Y. Yesha. Relational Transducers for Electronic

Commerce. In PODS, pages 179–187, 1998. doi:10.1145/275487.275507.
2 M. Ajtai, R. Fagin, and L.J. Stockmeyer. The Closure of Monadic NP. J. Comput. Syst.

Sci., 60(3):660–716, 2000.
3 Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo, J. Stoyanovich, and V. Tannen.

Putting Lipstick on Pig: Enabling Database-Style Workflow Provenance. PVLDB, 5(4):346–
357, 2011.

4 B. Bagheri Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and M. Montali. Verification
of Relational Data-Centric Dynamic Systems with External Services. In PODS, pages
163–174, 2013. doi:10.1145/2463664.2465221.

5 C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes. In VLDB,
pages 343–354, 2006.

6 K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su. Towards Formal Analysis of
Artifact-Centric Business Process Models. In BPM, pages 288–304, 2007.

7 Bonitasoft. Bonita BPM. Accessed: 2015-12-16. URL: http://www.bonitasoft.com.
8 G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving Data Quality: Consistency and

Accuracy. In VLDB, pages 315–326, 2007.
9 E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of

Logic Programming. ACM Comput. Surv., 33(3):374–425, 2001.
10 A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic Verification of Data-Centric

Business Processes. In ICDT, pages 252–267, 2009. doi:10.1145/1514894.1514924.
11 A. Deutsch, L. Sui, and V. Vianu. Specification and Verification of Data-Driven Web

Services. In PODS, pages 71–82, 2004.

ICDT 2016

http://dx.doi.org/10.1145/275487.275507
http://dx.doi.org/10.1145/2463664.2465221
http://www.bonitasoft.com
http://dx.doi.org/10.1145/1514894.1514924

16:18 Query Stability in Monotonic Data-Aware Business Processes

12 C. Elkan. Independence of Logic Database Queries and Updates. In PODS, pages 154–160,
1990. doi:10.1145/298514.298557.

13 W. Fan, F. Geerts, and J. Wijsen. Determining the Currency of Data. ACM Trans.
Database Syst., 37(4):25, 2012.

14 C. E. Gerede, K. Bhattacharya, and J. Su. Static Analysis of Business Artifact-Centric
Operational Models. In SOCA, pages 133–140, 2007.

15 C. E. Gerede and J. Jianwen Su. Specification and Verification of Artifact Behaviors in
Business Process Models. In ICSOC, pages 181–192, 2007.

16 F. T. Heath, D. Boaz, M. Gupta, R. Vaculín, Y. Sun, R. Hull, and L. Limonad. Barcelona:
A Design and Runtime Environment for Declarative Artifact-Centric BPM. In ICSOC,
pages 705–709, 2013. doi:10.1007/978-3-642-45005-1_65.

17 R. Hull. Artifact-Centric Business Process Models: Brief Survey of Research Results and
Challenges. In OTM, pages 1152–1163, 2008.

18 K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and Validation of Concur-
rent Systems. Springer, 2009.

19 N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The
DLV System for Knowledge Representation and Reasoning. ACM Trans. Comput. Log.,
7(3):499–562, 2006.

20 A.Y. Levy and Y. Sagiv. Queries Independent of Updates. In VLDB, pages 171–181, 1993.
21 E. Marengo, W. Nutt, and O. Savković. Towards a Theory of Query Stability in Business

Processes. In AMW, volume 1189 of CEUR Workshop Proceedings, 2014.
22 Object Management Group. Business Process Model and Notation 2.0 (BPMN), Jan 2011.

URL: http://www.omg.org/spec/BPMN/2.0/.
23 S. Razniewski and W. Nutt. Completeness of Queries over Incomplete Databases. PVLDB,

4(11):749–760, 2011.
24 O. Savković, E. Marengo, and W. Nutt. Query Stability in Data-aware Business Processes.

Technical Report KRDB15-1, KRDB Research Center, Free Univ. Bozen-Bolzano, 2015.
URL: http://www.inf.unibz.it/krdb/pub/tech-rep.php.

25 M. Spielmann. Verification of Relational Transducers for Electronic Commerce. In PODS,
pages 92–103. ACM, 2000.

26 W.M.P. van der Aalst. Verification of Workflow Nets. In ICATPN, pages 407–426, 1997.
doi:10.1007/3-540-63139-9_48.

27 W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

http://dx.doi.org/10.1145/298514.298557
http://dx.doi.org/10.1007/978-3-642-45005-1_65
http://www.omg.org/spec/BPMN/2.0/
http://www.inf.unibz.it/krdb/pub/tech-rep.php
http://dx.doi.org/10.1007/3-540-63139-9_48

	Introduction
	Monotonic Data-Aware Business Processes
	The Query Stability Problem
	Undecidable MDBPs
	Positive Closed MDBPs
	Closed MDBPs
	Acyclic Closed MDBPs
	Positive Fresh MDBPs
	Read-Only-Write-Only MDBPs
	Related Work
	Discussion and Conclusion

