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Abstract
Provisioning is a technique for avoiding repeated expensive computations in what-if analysis.
Given a query, an analyst formulates k hypotheticals, each retaining some of the tuples of a
database instance, possibly overlapping, and she wishes to answer the query under scenarios,
where a scenario is defined by a subset of the hypotheticals that are “turned on”. We say that a
query admits compact provisioning if given any database instance and any k hypotheticals, one
can create a poly-size (in k) sketch that can then be used to answer the query under any of the
2k possible scenarios without accessing the original instance.

In this paper, we focus on provisioning complex queries that combine relational algebra
(the logical component), grouping, and statistics/analytics (the numerical component). We first
show that queries that compute quantiles or linear regression (as well as simpler queries that
compute count and sum/average of positive values) can be compactly provisioned to provide
(multiplicative) approximate answers to an arbitrary precision. In contrast, exact provisioning
for each of these statistics requires the sketch size to be exponential in k. We then establish
that for any complex query whose logical component is a positive relational algebra query, as
long as the numerical component can be compactly provisioned, the complex query itself can
be compactly provisioned. On the other hand, introducing negation or recursion in the logical
component again requires the sketch size to be exponential in k. While our positive results use
algorithms that do not access the original instance after a scenario is known, we prove our lower
bounds even for the case when, knowing the scenario, limited access to the instance is allowed.
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1 Introduction

“What if analysis” is a common technique for investigating the impact of decisions on outcomes
in science or business. It almost always involves a data analytics computation. Nowadays
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18:2 Algorithms for Provisioning Queries and Analytics

such a computation typically processes very large amounts of data and thus may be expensive
to perform, especially repeatedly. An analyst is interested in exploring the computational
impact of multiple scenarios that assume modifications of the input to the analysis problem.
Our general aim is to avoid repeating expensive computations for each scenario. For a given
problem, and starting from a given set of potential scenarios, we wish to perform just one
possibly expensive computation producing a small sketch (i.e., a compressed representation
of the input) such that the answer for any of the given scenarios can be derived rapidly from
the sketch, without accessing the original (typically very large) input. We say that the sketch
is “provisioned” to deal with the problem under any of the scenarios and following [13], we
call the whole approach provisioning. Again, the goal of provisioning is to allow an analyst to
efficiently explore a multitude of scenarios, using only the sketch and thus avoiding expensive
recomputations for each scenario.

In this paper, we apply the provisioning approach to queries that perform in-database
analytics [25]1. These are queries that combine logical components (relational algebra
and Datalog), grouping, and numerical components (e.g., aggregates, quantiles and linear
regression). Other analytics are discussed under further work.

Abstracting away any data integration/federation, we will assume that the inputs are
relational instances and that the scenarios are defined by a set of hypotheticals. We further
assume that each hypothetical indicates the fact that certain tuples of an input instance are
retained (other semantics for hypotheticals are discussed under further work).

A scenario consists of turning on/off each of the hypotheticals. Applying a scenario to
an input instance therefore means keeping only the tuples retained by at least one of the
hypotheticals that are turned on. Thus, a trivial sketch can be obtained by applying each
scenario to the input, solving the problem for each such modified input and collecting the
answers into the sketch. However, with k hypotheticals, there are exponentially (in k) many
scenarios. Hence, even with a moderate number of hypotheticals, the size of the sketch could
be enormous. Therefore, as part of the statement of our problem we will aim to provision a
query by an algorithm that maps each (large) input instance to a compact (essentially size
poly(k)) sketch.

I Example 1. Suppose a large retailer has many and diverse sales venues (e.g., its own
stores, its own web site, through multiple other stores, and through multiple other web
retailers). An analyst working for the retailer is interested in learning, for each product in,
say, “Electronics”, a regression model for the way in which the revenue from the product
depends on both a sales venue’s reputation (assume a numerical score) and a sales venue
commission (in %; 0% if own store). Moreover, the analyst wants to ignore products with
small sales volume unless they have a large MSRP (manufacturer’s suggested retail price).
Usually there is a large (possibly distributed/federated) database that captures enough
information to allow the computation of such an analytic query. For simplicity we assume in
this example that the revenue for each product ID and each sales venue is in one table and
thus we have the following query with a self-explanatory schema:

SELECT x.ProdID, LIN_REG(x.Revenue, z.Reputation, z.Commission) AS (B,A1,A2)
FROM RevenueByProductAndVenue x
INNER JOIN Products y ON x.ProdID=y.ProdID

1 In practice, the MADlib project [29] has been one of the pioneers for in-database analytics, primarily in
collaboration with Greenplum DB [21]. By now, major RDBMS products such as IBM DB2, MS SQL
Server, and Oracle DB already offer the ability to combine extensive analytics with SQL queries.
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INNER JOIN SalesVenues z ON x.VenueID=z.VenueID
WHERE y.ProdCategory="Electronics" AND (x.Volume>100 OR y.MSRP>1000)
GROUP BY x.ProdID

The syntax for treating linear regression as a multiple-column-aggregate is simplified for
illustration purposes in this example. Here the values under the attributes B,A1,A2 denote,
for each ProdID, the coefficients of the linear regression model that is learned, i.e., Revenue
= B + A1*Reputation + A2*Commission.

A desirable what-if analysis for this query may involve hypotheticals such as retaining
certain venue types, retaining certain venues with specific sales tax properties, retaining
certain product types (within the specified category, e.g., tablets), and many others. Each of
these hypotheticals can in fact be implemented as selections on one or more of the tables
in the query (assuming that the schema includes the appropriate information). However,
combining hypotheticals into scenarios is problematic. The hypotheticals overlap and thus
cannot be separated. With 10 (say) hypotheticals there will be 210 = 1024 (in practice
at least hundreds) of regression models of interest for each product. Performing a lengthy
computation for each one of these models is in total very onerous. Instead, we can provision
the what-if analysis of this query as the query in this example falls within the class covered
by our positive results.

Our results. Our goal is to characterize the feasibility of provisioning with sketches of
compact size (see Section 2 for a formal definition) for a practical class of complex queries
that consist of a logical component (relational algebra or Datalog), followed by a grouping
component, and then by a numerical component (aggregate/analytic) that is applied to each
group (a more detailed definition is given in Section 5).

The main challenge that we address, and the part where our main contribution lies, is
the design of compact provisioning schemes for numerical queries, specifically linear (`2)
regression and quantiles. Together with the usual count, sum and average, these are defined
in Section 4 as queries that take a set of numbers or of tuples as input and return a number or
a tuple of constant width as output. It turns out that if we expect exact answers, then none
of these queries can be compactly provisioned. However, we show that compact provisioning
schemes indeed exist for all of them if we relax the objective to computing near-exact answers
(see Section 2 for a formal definition). The following theorem summarizes our results for
numerical queries (see Section 4):

I Theorem 2 (Informal). The quantiles, linear (`2) regression, count, and sum/average (of
positive numbers) queries can be compactly provisioned to provide (multiplicative) approximate
answers to an arbitrary precision, while their exact provisioning requires the sketch size to be
exponential in the number of hypotheticals.

Our results on provisioning numerical queries can then be used for complex queries as
the following theorem summarizes (see Section 5):

I Theorem 3 (Informal). Any complex query whose logical component is a positive relational
algebra query can be compactly provisioned to provide an approximate answer to an arbitrary
precision as long as its numerical component can be compactly provisioned for the same
precision. On the other hand, introducing negation or recursion in the logical component,
requires the sketch size to be exponential in the number of hypotheticals.

Our techniques. At a high-level, our approach for compact provisioning can be described
as follows. We start by building a sub-sketch for each hypothetical by focusing solely on
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18:4 Algorithms for Provisioning Queries and Analytics

the retained tuples of each hypothetical individually. We then examine these sub-sketches
against each other and collect additional information from the original input to summarize
the effect of appearance of other hypotheticals to each already computed sub-sketch. The
first step usually involves using well-known (and properly adjusted) sampling or sketching
techniques, while the second step, which is where we concentrate the bulk of our efforts, is
responsible for gathering the information required for combining the sketches and specifically
dealing with overlapping hypotheticals. Given a scenario, we answer the query by fetching
the corresponding sub-sketches and merging them together; the result is a new sketch that
act as sketch for the input consist of the union of the hypotheticals.

We prove our lower bounds by first identifying a central problem, i.e., the Coverage
problem (see Problem 8), with provably large space requirement for any provisioning scheme,
and then use reductions from this problem to establish the lower bound for other queries of
interest. The space requirement of the Coverage problem itself is proven using simple tools
from information theory.

Comparison with existing work. Our techniques for compact provisioning share some
similarities with those used in data streaming and in the distributed computation model of [12,
35], and in particular linear sketching, which corresponds to applying a linear transformation
to the input data to obtain the sketch. However, due to overlap in the input, our sketches
are required to to be composable with the union operation (instead of the addition operation
obtained by linear sketches) and hence linear sketching techniques are not directly applicable.

Dealing with duplicates in the input (similar to the overlapping hypotheticals) has also
been considered in the streaming and distributed computation models (see, e.g., [10, 7]),
which consider sketches that are “duplicate-resilient”. Indeed, for simple queries like count, a
direct application of these sketches is sufficient for compact provisioning (see Section 4.1). We
also remark that the Count-Min sketch [9] can be applied to approximate quantiles even in
the presence of duplication (see [7]), i.e., is duplicant-resilient. However, the approximation
guarantee achieved by Count-Min sketch for quantiles is only additive (i.e., ±εn), in contrast
to the stronger notion of multiplicative approximation (i.e., (1± ε)) we seek in this paper. To
the best of our knowledge, there is no similar result concerning duplicate-resilient sketches
for multiplicative approximation of quantiles or the linear regression problem, and existing
techniques do not seem to be applicable for our purpose. Indeed one of the primary technical
contributions of this paper is designing provisioning schemes that can effectively deal with
overlapping hypotheticals for quantiles and linear regression.

Further related work. Provisioning, in the sense used in this paper, originated in [13]
together with a proposal for how to perform it taking advantage of provenance tracking.
Answering queries under hypothetical updates is studied in [17, 4] but the focus there is on
using a specialized warehouse to avoid transactional costs. We refer the interested reader to
[13] for more related work.

Estimating the number of distinct elements (corresponding to the count query) has been
studied extensively in data streams [16, 2, 5, 28] and distributed functional monitoring [11, 35].
For estimating quantiles in the data stream or the distributed model, [31, 18, 22, 9, 23, 36]
achieve an additive error of εn for an input of length n, and [24, 8] achieve a (stronger
guarantee of) (1± ε)-approximation. Sampling and sketching techniques for `2-regression
problem have also been studied in [14, 32, 15, 6] for either speeding up the computation or
in data streams (see [30, 34] for excellent surveys on this topic).
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2 Problem Statement

Hypotheticals. Fix a relational schema Σ. Our goal is to provision queries on Σ-instances.
A hypothetical w.r.t. Σ is a computable function h that maps every Σ-instance I to a
sub-instance h(I) ⊆ I. Formalisms for specifying hypotheticals are of course of interest (e.g.,
apply a selection predicate to each table in I) but we do not discuss them here because the
results in this paper do not depend on them.

Scenarios. We will consider analyses (scenario explorations) that start from a finite set H of
hypotheticals. A scenario is a non-empty set of hypotheticals S ⊆ H. The result of applying a
scenario S = {h1, . . . , hs} to an instance I is defined as a sub-instance I|S = h1(I)∪· · ·∪hs(I).
In other words, under S, if any h ∈ S is said to be turned on (similarly, any h ∈ H \ S is
turned off), each turned on hypothetical h will retain the tuples h(I) from I.

I Definition 4 (Provisioning). Given a query Q, to provision Q means to design a pair of
algorithms: (i) a compression algorithm that takes as input an instance I and a set H
of hypotheticals, and outputs a data structure Γ called a sketch, and (ii) an extraction
algorithm that for any scenario S ⊆ H, outputs Q(I|S) using only Γ (without access to I).

To be more specific, we assume the compression algorithm takes as input an instance I, and
k hypotheticals h1, . . . , hk along with the sub-instances h1(I), . . . , hk(I) that they define. A
hypothetical will be referred to by an index from {1, . . . , k}, and the extraction algorithm
will be given scenarios in the form of sets of such indices. Hence, we will refer to a scenario
S ⊆ H where S = {hi1 , . . . , his} by abusing the notation as S = {i1, . . . , is}.

We call such a pair of compression and extraction algorithms a provisioning scheme.
The compression algorithm runs only once; the extraction algorithm runs repeatedly for all
the scenarios that an analyst wishes to explore. We refer to the time that the compression
algorithm requires as the compression time, and the time that extraction algorithm requires
for each scenario as the extraction time.

The definition above is not useful by itself for positive results because it allows for trivial
space-inefficient solutions. For example, the definition is satisfied when the sketch Γ is defined
to be a copy of I itself or, as mentioned earlier, a scenario-indexed collection of all the
answers. Obtaining the answer for each scenario is immediate for either case, but such a
sketch can be prohibitively large as the number of tuples in I could be enormous, and the
number of scenarios is exponential in |H|.

This discussion leads us to consider complexity bounds on the size of the sketches.

I Definition 5 (Compact provisioning). A query Q can be compactly provisioned if there exists
a provisioning scheme for Q that given any input instance I and any set of hypotheticals H,
constructs a sketch of size poly(|H|, log |I|) bits.

We make the following important remark about the restrictions made in Definitions 4 and 5.
I Remark. At first glance, the requirement that the input instance I cannot be examined at
all during extraction may seem artificial, and the same might be said about the size of the
sketch depending polynomially on logn rather than a more relaxed requirement. However,
we show that our lower bound results hold even if a portion of size o(n) of the input instance
can be examined during extraction after the scenario is revealed and even if the space
dependence of the sketch is only restricted to be o(n) (instead of depending only polynomially
on logn). In spite of this, the positive results we obtain all use sketches with space that
depend polynomially only on logn and does not require examining the original database
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during the extraction. These calibration results further justify our design choices for compact
provisioning.

Even though the definition of compact provisioning does not impose any restriction on
either the compression time or the extraction time, all our positive results in this paper
are supported by (efficient) polynomial time algorithm. Note that this is data-scenario
complexity: we assume the size of the query (and the schema) to be a constant but we
consider dependence on the size of the instance and the number of hypotheticals. Our
negative results (lower bounds on the sketch size), on the other hand, hold even when the
compression and the extraction algorithms are computationally unbounded.

Exact vs. approximate provisioning. Definition 5 focused on exact answers for the queries.
While this is appropriate for, e.g., relational algebra queries, as we shall see, for queries
that compute numerical answers such as aggregates and analytics, having the flexibility of
answering queries approximately is essential for any interesting positive result.

I Definition 6 (ε-provisioning). For any 0 < ε < 1, a query Q can be ε-provisioned if there
exists a provisioning scheme for Q, whereby for each scenario S, the extraction algorithm
outputs a (1± ε) approximation of Q(I|S), where I is the input instance.

We say a query Q can be compactly ε-provisioned if Q can be ε-provisioned by a
provisioning scheme that, given any input instance I and any set of hypotheticals H, creates
a sketch of size poly(|H|, log |I|, 1/ε) bits.

We emphasize that throughout this paper, we only consider the approximation guarantees
which are relative (multiplicative) as opposed to the weaker notion of additive approxim-
ations. The precise definition of relative approximation guarantee will be provided for
each query individually. Moreover, as expected, randomization will be put to good use in
ε-provisioning. We therefore extend the definition to cover the provisioning schemes that use
both randomization and approximation.

I Definition 7. For any ε, δ > 0, an (ε, δ)-provisioning scheme for a query Q is a provisioning
scheme where both compression and extraction algorithms are allowed to be randomized and
the output for every scenario S is an (1± ε)-approximation of Q(I|S) with probability 1− δ.
Moreover, the compression time of the scheme is poly(|I| , |H| , 1/ε, log (1/δ)) and extraction
time is poly(|Γ|).

An (ε, δ)-provisioning scheme is called compact iff it constructs sketches of size only
poly(|H|, log |I|, 1/ε, log(1/δ)) bits.

Note that in many applications, the size of the database is a very large number, and hence
the exponent in the poly(|I|)-dependence of the compression time might become an issue.
Therefore, we further define (ε, δ)-linear provisioning scheme, where the dependence of the
compression time on |I| is essentially linear, i.e., O(|I|) · poly(|H| , log (|I|), 1/ε, log (1/δ)).
All our positive results for queries with numerical answers will be stated in terms of compact
(ε, δ)-linear provisioning schemes, which ensure efficiency in both running time and sketch
size.

Complex queries. Our main target consists of practical queries that combine logical, group-
ing, and numerical components. In Section 5, we focus on complex queries defined by a logical
(relational algebra or Datalog) query that returns a set of tuples, followed by a group-by
operation (on set of grouping attributes) and further followed by numerical query that is
applied to each sets of tuples resulting from the grouping. This class of queries already covers
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many practical examples. We observe that the output of such a complex query is a set of p
tuples where p is the number of distinct values taken by the grouping attributes. Therefore,
the size of any provisioning sketch must also depend on p. We show (in Theorem 19) that
a sketch for a query that involves grouping can be obtained as a collection of p sketches.
Hence, if each of the p sketches is of compact size (as in Definitions 5 and 7) and the value p
itself is bounded by poly(|H| , log |I|), then the overall sketch for the complex query is also
of compact size. Note that p is typically small for the kind of grouping used in practical
analysis queries (e.g., number of products, number of departments, number of locations, etc.).
Intuitively, an analyst would have trouble making sense of an output with a large number of
tuples.

Notation. Throughout the paper, we denote by k the number of hypotheticals, and by n the
size |I| of the input instance. For any integer m > 0, [m] denotes the set {1, 2, . . . ,m}. The
Õ(·) notation suppresses log log(n), log log(1/δ), log(1/ε), and log(k) factors. All logarithms
are in base two unless stated otherwise.

3 Coverage: A “Hard” Problem for Provisioning

To establish our lower bounds in this paper, we introduce a “hard” problem called Coverage.
Though not defined in the exact formalism of provisioning, the Coverage problem can be
solved by many provisioning schemes using proper “reductions” and hence a lower bound for
the Coverage problem can be used to establish similar lower bounds for provisioning various
queries.

Informally speaking, in the Coverage problem, we are given a collection of k subsets of a
universe [n] and the goal is to “compress” this collection in order to answer to the questions
in which indices of some subsets in the collection are provided and we need to figure out
whether these subsets cover the universe [n] or not. We are interested in compressing schemes
for this problem that when answering each question, in addition to the already computed
summary of the collection, also have a limited access to the original instance (see Remark 2
after Definition 5 for motivation of this modification). The Coverage problem is defined
formally as follows.

I Problem 8 (Coverage). Suppose we are given a collection S = {S1, S2, . . . Sk} of the subsets
of [n]. The goal in the Coverage problem is to find a compressing scheme for S, defined
formally as a triple of algorithms:

A compression algorithm which given the collection S creates a data structure D.
An examination algorithm which given a subset of [k], a question, Q = {i1, . . . , is}
and the data structure D, computes a set J ⊆ [n] of indices and lookup for each j ∈ J
and each Si (i ∈ [k]), whether j ∈ Si or not. The output of the examination algorithm is
a tuple SJ := (SJ1 , . . . , SJk ), where SJi = Si ∩ J .
An extraction algorithm which given a question {i1, . . . , is}, the data structure D, and
the tuple SJ , outputs “Yes”, if Si1 ∪ . . . ∪ Sis = [n] and “No” otherwise.

We refer to the size of D, denoted by |D|, as the storage requirement of the compression
scheme and to the size of J , denoted by |J |, as the examination requirement of the scheme.
The above algorithms can all be randomized; in that case, we require that for each question
Q, the final answer (of the extraction algorithm) to be correct with a probability at least
0.99. Note that this choice of constant is arbitrary and is used only to simplify the analysis;
indeed, one can always amplify the probability of success by repeating the scheme constant
number of times and return the majority answer.
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While Coverage is not stated in the exact formalism of provisioning, the analogy between
this problem and provisioning schemes should be clear. In particular, for our lower bound
proofs for provisioning schemes, we can alter the Definition 4 to add an examination algorithm
and allow a similar access to the original database to the provisioning scheme.

We establish the following lower bound on storage and examination requirement of any
compressing scheme for the Coverage problem. The proof of this Theorem is deferred to the
full version of the paper [3] (see Theorem 3.1).

I Theorem 9. Any compressing scheme for the Coverage problem that answers each ques-
tion correctly with probability at least 0.99, either has storage requirement or examination
requirement of min(2Ω(k),Ω(n)) bits.

Allowing access to the original input in Theorem 9 makes the lower bound very robust.
However, due to this property, the lower bound does not seem to follow from standard
communication complexity lower bounds and hence we use an information-theoretic approach
to prove this theorem directly, which may be of independent interest. We remark that since
our other lower bounds are typically proven using a reduction from the Coverage problem,
the properties in Theorem 9 (i.e., allowing randomization and o(n) access to the database
after being given the scenario) also hold for them and we do not mention this explicitly.

4 Numerical Queries

In this section, we study provisioning of numerical queries, i.e., queries that output some
(rational) number(s) given a set of tuples. In particular, we investigate aggregation queries
including count, sum, average, and quantiles (therefore min, max, median, rank, and
percentile), and as a first step towards provisioning database-supported machine learning,
linear (`2) regression. We assume that the relevant attribute values are rational numbers of
the form a/b where both a, b are integers in range [−W,W ] for some W > 0.

4.1 The Count, Sum, and Average Queries
In this section, we study provisioning of the count, sum, and average queries, formally defined
as follows. The answer to the count query is the number of tuples in the input instance. For
the other two queries, we assume a relational schema with a binary relation containing two
attributes: an identifier (key) and a weight. We say that a tuple x is smaller than the tuple
y, if the weight of x is smaller than the weight of y. Given an instance I, the answer to the
sum query (resp. the average query) is the total weights of the tuples (resp. the average
weight of the tuples) in I.

We first show that none of the count, sum, average queries can be provisioned both
compactly and exactly, which motivates the ε-provisioning approach, and then briefly
describe how to build a compact (ε, δ)-linear provisioning scheme for each of them.

I Theorem 10. Exact provisioning of the count, sum, or average queries requires sketches
of size min(2Ω(k),Ω(n)) bits.

Proof Sketch. We prove the lower bound for the count using a reduction from the Coverage
problem; the lower bound of the sum follows immediately by setting all weights to be 1. The
reduction for the average query is slightly more involved and is deferred to the full version of
the paper [3] (see Theorem 4.1).

Given {S1, . . . , Sk}, where each Si is a subset of [n], we solve Coverage using a provisioning
scheme for the count query. Define an instance I of a relational schema with a unary
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relation A, where I = {A(x)}x∈[n]. Define a set H of k hypotheticals, where for any
i ∈ [k], hi(I) = {A(x)}x∈Si

. For any scenario S = {i1, . . . , is}, the count of I|S is n iff
Si1 ∪ . . . ∪ Sis = [n]. Hence, any provisioning scheme for the count query solves the Coverage
problem and the lower bound follows from Theorem 9. J

We further point out that if the weights can be both positive and negative, the sum
(and average) cannot be compactly provisioned even approximately (see the full version [3],
Theorem 4.2), and hence we will focus on ε-provisioning for positive weights.

We conclude this section by briefly explaining the ε-provisioning schemes for the count,
sum, and average queries. These results are mostly direct application of known techniques
and we present them here for completeness.

I Theorem 11 (count, sum, average). For any ε, δ > 0, there exist compact (ε, δ)-linear
provisioning schemes for the count query and the sum/average queries (with positive weights),
respectively.

The count query can be provisioned by using linear sketches for estimating the `0-norm
(see, e.g., [28]) as follows. Consider each hypothetical hi(I) as an n-dimensional boolean
vector xi, where the j-th entry is 1 iff the j-th tuple in I belongs to hi(I). For each xi, create
a linear sketch (using Õ(ε−2 logn) bits of space) that estimates the `0-norm [28]. Given any
scenario S, combine (i.e., add together) the linear sketches of the hypotheticals in S and use
the combined sketch to estimate the `0-norm (which is equal to the answer of count).

Note that we can directly use linear sketching for provisioning the count query since
counting the duplicates once (as done by union) or multiple times (as done by addition)
does not change the answer. However, this is not the case for other queries of interest like
quantiles and regression and hence linear sketching is not directly applicable for them.

In the full version of the paper [3] (see Theorem 4.3), we describe a self-contained approach
for ε-provisioning the count query with a slightly better dependence on the parameter n
(log logn instead of logn). We name this sketch the CNT-Sketch, which will be used
used later for provisioning other queries. In particular, provisioning the sum query using a
CNT-Sketch is straightforward when the weights are positive: group the tuples by weight
into Θ(logn/ε) groups and construct a CNT-Sketch for each group to estimate the total
sum. In the full version [3] (see Theorem 4.4), we describe this in more detail and point
out how to further improve the sketch size. The provisioning scheme for average follows
immediately from these results.

4.2 The Quantiles Query
We now study provisioning of the quantiles query. We again assume a relational schema with
just one binary relation containing attributes identifier and weight. For any instance I and
any tuple x ∈ I, we define the rank of x to be the number of tuples in I that are smaller
than or equal to x (in terms of the weights). The output of a quantiles query with a given
parameter φ ∈ (0, 1] on an instance I is the tuple with rank dφ · |I|e. Finally, we say a tuple
x is a (1± ε)-approximation of a quantiles query whose correct answer is y, iff the rank of x
is a (1± ε)-approximation of the rank of y.

Similar to the previous section, we first show that the quantiles query admits no compact
provisioning scheme for exact answer and then provide a compact ε-provisioning scheme for
this query.

I Theorem 12. Exact provisioning of the quantiles query even on disjoint hypotheticals
requires sketches of size min(2Ω(k),Ω(n)) bits.
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In the quantiles query, the parameter φ may be given either already to the compression
algorithm or only to the extraction algorithm. The latter yields an immediate lower bound
of Ω(n), since by varying φ over (0, 1], one can effectively “reconstruct” the original database.
However, we achieve a more interesting lower bound for the case when φ is given at to
the compression algorithm (i.e., a fixed φ for all scenarios, e.g., setting φ = 1/2 to find
the median). An important property of the lower bound for quantiles is that, in contrast
to all other lower bounds for numerical queries in this paper, this lower bound holds even
for disjoint hypotheticals2. The proof of Theorem 12 is deferred to the full version [3] (see
Theorem 4.7).

We now turn to establish the main result of this section, which argue the existence of
a compact scheme for ε-provisioning the quantiles. We emphasize that the approximation
guarantee in the following theorem is multiplicative.

I Theorem 13 (quantiles). For any ε, δ > 0, there exists a compact (ε, δ)-linear provisioning
scheme for the quantiles query that creates a sketch of size Õ(kε−3 logn·(log(n/δ)+k)(logW+
k)) bits.

We should note that in this theorem the parameter φ is only provided in the extraction phase.
Our starting point is the following simple lemma first introduced by [24].

I Lemma 14 ([24]). For any list of unique numbers A = (a1, . . . , an) and parameters
ε, δ > 0, let t =

⌈
12ε−2 log (1/δ)

⌉
; for any target rank r > t, if we independently sample

each element with probability t/r, then with probability at least 1 − δ, the rank of the t-th
smallest sampled element is a (1± ε)-approximation of r.

The proof of Lemma 14 is an standard application of the Chernoff bound and the main
challenge for provisioning the quantiles query comes from the fact that hypotheticals overlap.
We propose the following scheme which addresses this challenge.

Compression algorithm for the quantiles query. Given an instance I, a set H
of hypotheticals, and two parameters ε, δ > 0, let ε′ = ε/5, δ′ = δ/3, and t =⌈
12ε′−2(log(1/δ′) + 2k + log(n))

⌉
.

1. Create and record a CNT-Sketch for I and H with parameters ε′ and δ′.
2. Let {rj = (1 + ε′)j}dlog(1+ε′) ne

j=0 . For each rj , create the following sub-sketch individually.
3. If rj ≤ t, for each hypothetical hi, record the rj smallest chosen tuples in hi(I). If

rj > t, for each hypothetical hi, choose each tuple in hi(I) with probability t/rj , and
record the d(1 + 3ε′) · te smallest tuples in a list Ti,j . For each tuple x in the resulting
list Ti,j , record its characteristics vector for the set of the hypotheticals, which is a
k-dimensional binary vector (v1, v2, . . . , vk), with value 1 on vl whenever x ∈ hl(I) and
0 elsewhere.

2 All other numerical queries that we study in this paper can be compactly provisioned for exact answer,
when the hypotheticals are disjoint.



S. Assadi, S. Khanna, Y. Li, and V. Tannen 18:11

Extraction algorithm for the quantiles query. Suppose we are given a scenario S and
a parameter φ ∈ (0, 1]. In the following, the rank of a tuple always refers to its rank in the
sub-instance I|S .
1. Denote by ñ the output of the CNT-Sketch on S. Let r̃ = φ · ñ, and find the index

γ, such that rγ ≤ r̃ < rγ+1.
2. If rγ ≤ t, among all the hypotheticals turned on by S, take the union of the recorded

tuples and output the rγ-th smallest tuple in the union.
3. If rγ > t, from each hi turned on by S, and each tuple x recorded in Ti,γ with a

characteristic vector (v1, v2, . . . , vk), collect x iff for any l < i, either vl = 0 or hl /∈ S.
In other words, a tuple x recorded by hi is taken only when among the hypotheticals
that are turned on by S, i is the smallest index s.t. x ∈ hi(I). We will refer to this
procedure as the deduplication. Output the t-th smallest tuple among all the tuples
that are collected.

We call a sketch created by the above compression algorithm a QTL-Sketch. We defer
the analysis of this sketch and the proof of Theorem 13 to the full version of the paper [3]
(see Theorem 4.8).

Extensions. By simple extensions of our scheme, many variations of the quantiles query
can be answered, including outputting the rank of a tuple x, the percentiles (the rank of x
divided by the size of the input), or the tuple whose rank is ∆ larger than x, where ∆ > 0 is
a given parameter. As an example, for finding the rank of a tuple x, we can find the tuples
with ranks approximately {(1 + ε)l}, l ∈ [

⌈
log(1+ε) n

⌉
], using the QTL-Sketch, and among

the found tuples, output the rank of the tuple whose weight is the closest to the weight of x.

4.3 The Linear Regression Query
In this section, we study provisioning of the regression query (i.e., the `2-regression problem),
where the input is a matrix An×d and a vector bn×1, and the goal is to output a vector x
that minimizes ‖Ax − b‖ (‖ · ‖ stands for the `2 norm). A (1 + ε)-approximation of the
regression query is a vector x̃ such that ‖Ax̃− b‖ is at most (1 + ε) minx ‖Ax− b‖.

The input is specified using a relational schema Σ with a (d+ 2)-ary relation R. Given
an instance I of Σ with n tuples, we interpret the projection of R onto its first d columns,
the (d + 1)-th column, and the (d + 2)-column respectively as the matrix A, the column
vector b, and the identifiers for the tuples in R. For simplicity, we denote I = (A,b), assume
that the tuples are ordered, and use the terms the i-th tuple of I and the i-th row of (A,b)
interchangeably.

Notation. For any matrix M ∈ Rn×d, denote by M(i) the i-th row of M, and by UM ∈ Rn×ρ
(where ρ is the rank of M) the orthonormal matrix of the column space of M (see [26]
for more details). Given an instance I = (A,b), and k hypotheticals, we denote for each
hypothetical hi the sub-instance hi(I) = (Ai,bi). For any integer i, ei denotes the i-th
standard basis; hence, the i-th row of M can be written as eTi M.

The following theorem shows that the regression query cannot be compactly provisioned
for exact answers (see the full version [3], Theorem 4.10) and hence, we will focus on
ε-provisioning.

ICDT 2016
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I Theorem 15. Exact provisioning of the regression query, even when the dimension is d = 1,
requires sketches of size min(2Ω(k),Ω(n)) bits

Before continuing, we remark that if hypotheticals are disjoint, the regression query admits
compact provisioning for exact answer (see the full version [3], Section 4.3), and hence the
hardness of the problem again lies on the fact that hypotheticals overlap. We now turn to
provide a provisioning scheme for the regression query and prove the following theorem.

I Theorem 16 (regression). For any ε, δ > 0, there exists a compact (ε, δ)-linear provisioning
scheme for the regression query that creates a sketch of size Õ(ε−1k3d log(nW )(k + log 1

δ ))
bits.

Overview. Our starting point is a non-uniform sampling based approach (originally used
for speeding up the `2-regression computation [32]) which uses a small sample to accurately
approximates the `2-regression problem. Since the probability of sampling a tuple (i.e., a row
of the input) in this approach depends on its relative importance which can vary dramatically
when input changes, this approach is not directly applicable to our setting.

Our contribution is a two-phase sampling based approach to achieve the desired sampling
probability distribution for any scenario. At a high level, we first sample and record a small
number of tuples from each hypothetical using the non-uniform sampling approach; then,
given the scenario in the extraction phase, we re-sample from the recorded tuples of the
hypotheticals presented in the scenario. Furthermore, to rescale the sampled tuples (as
needed in the original approach), we obtain the exact sampling probabilities of the recorded
tuples by recording their relative importance in each hypothetical. Our approach relies on a
monotonicity property of the relative importance of a tuple when new tuples are added to
the original input.

RowSample. We start by describing the non-uniform sampling algorithm. Let P =
(p1, p2, . . . , pn) be a probability distribution, and r > 0 be an integer. Sample r tuples
of I = (A,b) with replacement according to the probability distribution P . For each sample,
if the j-th row of A is sampled for some j, rescale the row with a factor (1/√rpj) and store
it in the sampling matrix (Ã, b̃). In other words, if the i-th sample is the j-th row of I,
then (Ã(i), b̃(i)) = (A(j),b(j))/

√
rpj . We denote this procedure by RowSample(A,b,P, r),

and (Ã, b̃) is its output. The RowSample procedure has the following property [32] (see
also [14, 34] for more details on introducing the parameter β).

I Lemma 17 ([32]). Suppose A ∈ Rn×d, b ∈ Rn, and β ∈ (0, 1]; P = (p1, p2, . . . , pn)
is a probability distribution on [n], and r > 0 is an integer. Let (Ã, b̃) be an output of
RowSample(A, b,P, r), and x̃ = arg minx ‖Ãx− b̃‖.

If for all i ∈ [n], pi ≥ β ‖eT
i UA‖2∑n

j=1
‖eT

j
UA‖2 , and r = Θ(d log d log(1/δ)

ε·β ), then with probability at

least (1− δ), ‖Ax̃− b‖ ≤ (1 + ε) minx ‖Ax− b‖.

The value ‖eTi UA‖2, i.e the square norm of the i-th row of UA, is also called the leverage
score of the i-th row of A. One should view the leverage scores as the “relative importance”
of a row for the `2-regression problem (see [30] for more details). Moreover, using the fact
that columns of UA are orthonormal, we have

∑
j ‖eTj UA‖2 = ρ, where ρ is the rank of A.

We now define our provisioning scheme for the regression query, where the compression
algorithm performs the first phase of sampling (samples rows from each hypothetical) and
the extraction algorithm performs the second (samples from the recorded tuples).
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Compression algorithm for the regression query. Suppose we are given an in-
stance I = (A,b) and k hypotheticals with hi(I) = (Ai,bi) (i ∈ [k]). Let t =
Θ(ε−1kd log d · (k + log (1/δ))), and define for each i ∈ [k] a probability distribution
Pi = (pi,1, pi,2, . . . , pi,n) as follows. If the j-th row of A is the l-th row of Ai (they
correspond to the same tuple), let pi,j = ‖eTl UAi

‖2/ρ, where ρ is the rank of Ai. If A(j)
does not belong to Ai, let pi,j = 0. Using the fact that for every i ∈ [k], UAi is an
orthonormal matrix,

∑n
j=1 pi,j = 1. Record t independently chosen random permutations

of [k], and for each hypothetical hi, create a sub-sketch as follows.
1. Sample t tuples of hi(I) with replacement, according to the probability distribution Pi.
2. For each of the sampled tuples, assuming it is the j-th tuple of I, record the tuple

along with its sampling rate in each hypothetical, i.e., {pi′,j}i′∈[k].

Extraction algorithm for the regression query. Given a scenario S = {i1, . . . , is}, we
will recover from the sketch a matrix Ãt×d and a vector b̃t×1. For l = 1 to t:
1. Pick the l-th random permutation recorded in the sketch. Let γ be the first value in

this permutation that appears in S.
2. If (a, b) is the l-th tuple sampled by the hypothetical hγ , which is the j-th tuple of I,

let qj =
∑
i∈S pi,j/|S|, using the recorded sampling rates.

3. Let (Ã(l), b̃(l)) = (a, b)/√tqj . Return x̃ = arg minx‖Ãx − b̃‖ (using any standard
method for solving the `2-regression problem).

We call a sketch constructed above a REG-Sketch. In order to show the correctness of
this scheme, we need the following lemma regarding the monotonicity of leverage scores (the
proof is presented in the full version [3], Lemma 4.13).

I Lemma 18 (Monotonicity of Leverage Scores). Let A ∈ Rn×d and B ∈ Rm×d be any matrix.
Define matrix C ∈ R(n+m)×d by appending rows of B to A, i.e., CT = [AT ,BT ]. For any
i ∈ [n], if Li is the leverage score of A(i) and L̂i is the leverage score of C(i), then Li ≥ L̂i.

Lemma 18 claims that adding more rows to a matrix A can only reduce the importance
of any point originally in A. Note that this is true even when the matrix C is formed by
arbitrarily combining rows of B and A (rather than appending at the end).

Proof of Theorem 16. Fix a scenario S and let I|S = (Â, b̂). It is straightforward to verify
that, for any step l ∈ [t], qj (in line (2) of the extraction algorithm) is the probability that
the j-th tuple of I is chosen, if the j-th tuple belongs to I|S . Hence, assuming P ′ is the
probability distribution defined by the qjs on rows of the I|S , the extraction algorithm
implements RowSample(Â, b̂,P ′, t).

We will show that qj ≥ ‖eTl UÂ‖2/kρ̂, where the l-th row of Â is the j-th row of A,
and ρ̂ is the rank of Â. Then, by Lemma 17 with β set to 1/k, with probability at least
1 − δ

2k , ‖Âx̃ − b̂‖ is at most (1 + ε) minx ‖Âx − b̂‖; hence, the returned vector x̃ is a
(1 + ε)-approximation. Applying a union bound over all 2k scenarios, with probability at
least (1− δ), our scheme ε-provisions the regression query.

We now prove that qj ≥ ‖eTl UÂ‖2/kρ̂. Denote by Li,j (resp. LS,j) the leverage score
of the j-th tuple of I in the matrix Ai (resp. Â). Further, denote by ρi the rank of Ai.
Consequently, pi,j = Li,j/ρi, and our goal is to show qj ≥ LS,j/(kρ̂). Pick any i∗ ∈ S where
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hi∗(I) contains the j-th tuple of I, then:

qj =
∑
i∈S pi,j

s
≥ pi∗,j

s
≥ Li∗,j

kρi
≥ LS,j

kρ̂
(1)

For the last inequality, since Ai is a sub-matrix of Â, ρi ≤ ρ̂ and the leverage score decreases
due to the monotonicity (Lemma 18).

To conclude, the probabilities will be stored with precision 1/n (hence stored using
O(logn) bits each), and the size of the sketch is straightforward to verify. J

5 Complex Queries

We study the provisioning of queries that combine logical components (relational algebra
and Datalog), with grouping and with the numerical queries that we studied in Section 4.

We start by defining a class of such queries and their semantics formally. For the purposes
of this paper, a complex query is a triple 〈QL;GĀ;QN 〉 where QL is a relational algebra
or Datalog query that outputs some relation with attributes ĀB̄ for some B̄, GĀ is a
group-by operation applied on the attributes Ā, and QN is a numerical query that takes as
input a relation with attributes B̄. For any input I let P = ΠĀ(QL(I)) be the Ā-relation
consisting of all the distinct values of the grouping attributes. For each tuple ū ∈ P , we
define Γū = {v̄ | ūv̄ ∈ QL(I)}. Then, the output of the complex query 〈QL;GĀ;QN 〉 is a set
of tuples {〈ū, QN (Γū)〉 | ū ∈ P}.

In the following, we give positive results for the case where the logical component is a
positive relational algebra (i.e., SPJU) query. It will be convenient to assume a different,
but equivalent, formalism for these logical queries, namely that of unions of conjunctive
queries (UCQs)3. We review quickly the definition of UCQs. A conjunctive query (CQ)
over a relational schema Σ is of the form ans(x) : − R1(x1), . . . , Rb(xb), where atoms
R1, . . . , Rb ∈ Σ, and the size of a CQ is defined to be the number of atoms in its body (i.e.,
b). A union of conjunctive query (UCQ) is a finite union of some CQs in which the head has
the same schema.

In the following theorem, we show that for any complex query, where the logical component
is a positive relational algebra query, compact provisioning of the numerical component
implies compact provisioning of the complex query itself.

I Theorem 19. For any complex query 〈QL;GĀ;QN 〉 where QL is a UCQ, if the numerical
component QN can be compactly provisioned (resp. compactly ε-provisioned), and if the
number of groups is bounded by poly(k, logn), then the query 〈QL;GĀ;QN 〉 can also be
compactly provisioned (resp. compactly ε-provisioned with the same parameter ε).

Proof. Suppose QN can be compactly provisioned (the following proof also works when QN
can be compactly ε-provisioned). Let b be the maximum size of the conjunctive queries in
QL. Given an input instance I and a set H of k hypotheticals, we define a new instance
Î = QL(I) and a set Ĥ of O(kb) new hypotheticals as follows. For each subset S ⊆ [k] of size
at most b (i.e., |S| ≤ b), define a hypothetical ĥS(Î) = QL(I|S) (though S is not a number,
we still use it as an index to refer to the hypothetical ĥS). By our definition of the semantics

3 Although the translation of an SPJU query to a UCQ may incur an exponential size blowup [1], in this
paper, query (and schema) size are assumed to be constant. In fact, in practice, SQL queries often
present with unions already at top level.
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of complex queries, the group-by operation partitions Î and each ĥS into p = |ΠĀ(Î)| groups.
We treat each group individually, and create a sketch for each of them.

To simplify the notation, we still use Î and Ĥ to denote respectively the portion of the
new instance, and the portion of each new hypothetical that correspond to, without loss of
generality, the first group. In the following, we show that a compact provisioning scheme for
QN with input Î and Ĥ can be adapted to compactly provision 〈QL;GĀ;QN 〉 for the first
group. Since the number of groups p is assumed to be poly(log |I|, |H|), the overall sketch
size is still poly(log |I|, |H|), hence achieving compact provisioning for the complex query.

Create a sketch for QN with input Î and Ĥ. For any scenario S ∈ [k] (over H), we
can answer the numerical query QN using the scenario Ŝ (over Ĥ) where Ŝ = {S′ | S′ ⊆
S and |S′| ≤ b}. To see this, we only need to show that the input to QN remains the same,
i.e., QL(I|S) is equal to Î|Ŝ . Each tuple t in QL(I|S) can be derived using (at most) b
hypotheticals. Since any subset of S with at most b hypotheticals belongs to Ŝ, the tuple t
belongs to Î|Ŝ . On the other hand, each tuple t′ in Î|Ŝ belongs to some ĥS′ where S′ ∈ S,
and hence, by definition of ĥS′ , the tuple t is also in QL(I|S). Hence, QL(I|S) = Î|Ŝ .

Consequently, any compact provisioning scheme for QN can be adapted to a compact
provisioning scheme for the query 〈QL;GĀ;QN 〉. J

Theorem 19 further motivates our results in Section 4 for numerical queries as they can
be extended to these quite practical queries. Additionally, as an immediate corollary of
the proof of Theorem 19, we obtain that any boolean UCQ (i.e., any UCQ that outputs a
boolean answer rather than a set of tuples) can be compactly provisioned.

I Corollary 20. Any boolean UCQ can be compactly provisioned using sketches of size O(kb)
bits, where b is the maximum size of each CQ.

I Remark. [13] introduced query provisioning from a practical perspective and proposed
boolean provenance [27, 20, 19, 33] as a way of building sketches. This technique can also be
used for compactly provisioning boolean UCQs (see the full version [3], Remark 5.3).

We further point out that the exponential dependence of the sketch size on the query
size (implicit) in Theorem 19 and Corollary 20 cannot be avoided even for CQs (the proof is
in the full version [3]; see Theorem 5.5).

I Theorem 21. There exists a boolean conjunctive query Q of size b such that provisioning
Q requires sketches of size min(Ω(kb−1),Ω(n)) bits.

More general queries. It is natural to ask (a) if Theorem 19 still holds when adding negation
or recursion to the query QL (i.e. UCQ with negation and recursive Datalog, respectively),
and (b) whether or not it is possible to provision queries in which logical operations are done
after numerical ones. A typical example of a query in part (b) is a selection on aggregate
values specified by a HAVING clause. Unfortunately, the answer to both questions is negative.

We first show that the answer to question (a) is negative.

I Theorem 22. Exact provisioning of (i) boolean conjunctive queries with negation, or (ii)
recursive Datalog (even without negation) queries requires sketches of size min(2Ω(k),Ω(n)).

Proof Sketch. We sketch the proof of each part separately; the complete proofs can be found
in the full version [3] (see Theorem 5.6).
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Part (i). Define the following boolean conjunctive query with negation over a schema with
two unary relation symbols, A and B:

QNOTSUB() :− A(x),¬B(x)

This query returns true on I iff there exists some x such that A(x) ∈ I and B(x) /∈ I.
Intuitively, if we view A and B as subsets of the active domain of I, it is querying whether
or not “B is a subset of A”. We use a reduction from the Coverage problem to prove the
lower bound for QNOTSUB.

From an instance {S1, . . . , Sk} (Si ⊆ [n]) of Coverage, we create the following instance
I for the schema Σ = {A,B}, where for any x ∈ [n], A(x), B(x) ∈ I. Define the set of of
hypotheticals H = {h1, h2, . . . , hk+1}, where for any i ∈ [k], hi(I) = {B(x) | x ∈ Si} and
hk+1(I) = {A(x) | x ∈ [n]}. It is easy to see that for any set Ŝ = {i1, . . . , is} ⊆ [k], under
the scenario S = Ŝ ∪ {k + 1}, QNOTSUB(I|S) is true iff there exists x ∈ [n] s.t. B(x) /∈ I|S
which is equivalent to [n] 6⊆ Si1 ∪ . . . ∪ Sis . Therefore any provisioning scheme of QNOTSUB

solves the Coverage problem and the result follows from Theorem 9.

Part (ii). Consider the following Datalog query, st-connectivity:

ans() :− T (t) (2)
T (y) :− E(x, y), T (x) (3)
T (s) :− (4)

This query returns true iff there is a path from the vertex s to the vertex t in the digraph
defined by E. To prove a lower bound for the st-connectivity query we use again a reduction
from the Coverage problem.

From an instance {S1, . . . , Sk} (Si ⊆ [n]) of Coverage, we create the following graph
G(V,E) with vertex set V = {(s =) v0, v1, v2, . . . , vn (= t)}, and edges E(vj−1, vj), for all
j ∈ [n]. In G, there is only one path from s to t and that path uses all the n edges. The edge
set E of the graph G is the input I to the provisioning scheme. Define the hypotheticals
H = {h1, h2, . . . , hk} where hi(I) = {E(vj−1, vj)}j∈Si , for all i ∈ [k]. For any scenario
S = {i1, . . . , is} ⊆ [k], T (t) is true (i.e., s is connected to t) in I|S iff all n edges are in I|S ,
which is equivalent to Si1∪. . .∪Sis = [n]. Therefore any provisioning scheme of st-connectivity
solves the Coverage problem and the result follows from Theorem 9. J

Showing a negative answer to question (b) is very easy. As we already showed in
Theorems 10 and 12, there are numerical queries that do not admit compact provisioning for
exact answer. One can simply verify that each of those queries can act as a counter example
for question (b) by considering HAVING clauses that test the equality of the answer to the
numerical part against an exact answer (e.g. testing whether the answer to count is n or
not).

6 Conclusions and Future Work

In this paper, we initiated a formal framework to study compact provisioning schemes for
relational algebra queries, statistics/analytics including quantiles and linear regression, and
complex queries. We considered provisioning for exact as well as approximate answers, and
established upper and lower bounds on the sizes of the provisioning sketches.

The queries in our study include quantiles and linear regression queries from the list of
in-database analytics highlighted in [25]. This is only a first step and the study of provisioning
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for other core analytics problems, such as variance computation, k-means clustering, logistic
regression, and support vector machines is of interest.

Another direction for future research is the study of queries in which numerical computa-
tions follow each other (e.g., when the linear regression training data is itself the result of
aggregations). Yet another direction for future research is an extension of our model to allow
other kinds of hypotheticals/scenarios as discussed in [13] that are also of practical interest.
For example, an alternative natural interpretation of hypotheticals is that they represent
tuples to be deleted rather than retained. Hence the application of a scenario S ⊆ [k] to I
becomes I|S = I \ (

⋃
i∈S hi(I)). Using our lower bound techniques, one can easily show that

even simple queries like count or sum cannot be approximated to within any multiplicative
factor under this definition. Nevertheless, it will be interesting to identify query classes that
admit compact provisioning in the delete model or alternative natural models.
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